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Abstract

Plasmas heated by ICRF produce energetic particle distribution functions which are
sharply peaked in pitch-angle, and we show that at moderate toroidal mode numbers,
this anisotropy is a competitive and even dominant instability drive when compared
with the universal instability drive due to spatial gradient. The universal drive, act-
ing alone, destabilizes only co-propagating waves (i.e. waves propagating in the same
toroidal direction as the diamagnetic flow of the energetic particles), but stabilizes
counter-propagating waves (i.e. waves propagating in the opposite toroidal direction
as the diamagnetic flow of the energetic particles). Nonetheless, we show that in a
tokamak, it is possible that particle anisotropy can produce a larger linear growth rate
for counter-propagating waves, and provide a mechanism for preferred destabilization

of the counter—propagating TAE modes that are sometimes experimentally observed.




Considerable research in tokamaks has been directed towards studying the spontaneous
excitation by energetic particles of low frequency waves such as Alfvén waves 123 [in partic-
ular the Toroidal Alfvén Eigenmode (TAE)]. It has been understood that the wave—particle
resonance interaction, that taps the “universal” instability drive (due to spatial gradients),
can destabilize TAE modes whose phase velocity component is in the same toroidal direc-
tion as that of the diamagnetic flow of the resonant energetic particles (we call this case
co-propagation), while the “universal” interaction is intrinsically stabilizing for waves prop-
agating in the opposite direction (counter—propagation).

In plasmas heated by the lon Cyclotron Range of Frequencies (ICRF), there is an addi-
tional particle anisotropy drive which can also destabilize TAE modes (e.g. see Ref. 4 for a
discussion of this effect in toroidal geometry). Particles with turning points in the neighbor-
hood of the cyclotron resonance surface are preferentially heated by ICRF and the particle
distribution produced is sharply peaked in pitch angle. This results in an inverted energy
population (at constant magnetic moment) for many of the heated particles. Thus particle
anisotropy provides another source of free energy in addition to the universal instability
drive, and this anisotropy drive can exceed the universal drive for moderate toroidal mode
numbers. For co-propagating TAE modes, the two instability drives reinforce each other,
and the growth rate is considerably increased by particle anisotropy.

We might expect that counter—propagating TAE modes are not as easily destabilized
as co—propagating TAE modes since the universal drive is stabilizing (for monotonically
decreasing radial profiles). However, occasionally TAE modes in plasmas heated by ICRF
are observed to be unstable with phase velocities opposite to the prevailing ion diamagnetic
current.’ This of course can arise if a hollow radial profile of energetic particles is formed so
that their diamagnetic flow in the wave region is opposite to the prevailing ion diamagnetic
current. Here we propose that particle anisotropy provides another mechanism to achieve

the strongest destabilization of counter-propagating modes in ICRF heated plasmas. Indeed




we sometimes numerically find, for appropriately chosen parameters, that the most unstable
case is for waves whose phase velocity is opposite to the energetic particle diamagnetic
flow velocity (i.e. the case which is intrinsically stable if the anisotropy drive is neglected).
The reason for the effect is a property of the functional form of the resonance function
that is used to calculate the growth rate. The growth rate magnitude is determined by
an appropriate phase space integral which involves the ‘residues’ of the resonance particle
interaction at resonance surfaces in the phase space defined by the wave-particle resonance
condition. For counter—propagating TAE modes, the ‘residues’ of the ‘Landau poles’ become
‘singular’ when there is a merging of btwo separate solutions of the wave—particle resonance
condition, and as can be inferred from the discussion below, this possibility can only arise for
a counter—propagating mode. This means that the strongest interactions are for waves with
frequencies « near a set of critical frequencies w.;; which are such that the wave-particle
resonance condition can be satisfied if |w|/|werie] < 1 but cannot be satisfied if [w]/|werie| > 1

