
ANL/NDH—77

D383 005S42

ANL/NDM-77

A LEAST-SQUARES METHOD FOR DERIVING REACTION
DIFFERENTIAL-CROSS-SECTION INFORMATION FROM

MEASUREMENTS PERFORMED IN DIVERSE NEUTRON FIELDS*

by

Donald L. Smith

November 1982

ivsrramv. e« or

corrjji?:en«v

S:a;es Gorernrn

ntcesarily s:aie

« Stales Go
«s or imslie

w usefulness

mnsriiure o

ient c any ag

d. or a

of *n

imply

ency Jh

* of trie

in

U n i

•3fk soonsored by a i agency

any age^cv Itwfeof. nor a

>w any legal liability of

'orrrwircr.. apwralut. are

^^^7','^Sa
Th" v*irrt ana otinions o

of the United Sales Govemmeni.

resoons^iilTy •for :tw accu'acy.

ion or tsvoiing by ;iv United

authors cipfessed f>ertir> do not

v agency thjf eof.

*This work supported by the U.S. Department of Energy.

Applied Physics Division
Argonne National Laboratory
9700 South Cass Avenue

Argonne, Illinois 60439
USA

DISTRIBUTION CF TiiiS D O C i J ^ T 13 li?iL!i«!T£O



NUCLEAR DATA AND MEASUREMENTS SERIES

The Nuclear Data and Measurements Series presents results of studies in
the field of microscopic nuclear data. The primary objective is the dissemi-
nation of information in the comprehensive form required for nuclear technology
applications. This Series is devoted to: a) measured microscopic nuclear
parameters, b) experimental techniques and facilities employed in measurements,
c) the analysis, correlation and interpretation of nuclear data, and d) the
evaluation of nuclear data. Contributions to this Series are reviewed to
assure technical competence and, unless otherwise stated, the contents can be
formally referenced. This Series does not supplant formal journal publication
but it does provide the mere extensive information required for technological
applications (e.g., tabulated numerical data) in a timely manner.



INFORMATION ABOUT OTHER ISSUES IN THE ANL/NDM CKRIES:

A list of titles and authors for reports ANL/NDM-1 through ANL/NDM-50
can be obtained by referring to any report of this series numbered ANL/NDM-51
through ANL/NDM-76. Requests for a complete list of titles or for copies of
previous reports should be directed to:

Section Secretary
Applied Nuclear Physics Section
Applied Physics Division
Building 316
Argonne National Laboratory
9700 South Cass Avenue
Argonne, Illinois 60439
USA

ANL/NDM-51 Measured and Evaluated Neutron Cross Sections of Elemental
Bismuth by A. Smith, P. Guenther, D. Smith and J. Whalen,
April 1980.

ANL/NDM-52 Neutron Total and Scattering Cross Sections of 6Li in the Few
MeV Region by P. Guenther, A. Smith and J. Whalen, February 1980.

ANL/NDM-53 Neutron Source Investigations in Support of the Cross Section
Program at the Argonne Fast-Neutron Generator by James W. Meadows
and Donald L. Smith, May 1980.

ANL/NDM-54 The Nonelastic-Scattering Cross Sections of Elemental Nickel
by A. B. Smith, P. T. Guenther and J. F. Whalen, June 1980.

ANL/NDM-55 Thermal Neutron Calibration of a Tritium Extraction Facility
using the 6Li(n,t)'*He/197Au(n,Y)198Au Cross Section Ratio for
Standardization by M. M. Bretscher and D. L. Smith, August 198.0.

ANL/NDM-56 Fast-Neutron Interactions with 182W, 18i*W and 1 8 6W by P. T.
Guenther, A. B. Smith and J. F. Whalen, December 1980.

ANL/NDM-57 The Total, Elastic- and Inelastic-Scattering Fast-Neutron Cross
Sections of Natural Chromium, Peter T. Guenther, Alan B. Smith
and James F. Whalen, January 1981.

ANL/NDM-58 Review of Measurement Techniques for the Neutron Capture Process
by W. P. Poenitz, August 1981.

ANL/NDM-59 Review of the Importance of the Neutron Capture Process in
Fission Reactors, Wolfgang P. Poenitz, July 1981.

ANL/NDM-60 Neutron Capture Activation Cross Sections of 91fZr, 96Zr, 98»100Mo,
and 110»11't>11&Cd at Thermal and 30 keV Energy, John M. Wyrick
and Wolfgang P. Poenitz (to be published).

-ii-



ANL/NDM-61 Fast-neutron Total and Scattering Cross Sections of 58Ni by
Carl Budtz-J^rgensen, Peter T. Guenther, Alan B. Smith and
James F. Whalen, September 1981.

ANL/NDM-62 Covariance Matrices and Applications to the Field of Nuclear
Data, by Donald L. Smith, November 1981.

ANL/NDM-63 On Neutron Inelastic-Scattering Cross Sections of 232Th, 2 3 3U,
235^ 238U} 2390> 239^ a n d 2^^ b y A l a n B. S m l t h a n d

Peter T. Guenther, January 1982.

ANL/NDM-64 The Fission Fragment Angular Distributions and Total Kinetic
Energies for 2"U(n,f) from 0.18 to 8.83 MeV by James W.
Meadows and Carl Budtz-J^rgensen , January 1982.

ANL/NDM-65 Note on the Elastic Scattering of Several MeV Neutrons from
Elemental Calcium by Alan B. Smith and Peter T. Guenther,
March 1982.

ANL/NDM-66 Fast-neutron Scattering Cross Sections of Elemental Silver
by Alan B. Smith and Peter T. Guenther, May 1982.

ANL/NDM-67 Non-evaluation Applications for Covariance Matrices by
Donald L. Smith, July 1982.

ANL/NDM-68 Fast-neutron Total and Scattering Cross Sections of 103Rh
by Alan B. Smith, Peter T. Guenther and James F. Whalen t
July 1982.

ANL/NDM-69 Fast-neutron Scattering Cross Sections of Elemental
Zirconium by Alan B. Smith and Peter T. Guenther (to be
published).

ANL/NDM-70 Fast-neutron Total and Scattering Cross Sections of Niobium
by Alan B. Smith, Peter T. Guenther and James F. Whalen, July
1982.

ANL/NDM-71 Fast-neutron Total and Scattering Cross Sections of Elemental
Palladium by by Alan B. Smith, Peter T. Guenther and James F.
Whalen, June 1982.

ANL/NDM-72 Fast-neutron Scattering from Elemental Cadmium by Alan B. Smith
and P. T. Guenther (to be published).

ANL/NDM-73 Fast-Neutron Elastic-Scattering Cross Sections of Elemental
Tin by C. Budtz-J»5rgensen, P. Guenther and A. Smith, July
1982.

ANL/NDM-74 Evaluation of the 2 3 8U Neutron Total Crosi. Section by
W. Poenitz, A. B. Smith and R. Howerton (to be published).

-iii-



ANL/NDM-75 Neutron Total and Scattering Cross Sections of Elemental
Antimony by A. B. Smith, P. T. Guenther, and J. F. Whalen
(to be published).

ANL/NDM-76 Scattering of Fast-Neutrons from Elemental Molybdenum by
A. B. Smith and P. T. Guenther (to be published).

-iv-



TABLE OF CONTENTS

Page

TREFACE vi

ABSTRACT viii

I. INTRODUCTION 1

II. FORMALISM 5

III. NUMERICAL EXAMPLES . . . . . 17

IV. CONCLUSION . . . . . 45

ACKNOWLEDGEMENTS 45

REFERENCES 46

APPENDIX 48



PREFACE

The objective of nuclear data research is acquisition of quantitative
knowledge for those nuclear parameters which are important in technological
applications. This is a dynamic field because technological requirements
continuously change. The investigation of nuclear properties which are not
directly related to specific technologies is often required in order to
achieve a deeper understanding of certain systematic effects which do impact
upon practical applications.

Traditionally, the development of nuclear data information has involved
contributions from several distinct subdisciplines. Interaction between
researchers examining theoretical and nuclear model problems, nuclear reaction
cross section measurers, reactor scientists, evaluators, etc., has been
limited. This situation is now changing rapidly. Many of the traditional
boundaries between the various facets of nuclear data research have crumbled.
Theory and nuclear model calculations have been used by evaluators to develop
reasonably reliable evaluations in situations where experimental data are
nonexistent or inadequate. Differential cross section measurers have
cooperated with integral investigators, thereby eliminating a number of
discrepancies which long plagued this field. The roles of experimenter,
theorist and evaluator have thus become considerably intermingled. Ambitious
programs to develop comprehensive evaluated-data files demand coordinated
contributions from all sectors of the nuclear data community in order to
satisfy the established goals. This evolution of the field has been a very
positive development. Otherwise, it is unlikely that there would have been
as much progress as has actually been achieved lately. Clearly, the trend
toward amalgamation of the traditional subdisciplines in the nuclear data
community has enriched the field and enhanced productivity.

Evaluators have come to recognize that there is no clear boundary between
integral and differential data. The terms "differential" and "integral"
identify qualitatively whether experiments are performed under narrow-spectrum
or broad-spectrum conditions. The distinction is harbored most fervently in
the minds of experimentalists whose partisan thinking is strongly influenced
by the nature of the facilities where they are employed. Actually, one cannot
attribute the development of this artificial distinction entirely to the
limitations of research facilities. A researcher who utilizes a filtered beam
from a reactor for measurements is effectively a "differentialist." A worker
at a Van de Graaff facility who bombards thick targets with high-energy light
charged particles can produce very broad neutron spectra indeed, and use them
productively for "integral" studies. Investigators who use linac neutron
sources can pursue both "differential" and "integral" studies, depending upon
the manner in which they utilize the time-of-flight information available to
them. Also, we should not forget the contributions from those researchers who
utilize radioactive neutron sources such as Ra-Be or Cf-252. Their research
encompasses the entire range between "differential" and "integral" methods.

The present work offers what is hoped to be a constructive assault against
two traditional boundaries in the nuclear data field, namely integral versus
differential and measurement versus evaluation. A method is suggested for
addressing the problem of improving knowledge of a specific energy-dependent
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reaction cross section, o(E). This method is founded upon the well-known
Bayesian approach utilized by evaluators, whereby a prior evaluation of the
cross section is "refined" by the addition of new experimental information
which is, hopefully, independent of the prior evaluation. What is suggested
here is that the researcher can, if he chooses, abandon the traditional •
approach of restricting a specific investigation to either a differential
method which seeks to measure energy-dependent cross sections or an integral
method which has the goal of measuring a specific spectrum-average cross
section. Instead, he is free to use almost any method for neutron production
available at his laboratory in order to measure a set of distinct reaction
yields. The researcher then analyzes his results in the context of all prior
information, thereby assuming the role of an evaluator. An unbiased, general-
ized least-squares algorithm which car. be used for performing this evaluation
task is described in the present report. The researcher who follows this
approach thus cannot be identified specifically as a differential or integral
measurer, or evaluator. The measured results he reports may not actually be
cross sections, yet knowledge of this information could help significantly to
refine our knowledge of a specific cross section. Furthermore, the proposed
algorithm permits a quantitative assessment of the extent to which the specific
new information has improved our knowledge of the cross section.

