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Abstract

In this paper, we give a construction of wavelets which are (a) semi-
orthogonal with respect to an arbitrary elliptic bilinear form a(:,-) on
the Sobolev space H}((0, L)) and (b) continuous and piecewise linear on
an arbitrary partition of [0, L]. We illustrate this construction using the
model problem

" +u=f
u(0) = »(L) = 0.

We also construct a-orthogonal Battle-Lemarié type wavelets which
fully diagonalize the Galerkin discretized matrix for the model problem
with domain IR.

Finally, we describe a hybrid basis consisting of a combination of ele-
ments from the semi-orthogonal wavelet basis and the hierarchical Schauder
basis. Numerical experiments indicate that this basis leads to robust,
scalable Galerkin discretizations of the model problem which remain well-
conditioned independent of ¢, L, and the refinement level K.
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1 Introduction

In this section, we review some basic theory about Galerkin discretizations of
elliptic variational problems and their relationship to the Riesz bounds of the
underlying basis (cf. [2, §]).

Let H be a Hilbert space with inner product (-, -)4. Let a(-,-) be a symmetric
coercive continuous bilinear form on #, that is a is a symmetric bilinear form
such that

Clivllf, < a(v,v) < Dlll%
for some positive constants C and D. Define || - || ;= v/a(:, ") to be the energy
norm generated by a. The coercivity and continuity of a imply that the energy

norm is equivalent to the norm associated with #.
Let H' (= H) denote the dual of #. Consider the elliptic variational problem:

Given F € H', find u € H such that )
a(u,v) = F(v), YveH.

Let V be a finite dimensional subspace of H. Then the Galerkin approximate
solution uy is the unique solution of (1) with X replaced by V. Let & =
(8',...,6™)7 be a basis for V. (Throughout this paper, a basis will be arranged
as a column vector.) Then uy = ¢T® can be found by solving the linear system

a(®,®)c = F(P), (2)

where a(®, ®) is the N x N matrix (a(¢?,¢’)) and F(®) is the column vector
(F(¢'), .., F(e™)T.

For large N, it is usually impractical to solve the linear system (2) using
direct methods. When the matrix A% := a(®, ®) is well-conditioned, the system
can be efficiently solved using iterative methods. We say that o (respectively
@) is a lower (upper) Riesz bound for the basis & with respect to || - || if

ac’e<||lcTel| <acle. (3)

Define a4 (@) to be the largest (smallest) lower (upper) Riesz bound for &
with respect to || - ||g. Observe that

T ®||% = T A%e.
Since A% is symmetric and positive definite we have

cTA%c

L] _ =
1A% = maxrC =@
T 4
oy-1y-1 _ . ¢ A%
1A%z = min S = 0.

Therefore, the spectral condition number of A%, cond(A?), is related to the
Riesz bounds for @ in the following way:

cond(4?) = ds /as. (4)
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Suppose ¥ is another basis for V and suppose W is the nonsingular N x N
matrix such that

v=wTe.
Then uy = d¥ ¥ may also be found by solving :
a(¥,0)d = F(9P). (5)
Note that
AY = a(¥,0) = WTa(®, 3)W. (6)

Thus the linear system (5) resulting from (2) by a change of basis can also be
considered to arise from (2) by preconditioning with W.

2 Multiscale Transformations
Suppose
VoCV1 cC---CV,C---

is a one-sided sequence of nested finite-dimensional subspaces of H such that
U Vx = H. Define Wy := Vy and, for k > 1, choose W;, in Vj, so that

Vk = Vk—l':"Wk (T)

where + denotes the direct sum. Let & be a basis for Vi and let 1, be a basis
for Wi, (we choose ¥g = ®g). Then

Yo
‘I/k =
W
is also a basis for Vi. Let W} be the multiscale transformation such that
U, =WIo,,

and let T be the two-scale transformation such that
(%) =mree

o (Tes 0\ (T 0
Wk“Tk( 0 Ik_l) (0 11)

where I; is the n x n identity matrix with n = card(y;).

