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Abstract : We describe a recent calculation of the hadron spectrum with
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hybrid algorithm on a 124 lattice that was doubled or quadrupled to calculate
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INTRODUCTION

The U.S. Department of Energy is supporting three large supercomputer projects
in lattice gauge theory. Two, done on Cray computers are devoted to large quenched
calculations.1 The third, known as the High Energy Monte Carlo Grand Challenge
(HEMCGC), uses the ETA10 at the Supercomputer Computations Research Institute
and is devoted to dynamical fermion calculations.

To make an accurate evaluation of the hadron mass spectrum we must push
present calculations to smaller quark masses, smaller lattice spacings and larger vol-
umes. As a step in this direction we have carried out a simulation using two flavors of
staggered fermions on 12 lattices, and then doubled and quadrupled the lattices to
calculate hadron propagators. We studied quark masses amq = 0.025 and 0.01 with
Q/g2 = 5.6 using the hybrid algorithm.2

We use the configurations thus generated to extract a number of interesting phys-
ical quantities. While generating the configurations we measured the plaquette, ifr-ip,
and the Polyakov loop. We later analyzed the configurations to calculate the spec-
trum. We have used both staggered and Wilson valence quarks for this purpose. Here
we concentrate on the staggered spectrum. Khalil Bitar will present the results on
the Wilson spectrum.3 Future work includes a study of the glueball spectrum and
various hadron wave functions and matrix elements.

CODE DEVELOPMENT

Considerable effort was expended to develop a code that runs efficiently on the
ETA10 and can also be debugged on smaller machines. The code is written in Ratfor,
and a macro preprocessor is extensively used.

A stack allocator that has several useful features was created for the program.
A large common block is created at compilation time; during run time, pieces of the
common block are allocated to temporary variables such as the gauge fields, fermion
fields, temporary vectors for the conjugate gradient, etc. A set of macros is used to
relate the temporary variables to the appropriate area of the common block. This
results in code that makes efficient use of memory and does not require recompilation
when changing lattice size (up io a maximum determined by the common block
declaration). The resulting code requires about 1.3 x 10~6 seconds per lattice site
per conjugate gradient iteration for a program that fits in the 4 MW CPU memory.

The ETA10 has a large shared memory; however, the software overhead for using
it is high. On a 142 x 242 lattice we found that during the conjugate gradient the ratio
of system time to CPU time was 4.5. By time "slicing" the program and manually
overlapping the computations and I/O between shared and CPU memories, this ratio
was reduced to 0.2. Each time-sliced routine requires a careful analysis to manage
the data movement and allocation.

CALCULATIONAL DETAILS

After equilibrating a 124 lattice, we tested the algorithm by varying the molecular
dynamics time step dt and the conjugate gradient accuracy e = i/R2/S2 where R
is the residual vector and 5 is the source vector. We chose dt = 0.01 (0.02) for the
light (heavy) mass and e = 5 X 10 for production runs. The trajectory length (time



between refreshing the momenta) is 1 time unit. For the quark masses 0.025 and 0.01
we made runs of 5000 trajectories saving the lattice every 10 time units. Thus, we
have 500 configurations for each mass.

To calculate the spectrum, we doubled or quadrupled the lattice in the time
direction. The propagators used for the hadrons all employed local sinks, summed
over space to obtain zero momentum states. However, we have used both point and
wall sources. The wall source is created by placing a unit source on every site for
which each of the spatial coordinates is even for a fixed time. When using the wall
source, we transformed to Coulomb gauge using an overrelaxation algorithm.

RESULTS

We studied two TT propagators, two p propagators, and one a, Aj, B and nucleon
propagator. We used doubled lattices with point sources and with wall sources. For
the wall sources, we used both antiperiodic and open boundary conditions in time.
We also used quadrupled lattices with a wall source, but only for the lighter quark
mass. We fitted the propagators using the full covariance matrix. Details of the
fitting procedure may be found in Ref. 4. To extract the long distance fall-off of the
hadron propagators we fit from some minimum distance D^^ to the center of the
lattice on the doubled lattices. In Fig. 1 we show the ir mass as a function of -Dm;n for
the doubled lattices. Using both point and wall sources. For each source, we use two
parameter (one particle) fits and four parameter fits that include a TT and an excited
state of the same spin and parity. Looking at the two parameter fits, we see that
the point source suffers from considerable contamination up to a distance of four or
five from the source, the wall source does not have this problem. When we include
an excited state, the point source ir masses are much more stable. We use the full
covariance matrix of the propagators, so the fits' confidence levels are meaningful.
An arrow points at each fit with confidence level greater than 0.1.