There are limitations to the method and risks associated with it. For
example, if the apriori knowledge is truly wrong, and is too heavily weighted
by unrealistically small uncertainties, then the benefits of new information
may not be adequately realized. However, the least-squares algorithm has a
built-in warning device to signal the existence of such situations. There is
the risk associated with an obvious loss of distinction between truly experi-
mental information and information which may be introduced from other sources
such as model calculations or even guess work. This will not be a severe
problem if all input is properly documented. Finally, there is a psychological
penalty. Scientists want to have their contributions perceived as clearly
identifiable entities. Experimenters like to point to specific cross sections
which they have measured. Evaluators take pride in having brought order out
of chaos by single-handedly reviewing large bodies of experimental or model
calculation results and subsequently producing specific evaluations which they
can call their own. The approach discussed in this paper threatens these
sensitivities because it implies that the development of nuclear data is more
of a team undertaking. Each individual research effort must be viewed as
analogous to the contribution provided by a relay runner rather than that by a
marathon runner. The possibilities opened by considering this approach seem
to this author to be worth these risks. In principle, the nuclear data
community should focus on the objective of seeking a better knowledge of
nuclear data by whatever legitimate means are available, and ralegate matters
of individual distinction and achievement to secondary status.
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A LEAST-SQUARES METHOD FOR DERIVING REACTION DIFFERENTIAL CROSS SECTION
INFORMATION FROM MEASUREMENTS PERFORMED IN DIVERSE NEUTRON FIELDS*

by

Donald L. Smith
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ABSTRACT

A generalized least-squares algorithm which refines a prior
multi-group energy-differential neutron-reaction cross-section
evaluation by addition of new experimental data is described.
Complete covariance information for the prior evaluation and for the
new experimental information is required in this procedure. The
result is a revised best-estimate multi-group cross-section evalua-
tion with complete covariance information. The algorithm tests the
consistency of the new and apriori information, and It readily
indicates whether the new data significantly improve the knowledge
of the differential cross section. These new data need not be
specific differential cross sections. Therefore, the experimenter
is not limited to measurements which involve only conventional mono-
energetic techniques. This opportunity suggests exploration of
diverse new experimental methods, e.g., ones which can exploit the
high yield and favorable neutron-energy ranges offered by certain
unconventional neutron sources which have received little past
attention. This method is demonstrated by the detailed analysis of
several hypothetical numerical examples. The understanding of the
method's potential and limitations which has emerged from the
present investigation is discussed.

*This work supported by the U.S. Department of Energy.
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I. INTRODUCTION

A strong emphasis on nuclear data evaluations during the past several
years has led to the dramatic refinement of evaluation techniques, culminating
in the development of unbiased generalized least-squares methods and rigorous
consideration of covariances for physical quantities (e.g., see Refs. 1-15).
This growing sophistication of the evaluation process is forcing experimenters
to approach their work in new ways. For example, sharp distinctions between
differential and integral methods are fading. Also, experiments are now more
likely to be conceived with the evaluation process in mind rather than to
provide stand-alone information. This trend is likely to accelerate in the
future.

The only reasonable long-term goal for the nuclear data field is the
acquisition of fundamental differential information of adequate scope and
accuracy to meet all applied needs. Integral results which are inseparable
from specific applications may very well have short useful life spans.
Expenditure of significant resources to develop such limited data is inadvisable
[16]. However, in view of the mathematical tools now available for data
analysis, it appears worthwhile to consider very carefully what types of
experimental data might be useful in future investigations designed to improve
the knowledge of differential parameters. There is a parallel need for
creative thinking regarding measurement concepts which would break away from
the traditional confines and enable the nuclear data community to achieve
significant progress over the next several years.

It is reasonable to question whether the improvement of our knowledge of
energy-differential neutron reaction cross sections has to be limited in scope
to the restrictive domain of conventional monoenergetic measurement technique.
It is well known that valuable cross section normalization information can be
derived from careful integral experiments. Can shape information also be
derived from certain integral data? There are limited possibilities for
tailoring reactor spectra, and the Cf—252 spontaneous-fission neutron spectrum
and other radioactive-neutron-source spectra are essentially fixed. Only
rudimentary shape information is likely to be inferred from measurements in
these neutron fields. On the other hand, diverse integral neutron-spectrum
shapes can be generated by bombarding various targets with variable-energy
light-charged-particle beams produced by accelerators. The possibility of
deriving useful shape information from measurements in these fields seems
worthy of investigation. The present state of knowledge of neutron sources
used for neutron data development is reasonably well summarized by the papers
in Ref. 17. One is impressed by the considerable variety of available neutron
sources. It is also evident that severe (and probably unnecessary) restric-
tions have been placed upon utilization of these neutron sources because of
the preconceived notion that useful measurements must generally employ either
nearly-monoenergetic sources or sources with spectra which closely resemble
those encountered in specific applications.

When measurements can be performed under nearly monoenergetic conditions,
the relationship between what is actually measured and a differential cross
section is relatively direct [18]. Information provided by broad-spectrum
measurements is more subtle in nature and cannot be related directly to the
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differential cross sections at any specific energy. Spectrum-average cross
sections depend intimately upon the neutron spectra in question. No fundamental
cross section information can be extracted without detailed quantitative
knowledge of these spectra. It is reasonable, therefore, to question whether
matters should be further complicated by considering the possibility of
performing measurements in various as-yet-not-very-well characterized integral
neutron spectra. The answer to this question emerges when one examines the
properties of those essentially-monoenergetic neutron sources provided by
Nature (e.g., Refs. 16 and 17). The consequences of very serious limitations
in the intensities and useful energy ranges for these sources are readily
apparent in compilations of experimental neutron differential cross sections
(e.g., Ref. 19). As an example, consider the obvious paucity of reliable
cross section data for the neutron-energy range from ~10 MeV to just below 14
MeV. This situation exists because there is no convenient monoenergetic
neutron source reaction which covers this energy range. The quality of ;m=s
section information for reactions with very small cross sections, or for those
where limited availability of material dictates small research samples, is
generally poor owing to the limited intensity of many monoenergetic sources
(e.g., Ref. 16, 17 and 19).

Figure 1 indicates, as an example, the neutron-energy-range coverage
which could be achieved at the Argonne National Laboratory FNG accelerator
facility [20] by means of proton and deuteron bombardment of several promising
target materials [21]. The neutron energy range 0-22 MeV is completely
covered by incident proton and deuteron beams from 2-7 MeV. A rich variety of
quasi-monoenergetic, multiple-discrete-group and continuum-neutron spectra can
be produced by varying the accelerator energy, target compositions and target
thicknesses. Neutron production can be very copious for some of these reac-
tions. For example, 7-MeV deuteron bombardment of a beryllium metal target
which is thick enough to stop the incident deuterons produces a neutron yield
near zero degrees of ~5 x 109 neutrons/(uCsr) [22]. Furthermore, these are
near-point sources and accelerators may be pulsed so that the spectra can,
in principle, be characteriEed by means of time-of-flight measurements.

A mathematical pi ,,-cedure which can be used to derive differential cross
section information from the measurements described in the preceding paragraphs
of this section has already been proposed by Perey, but in a different context
[2,4]. Perey has very carefully examined the important reactor dosimetry
problem which involves estimation of the shape and intensity of reactor spectra
by means of an examination of integral reaction rate data and differential
reaction cross section information (e.g., Ref. 23). What is proposed here is
to apply the same mathematical formalism to what is essentially the inverse
problem, namely the estimation of a specific reaction differential cross
section by examination of integral reaction data and information on various
neutron spectra used in the measurements.

The mathematical formalism has been fully described by Perey [2,4], so
certain details and formula derivations will be omitted in the discussion
which follows in Section II. However, the description of the method in
Section II is sufficiently self-contained to enable the reader to follow all
essential steps in the development of this method, as it relates to the
present application, without having to refer constantly to Perey's papers.
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The notation which is used in this paper follows that of Perey to a large
extent, thereby facilitating comparison of these two expositions. The reader
should be aware, however, that the roles of cross section and spectrum are
interchanged, so comparison of specific equations in this work with correspond-
ing ones in the papers of Perey requires attention to this detail.

In order to understand how this method works in practice, it has been
applied to several hypothetical numerical examples, constructed so that they
test key features of the algorithm. This investigation has been carried out
using the program UNFOLD (see Appendix) which has been developed at Argonne
National Laboratory specifically for this purpose. The details of this
numerical work are reported in Section III. A number of comments on various
features of this method appear throughout Sections III and IV.
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II. FORMALISM

A neutron differential cross section is never measured directly. Instead,
one measures a reaction yield or reaction rata aq which is related to the
differential cross section o(E) by means of a Fredholm integral equation of the
first kind [24], expressed as

•ra = / $ (E)a(E)dE. (1)
q A) q

The kernel function (j>q is the energy-dependent neutron fluence, suitably
normalized to validate Eq. (1). Here, we employ the parameter "q" to identify
the specific conditions of the measurement. Clearly, the measured quantity
aq depends intimately upon both (J(E) and $q(E).

An idealized monoenergetic experiment to determine a specific cross
section value cr(Eq) could be performed if the kernel function $q, hereafter
designated as the "spectrum", were of the form

<S> (E) = * <5(E - E ), (2)
q q q

with S defined as the Dirac delta function. The solution to Eq. (1) is
trivially

a(E ) = a /• . (3)
q q q

This idealized measurement would yield the point differential cross section
given knowledge of the reaction yield and total neutron intensity.

Realistic experimental measurements involve spectra <(>q of finite width
localized to an energy range (Eg,, E^). We can writ^

rE
a = I n <j> (E)a(E)dE (4)
q L q

as a special case of Eq. (1), where 4>q vanishes for energies lower than Ejj or
higher than Ej,. If aq and <l>q(E) are known, it is possible to relate what is
measured to a special cross section in the following fashion: Consider the
quantity <<Jq> given by the formula

(5)

This defines what is commonly referred to as the spectrum-average cross section
of 0(E) in 4>q(E). Clearly,
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JE
(E)dE, (6)

and, by analogy to Eq. (3), it follows that the spectrum-average cross section
can be deduced from a reaction yield measurement and knowledge of the total
neutron intensity - without regard to spectrum details.

A knowledge of <og> generally provides only limited insight into what the
point cross section 0(6) might be at any specific energy in the range (E^, E^).
However, if the range (E_, E^) is sufficiently narrow so that a(E) varies
only a little over this interval, and without sharp fluctuations, we can proceed
as follows: Define an average energy Eq for the interval, according to the
expression

• f 4, (E)EdE <t,q(E)dE, (7)

and then expand 0(E) formally in a Taylor's series about Eg over this interval.
Thus,

0(E) = 0(Eq) (1/2) (8)

where is the i-th derivative of a at energy

This infinite series is truncated at second order under the assumption that
higher-order terms are negligible. Substitution of Eq. (8) into Eq. (4) yields
the expression

a =
q

$ (E)dE + (1/2) O2(Eq)f
J 1

<j> (E)(E - E )2dE. (9)

The linear term has vanished in Eq. (9) by virtue of the definition of Eq,
as state in Eq. (7). Comparison of Eqs. (6) and (9) leads to the expression

0<E
q>

 =

(E)(E - E )2dE
q

(E)dE

(10)

The term in brackets [...] is generally small - if not negligible - for the
conditions indicated earlier in this paragraph. Given these nearly-
monoenergetic conditions, the spectrum-average cross section is a good approxi-
mation to the point cross section o(Eq) [18]. The small indicated correction
can be calculated by estimating the second derivative of the differential
cross section at Eq.
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Next, we proceed to a more complicated situation. Suppose that <3>q can
be expressed in the form

* (E) =
q i=l M J

and that all of the <b . are localized respectively to energy intervals (E..,E. .)
qj *J nj

which do not overlap, as indicated by the conditions

(j = 2, n-1). (12)

Then

/

°°

(E)dE = YL I ̂  •„/E)dE. (13)
0

(
0 q j=l E^

We thus have a spectrum consisting of n isolated (discrete) groups. Such
spectra can be produced by many nuclear reactions, provided that the targets
are sufficiently thin to permit the groups to be resolved.

The measured reaction yield aq is given by

(E)a(E)dE , (14)
j-1 J E ^ qj

according to Eqs. (4) and (13). If a set of quantities <a .> is defined,
analogous to Eq. (5), according to the formula

(15)

then

a = 2, <° •> I ̂  <f> -(E)dE, (16)
J-l qj \

analogous to Eq. (6). The <CTqj> can be designated as group spectrum-average
cross sections. Furthermore, we can define group-average energies E . by

A.E. .n j • (E)dE, (17)
E_ . 4 J
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following Che form of Eq. (7). If each of the n groups is nearly monoenergetic,
then

* t
Small deviations of the point cross sections °(Eqj) from corresponding group
spectrum-average cross sections <°qj> can be estimated from formulas similar
to Eq. (10).