Fix K and let ¥ = ¥, & = &g, and W = Wg. We assume that (a)
multiplication by W can be implemented with a fast algorithm (this is the case
for compactly supported wavelet bases), (b) AY is well-conditioned, and (c)
F(®) can be easily approximated. Algorithm A summarizes the solution of the

discretized problem given in (2) using the multiscale transform W.
Algorithm A:

Observe that
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e Approximate F?.

e Calculate F¥ = WTF?,
e Solve A¥d = FY¥.

o c=Wd.

It is interesting to note that this algorithm does not use the decomposition
matrix W1,

3 Wavelet Construction
Let (Xi)r>0 be a given sequence of nested knot sequences on [0, 1] satisfying

o Xk = (z)o<i<m,

e 0=29<--- <zl < <=L

o )

¢ Ty =T

Let ¢f; be the piecewise linear continuous function with knot sequence X}
such that d){(z{, ) =10jj. Let & = (q&i, . ..,d)ﬁ’“'l)T, then ®; is a nodal basis
for Vi which is the usual finite element space of piecewise linear continuous
functions on [0, L] with knot sequence X.

We next describe two choices for W;..

3.1 Hierarchical Schauder Basis

One simple choice for W, satisfying (7) is the well known Schauder basis (cf.
17, 9. 10]) -
wi = .;);]_1? j=17"'aNk

illustrated in Figure 1.

/\
N
YAVAVAVAN

Figure 1: Schauder Basis ¥y = (¢ T 7)T with dimension 7 on a uniform
partition.

Next we construct the two-scale transformation for the Schauder basis. De-
note the length of the subinterval [z}, z]] by

Joom pd il
Ay =z, — 23 .
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(34

The function values h{;’jl and gfc] ' for ¢-,’;_1 and wi respectively at the knot z‘,’:
are given by

(A . .
a I=%-1
. 1, J'=2j
R = o
At
szy J=2+1
L 0, otherwise
gf;’j = (5]'1‘2]‘_1.

Then
J = Jd' 3
k-1 = th Pk
J'I

v = Yl
jl

Now let Hy, be the (N —1)x (Ni_; —1) matrix Hi = (h}¥'); ; and let Gy be the

(N = 1) x (Ng—y) matrix Gy, = (g{;’j’)j:,j. Thus, the two-scale transformation
for the Schauder basis is given by

Ty = (Hr Gi)-

3.2 Semi-orthogonal Sombrero Wavelets

Here we choose Wi, to be the orthogonal complement of Vi._; in V. with respect
to the scalar product a(:,-), that is

WL =V N V:’_"l.

Regardless of the choice of basis 1 for Wy, the matrix AY* is then decoupled
between levels so that it is a block diagonal matrix:

AY* = diag(A¥e, AV, ... AY).

We next give a procedure for constructing a local basis of wavelets for W;.
Let

B := B(k) = a(®k-1, &)
where we supress the k dependence when the choice for & is unambiguous. Note
that

Wi = {g7® | g € ker B}.
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We will use certain subblocks of B in our construction. To this end we define
R;, i, to be the (i —i; +1) x (N}, — 1) matrix whose i-th row is the (i —i; +1)-th
row of the (N — 1) x (Vi — 1) identity matrix. Then the [i1,42] X [j1, 2] block
of B is given by .

B} :=R; i,BR],

J1.J2 J1.d2*
Let .
1n —
Biop—y forn=2,3,
.— n-3,n r
Cn — B2n_512n_1 fOI‘ 3 S n S Ak_l hand 1
n—3,n—1 _
B2n—5,2n—-1 for n = Ny,

For 4 < n < Ni_1, the matrix C, is a 4 x 5 matrix which generically has a

kernel of dimension one. This kernel then corresponds to a wavelet with support

contained in [z3"7%,z2"] = (2723, z7_,]. More generally, we define the following

procedure for constructing a local basis for W.