On the quadrupled lattices, we varied the maximum distance, generally in the
range from 12 to 16. In Fig. 2 we show the ir fits on the quadrupled lattice. Because
we only have a wall source here we can show all fits on a much finer scale. We see
a tendency for the fits with longer maximum distance from the source to give lower
masses, this is somewhat disturbing, and we hope to see if it is an artifact of periodic
extension in future work. We report masses from two parameter wall source fits on
the doubled lattices with Dj^n = 5.

Turning to the p fits in Fig. 3, we see that the point source again suffers from
contamination from higher mass states. There is the familiar pattern of two param-
eter fits oscillating in mass because of the contribution of the opposite parity state
that is ignored in the fit. For the four parameter fits, the oscillation disappears,
but the contribution of an excited state with the same quantum numbers as the p
causes the fitted p mass to increase for small D^^. The wall source avoids much of
the contribution of excited states, but we see the oscillation of the mass in the two
parameter fits as for the point sources. The four parameter fits have a reasonable
confidence level for Umin > 2. In Fig. 3(b) we see a similar pattern emerging for the
light quark mass. However, the four parameter fits for the wall source do not have a
good confidence level.

For the nucleon, the wall source gives much better fits than the point source. The
masses from the point source are considerably lighter than those from the wall source.
Given the well known problems of using point sources as the coupling decreases, we
feel justified in ignoring those fits in this brief summary. In addition, for amq = 0.01
the wall source on the quadrupled lattice is in good agreement with that on the
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Figure 1. Pion mass for the doubled lattice as a function of the minimum
distance from the source included in the fit. (a) amq = 0.025, (b) amq = 0.01.

doubled lattice. To save space, we show both masses from the wall source on the
doubled lattice in Fig. 4. Full details of all the fits will be presented in a forthcoming
more detailed paper.4

One promising aspect of the current calculation is the much improved chiral
behavior of the TT2 and pi as compared with a previous calculation with stronger
coupling.5 For instance, the current values for ir and v^ with amq = 0.025 are
0.415(2) and 0.494(5), respectively. Previously, with 6/g2 = 5.4375, we had 0.449(2)
and 0.788(33). For the p and p2, we have 0.631(7) and 0.619(9), as compared with
0.856(106) and 0.787(77) previously.

In Fig. 5 we show our results on the Edinburgh plot. We have the two points
we have calculated and an extrapolation to the chiral limit. To extrapolate, we have
used a linear function for the p and nucleon. For the ir, we use mT = a^Jm~q~ or
= a^/nig" + brrtq as shown by a plain or dotted line, respectively. The points denoted
by diamonds are from a previous calculation at stronger coupling and masses 0.10,
0.05 and 0.025. The octagons mark the experimental value and infinite quark mass
value. The error bar going through the octagon marking the experimental value is
the statistical error in the extrapolation.
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TABLE 1

Summary of meson and nucleon masses.

P
P2
N

As noted above , we have also calculated hadron masses with Wilson valence
quarks on these configurations. The ratio MjfjMp with Wilson valence quarks
is very different from that with staggered quarks. Adjusting the Wilson hop-
ping parameter to give the same ir mass as for arriq = 0.01, the Wilson nu-
cleon turns out to be at about 0.72, in good agreement with the staggered re-
sult. However, the Wilson p mass is around 0.4, much lower than the staggered
mass of 0.56. There are' clear finite lattice spacing effects, and work at weaker cou-
pling is required before the results can be meaningfully compared with experiment.

0.025
0.415
0.494
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DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein (o any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.
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Figure 5. Edinburgh plot of current results and previous calculation at stronger
coupling.
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