If there is no dominant term in Eq. (18), we are at an impasse because
there is no unique solution for the various a(Eqj) values, even when aq and
the <j>qj(E) are known. Too much knowledge is demanded from the available
information. Suppose, however, that there is one dominant term, designated by
"i", and that a prior estimate ao(E) of the differential cross section is
available. Furthermore, let us designate the group flux by <j>qj,

h j « (E)dE, (19)

•>i

and the point cross sections o(E .) and a (E .) by a . ami a . , respectively,
qj o qj qj oqj

to simplify the equations. Then

and so

a . x (a - / . a .A .
qi v q ^f qj¥qj

This approach enables researchers to obtain approximate point cross sections
from quasi-monoenergetic results [18]. It must be realized that this method
relies on some apriori knowledge of at least the shape of the cross section
since ratios of point cross sections for ao appear in Eq. (21). The uncer-
tainty in Oqi must then reflect uncertainties due to the apriori CT0 , the
experimental aq and <j>qj, as well as the approximations implicit in Eq. (21).

The preceding development defines the limits of conventional "monoenergetic"
measurement technique. In order to apply the preceding formulas, one must
select the conditions of an experiment to be in harmony with the various
approximations. These limitations and their general impact upon the existing
data base were mentioned in Section I.
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In order to set the stage for development of a different method for
deriving differential cross sectio.. information, it is necessary to return to
Eq. (4). Let us subdivide the interval (Eĵ ,Ej,) into n contiguous-group
intervals (E^j.Ejh). They need not be equally wide, but they must span the
complete interval (Ê .Ejj) and be contiguous according to the conditions

(j = 2, n - 1). (22)

Ehn = Eh'

This defines a conventional energy-group structure. We demand of the differen-
tial cross section o(E) that it not vary too rapidly over any particular group
interval. For example, we might insist that for any interval the function can
be reasonably well represented by a second-order Taylor's sehries expansion
about the group median energy EJ defined by

(1/2) E,. Eh.) (j = l,n), (23)

analogous to the assumptions which led to Eq. (8). Selection of a group
structure to utilize in any analysis should be guided by the need to satisfy
this requirement. If the differential cross section fluctuates severely with
energy, the method under discussion in this paper is in jeopardy unless one is
able to work with a very fine group structure (large n).

One readily proceeds from Eq. (4) to the result

(24)

where

XE (25)

*J

(E)dE. (26)

On the surface, it would appear that this amounts to a restatement of Eqs. (14)-
(16) and (19). However, the imposition of an artificial contiguous-group
structure hints that the development now will proceed in a different direc-
tion than it did previously.
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Let us define a group-average cross section by the formula

E
a(E)dE/(Ehj - E A J ) . (27)

This quantity differs conceptually from the group spectrum-average cross
section <0qj> defined by Eq. (25). The group-average cross section does not
depend at all on the spectrum <jiq(E). The difference between the group-average
and group spectrum-average cross sections can be estimated from an approximate
formula which is derived by expanding o(E) in a second-order Taylor's series
around Ej, making use of the definitions of the group spectrum-average energy
Eqj given by Eq. (17) and the group median energy Ej from Eq. (23). The
result is

+ 0
2(E.) (1/24) (Ehj - E^.) 2 + (1/2* .) f hj <j> (E)<E - E.)2dEl

with <j>qj interpreted as the group flux according to Eq. (26). In order to
evaluate this difference numerically, the first and second derivatives of o
must be estimated at Ej from apriori information.

The point is that when an appropriate group structure is selected, and
-.he stated conditions for a(E) are reasonably-well satisfied, then the differ-
ence between <0j> and ^o'qj^ will be quite small for all the groups and we can
rewrite Eq. (24; as

(29)

Equation (29) relates a measured reaction yield a« to group fluxes and
group cross sections for one measurement performed under a specific set of
conditions designated by "q". Now consider a set of m measurements, each
involving a distinct condition. Eq. (1) is generalized to the following set
of equations

(E)a(E)dE (i = l,m), (30)

with the subscript "i" designating a particular measurement much as "q" did in
the preceding discussion. For any such set of measurements, there exists a
finite energy interval (E , E ) such that <|> (E)a(E) vanishes outside the

interval for every "i". A group structure can be generated as described by
Eq. (22) and the associated paragraph. Furthermore, approximations identical
to those described in Eqs. (23) - (29) can be made so that
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(3D

with °j equivalent to <°j>«

For the special case where m=n, there may be a unique solution to the
coupled system of equations represented by Eq. (31). In Section III it is
shown that although an experimenter could contrive to perform a sequence of
integral measurements equal in number to the group structure mesh, this is not
a useful procedure. The flaw can be traced to uncertainty propagation
considerations.

From this point on, this development merges with that of Perey [2,4], but
the notation is appropriately altered to conform with the present physical
problem rather than with the dosimetry problem which he addresses. A defini-
tion of the notation is in order:

A set of m measured reaction yields (a .} is designated by the vector A .

Associated with these measured quantites is the covariance matrix N^Q. The
set of m x n group fluxes ^ i j ^ also represents experimental information. For
a fixed "i", the n-fold subset t^ij) forms a vector designated as $£. The set
of m vectors {*̂ } is designated as $. Associated with *, now considered as an
m x n-dimensional vector, is the covariance matrix N$ of dimension [(m x n),
(m x n)]. We will also refer to submatrices N$ of N^, each of which has

dimension (n,n) with i,j = 1, m in this instance. This algorithm also requires
apriori knowledge of the cross section which we represent in group format by
the set of values {°j} which form the apriori vector °. The assumed covariance
matrix for a is No. Also, we will speak of a set of m calculated reaction
yields {a±} designated by the vector A. Following Eq. (31), and the notation
thus far introduced, we write

a. = £ *ifi - •* • o (i = l.m), (32)

where the symbol "+" indicates matrix transposition, and "•" symbolizes matrix
multiplication.

Equation (32) is the exact mathematical expression of the model which is
assumed in the quest for a solution to the present problem. The measured
quantities Ao and the quantities A, which are calculated from apriori o and
the experimental group fluxes * by means of Eq. (32), are certainly related,
but the reader must clearly understand their distinct origins in order to
fully comprehend the algorithm which is described below.

Now, consider both ° and * as vectors and define another vector P,
designated as the parameter vector, according to the expression

ft (33)
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Associated with P is the covariance matrix Np. We make the important assump-
tion that no correlations exist between uncertainties for the assumed apriori
group cross sections a and the group fluxes $. Then

[N Ol

Np - I ° I, (34)

with the zeros representing zero matrices of appropriate dimensionality.

A comment about the assumption which leads to Eq. (34) is in order at this
point. The neutron spectrum from Cf-252 spontaneous fission and accelerator-
produced spectra can be measured by the conceptually-simple time-of-flight
technique. Thus, they can generally be expected to satisfy the condition
indicated in Eq. (34). The situation for reactor spectra is not so obvious.
Determination of these spectra generally involves recourse to considerable
nuclear cross section information. Reactor calculations require scattering
and reaction cross section data. Reactor dosimetry methods involving reaction
rate measurements and spectrum unfolding are also heavily dependent upon cross
section data [4,23]. So, for reactor neutron spectra it is very possible that
there are implicit correlations between a and $ which would be difficult to
trace, but which invalidate Eq. (34). This possibility must be considered
before attempting to utilize reactor-spectrum integral results in an analysis
of the type proposed in this paper.

Ferey discusses the philosophical and mathematical basis of the generalized
least-squares method, as applied to the solution of problems such as the one
posed by Eq. (31) [2,4,5], and similar expositions appear in other references
(e.g., Refs. 1, 3, 6, 8, 10-14). Many of these details will be omitted in the
following discussion to avoid redundancy.

Suppose Y represents a complete set of input parameters for a problem and
% is its covariance matrix. The generalized least-squares method involves
consideration of the formula

X2 = (Y - Y ) + • N^1 • (Y - Y). (35)

Here, "-1" designates inversion of a matrix. Briefly, one seeks to find a
revised set of the same parameters, labelled Y, which minimizes x2* Once such
a Y is found, it is designated to be the solution to the problem and is then
labelled Y'. In the present application, Y and Y are defined by

(36)
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with P defined in terms of a and $ as in Eq. (33), and A consisting of
calculated elements a^ which are related to a and $ according to Eq. (32).
The functional relationship

A = A(P) (37)

implied by Eq. (32) is nonlinear.

A linear approximation to Eq. (37) is needed in order to solve the problem.
Persy describes this procedure and its implications at great length in Ref. 4.
Based on the model which is represented by Eq. (32), it can be shown that to
first order

A + G • (P - P), (38)

where the relationship between P and A is identical to that between P and A,
and G is the matrix

G =

$. a

$2 0

0

0

(39)

The content of Eqs. (35) - (39) leads to a restatement of the least-squares
problem in the linear form

..2 =

A - A - G • (P - P)J LO N. J LA - A - G • (P - P)J
(40)

provided that it is assumed that the uncertainties for the parameters P are
uncorrelated to those for AQ SO that

Ny =

N p0

0 N
'AoJ

(41)

Determination of the best solution P' (the one that minimizes x2) *s straight-
forward but involves tedious matrix algebra. The result according to Perey
[4] is

Np (Ao-A), (42)
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and the covariance matrix for this solution is

Np = Np - Np • G
+ • (NA + N ^ ) " 1 • 6 • Np, (43)

with

N = G • N • G+. (44)
A if

There are several comments to be made concerning this solution. Since
the original minimization problem has been linearized, the solution will be
reliable only if P' does not differ too violently from the initial conditions
P. Furthermore, the search for a minimum must take place ii the vicinity of
the true minimum and not near a local "false" minimum. These conditions are
characteristic of all non-linear problems. Also, it is clear that this
algorithm formally adjusts the group fluxes as well as the group cross section
values, according to Eq. (33). This point may very well trouble the reader
since it can be argued that the group fluxes are experimentally measured, just
as are the reaction yields, and therefore they should not be adjusted in a
problem where the quest is for revised group cross sections only. Again,
Perey had discussed this point in detail [4J. The reader may find this
unavoidable feature of the least-squares method more palatable if he realizes
that the input quantities Ao, $ and a all have uncertainties, and that the
problem as posed by Eq. (31) usually has no unique solution but only a best,
or most-probable, solution in the least-squares sense. Detailed inspection of
Eqs. (42) and (43) indicates that evaluation of the solution involves only the
inversion of an (m,m) matrix rather than inversion of a much larger matrix as
one might have expected from Eq. (40). Finally, it is important to repeat the
advise of Perey, who states that it is generally inadvisable to iterate the
problem in order to achieve a better solution. Of course, one can formally
iterate, but interpretation of the solution then becomes uncertain [4].

Perey has shown that the minimum X , corresponding to the solution P1, is
given by the relatively-simple expression

X^ = (A Q - A )
+ • (NA + N A o )

- 1 • (A Q - A). (45)

It is evident from this particular formula that X^ depends only upon the input
information [4], Therefore, it can be calculated before the least-squares
minimization is performed, and the result then utilized to test the consis-
tency of all the input information. Perey discusses various aspects of the
consistency-testing process [2,4]. Here we simply mention that the quantity
(Xin/m), which is the chi-square per degree of freedom, should be in the
range 0.3-2. Values outside this range are very unlikely and indicate

inconsistencies in the input information [2].

Equations (42)-(45) are not very useful for numerical work, so we now
present some formulas which can be readily programmed on a computer to yield
the quantities we would like to have for the solution. First, we realize that
Eqs. (42)-(44) provide much more than we actually want. We will be satisfied
to have expressions for elements {<Jj) of the revised groups cross section o1,
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and its covariance matrix Ng. The quantity xm certainly should be
calculated in order to test the consistency of the input information.

We avoid burdening the reader with tedious detail and simply list the
formulas needed to calculate the desired solution. Let us define c-y by

a. = 2^ C4i (i = 1>m')»
j-1 3

(46)

as defined by Eq. (44) can be expressed as the sum of two matrices according

c = <t>±j0j (i = l,m; j = l,n)%

to

NA = N°+N*, . (47)

where

N).. <.N o.*. ^

k=l 1=1

k=l

Thus, the matrix V defined by

can be calculated readily and then inverted to give the matrix W. Now, define
elements u^j by

(51)

Then the solution a1 and covariance matrix N^ can be calculated using the
formulas

-1

> a-i.n),
m m

(52)

k=l A*l

m m
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Furthermore,

m m

[a - a ) w ( a - a ). (54)

In Eqs. (48)-(54), the notation (Z)-y is used to designate the i,j-th element
of the matrix Z.