Let K, := ker(C,) and, for n > 3, let K? denote the subspace of K,
consisting of the elements in w € K, whose last two components are both zero.
In the generic case, K9 is the trivial subspace. Let

(¢};7¢?L:7¢:[3)T1 n= 2
B = s ®)
(@3, T, 3<n< Ny,

Algorithm B:

o Let w3 denote a basis for C3 and set ¥} = {wT®} | w € w3}

e Forn=3,...,N;_,,do
— Choose K} so that K, = K3+K] and choose a basis w, for K..
- Set ¢y = {wT®? | wew,}.

o de=Unks' of.

We next give a sufficient condition that the above procedure produces a basis
for Wy.. For 4 < n < Nj_;, we note that C,, has the following block form

(5 2)

where D, is3x 3, E,is 3x 2,and F,is 1 x 2.
Lemma 1 Let ¢ be the set produced by Algorithm B. Suppose

range D, D E,(ker F,,) (4<n < Ni_p). (10)
Then 1y, is a basis for Wy, := V. N V,ﬁ‘_“l.
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Proof:

‘Let 8™ := {f € Wi | supp(f) C [22™,22™]}. Let B, := Bi o1- Note

that f € S®™ if and only if f = yT(¢},...,¢2" 1) for some y € ker B, and
that f € S»~3" if and only if f = yT(D" for some y € ker C),. Hence, the proof
will be complete if we can show that

§0n = gom—1 4 gn-3,n (4<n < Nig). (11)
Observe that B E
_ n—1 n .
o= (P B (12)
for n > 4.
Suppose v € ker F,, then by (10) there is some u € kerC, such that
(u*,u*)T = v. Suppose y € ker B,,. From (12) it is clear that w := (yan—2,y2n_1)7 €

ker F}, and hence there is some u € ker Cy, such that the last two components

of y agree with the last two components of u. We then obtain

ker B,, = P;(ker Bp,—1) + Py(ker C,,) (13)

where P, is the padding operator that takes a vector v of length 2n — 3 to one
of length 2n — 1 by appending two zeros to v and P» is the padding operator
that takes a vector v of length 5 to one of length 2n — 1 by prepending 2n — 6
zeros to v.

Then (11) follows from (13) and the proof is complete. |

4 Uniform Partition

In this section we give the construction of piecewise-linear wavelets on a uniform
partition which are semi-orthogonal with respect to the bilinear form associated
with the following model problem:

-2 +u=f

w(0) = u(L) = 0. (14)

Let (-,-) be the usual inner product on L,([0, L]) and let H be the Sobolev space
#H5((0,L)) for some L € RT. We assume f is such that F := (f,-) is in .
Then the weak formulation becomes: Find u € H so that

a(u,v) := (' ,v') + (u,v) = (f,v) Vv e H. (15)

Moreover, suppose (X1 ) is a uniform partition of [0, L]. In order to avoid special
cases associated with boundary wavelets, we let L = 4 and Ny = 4:

i _J . .
=g =0, Ne= 2L
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Let ¢(z) = (1 — |z — 1|), and define
¢ = 247(2" - -j).

(Here we have chosen a different normalization of ¢} than the normalization
used in the non-uniform case.) Then

. .

Jj o j—1

k= Z hl#ﬂ
I=-1

where h..] = h1 = ﬁ, and ho = %

As in the previous section, let ®7 be defined by (8). Because of the differen-
tiation in the scalar product a, the € in the model problem is scaled differently

at each level resulting in a level dependent parameter ¢ given by
€ 1= 2ke.

In this case, C, is independent of 4 <n < Nr_; — 1 and its kernel is the space
spanned by the vector

w = (24e} ~ 1,6,48¢; — 10,6,24¢2 — 1)7T (16)

The kernel of C3 (respectively, Cn,_,) contains w plus an additional vector w
(respectively, wr) given below:

wp = (9 + 726}, —6,1 — 24¢7,0,0)7

and .
wg = (0,0,1 — 24€%,~6,9 + 72¢2)7.

Then we let Ui = w{sz, 1/){ = wT(}{‘""l for 2 < j < Ny_; — 1 and ,lr/}:/k—l —
T@Nk—l
wR k .