To begin our detailed discussion of evaluating growth rates, we first consider the resonance
function. Let the wave perturbations be of the form ~ exp(—iwt + inf), where w = mode
frequency, t = time, £ = toroidal azimuthal angle, n = toroidal mode number. The resonance

function is

1 1 ‘
0(T) ~ w— nf%(T) + £2,(D) Tie e— 0 ~imd(S2e). (1)

where (") = —;;ic‘i(—;ﬂ}g—a g(\, ) is the mean toroidal drift frequency of a magnetically trapped
particle, (') = 7 (21}265) 2 h()\, rg) the mean bounce frequency of a trapped particle, v
the particle speed, r, the particle’s mean minor radius, Rp the major radius, w, the cyclotron
frequency, A = pBg(ry)/H the pitch angle (where By(r) = B(r,6 = 7/2)), p the particle
magnetic moment, H = %M v? the particle energy, M the energetic particle mass, and
q(r) the safety factor. The functions g and h are functions of order unity and generally

positive (they can be expressed in terms of elliptic functions. For shorthand we use I to

represent the dependence on phase space variables, in particular the constants of motion in
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the unperturbed magnetic field: the energy H, the pitch angle A = uBy/H and the canonical

angular momentum F; which is related to the mean minor radius r¢, by

r.r_.'i
q(r)

with er the charge of the energetic species, and v the velocity component parallel to the

PEEMRv“——eE/rdrIE—E—EE/’d
c /U ="

magnetic field.

In the most straightforward perturbation theory, the gromh rate will be proportional to
a phase space integral over the delta function in Eq. (1). The variables of integration can
be taken to be v, A, r5. To integrate in the variable v, we first obtain the solutions v}b of the
resonant particle equation (v, 7,4, A) = 0. There are two roots of this equation and they

werde2h?

1/2
. + .
are given by v; = vy ¢ £ Vpe (1 - w—:’—() , With v, = qui (5-1—2) o and wyy = —m.

We can therefore write

— ot .
1o oy 5(v — vE) - i 'U'n,l((s(v vG,) +6(v 'Uzr)) 2
2 - I%% 2(~wnpw + wd )1/ ‘

and now the v-integration is trivially performed.

We adopt the convention that the toroidal mode number n is positive, and hence for g
positive (the typical case), wne < 0 is negative. In the case of w positive (co—~propagation),
(1 = w/wne) >1 and only one root is relevant: v = v if £ > 0, v = v; if £ < 0, and
v= (-Qﬁfgg@ﬁ)l/z if £ = 0. In the case of w negative (counter—propagation), there are two
relevant roots v = v¥, where we require £ > 0 and (1 — w/wne) > 0. Note that the factor
mﬁ blows up when the two roots nearly coincide, and as a result a much enhanced
response is expected for w=uwny. In actual fact, we will see that the anisotropy drive gives
an even larger enhancement than described here (as we will see, the drive is proportional
to 51? =in 06(S%)/0w). This extra enhancement allows the anisotropy drive to overcome

the stabilizing influence of the universal drive for counter-propagating modes, and large

growth rates can occur if the frequency of a natural mode of the background plasma is close
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to the critical frequency w ~ w,,. However, when W=wyne, & mMore accurate evaluation is
needed to obtain the growth rate. Below we discuss an analytic estimate as well as numerical
evaluations of the growth rate.

To be specific we take for the equilibrium particle distribution F = F(H, P, )),

F= aB(rG(PE)) exp (—-g{-) exp (— (A— 1)2/202), (3)

with 0 <« (r/R)Y?, and a = %, so that F is normalized to give § =
87 /B2 / : df/2n / d*pH F. The distribution function is peaked in the pitch angle vari-
able about A = 1.

We consider TAE eigenmodes, which are Alfvén waves whose perturbed electric and

magnetic field amplitudes, E; and B; can be taken as,
E, =-V, (<I>e""4) e™*!, B;=—ic/we ™™V xb (b . V@einf) ,
where the potential ® satisfies

® =) @ (r)exp(imh).

We choose a functional form for ®(r) derived in the low shear limit [Ref. 6} (ro/R <«

s« 1),
- d(r) = Ko( (:c2 + 32)1/2) exp [z'n{ - ime] (1 + e‘e) 4)

where © = m(r — rg)/ro, € = (57/16)ro/Ro and K, is the MacDonald function. The TAE
mode is localized near r = rg (the radial position of mode localization). To lowest order,
the mode frequency w = wp (neglecting the energetic particle corrections) is determined by
wo = Fva(re)/2q(r0)Ro, where g(ro) = (m + 1/2)/n and v, is the Alfvén speed.

Standard perturbation theory then gives for the frequency shift,

-1 \H,|? (6F
“’*“’°“2{WE}/dP2,: Qe (aH

)

4+ R OF
“,P€ & an

) %)




and |H,| is

dsTlB1'2
47

where, for Alfvén waves, (WE} = /

|H,| = % fd’r exp [i (£ — in€) 7] {vp(7) - VO(r(7))e™ "} (6)
0

The variable 7 represents the time dependence of the unperturbed motion, 7, = 27 [Q, and
vp is the guiding center drift velocity.