This completes the development of the mathematical formalism needed to
treat the problem at hand. However, it is instructive to examine the task of
specifying * and Nij for a special case. Suppose that an experimenter decides
to generate a family of group fluxes $ by some technique and to perform an
experiment designed to characterize these spectra. To do this would require
use of a calibrated detector with a measured efficiency curve e(E). The
effective efficiency for each group could be represented by the vector e of
elements {Ej}. The measured yield of events for each group could be labelled
vij, quantities which we assume are subject only to random errors equal to
(vij) • Then

<i>. . = v../e. (i = l,m; j = l,n). (55)

Elements of the submatrices N$^4 of N$ can then be expressed in the form

C 5 6 )

Here, fVik is
 t n e fractional uncertainty in 4>ik due to random count errors

and it is given by

fvik = < V 1 / 2 ' <57)

The quantity fg^ is the fractional error involved in measuring flux for the
kth group due to detector efficiency uncertainty. Cg is the efficiency
uncertainty correlation matrix [11]. The third term indicates the implicit
group-flux uncertainty introduced by uncertainty of the neutron energy scale
which is established in the group-flux characterization experiment. The
matrix Cg is the group energy-scale uncertainty correlation matrix, AE^ is the
energy scale uncertainty for the kth group, and ijrik ̂ s t^le sensitivity of
<t>l_k to AEfc. This development is not completely general, but it demonstrates
to the reader how one goes about generating the matrix N$ from information of
lower rank for a specific class of spectrum measurements. This approach is the
one used for the examples presented in Section III.



-17-

III. NUMERICAL EXAMPLES

An understanding of the method described in Section II can be acquired in
less time, at a lower cost, by employing computer simulation rather than
actual experimentation. Therefore, this approach is pursued in the present
investigation. For convenience and speed, a rather coarse group structure
(n=15) is utilized. In order to avoid serious problems with such a coarse
structure, we examine an energy-smooth high-threshold process, namely one with
an energy-differential cross section shape characteristic of certain neutron-
induced charge-particle production reactions [19]. The fifteen groups are all
0.5 MeV wide and span the energy range 9.5-17 MeV.

Various quasi-realistic families of neutron spectra are considered.
These spectra are generated pointwise by linear interpolation cf tables for
the essentially-continuous neutron spectra. Other spectra are represented
pointwise as superpositions of one or more Gaussians which are characterised
by the usual parameters. However, these pointwise specifications merely
provide the means for calculation of specific fifteen-group representations
which are actually utilized in the analyses. A fifteen-group representation
of the single cross section curve used in these studies is also generated for
comparison with the unfolded results. Owing to the fact that this hypothetical
cross section is also represented pointwise by straight-line segments over
intervals corresponding to the group structure, the group cross section equals
the corresponding point cross section value at the group median energy for
each of the fifteen groups.

In order to better simulate reality, for several of the examples in this
section those quantities which would correspond to measured quantities in an
actual experiment are allowed to vary in order to see how this influences the
outcome. In all instances, reaction yields Ao, as defined by Eq. (30), are
calculated by precise integration rather than by using the group formula,
Eq. (31). The reason is that this is what actually happens in real measure-
ments. Since the group structure is coarse, there are discrepancies which can
be directly attributed to the group approximation assumption. For this
reason, it is suggested that the reader pay more attention to the qualitative
conclusions which can be drawn from the examples presented here than to the
specific numerical details. It is the objective of this investigation to
examine certain characteristic features of the basic method without becoming
distracted by the rather well-understood problems associated with group
representation of pointwise-continuous physical quantities.

The differential cross section unfolding calculations, based upon the
least-squares algorithm described in Section II, have been performed using the
program UNFOLD which is described in the Appendix. No details of the calcula-
tion of certain integral-response and group quantities from pointwise func-
tional representations are described since they are very straightforward.

Example 1

Consider the family of hypothetical neutron spectra shown in Fig. 2.
Assume that these are produced at an accelerator by bombarding a thick target
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Figure 2: A family of fifteen hypothetical continuous-neutron spectra
~~ utilized in simulated cross section unfolding calculations.
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at fifteen different charged particle energies. Furthermore, assume that the
spectra have been characterized in a separate experiment. Group fluxes for
the standard fifteen-group representation (225 in number)are calculated. A
group-flux covariance matrix is generated as described in the paragraph of
Section II which includes Eqs. (55)-(57). For this example, the random
statistical uncertainties derived according to Eq. (57) are all smaller than
3%. The uncertainties due to detector efficiency are all assumed to be 3%,
with 50% correlation between any two different groups. The uncertainties
resulting from energy scale problems are all smaller than 10% (generally much
smaller) resulting from 100% - correlated group-energy uncertainties assumed
to be in the range 16-28 keV. The actual simulated energy-differential cross
section for this problem appears in Fig. 3.A. The response curves calculated
using this cross section, and the family of spectra in Fig. 2, appear in Fig.
3.B. Simulated reaction yields Ao, corresponding to the areas under the
curves of Fig. 3.B as calculated using Eq. (30), are presented in Table 1.

Assume for this first example that the experimental group fluxes are
precisely as calculated and that the measured reaction yields Ao are as given
in Table 1. Each aoj is assumed to carry an experimental error of 2.8% which
is 50% correlated to all other members of the set. Since this example involves
fifteen simulated measurements and fifteen unknowns, it is possible in this
instance to solve the problem posed by Eq. (31) exactly for the unknown group
cross sectons. Also, since this problem is a simulation, the group cross sec-
tions can be calculated separately, using the numerical representation of the
a indicated in Fig. 3.A, and Eq. (27). The results are compared in Table 2.
The indicated differences in this case arc actually the errors introduced by
the coarse-group approximation. The errors are of concern for the lowest
three groups, but they can be ignored for the remaining groups.

The results obtained by directly solving the problem posed by Eq. (31)
are subject to uncertainty because in reality the group fluxes * and reaction
yields Ao represent uncertain experimental quantities as indicated above. The
effects of these uncertainties can be calculated using standard sensitivity
techniques for error propagation [11]. The analysis involves tedious numerical
work which is best done using a digital computer. The details are omitted
here, but the final results appear in Table 2. The uncertainies are modest for
the first few groups; they are actually smaller than the group-approximation
error for the first two groups. However, the uncertainties become prohibi-
tively large at higher energies. It is concluded that if the group fluxes and
reaction yields could be precisely specified, as they indeed are in this
simulation, then one could directly calculate the group differential cross
sections. However, when realistic uncertainties are considered for the quan-
tities which would actually be physically measured, then the uncertainties for
the derived cross sections become excessively large, except for the first few
groups. In short, this approach fails to be useful.

It would seem, then, that the hypothetical integral experiment represented
in Figs. 2 and 3 does not offer a very good means for acquiring information
about the differential cross section considered in this example. The reason
is physically apparent upon reflection. Integral measurements involving the
first few spectra (say <j>i through ((14) yield response profiles which are reason-
ably well-localized in energy (Fig. 3.B). Therefore, one has the opportunity
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Figure 3: (A) Hypothetical energy-dependent differential cross section
used in simulation calculations. (B) A family of fifteen res-
ponse curves generated from the product of this differential
cross section and the spectra in Fig. 2. The response for
i=l is quite narrow and weak (barely visible) while that for
i»15 is broad and dominant.
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Table 1. Simulated Reaction Yields for Example 1

Spectruma

Index

1
2
3
4
5
6
7
8

identifies

aoi

886.95
5464.9
20068.0
53296.0
108720.0
191210.0
314830.0
479360.0

specific (j)-; from

Spectruma

Index

9
10
11
12
13
14
15

Fig. 2.

a , b

oi

659770.0
903140.0
1299900.0
1740800.0
2121400.0
2536200.0
3124500.0

Derived from spectrum ^ and a given in Fig. 3.A.
These values correspond to areas under the curves
plotted in Fig. 3.B.

Table 2. Direct Solution Results for Example 1

Group

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Actual
a

0.9
2.5
4.15
6.35
8.9
11.6
14.4
17.25
19.85
22.1
24.05
25.45
26.55
27.525
28.375

Difference

-26.4%
+ 7.7%
- 5.3%
+ 1.9%
- 1.3%
+ 0.1%
+ 0.3%
- 0.7%
+ 1.1%
- 0.6%
+ 0.5%
+ 0.1%
- 0.1%
+ 0.1%

Negligible

Solution
<

0.66255
2.6915
3.9313
6.4697
8.7864
11.616
14.447
17.130
20.075
21.958
24.174
25.486
26.527
27.560
28.386

(7.2%)
(7.3%)
(11.9%)
(16.0%)
(21.0%)
(30.3%)
(37.0%)
(56.1%)
(83.3%)
(109%)
(154%)
(222%)
(287%)
(354%)
(458%)
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to derive differential cross section information directly from the data. Put
another way, these measurements "resemble" monoenergetic or specifically-
differential measurements. The higher-energy groups only become involved for
spectra which are quite broad and therefore incapable of yielding much infor-
mation about differential cross sections for the individual groups. This is
not to say that this hypothetical experiment is not useful, but simply that we
are demanding too much from it when the data are analyzed by the direct method.
Consider, for example, a case where the shape of the hypothetical °(E) is well
known. Then it is clear that a good integral measurement with any one of the
fifteen spectra shown in Fig. 2 would provide very valuable information
capable of defining the cross-section normalization. Clearly what is required
is a formalism which enables us to derive useful information from measurements
designed to supplement or refine existing knowledge of the cross section.
The least-squares formalism described in Section II meets this requirement.

So, next we approach this same problem by another method. In order to do
this it is necessary to have an apriori group cross section set with a covari—
ance matrix. In this simulated problem, we will assume the apriori cross
section given in Table 3 and Fig. 4. The assumed uncertainties for this
apriori are in the range 25-40% and are taken to be uncorrelated in order to
avoid introducing any other preconceived information about the cross section.
We see that the shape of this apriori cross secton is not quite right, espe-
cially near threshold. These conditions, assumed for the purposes of this
simulation, are quite typical of what nuclear data researchers encounter in
reality. Application of the least-squares algorithm then yields results which
are also given in Table 3 and Fig. 4.

The solution is clearly an improvement over the prior knowledge of the
cross section. The new data lead to an adjustment of the apriori cross section
toward the actual group cross section in all fifteen groups. The influence is
most pronounced below ~15 MeV. Above this, the new data are not very influen-
tial so the solution trends closer to the apriori than it does to the actual
physical group cross section. The solution is really better than it seems
from Table 3. The difference between the least-squares solution and the
actual group cross section for the lowest two or three groups can be largely
attributed to the failure of the coarse-group approximation and not to our
unfolding method. Clearly the least-squares method is superior to the direct
solution method for this example. It does not demand more from what amounts
to the measured information in this simulation than it is able to yield in the
way of derived results. Rather than insisting that the measured data yield a
full set of cross sections, it provides a framework wherein the data can
supplement our existing knowledge of the cross section and thereby guide us
toward a better knowledge of it. As seen from Table 3 and Fig. 4, this
hypothetical experiment has indeed contributed respectably toward this goal,
the revised group cross sections are truly closer to the actual cross section
curve (and the derived errors are smaller) than was the case for the apriori,
at least below ~15 MeV. This amounts to quantitative proof that the new
information is useful. This new solution is, of course, consistent with the
outcome of the direct data-evaluation method, as given in Table 2. However,
the least-squares algorithm gives us a much better perspective of the whole
situation, before and after the hypothetical experiment, for this particular



Group

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Table

Apriori
a

2 (40%)
3 (33.3%)
5 (30%)
9 (33.3%)

12 (25%)
14 (28.5%)
14 (28.5%)
16 (31.3%)
17 (29.4%)
19 (28.9%)
20 (25%)
21 (28.6%)
20 (30%)
22 (31.8%)
23 (30.4%)

3 . Least-Sqi

Difference

+122%
+20%
+20.5%
+41.7%
+34.8%
+20.7%

-2.8%
-7.2%

-14.4%
-14.0%
-16.8%
-17.5%
-24.7%
-20.1%
-18.9%

jares Resul ts for Example

Actual
a

0.9
2 .5
4.15
6.35
8.9

11.6
14.4
17.25
19.85
22.1
24.05
25.45
26.55
27.525
28.375

Difference

-21.4%
+6.6%
-2.5%

Negligible
+2.2%
+1.1%
-2.3%
- 1 %
-0.6%
+3.3%
-3.3%
-2 .1%

-14.8%
-13.7%
-17.1%

1

Solution
0

0.707
2.666
4.046
6.353
9.099

11.729
14.067
17.806
19.730
22.830
23.240
24.911
22.629
23.750
23.525

(18.4%)
(8.2%)

(12.9%)
(15.6%)
(16.2%)
(19.3%)
(20.1%)
(20.5%)
(20.6%)
(19.7%)
(19%)
(21.2%)
(24.8%)
(28.6%)
(29.6%)

Solution uncertainty correlation matrix

1 2 3 4 5 6 10 11 12 13 14 15

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

(x:

1
-0.12
0.34
0.18
0.11
0.07
0.04
0.06
0.05
0.05
0.04
0.03
0.02
0.01
0

1/m) - 0

1
-0.48
0.34

-0.01
0.07
0.05
0.06
0.05
0.05
0.04
0.04
0.02
0.01
0

. 5 3

1
-0.54
0.28
0.03
0.03
0.04
0.03
0.03
0.03
0.02
0.01
0.01
0

1
-0.53
0.14
0.04
0.05
0.03
0.03
0.03
0.03
0.02
0.01
0

1
-0.53
0.09
0.07
0.04
0.03
0.02
0.02
0.01
0.01
0

1
-0.53
-0.07
0.07
0.07
0.04
0.02
0.01
0.01
0

1
-0.37
-0.09
0.02
0.03
0.02
0.01
0.01
0

1
- 0
- 0
-0

0
0
0
0

.42

.16

.02

.01

.01

.01

(symmetric)

1
-0.36
-0.12
-0.03

0
0
0

1
- 0 .
- 0 .
- 0 .
- 0 .