The wavelet 1 is shown in Figure 2 for selected € and for a larger set in

Figure 3. Another more general construction of semi-orthogonal wavelets on a
uniform grid was given in [3, 4].

4.1 Unbounded Domain: Riesz bounds and Battle-Lemarié
type wavelets

We next consider the simpler choice of domain IR. In this case we can calcu-
late the Riesz bounds for the wavelet bases ;. for W) using Fourier transform
techniques. For 6 € Ly(IR) we define the Grammian symbol E, (with respect
to the scalar product a(-,-)) by

Ep(w) == 3 a(6,6( —n))ei™ 17)

neZ
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Figure 2: Semi-orthogonal Sombrero for € = 0,0.3,0.5, 3 respectively on a uni-
form grid

It is a standard result (see [8], for example) that the Riesz bounds ag and @e
for the infinite basis © = ((- — n)),ez with respect to a(-,-) are equal to the
essential infimum and essential supremum of Eg, respectively. The Ls-condition
number of the infinite matrix (A®) is then the ratio @e/ag.

In the case of our model problem with the sombrero wavelets 1. we get

Ey,. (w) = ag + 2a; cos(w) + 2a2 cos(2w)

where
@ = 12(3+ 12262 + 480€} + 1152¢8)
a1 = 20/3 4 384¢; — 2304¢} — 9216¢8
az = (2/3)(1—24€})*(—1 + 6¢€}).
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Figure 3: Semi-orthogonal Sombrero for € between 0 and 3

It is an elementary, but tedious, exercise to verify that

4027 for 0 < e < 0.33
max,, Ey, (w) — a3z T

min, By, (w)
w By (w) 4(?1_‘;33;% for 0.36 < e < oc
k

and that
max, Ewk (w)

<12 f 33 < ¢ <0.36. 1
min, By, (@) = or 0.33 < ¢, <0.36 (18)

Since A¥* is block diagonal, A¥* can be preconditioned with a simple diagonal
preconditioner so that the resulting AY* satisfies

cond(A¥*) = max cond(A¥).
i<k

Then (18) shows that cond(A¥*) is uniformly bounded for 0 < ¢ < €* for any
fixed €*. For instance, we get the following:

2.4 for e, < .5
cond(A%*) < { 271  for e < 2
1330 forep <3

For the unbounded domain case we use the following well known Fourier
trick (cf. [8]) to construct an a-orthogonal basis for Wj.. Let (£;)¢ez denote the
Fourier coefficients of \/1/E,, and define

j j+-¢
Bhyl = el™.
4

In the case € = 0, we get the usual Battle-Lemarié wavelets. In this case, AY* is
the identity matrix. It is interesting to observe that 8Ly appears to converge
pointwise to the Schauder wavelet "9 = @} as € goes to infinity. The wavelet
BLy) is shown in Figure 4 for selected e.

4.2 Hybrid Basis

Our goal is to achieve a robust, fully scalable algorithm which is uniformly
O(Ng) independent of the size of the problem L, the maximum refinement
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i
b

Figure 4: Battle-Lemarié type wavelets for € = 0, 1./3, 10 respectively

level K, and the parameter e. In this section we assume that our bases are
normalized in the a-norm. This corresponds to a preconditioning of the form
D~1/24D~1/2 where D is the diagonal of A. We let #¥ denote the normalized
Schauder basis described in Section 3.1 and *¥;. the normalized Sombrero basis
described in Section 4.

For the model problem, the semi-orthogonal basis is ill-conditioned for large
e and well-conditioned for small e. One approach we have explored numerically
is to use the hybrid basis

S‘I’E

hd)-
hgp = lf“
hipg

where % is chosen so that €;, = O(1). The resulting discretized matrix Ax
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is illustrated in Figure 5. Our numerical experiments indicate that the hybrid
basis achieves the above mentioned goals for the model problem.

0

2

/

-

Figure 5: ATk consisting of 4 levels with the semi-orthogonal basis combined
with 2 additional levels with the Schauder basis.
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