Note that with Im Q;! = —iné(Q), the growth rate is proportional to phase space
gradients of the distribution function F:

OF OF 1 /nw* A OF
¥ X (—ngj—); + 51—1') (5(0[) = (T ( » —_ 1) Fy - -H——a—}‘—)é(ﬂz)

where * = — (Tq/M rwﬁ) %g. If there is no particle anisotropy (0F/8X = 0), instability
(v > 0) requires nw*/w > 1 so that the universal drive due to spatial gradients can overcome
stabilization arising from 0F/0H being negative. However, with sharply peaked anisotropy
(where F/0H|,, p, > 0 for a significant fraction of particles), instability can occur if nw*/w <
1 or even if nw* /w is negative.

To analytically perform the integrals appearing in Eq. (5), we model the unperturbed
particle orbits as a superposition of its mean drift motion and a relatively simple oscillatory
motion. In the numerical evaluation, the orbits are treated accurately, but for the purpose of
exhibiting the growth rate scaling with plasma parameters, the models orbits are adequate.

We model the orbits as follows:

v25(\)
chOQb

2
. .. v’&(A)
sin7; vp-T=

b 1 D chO

r=rg+ cos (2,7

6 = Or cos T

E=&+ QT+ q(ro)fr cos 7

_ 1 fdf_Rog 7 df
2 J vy T o \/% (1= A1 —1/Rg cosb))

Qy
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1/2
<) = (32) " (=20 = /R

We analytically evaluate the integrals in the limit €ro/m « A, < {22, (n(j—z —1}, where

Ay = o ” ’\) the orbit width. Then in the region £ ~ m A, /ro ~

m®,, < 0P . (r —ro)
T Or - (r—ro)?+rge2/m?

Using our model orbits, we perform several integrals in Eq. (5), and we reduce the expression

for the growth rate to a single i‘ntegral over the particle speed.

W — W 32 (ro)W €ro  Bwiba Sa
ay

wo  3m@mZ\R) m (T/M)’R%

/ dv v® ox (__n_z_v_z_)
/M) P\ 2T

.[-":—0—1—;%,’1? (s = £r) W] )

97 971

where a¢ = E-ézm =~ 1 ( set a; = 1 henceforth),

e = 10 % ~132, =0 L%

=.2
RO O Iamn/2.0m0 RO o 3

=n/2,8=0

In the ro-integration, we neglect the radial dependence in 2. In the A-integration, we
take F to be a delta—function in A and we integrate by parts in A. Note that 3% ~ &,l, and
the effects of particle anisotropy are amplified by a factor Ry/r.

If w is not close to wy 4, we can use Eq. (2), where w = wp, and we have

1 : 1 0
oy 6(S), @ a—%ﬂﬂt)-

We then find for the imaginary shift of frequency,




2 1/2
2= Z ( ) ﬁn,l
£

wo —WoWn, ¢ + wn £

. }:{ 68 e - ) ) |2 (o 50) - (% T 5_(%175")

Wn.e (ngnﬂg) - nﬁéﬂg))
2 (vﬁ”)z (—wown,e + w2 )

(e en (- (z—)gﬂ)?) (rn0? ~ ) ®
wo

with

32 (ro)1/2 To  Wehq

TE3@a0 2 \R) m T/M)T
) _ Vs
£ @T/M)?

Un,e

Notice that the growth rate gets appreciably larger than the standard estimate in the
case of counter—propagating TAE modes with negative frequencies wy < 0 when |wp —wpe| <
—wn ¢, as then the anisotropy contribution to the growth rate scales as W To
avoid the divergence of the growth rate, we need to keep the frequency shift of w in 1/€), and
1/92 in Eq. (7), while the other terms can be evaluated at their resonance positions (however,

when such a procedure is needed, all other w—dependent terms are accurately approximated

by evaluating them at w = wp¢). Then, for w=uwy,, the dispersion relation becomes

1/2 .
u.)—wo:%;)7 —Wn,¢ E_Q_f Tow ) _ Iﬂ.{.i
W W— Wne wo \Ro Q Ry 20}

(=wWn,e T7)

3/2
—Wwn Qep — KplS2
oy [ e "‘)J o exp(~7}) ©




where ¢, )y and 7, are evaluated at v = v, . Note that if there were no anisotropy, the
universal drive term proportional to w* is stabilizing for counter—propagation since w*/wp < 0
(however with a hollow energetic particle distribution, where w* changes sign, there can be
an additional growth rate enhancement).