0

27
14
05
01

1
-0
-0
- 0
- 0

. 2 3

.10

.04

.01

1
-0.18 1
-0.09 -0.09 1
-0.02 -0.02 -0.02 1
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Cross sections: Smooth C** Apriori group ••• Solution group
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Figure 4: Cross sections for Example 1.
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reaction. This demonstrates a fundamental theme of this report, namely that
useful differential cross section information can be obtained from various
integral measurements. Furthermore, the algorithm produces a solution covari-
ance matrix which, for this example, appears in Table 3 in its entirety.
Remembering that the uncertainties for the apriori cross section were com-
pletely uncorrelated, it is interesting to observe the significant short-range
anti-correlation pattern which is a dominant feature of the covariance matrix
generated by least-squares analysis of this example.

There is still an important element of reality missing from Example 1.
We have utilized for $ and Ao the precise values which they would have for the
actual a(E) and <|>j(E) involved in the simulation. To further examine the
viability of the method, it is necessary to consider what happens when elements
of $ and AQ deviate from their true values because of experimental uncertain-
ties. The next several examples will involve simulation of these effects.

Example 2

The effects of variation in the elements of * and Ao can be investigated
readily by introducing input data sets which have been prepared by randomly
altering selected parameters from their true values, within uncertainties.
This task can be accomplished via the Monte-Carlo method quite readily ±l_ we
relax all correlation assumptions for the parameter uncertainties. Therefore,
we will first examine the effect of eliminating these correlations before
proceeding with simulations involving variation of $ and Ao. All input for
the present example is thus identical to Example 1 except that the uncertainty
correlations are deleted. Results of a least-squares analysis of this problem
appear in Table 4. For economy we omit the solution covariance matrix from
this and all further tabulations of results in this report.

The least-squares solution for this example does not differ very noticeably
from that for Example 1. However, the predicted errors are larger as is evident
from a comparison of Tables 3 and 4. The correlation matrix differs in detail
from that for Example 1, but it exhibits similar, though somewhat more pro-
nounced, short-range anticorrelation features.

Example 3

The basic parameters defined for Example 1 and the relaxation of all
input correlations as for Example 2 are retained for this example. The only
exception is that an Ao consisting of elements which have been altered at
random within ±2.8% from the values in Table 1 is assumed. The results of the
least-squares analysis for this example appear in Table 5 and Fig. 5. The
solution group cross sections are not as close to the actual cross section
curve as was the case for Examples 1 and 2. However, except for two groups,
the solution is an improvement over the apriori. The calculated uncertainties
for the solution are similar to Example 2, and the deviations of the solution
from the actual group cross sections are within these uncertainties for all
groups except the first group where we must allow for the previously-mentioned
group approximation errors.
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Group

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Table 4 .

Apriori
0

2 (40%)
3 (33.3%)
5 (30%)
9 (33.3%)

12 (25%)
14 (28.5%)
14 (28.5%)
16 (31.3%)
17 (29.4%)
19 (28.9%)
20 (25%)
21 (28.6%)
20 (30%)
22 (31.8%)
23 (30.4%)

Least-Squares Results

Difference

+122%
+20%
+20.5%
+41.7%
+34.8%
+20.7%

-2.8%
-7.2%

-14.4%
-14.0%
-16.8%
-17.5%
-24.7%
-20.1%
-18.9%

Actual
0

0.9
2 . 5
4.15
6.35
8.9

11.6
14.4
17.25
19.85
22.1
24.05
25.45
26.55
27.525
28.375

for Example

Difference

-22.7%
+5.1%
-2%
-2.4%
+4.2%
+1.8%
-2.6%
+3.6%
-0.8%
+2.1%
-5.3%
-5.3%

-17.2%
-15.5%
-17.6%

2

Solution
0

0.696
2.627
4.047
6.200
9.273

11.813
14.031
17.873
19.687
22.557
22.768
24.104
21.972
23.261
23.367

(18.6%)
(12.3%)
(16.8%)
(20.4%)
(19.5%)
(21.7%)
(22.0%)
(21.8%)
(21.3%)
(20.6%)
(19.9%)
(22.7%)
(26.1%)
(29.5%)
(29.9%)

0.50

Group

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Table 5 .

Apriori
a

2 (40%)
3 (33.3%)
5 (30%)
9 (33.3%)

12 (25%)
14 (28.5%)
14 (28.5%)
16 (31.3%)
17 (29.4%)
19 (28.9%)
20 (25%)
21 (28.6%)
20 (30%)
22 (31.8%)
23 (30.4%)

Least-Squares Results

Difference

+122%
+20%
+20.5%
+41.7%
+34.8%
+20.7%

-2.8%
-7.2%

-14.4%
-14.0%
-16.8%
-17.5%
-24.7%
-20.1%
-18.9%

Actual
a

0 .9
2 .5
4.15
6.35
8.9

11.6
14.4
17.25
19.85
22.1
24.05
25.45
26.55
27.525
28.375

for Example 3

Difference

-22.3%
+2.5%
-1.7%
+0.5%
+9%

-11.4%
-3.7%

+17.5%
+7.4%
+4.2%
-6.6%
-5.7%

-16.7%
-15.8%
-17.8%

Solution
a

0.699
2.563
4.079
6.380
9.701

10.274
13.869
20.267
21.310
23.032
22.474
23.995
22.107
23.169
23.311

(18.6%)
(12.6%)
(16.7%)
(19.8%)
(18.6%)
(25%)
(22.2%)
(19.2%)
(19.7%)
(20.2%)
(20.2%)
(22.8%)
(25.9%)
(29.6%)
(29.9%)

0.65
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Example 4

Most of the parameters from Example 1 and the no-correlation assumption
of Example 2 are used in this example. However, the input utilizes a set of
group fluxes * generated by altering individual elements at random within the
established limits of uncertainty. The results from a least-squares analysis
of this problem appear in Table 6 and Fig. 6. The solution is closer to the
actual cross section curve than the apriori for all fifteen groups. Therefore,
the solution is somewhat better than the one obtained in Example 3. This
indicates that the unfolding process is not as sensitive to uncertainties in *
as it is to uncertainties in AQ, at least for the physical situation simulated
here. However, it would be imprudent to reach a general conclusion from this
single result. The calculated uncertainties for the solution are similar in
magnitude to those derived for Examples 2 and 3. Except for the lowest group,
the differences between the solution group cross sections and the actual group
cross sections are well within the calculated uncertainties.

Example 5

Once again the assumptions of Example 1 and 2 apply except we now allow
both Ao and $ to deviate at random, within the defined uncertainties of this
simulated problem. Other than the fact that input data correlations are
overlooked, this example is the closest to reality of those considered so far
in that it allows for uncertainty of all the parameters which would be experi-
mental quantities in a real situation. The least-squares results which appear
in Table 7 and Fig. 7 offer no surprises. The solution is closer to the
actual cross section curve than is the apriori for all but two groups. Except
for the lowest group, all differences between the solution values and the
actual group cross sections are smaller than the calculated uncertainties.
The calculated uncertainties are everywhere smaller than the apriori uncertain-
ties. This must be so since a basic premise of the method is that the addition
of any new information should to some extent improve our knowledge of the cross
section. The reduction in cross section uncertainty is significant below ~15
MeV, indicating that the contribution made by introducing the new information
is especially valuable at lower energies. Thus we see from a quite—realistic
simulation how a set of new integral results (obtained from measurements
involving generally broad responses) has improved our knowledge of the differ-
ential cross section.

Example 6

Next, we investigate the sensitivity of the solution to the apriori cross
section. The quantities AQ and $ are fixed at the same values used in
Example 1, and it is assumed that no correlations exist between the uncertain-
ties for any of the input parameters, as was the case for Example 2. Now,
however, we modify the apriori by selecting a new set of group cross sections
o which deviate at random from previous values (see Tables 3-7) within the
established uncertainties. This new apriori appears in Table 8 and Fig. 8.
The same percentage uncertainties are assumed for this new apriori as for the
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Table 6. Least-Squares Results for Example 4

Group

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Group

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Apriori
a

2 (40%)
3 (33.3%)
5 (30%)
9 (33.3%)
12 (25%)
14 (28.5%)
14 (28.5%)
16 (31.3%)
17 (29.4%)
19 (28.9%)
20 (25%)
21 (28.6%)
20 (30%)
22 (31.8%)
23 (30.4%)

= 0.56

Table

Apriori
a

2 (40%)
3 (33.3%)
5 (30%)
9 (33.3%)

12 (25%)
14 (28.5%)
14 (28.5%)
16 (31.3%)
17 (29.4%)
19 (28.9%)
20 (25%)
21 (28.6%)
20 (30%)
22 (31.8%)
23 (30.4%)

Difference

+122%
+20%
+20.5%
+41.7%
+34.8%
+20.7%
-2.8%
-7.2%

-14.4%
-14.0%
-16.8%
-17.5%
-24. 7%
-20.1%
-18.9%

7. Least-Squ

Difference

+122%
+20%
+20.5%
+41.7%
+34.8%
+20.7%
-2.8%
-7.2%

-14.4%
-14.0%
-16.8%
-17.5%
-24.7%
-20.1%
-18.9%

Actual
a

0.9
2.5
4.15
6.35
8.9

11.6
14.4
17.25
19.85
22.1
24.05
25.45
26.55
27.525
28.375

Difference

-23.1%
+10.4%
-6%
-6%
+5.9%
+3.3%
+2.5%
-1.8%
-2.3%
+2.2%
-4.6%
-5.2%
-17%
-14.1%
-17.6%

ares Results for Example

Actual
a

0.9
2.5
4.15
6.35
8.9

11.6
14.4
17.25
19.85
22.1
24.05
25.45
26.55
27.525
28.375

Difference

-24.1%
+7.4%
-2.7%

+11.5%
+9.3%
+12.5%
-5.1%
-10.7%
-2.2%
+1.6%
-7.4%
-8.8%

-20%
-16.2%
-18.3%

Solution
0

0.692
2.761
3.900
5.971
9.427
11.981
14.753
16.943
19.400
22.588
22.953
24.121
22.040
23.634
23.393

5

r

(18.4%)
(12.5%)
(17.6%)
(21.3%)
(18.5%)
(21.2%)
,-0.7%)
(22.9%)
(21.6%)
(20.7%)
(19.6%)
(22.7%)
(26.%)
(29%)
(29.8%)

Solution
a

0.683
2.684
4.038
5.620
9.730

13.047
13.669
15.409
19.409
22.446
22.276
23.219
21.252
23.066
23.180

(18.7%)
(12.9%)
(17%)
(22.6%)
(17.9%)
(19.5%)
(22.3%)
(25.2%)
(21.6%)
(20.8%)
(20.2%)
(23.6%)
(27%)
(29.7%)
(30.1%)

(xJ/W 0.57
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Group

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Table 8.

Apriori
a

2.200 (40%)
2.439 (33.3%)
4.516 (30%)
8.322 (33.3%)
14.630 (25%)
13.958 (28.5%)
10.266 (28.5%)
14.320 (31.3%)
18.539 (29.4%)
23.569 (28.9%)
24.165 (25%)
21.893 (28.6%)
25.089 (30%)
26.634 (31.8%)
26.496 (30.4%)

Least-Squares Results

Difference

+144%
-2.4%
+8.8%
+31.1%
+64.4%
+20.3%
-28.7%
-17%
-6.6%
+6.6%
+0.5%
-14%
-5.5%
-3.2%
-6.6%

Actual
a

0.9
2.5
4.15
6.35
8.9
11.6
14.4
17.25
19.85
2?.l
24. u:
25.45
26.55
27.525
28.375

for Example

Difference

-19.8%
+2.6%
-0.3%
-9%

+16.4%
+5.2%
-17.3%
-3.2%
+1.3%

+11.3%
+3.2%

-10.8%
-3.4%
-1.9%
-6.3%

6

Solution
c

0.722
2.566
4.139
5.777
10.357
12.200
11.906
16.696
20.106
24.602
24.812
22.697
25.637
26.984
26.599

j

(19.6%)
(12.4%)
(15.9%)
(21.4%)
(17.5%)
(21.2%)
(25.9%)
(23.3%)
(20.9%)
(18.9%)
(18.3%)
(24.1%)
(22.4%)
(25.5%)
(26.2%)

= 0.54

Table 9. Least-Squares Results for Example 7

Group
Apriori

o Difference
Actual
o Difference

Solution
o

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

0.7
2.6
3.7
6.3
8.9
11.2
13.7
16.7
21.8
22
25
26
27
28
30

(10%)
(10%)
(10%)
(10%)
(10%)
(10%)
(10%)
(10%)
(8%)
(8%)
(8%)
(8%)
(8%)
(8%)
(8%)

-22.2%
+4Z
-10.8%
-0.8%
0

-3.4%
-4.9%
-3.2%
+9.8%
-0.5%
+4%
+2.2%
+1.7%
+1.7%
+5.7%

0.9
2.5
4.15
6.35
8.9

11.6
14.4
17.25
19.85
22.1
24.05
25.45
26.55
27.525
28.375

-25.8%
+8.1%
-8.8%
-0.5%
+3.1%
-0.3%
-5.1%
-7.3%
+6.8%
-2.7%
+1.6%
+0.5%
+0.6%
+1.3%
+5.6%

0.668
2.702
3.784
6.318
9.172

11.571
13.666
15.996
21.201
21.496
24.426
25.569
26.718
27.886
29.956

(5.9%)
(6.1%)
(7.6%)
(7.9%)
(7.9%)
(8.3%)
(8.9%)
(9.4%)
(7.6%)
(7.8%)
(7.9%)
(8%)
(8%)
(8%)
(8%)

0.33
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Cross sections: Smooth C^ Apriori group ••• Solution group —
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Figure 8: Cross sections for Example 6.
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Figure 9: Cross sections for Example 7.



-32-

previous one. We see from Fig. 8 that the apriori generated by this method is
not very physically realistic. The results of this analysis should be compared
with Example 2 because the only difference in these two problems is the choice
of the apriori cross section. The results of the least-squares analysis
appear in Table 8 and Fig. 8. There are indeed some differences between the
present results and Example 2. This has to be the case since the least-squares
algorithm generates what amounts to a complicated weighted average of the new
and apriori information. Nevertheless, the solution here is still clearly
superior to the apriori, offering a smaller deviation from the actual cross
section curve for all but two groups. Again, the differences are smaller than
the derived uncertainties for all but the lowest group. It is evident that
the solution tends to follow the apriori for the upper energy groups, and by
chance the apriori is closer to the actual cross section curve in this region
than was the apriori used in Examples 1 to 5. The magnitudes of the computed
uncertainties are consistent with the preceding Examples 2 through 5.

The present example is somewhat artificial since the choice of an apriori
should not be an arbitrary matter, the apriori should - in fact must - repre-
sent the best available prior knowledge of the cross section. Otherwise the
algorithm is improperly applied. Even if np_ prior experimental data are
available for a particular reaction, the investigator must introduce a rational
apriori which represents an estimate based on systematic considerations or on
a model calculation.

Example 7

The assumed uncertainties for the apriori cross sections in each of the
preceeding six examples were all rather large, BL the new simulated experi-
mental information was able to contribute significantly toward improving our
knowledge of the cross section. Now we will consider an example in which the
apriori does not differ very much from the actual group cross section set and
the assumed apriori uncertainties are considerably smaller than before.
Otherwise, the conditions are identical to Example 5, with Ao and $ varied
at random from the normal values defined in Example 1. The results of this
analysis appear in Table 9 and Fig. 9. For nine out of fifteen of the groups,
the solution represents an improvement over the apriori. Also, the calculated
uncertainties are somewhat smaller than the apriori uncertainties. The
differences between the solution and the actual group cross section values are
smaller than the calculated uncertainties for all groups except the lowest
three where the error resulting from the group approximation is quite evident.
However, the contribution of the new data is really not too significant in
this hypothetical example. This example thus illustrates the situation where
performance of a new measurement is of dubious merit. One attractive feature
of the least-squares algorithm is that it provides an unbiased assessment of
the value of any new measurement from the point of view of improving knowledge
of a specific cross section set.

Example 8

For all of the preceding examples we introduced apriori cross sections for
which it was assumed that no correlations existed for the apriori cross-section
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uncertainties. In the present example we consider an opposite extreme, namely
the situation where it is assumed that we know the shape of the cross section
very well but are uncertain about the normalization. For this simulation we
again select conditions as specified in Example 5, except that we introduce an
apriori which indicates the same general shape as the actual cross section
curve, except for the lowest three groups where approximation errors are
involved. Here, the introduced apriori cross sections are generally ~25% too
large and uncertainties of 25% are assumed for each element of the apriori,
with a correlation condition of 100%. The results of the analysis appear in
Table 10 and Fig. 10. If we neglect the three lowest groups, it is seen that
the solution cross sections are very close to the actual group cross sections,
and the calculated uncertainties are very small. Imposition of the 100%-
correlation assumption prevents the algorithm from adjusting the shape.
Therefore, all of the integral measurements contribute redundantly toward
securing the proper normalization. The solution correlation matrix also
indicates 100% correlation, as indeed it must. It is reassuring that the
algorithm performs properly for this physically-transparent situation.

Example 9

In this example we investigate a pathological situation in order to see
whether the algorithm provides a suitable warning. Consider the physical
problem as stated in Example 5. However, now we introduce an apriori with 30%
uncertainties for all groups, with 100% correlations assumed. Effectively we
are stating, as in Exan1-" ." . that we know the shape but are uncertain about
the normalization. Th<= j^rference here is that we introduce an apriori with a
very wrong shape. One should be skeptical of an apriori having these proper-
ties for several reasons. First, if the apriori is based upon a single
comprehensive measurement, one is not protected against the possibility that a
systematic blunder produced a shape error. The reliability of an evaluation
based upon a single experiment is always subject to question. While the 30%
uncertainty may reasonably reflect the normalization inadequacy, the assump-
tion of 100% correlation is unrealistic in that it implicitly overstates the
certainty to which the cross section shape is known. This situation poses a
dilemma which is all too familiar to evaluators. Of course, it could be that
the nature of this single experiment strongly implies that the error should be
predoiiiinently in the normalization rather than in the shape. On the other
hand, suppose the evaluation used as the apriori is based on several data sets.
Then, it is very unlikely that the evaluation would assume the form described
above. The only plausible scenario which would lead all the experiments to
generate results with the same wrong shape would be one in which all the
experiments used a common erroneous standard. A competent evaluator would
recognize this and have a close look at the suspicious standard. It is
important for evaluators to have a close look at the details of all the
experiments which produce the data they are to evaluate.

While dwelling on the subject of wrong shapes and strong uncertainty
correlations, it is worthwhile to comment on what appears to this author to be
a severe potential problem associated with the use of model calculations to
provide apriori cross section sets. An inadequate or improperly-parameterized
model can certainly lead to prediction of a wrong shape for a cross section.
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Table 10. Least-Squares Results for Example 8

Group
Apriori

a Difference
Actual

a Difference
Solution

o

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

(#•>

0.82
3.36
4.92
8.07
11.1
14.5
18.1
21.3
25
27.3
30.3
31.9
33.1
34.3
35.6

= 0.29

(25%)
(25%)
(25%)
(25%)
(25%)
(25%)
(25%)
(25%)
(25%)
(25%)
(25%)
(25%)
(25%)
(25%)
(25%)

Table 11.

-8.9%
+34.4%
+18.6%
+27.1%
+24.7%
+25%
+25.7%
+23.5%
+25.9%
+23.5%
+26%
+25.3%
+24.7%
+24.6%
+25.5%

0.9
2.5
4.15
6.35
8.9
11.6
14.4
17.25
19.85
22.10
24.05
25.45
26.55
27.525
28.375

Least-Squares Results

-27.9%
+6.4%
-6.1%
+0.6%
-1.3%
-1%
-0.5%
-2.2%
-0.3%
-2.2%
-0.3%
-0.8%
-1.3%
-1.3%
-0.7%

for Example 9

0.649
2.660
3.895
6.389
8.787

11.479
14.329
16.862
19.791
21.612
23.987
25.253
26.203
27.153
28.182

(1.5%)
(1.5%)
(1.5%)
(1.5%)
(1.5%)
(1.5%)
(1.5%)
(1.5%)
(1.5%)
(1.5%)
(1.5%)
(1.5%)
(1.5%)
(1.5%)
(1.5%)

Group
Apriori

a Difference
Actual

a Difference
Solution

o

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

1
4
6
7
8.
10
12
14
16
17
19
20
20
21
21

= 13

(30%)
(30%)
(30%)
(30%)

5 (30%)
(30%)
(30%)
(30%)
(30%)
(30%)
(30%)
(30%)
(30%)
(30%)
(30%)

.63

+11.1%
+60%
+44.6%
+10.2%
-4.5%

-13.8%
+16.7%
-18.8%
-19.4%
-23.1%
-21%
-21.4%
-24.7%
-23.7%
-26%

0.9
2.5
4.15
6.35
8.9
11.6
14.4
17.25
19.85
22.1
24.05
25.45
26.55
27.525
28.375

+5.9%
+52.5%
+37.8%
+5%
-9%

-17.9%
-20.6%
-22.7%
-23.2%
-26.7%
-24.7%
-25.1%
-28.2%
-27.3%
-29.5%

0.953
3.812
5.717
6.670
8.100
9.529
11.435
13.341
15.247
16.199
18.105
19.058
19.058
20.011
20.011

(1.4%)
(1.4%)
(1.4%)
(1.4%)
(1.4%)
(1.4%)
(1.4%)
(1.4%)
(1.4%)
(1.4%)
(1.4%)
(1.4%)
(1.4%)
(1.4%)
(1.4%)
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Cross sections: Smooth f^ Apriori group ••• Solution group.
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Figure 10: Cross sections for Example 8.
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Figure 11: Cross sections for Example 9.
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At the same time, it is a feature of models that one tends to calculate a
large number of cross section from far fewer parameters, with the result that
the predicted cross section uncertainties may well be very strongly correlated
[11,13]. Once strong correlations become imbedded into the problem via the
apriori, it is apparent that it is difficult to remove them by the addition
of new experimental information. This important point can be emphasized by a
metaphor: "once the salt is in the soup, it cannot be removed."