The anisotropy term is dominant at wp = —w,,. Taking account of the finite fréquency

shift. we obtain the following estimate for the growth rate, «,
~ _ _9\11/5
y & [— 372 (kenQee — Kuf%e)° T} exp (—vg)] .

The linear growth rate is a function of the parameters 3, ro/a, a/Rg, To/m, q(ro), S, €, %%é,
o. &T/l‘g—)f.wo Jwne. We calculate the growth rate for the Tokamak Fusion Test Reactor
(TFTR) experiment in which TAE modes destabilized by ICRF heating of minority hy-
drogen ions have been observed.” Typical parameter values are: Ry = 262cm, a = 96cm,
magnetic field B ~ 34 kilogauss, safety factor ¢ ~ 1.25 at r;/a ~ 0.31, minority hydrogen
jon temperature T; = mv/2 ~ 0.5MeV, and mode frequency |wo| ~ (1.35)10° radians per
sec. |

We evaluate the growth rate by numerically solving Eq. (5) for v = Im(w). We take a
distribution function sharply peaked in A (¢ = 0.0175/Ry), and we consider n = 2, m = 2,

€ = 0.11, ( fé) = 2, and § = 0.004. We calculate 7/|wo| for both co-propagation and

B
counter—propagation, and we compare the relative growth rate magnitudes with and without
particle anisotropy.

In Fig. 1, we plot the growth rate v/|wo| versus (2T/M)*/?/u4 for co-propagating TAE
modes with positive frequency wy = 54 = 1.35 X 108 radians per second. The growth
rate v/|wg| ~ 0.03 is a maximum at (27/M)'/2 /v, ~ 1.4 corresponding to a mean particle
energy of T = 0.5MeV. The magnitude of the growth rate is determined by the sum of

several bounce harmonic resonances, although the main contribution at the growth rate

maximum is due to the £ = 0 bounce harmonic resonance.




For comparison, we also plot the growth rate «/|wo| for an isotropic distribution function
(0 — o0). The threshold for instability occurs at (2T/M)'/2/vs = 0.9 corresponding to
nw*/wy = 1. We note that the growth rate for the anisotropic particle distribution is
considerably larger, and it is positive over a somewhat wider frequency band.

For our parameters, the critical frequency for counter—propagating TAE modes is wp=g¢=2 =
—(1.35)10° radians per second at the £ = 2 bounce harmonic resonance. In Fig. 2, we
plot the growth rate v/|wo| versus (27/M)'/2/v, for four values of the frequency ratio
wo/wn=oe=2 = 1.003, 0.999, 0.993, 0.979. When wo/wn=2¢=2 = 0.999, the growth rate
v/lwo| ~ 0.1 is a maximum at (27/M)¥?/y4 ~ 1.55 corresponding to a mean particle en-
ergyv of T = 0.65 MeV. The growth rate maximum is a very sensitive function of wp /w,,=2,g=2,
and it is significant only when the mode frequency wy is close to the critical frequency wy e.
These curves imply the following for our numerical example: (1) the growth rate maximum
for counter—-propagating TAE modes is more than three times larger than the growth rate
maximum for co-propagating TAE modes; (2) the parameter limits within which counter-
propagating TAE modes are preferentially destabilized are rather narrow, and this can result
in sporadic experimental observation of counter-propagating modes destabilized by particle
anisotropy.

These results predict finite TAE growth rates for modest values of 3 ~ 0.004, consis-
tent with the observation in TFTR (and other Tokamak experiments) of unstable TAE
modes with low toroidal mode numbers destabilized by ICRF heating.” In the case of co-
propagation, particle anisotropy enhances the universal instability drive and reduces the
threshold for the onset of instability.

In the case of counter—propagation, the effects of particle anisotropy is considerably en-
hanced when the wave frequency is close to certain critical frequencies, and this enhancement
can overcome the now stabilizing role of spatial gradients (non-hollow profiles) to preferen-

tially destabilize counter-propagating TAE modes.
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FIGURE CAPTIONS

FIG. 1. growth rate of co-propagating TAE modes for anisotropic and isotropic particle

distribution functions: «y/wo| vs. v /vy = ()2 Jyy forn =2, lwo/wa 2| = 1.0

FIG. 2. growth rate of counter-propagating TAE modes destabilized by particle anisotropy:
V/lwo| vs. vofva = (V2 /y, for n =2, wo/ws2 = 1.003, 0.999, 0.993, 0.979
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