We assume that our hypothetical experimenter is not aware of such hidden
problems when he obtains the present apriori from an evaluated data file. He
proceeds to analyze the new integral data set in consort with this apriori.
The results of the analysis appear in Table 11 and Fig. 11. Since we know the
true cross section, we see immediately what has happened from Fig. 11: The
apriori has the wrong shape and the least-squares algorithm is not permitted
to adjust the shape because of the severe constraint imposed by the assumption
of 100% correlation for the apriori uncertainties. Therefore, the algorithm
finds a local minimum which is not near the actual cross section. The results
in Table 11 are more revealing to our blind experimenter who is not privileged
to know the actual cross section. The calculated minimum chi-square per
degree of freedom is 13.63. The experimenter immediately sees that the input
information for the least-squares problem is highly improbable and knows he
must proceed to investigate the discrepancy. As discussed by Perey, more
detailed investigation of specific terms from Eq. (45), which is utilized to
calculate xm, can also often be revealing [4]. In addition to carefully
reviewing his own experiment, the researcher should not neglect to trace the
origin of the apriori, which we happen to know is the true offender in this
example. The solution indicated in Table 11 and Fig. 11 is mathematically
correct for the problem as posed, but in this example we have been misled by
erroneous input information and thus must reject the solution.

Example 10

The hypothetical neutron spectra from Fig. 2, which are involved in all
the preceeding examples, are seen to be of limited usefulness in providing
information about the cross section above 14-15 MeV, except for the special
case where we have a good prior knowledge of the shape. Our hypothetical
experimenter may consider that the cross section a(E) is large enough in this
energy range so that measurements with less—intense nearly-monoenergetic
neutron sources are feasible. Therefore, he decides to enlarge the scope of
his experiment by performing three monoenergetic measurements at 14.75, 15.75
and 16.75 MeV, respectively. Assume that all the information stated in
Example 1 is used here, and that m is increased from 15 to 18 to account for
the additional measurements in spectra <{ng(E), <j>j7(E) and iJiig(E). For simplic-
ity, we assume these to be Gaussians represented by

4,±(E) = Y± exp [- 02 (E - EjL)
2], (58)

I/O

2 Un 2)1/VAE., (59)
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for i = 16, 17 and 18. The E^ are the above-mentioned energies. The AEj
(full-width at half maximum of the Gaussian) are all assumed to be 0.2 MeV.
The assumed values i^ are: t^g = 5000.0, 1J117 = 10COO.O and $IQ = 15000.0.
Equations (58) and (59) are used to calculate the needed extra elements of *
which is now expanded from a 15x15 matrix to an 18x15 matrix (270 elements).
The uncertainties for th^se additional group fluxes are calculated as discussed
in Example 1. The three additional reaction yields to be added to A,, are
calculated by numerical integration of Eq. (30) and the following values (with
assumed 2.8% uncertainties which are 50% correlated to all other ao^ uncer-
tainties) are obtained; a0 M, = 25600.0 a0 17 = 56523.0 and a0 13 = 90463.0.
The least-squares solution for this example appears in Table 12 and Fig. 12.

The solution group cross sections and calculated uncertainties are not
very different from Example 1 except for Groups 11, 13 and 15. Essentially
all of the response to the monoenergetic measurements appears in these groups.
The result is that there the corresponding solution values approach the actual
cross section curve quite closely and the calculated uncertainties are small.
The monoenergetic results tend to override the influence of the apriori, but
the effect is localized to the specific groups addressed by the monoenergetic
data. The influence of the monoenergetic results does not spread to neigh-
boring groups because the uncertainties for the apriori in this example are
assumed to be uncorrelated. In other words, no preconceived notion of the
shape is introduced and the monoenergetic data only influence the cross sec-
tion over narrow energy ranges which do not extend beyond their corresponding
groups. Clearly, the monoenergetic data enhance our knowledge of the cross
section relative to the outcome of Example 1. Our experimenter should have
made even more measurements of this nature so that response coverage would
have been provided for each of the groups above ~14 MeV in order to compensate
for the inadequacy of the broad-spectrum experiment relative to the high-
energy region.

Example 11

Next consider an example which is identical to Example 10 in all respects
except for the assumed correlations of the apriori cross section uncertainties.
This time we introduce an assumption of short-range correlations of moderate
strength by means of the formula

(c ),.
1 - J i ^ for |i-j| < 2,

0 otherwise,

1,15). (60)

Thus, for this apriori all group cross section uncertainties are uncorrelated
to other members of the set, except for adjacent groups where the correlation
is 50%. The results appear in Table 13 and Fig. 13, and they are quite
remarkable. Compared to the solution from Example 10, the solution here is
far closer to the actual cross section and the calculated errors are notice-
ably smaller. Except for the lowest-energy group, the solution group cross
sections differ from the actual group cross sections by considerably less than
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Group

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

2
3
5
9

12
14
14
16
17
19
20
21
20
22
23

Table

Apriori
a

(40%)
(33.3%)
(30%)
(33.3%)
(25%)
(28.5%)
(28.5%)
(31.3%)
(29.4%)
(28.9%)
(25%)
(28.6%)
(30%)
(31.8%)
(30.4%)

12. Least-Sq

Difference

+122%
+20%
+20.5%
+41.7%
+34.8%
+20.7%

-2.8%
-7.2%

-14.4%
-14.0%
-16.8%
-17.5%
-24.7%
-20.1%
-18.9%

[uares Resul t s

Actual
0

0.9
2 .5
4.15
6.35
8.9

11.6
14.4
17.25
19.85
22.1
24.05
25.45
26.55
27.525
28.375

for Example

Difference

-21.8%
+6.3%
-2 .8%
- 0 . 3 %
+1.9%
+0.9%
-2.4%
+2.8%
-1.7%
+0.6%
-0.6%
-6.7%
-0.7%

-16%
-0.6%

10

Solution

0.704
2.658
4.034
6.332
9.069

11.706
14.048
17.725
19.508
22.243
23.899
23.749
26.366
23.126
28.200

a

(18.6%)
(8.2%)

(12.9%)
(15.7%)
(16.3%)
(19.3%)
(20.2%)
(20.6%)
(20.7%)
(19.2%)

(4.4%)
(21%)
(3.9%)

(29.2%)
(3.9%)

0.50

Group

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

2
3
5
9

12
14
14
16
17
19
20
21
20
22
23

Table

Apriori
a

(40%)
(33.3%)
(30%)
(33.3%)
(25%)
(28.5%)
(28.5%)
(31.3%)
(29.4%)
(28.9%)
(25%)
(28.6%)
(30%)
(31.8%)
(30.4%)

13. Least-Sq

Difference

+122%
+20%
+20.5%
+41.7%
+34.8%
+20.7%

-2.8%
-7.2%

-14.4%
-14.0%
-16.8%
-17.5%
-24.7%
-20 .1%
-18.9%

uares Results

Actual
0

0.9
2.5
4.15
6.35
8.9

11.6
14.4
17.25
19.85
22.1
24.05
25.45
26.55
27.525
28.375

for Example

Difference

-19.2%
+2.4%
+3.1%
-5.4%
+4.6%
+0.1%
-2.7%
+2.5%
-4.6%
+1.1%
-0.8%
+3.1%
-0.9%
+2.6%
-0.7%

11

Solution

0.727
2.560
4.277
6.007
9.305

11.608
14.011
17.675
18.941
22.340
23.846
26.248
26.324
28.248
28.180

o

(17.6%)
(7.6%)
(9.3%)

(12.4%)
(10.9%)
(13.4%)
(14%)
(15.4%)
(12.4%)
(15.6%)

(4.4%)
(15.6%)

(3.9%)
(17.6%)
(3.9%)

0.42
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Figure 12: Cross sections for Example 10.
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Figure 13: Cross sections for Example 11.
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the derived uncertainties. Apparently the combined broad-group and monoener-
getic measurements led to a significantly improved understanding of the cross
section. Actually the simulated experiment here is identical to that for
Example 10 so the measurer cannot take credit for the apparently greater
impact of his data in this example than in the previous one. The difference
is obviously traceable to the apriori. By including a correlation condition
such as the one defined by Eq. (60), it is indicated that our prior knowledge
of the cross section is far more definitive in this example than it was for
Example 10. Furthermore, the correlation condition here does not introduce
any constraints which turn out to be at odds with the physical realities of
the problem, as was the case for Example 9. Equation (60) states that when we
adjust the cross section we are required to move adjacent groups together to
some extent (50% correlation). Since the apriori as given implies a generally
monotonically increasing cross section with energy, consistent with the actual
cross section shape, the adjustment process can actually use the correlation
constraint to advantage in minimizing x2 • Said another way, this particular
constraint effectively reduces the problem's degrees of freedom without
blocking any paths in parameter space which lead toward a mathematical mini-
mum of x2 near the actual cross section.

We are investigating simulated problems in this report and thus are at
liberty to make various assumptions about the apriori for educational purposes.
The reader must by now be fully aware of the fact that apriori cross sections
cannot be arbitrarily selected when applying the least-squares algorithm. In
fact, the apriori is dictated by the research history associated with the
physical cross section in question, for all practical purposes.

Example 12

For our last example we consider an experiment involving the set of
fifteen multiple-group spectra shown in Fig. 14. For mathematical convenience
the various discrete groups have been represented by Gaussians according to
Eqs. (58) and (59). Most of the peak centroids Ej correspond to group mid-
point energies. The peak widths AEj are in the range 0.2 to 1.7 MeV and the
peak amplitudes <|>i are in the range 1000.0 to 10000.0. These spectra are
characteristic of what might be obtained using a typical neutron-producing
reaction and thin targets. The narrow discrete groups correspond to individ-
ual resolved levels in the product nucleus while the broad groups simulate
what might result from the excitation of several unresolved levels. The
situation here is like that discussed in the portion of Section II between
Eqs. (11) and (21), except it is apparent that there is no single dominant
group for spectra <t>4(E) through $i$(.E). A set of group fluxes $ is calculated
from these spectra and a covariance matrix is generated in the manner described
in Section II and in Example 1. A set of calculated reaction yields Ao is also
generated, using the cross section from Fig. 3.A and the Gaussian parameters
corresponding to Fig. 14. These aoj are listed in Table 14. An uncertainty
of 2.8% is assumed for these elements of Ao and the off-diagonal correlations
are set at 50%. Finally, the same apriori cross section as was used in
Example 1 is introduced. The results of the analysis appear in Table 15 and
Fig. 15. The solution cross sections are quite close to the actual group
cross sections for all but the two highest-energy groups. Clearly, the new
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-42-

Table 14. Simulated Reaction Yields for Example 12

Spectrum
Index

1
2
3
4
5
6
7
8

a b
aoi

958.14
3725.6
9028.3

12269.0
18310.0
30103.0
23408.0
47019.0

Spectrum
Index

10
11
12
13
14
15

a b
oi

41493.0
71941.0
75611.0
119740.0
64648.0
68258.0
111090.0

Identifies specific <(>j from Fig. 14.

Derived from spectrum $•£ and a given in Fig. 3.A,
using Eq. (30).

Table 15. Least-Squares Results for Example 12

Group

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

2
3
5
9
12
14
14
16
17
19
20
21
20
22
23

Apriori
o

(40%)
(33.3%)
(30%)
(33.3%)
(25%)
(28.5%)
(28.5%)
(31.3%)
(29.4%)
(28.9%)
(25%)
(28.6%)
(30%)
(31.8%)
(30.4%)

DifJreren^e

+122%
+20%
+20.5%
+41.7%
+34.8%
+20.7%
-2.8%
-7.2%

-14.4%
-14.0%
-16.8%
-17.5%
-24.7%
-20.1%
-18.9%

Actual
a

0.9
2.5
4.15
6.35
8.9

11.6
14.4
17.25
19.85
22.1
24.05
25.45
26.55
27.525
28.375

Difference

+0.4%
-0.2%
-0.4%
+0.1%
+0.4%
-0.4%
-1%
+0.1%

Negligible
-2%
-2.1%
+1.3%
+1.3%
-5.9%
-7.2%

Solution

0.904
2.495
4.134
6.358
8.936

11.549
14.263
17.269
19.858
21.667
23.535
25.769
26.896
25.884
26.333

a

(9.7%)
(5.4%)
(5.1%)
(6.3%)
(6.5%)
(5.3%)
(7.1%)
(6.5%)
(7.5%)
(8.2%)
(7.4%)
(10.8%)
(10.3%)
(18.3%)
(22.7%)

0.57
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simulated data have more Influence over the least-squares process than the
apriori for most of the energy range of interest. This is accentuated by a
significant reduction in uncertainty for all but the two highest—energy
groups. The reason why the new results do not have a greater impact on the
highest-energy groups is that for measurements involving spectra <|>i4(E) and
$15(E), roost of the strength contributed to a0 14 and a0 15 comes from lower-
energy groups. Therefore these calculated yields are not too sensitive to the
higher-energy cross sections, furthermore, there is no redundancy to add some
weight to this energy region. A similar - but even more pronounced - effect is
evident for measurements in the spectra from Fig. 2, as discussed in Examples
1 through 9.
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IV. CONCLUSION

The examples which appear in Section III demonstrate rather convincingly
that the least-squares algorithm is a viable method for deriving differential
cross section information from a variety of experimental data. The two
advantages which are not generally offered by other methods are:

(i) Experimenters are not restricted to measurements with monoenergetic
or nearly-monoenergetic neutron sources. Useful information can
also be gained from measurements involving a variety of neutron
sources with multiple-group or even continuous-neutron spectra.

(ii) The least-squares method forces one to view nuclear data problems
from a much broader perspective. One must examine the prior state
of knowledge in addition to performing a specific new experiment.
The consistency of the prior and new information is then tested by
the algorithm. Finally, one observes from the solution the extent
to which the new information added to the overall knowledge of the
cross section. If no significant reduction in uncertainties
resulted, then the new experiment contributed rather little.

A legitimate argument could be made to the effect that trained evaluators
should perform the least-squares analysis described in this paper and not
experimenters. This does not in any way alter the mathematical foundation of
the method. It simply means that the experimenter would report only the
measured information consisting cf spectral representations and reaction yield
parameters, along with appropriate covariance information. This issue is
beyond the scope of this paper.

The importance of the apriori in this process cannot be over emphasized.
The most serious risk associated with the approach discussed in this paper is
that the impact of a good new experiment may be lost by essentially averaging
it with a faulty apriori. Conceivably, the reverse situation could also take
place. Namely, a new heavily-weighted erroneous data set could undermine a
reasonable understanding of the cross section as embodied in the apriori.
This risk has always existed; it is not an intrinsic feature of this method
alone. Fortunately, this algorithm yields a chi-square parameter which serves
to warn of pathological problems of this nature. There is no doubt that such
situations will arise, and they will have to be dealt with on an individual
basis.
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APPENDIX

A FORTRAN program named UNFOLD has been written to enable the formalism
described in Section II to be tested numerically. This program was written
for a small computer, therefore the dimensions of the group arrays are rather
small. This is not an inherent limitation of the program, so it could readily
be expanded to utilize the available core space of a larger computer. Program
UNFOLD provides the user with the option of iterating the solution although
such a procedure is not recommended, as discussed in Section II. If there is
iteration, all that is iterated is the group cross section itself. That is,
a' and NQ replace the apriori a and Na for the subsequent calculation.
The quantities Ao, N^o, <& and N$ are untouched in this iteration procedure.
The following list defines the relationship between the program's input and
output parameters and quantities described in Section II:

M = m

N = n

AO(I)

EAO(I)

CAO(I,J)

E(J)

EE(J)

DE(J)

FEPS(J)

CE(I,J)

CEPS(I.J)

PHI(I,J)

FN(I,J)

ETA(I,J)

= a .
01

= AE .
J

= (Ehj " V

= f .

= «Vij

i j

= f

= n
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SIGO(J) = o.

ESIGO(J) = [<Vjj]1/2

CSIGO(I.J) = (Vij/[(Vii(Vjj)]
1/2

ITR

0 do not iterate solution

1 iterate solution

NEXT

0 terminate iteration

1 continue iteration

NITR = order of specific iteration (zero designates
first pass).

CHI2 = (X*/m)

SIG(J) = a1.

ESIG(J)

il \ /Ml \1 *•' *•

Subroutine MATINV inverts matrices. Subroutine JORDAN solves systems
of linear equations using the Gauss-Jordan method. AVPRT is a printer control
subroutine which is used for a specific computer. Here it acts as a dummy
routine.
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C

READ ( I R D . I ) n» N
1 F0HMAT(2 I3 )

D0 2 I =1 . M
2 RE AD ( IRD >3) A O < I ) » E A O ( I >
6 F0RMAT(6E12t5>

D 0 4 1 = 1 , M
4 R E A D ( I R D , 3 ) (C AO ( I , J ) , J= 1 , I )

D0 5 I =1 ».i
Di2 5 j = l , I

5 CAO( Jr I ) =CAO ( I . J )
D0 6 I S1, ,M

6 READ(I f?D.3) £( D »EE( I ) f DE( I ) »FEPS( I )
D0 7 I S1, .M

•/ RE AD (IRD . 3 ) (CE( I . J) f J = l , I )
W 6 I =1 ,,i
D0 8 J =1 ,1

b CE ( J . I )=CE ( I »J>
DO 9 I = l , . i

9 READ( IWD,3) (CEPs< I» J } »J=1 ' * >
Did 1 ,1 1 = 1 , N
D0 1 u J= 1 • I

10 CEPS ( J . I )=CEPS U »J >
DJ 1 1 1 = 1 , M
Da 1 1 J = 1 . N

1 1 R E A D C I K 0 . 3 ) PH I t I » J ) t F lMC I « J ) , E T A ( I , J )
DO X i 1 = 1 . M

1 2 R E A D ( I f - D , 3 ) S I 130 ( I ) » c S I G C ( I )
D-d 1 5 1 = 1 . N

U R E A D ( I K U , 3 ) (CSI JU (1 »J )• J= l» P
D3 1 4 1 = 1 , W
00 14 J = l . I

14 C S I G J ( J , I) =CdIGO ( I . J )
C
C CALCULATIONS



- 5 1 -
S 0 C0 NT 1 •; UE

ill? i 1 1 = 1 , .1
DJ 3 0 J = l . •"

J O r ( I , J ) s S I G O C J M P H I ( I , J )

0 0 3 1 1 = 1 , rt
A< I ) = 0 . 0
DO 3 1 J = l . £>J

3 1 A( D = A ( I ) *C< I , J )
D3 3 2 1 = 1 , r t
00 32 J = l , a
U( I, J)=P.O
Did 32 L=1»N

3 2 U( I , J) =U ( I »J )*eS IG 0( J) »ESI GO <L >»CS IGO( J . U «C ( I »L ) /SI GO (J ) /S l GO (L )
DH 3 5 1 = 1 , M
Da 3 5 J = l . M
V( I t J)=EAC d )»EAO( JJ «C AO ( I »J >
00 3'J K=1,N
V( i» J)=V ( I »J )*C( I , K)*U <J 'K )
[i? 3 ; L = l . ̂
RV =0 .0
IF <I ••"'«:. J) G-'; Ta 3 4
IF <K . \ £ .L ) GO Tk! 3 4
RV=«v*Ft; (I »K )»FN (J »L )

3 4 C0NTI\UE
RV=RV*CEPS (K ,L >»FEPS (K )»FEPS (L )
RV=HV+cE(KiL)«ETA( I , K> *E TA (J ft )«EE (K )»EE ( D / P H I ( I ,K ) /PHI ( J , L )
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M)
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INVERSE)
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T(
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H)
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• J. j
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»K)»

•ESI

)-SI
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)/PS

IT I

*w

C( J»L)

( I , J ) » ( A O < J ) - A ( J ) )

(AO(K)-A(K) )

GO

GO

)

IG

MR

(J)»CSIGO( I« J)

( I )«SI GO (J )*w( K. L) »U (K ,1 )»U(

( I ) /ESIG(J)
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IF ( I A ,fc ... 9) CALL
WR !T £< IW :w 10 J) î  ,!•• »N IT hi, CH 12
F3HM AT { /1JHM ,:•; ,;-j I T S , CH 12 /3 15 ,E12 .5 )



Wrt IT5( 1*3, 10 1) - 5 2 -
U l F0HM4T( l .SHEf-J t .S lGtESlG)

tua 1 02 I =1 ,N

l'-R» 10 3)
V-S F8HMAT<4HCSIS)

Da 1J4 I=1,.M
1^4 KRIT£( I M ^ . 3 ) ( C S I G d »J)» J = l » I )

C
C PUNCH OUTPUT UN UNIT I PUN IF IPUN.NE.Q
C

I F U P u f w E Q . O ) GkJ T0 30 0
HR IT£ ( IP i/i .2 00 ) M> M. NI TH ,CHI 2

200 F 0 R M A T ( 3 I 5 . E 1 2 . 5 )
D0 2 i l l I =1 »N

20 1 WRIT = ( I P U M . 3 ) E< I ) »DEt I ) » S I G ( I ) . E S I G ( I )
D0 2 02 I =1 fiN

2L-2 WRITEC IPUM»3> ( C S I G( I . J ) , J = i .1 >
c
C D E C I S I B N REGARDING ITERATI0N, C0NTINUE IF ITR.NE.0 AND NEXT.NE.0
C

I F ( I TS .Ea .O) G0 TJ 1000
WRITE(4 ,3U1 )

301 F0RMAT(/9HNEXT ( 12 > / )
READ ( 4 , 3 010) NEXT

3U10 F0RMAT(12)
I F ( N E X T . E Q t O ) G0 T4J 1000
NITR=NITR+1
D0 3U2 I=1»N
SI G O ( I ) = S I G ( I )
ES1GO< D = E 5 I G < I )
D0 3 02 J = l f N

3u2 C S I G J ( I , J ) s C S l G ( I , J)
G2 T j 20

C
END
SUBRviUTlNE M A T I N V C 0. Q» NTEST»NS)
Dl ME-IS 10 N DC 20 .2 0) #Q<2 0i 20 )»EC20 .21 )
IP = , s + 1
BI 0 = 0 . 0
D0 5 5 5 I = 1 » M 3
D3 5=5 J =1»IMS

ABD ^ ^ 6 S ( D U ' J>>
I F ( A n J - e i G )

3-3 4 BIG = A6D

FACT = S - W T ( r ^ I G )
1 = 1

1 I F C I - . . S ) 2 » 2 f 2 0
2 J = 1

3 I F ( J - > . S ) 4 , 4 » d
t K = 1

5 I F ( K - f . S ) o » 6 # 7

b E( J . i\) = J (K . j ) /
K = -v-1
G^1 T ; 5

7 J = j * l
G^ T., 3

0 L = 1
y I F ( L - i J S ) l O f i u t l 4



1.0 I F I L - I ) I i - l 3 . l l - 5 3 -
1 1 EC L, I:' ) = 0 . J
1 2 L = L * l

\1* T.; 9
1.5 EC|_» I D ) = 1 . iJ

G'J T • 12
1 4 CALL Jio* )AvJl lis #c j f l T E S T )

IF (M TtST ) 1 5 , 1 3 , 1 6
13 RETURN
1 6 M = 1
1 7 I F ( H - - M S ) 1 3 . 1 8 . 1 9
1 8 Q( I . - ! ) s E ^ M . I P ) / F ACT

M = >i* 1
G0 T,2 1 7

1 9 I = 1 * 1

EN!)
susHji..Tirit JJSOAN(.M»C. INDEX)
O I M E i ^ I S i 3 1 2 0 ) » C ( 2 0 , 2 1 )
K = l

1 I F ( r t - v ) 2 . 2 . « i c
2 i F C C U . K n l u . o . 1 0
j L = K + 1
4 I F ( L - N I > o, 3 , 2 1
5 IF (C <L»K >) 7 , 6 , 7
6 L=L*1

G0 T'/) 4
7 M=l
3 1FCM-N-1 ) 9. 9 , 2
9 B ( M ) = C ( K , M )

C( K, "i) =C <L »M >
C « L . - I ) = H ( M )
Ms M* 1
G0 T^ 6

1 0 J= N* 1
1 1 I F ( j - < ) 1 3 . 1 2 , 1 2
1 2 C( K, J ) = C ( K » J ) / C ( K, K)

J = J - 1
G0 T-- 1 1

1 3 1 = 1
1 4 I F < 1 - O 1 6 , 1 6 , 1 5

G3 T,; 1
1 6 1 F ( ! - I \ ) i o , 1 7 , l »
1 7 1 = 1 * 1

G7 T-' 1 4
1 6 11 =.M +1
i y IF 11 I - i \ ) 1 7 . 2 J . 2 C
c 0 C( I , I I ) = C ( I , II ) - C l I , K) » C ( K » I I )

II =1 1 - 1
Ga T'.', 1 9

^ 1 I N D = X = C
liB T .1 2 3

^ 2 I M D f c X s l
t«5 R E T U n ;

EUO

EN 3


