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TASK I 1  
, 

Fracture Permeabil i ty o f  Crystal 1 i n e  Rocks as a Function o f  

Temperature, Pressure and Hydrothermal A1 te ra t i on  

Introduct ion 

We are not  submitt ing a t  t h i s  time a renewal proposal, instead we 

are i n  the process o f  requesting a no-cost extension, w i th  the i n t e n t  o f  

submitt ing a renewal proposal a t  a l a t e r  date (ca. 3/83). The delay 

resu l ts  p r imar i l y  because the elevated-temperature, corrosive f l u i d  

permeabi l i ty  system i s  j u s t  now nearing completion. Shakedown tes t i ng  

should begin t h i s  month (November), a f t e r  which we w i l l  undertake the 

permeabi l i ty  experiments we proposed f o r  t h i s  year's e f f o r t .  The empha- 

s i s  o f  these f i r s t  experiments i s  on assessing the e f fec ts  o f  d isso lu t ion  



n 
' . .e. 

speci f ics  o f  the d isso lut ion experiments. The f i n a l  technical repor t  

w i l l  present a more thorough report  o f  our resul ts.  

Permeabi 1 i ty System 

Approval from DOE f o r  expenditure o f  hold-over monies came i n  ea r l y  

Ju ly  w i t h  construction and acquis i t ion o f  components commencing immedi- 

ately.  Most basical ly,  the permeabil i ty system consists o f  an upstream 

servo-controlled syringe-type pump t h a t  can be operated t o  generate 

e i t h e r  a constant f low r a t e  o r  constant d i f f e r e n t i a l  pore f l u i d  pressure 

across the sample. 

designed t o  achieve f low rates as low as 1 t o  10 ml/day a t  f l u i d  pres- 

sures t o  20 MPa and temperatures t o  300OC. 

Under constant f low ra te  control,  the system i s  

Back pressure is regulated by 

a second, downstream, servo-control l e d  syringe-type pump. A1 1 wetted 

parts (tubing, valves, specimen pistons) a t  elevated temperature are made 

o f  a h igh l y  corrosion res i s tan t  N i  al ' loy (Hastelloy C-276). The sample, 
- .  . -  

jacketed i n  e i t h e r  te f l on  o r  gold (depending upon temperature), f s  

hydros ta t i ca l l y  loaded (up t o  100 MPa) i n  an external ly  heated, high 

pressure Aminco hydrothermal react ion vessel modified t o  a1 low through 

f low o f  the pore f l u i  

using a h igh l y  sensi t ive d i f f e r e n t i a l  sducer. In tegra l  t o  

the system i s  a microprocessor f o r  dat 

the pumping s o f  the up- and downs 

an i n - l i n e  ion  vessel so t h a t  i n  can invest igate 

The pressure he sample i s  measured 

rvo-control of 

stem also has 

a b i l i t y  changes r e  

mater ia ls p r i o r  t o  enter ing the s 

The system i s  designed t o  measure permeabil i ty i n  e i t h e r  o f  two 

reacted w i th  other 

modes: (1) continuous, constant f l o w  f o r  high t o  medium permeabil i t ies, 



o r  (2) pressure pulse decay f o r  the lower permeabil i t ies (microdarcy t o  

nanodarcy range). 

This system i s  being bui  

research-oriented firm, which 

Dissolut ion Experiments 

t i n  conjunction wi th  CGS, Inc., a small 

a lso has underwritten pa r t  of the cost. 

Using a closed-system, hydrothermal react ion vessel , we are studying 

the evolut ion o f  surfaces undergoing dissolut ion, i n  an e f f o r t  t o  obtain 

a physical p i c tu re  o f  the process and i d e n t i f i c a t i o n  o f  important para- 

meters. As stated e a r l i e r ,  we are interested p a r t i c u l a r l y  i n  the changes 

i n  surface roughness and asper i ty geometry as a consequence o f  dissolu- 

t ion.  This i s  important t o  our permeabil i ty experiment because the 



* -. * %  

microscopy is the principal method of documenting changes of surface 

features w i t h  increasing amounts of dissolution. 

markedly different starting surface textures: 

tensi 1 e fracture surfaces. 

We have used two 

f l a t  polished surfaces and 

The results t o  date are interesting and allow us t o  better 

appreciate the important parameters. These experiments clearly indicate . 
the manner of preparation of fracture surfaces t o  be used i n  the fracture 

permeability experiments may have a dramatic influence on the results 

obtained and may as a consequence limit the application of such 

laboratory data t o  naturally formed fractures i n  the field. Although not  

surprising, our experiments indicate the flaws and fractures play a very 

important role i n  the evolution of surface topography dur ing  dissolution. 

Crystal lographic effects are secondary and primarily affect the geometry 

details of a specific dissolution feature evolving from a crack or flaw. 

Surface roughness Can go through a dramatic evolution as most clearly 

demonstrated by the changes observed i n  the f la t  1 ished surfaces. 

These surfaces changed from an optically f l a t  surface t o  one w i t h  a 

roughness o f  the order of the grain size (0.5 t o  1 mm). Grain 

boundaries, pre-existing intragranular microcracks and cavities, and 

d ing  and polishing induced flaws were 

1 ater feature ich i n  general are e remely small played an 

incipal loci of dissolution. 

The former features dominated after 

is  easy t o  appreciate t h a t  the affect of 

preparation induced flaws o ore coarsely grou d or  saw-cut surfaces 

would be even more dram As a consequence, obse 

induced changes of permeability w i t h  ground or sawcu 

strongly reflect this effect and not be representative of a "natural" 



surface. This is pointed out here, because most previous experimental 

fracture permeability studies investigating the effects of stress have 

used sawcut or ground surfaces. 

The dissolution experiments provide i n s i g h t  i n to  what may happen t o  

tha t  par t  of a fracture surface not i n  ontact w i t h  asperities of the 

opposite surface. A t  regions of contact the situation is expected t o  

differ. Transfer of material from the contact surface w i l l  depend more 

strongly on diffusional transport because of very low rates of f l u i d  flow 

i n  this area. Furthermore, a pressure solution mechanism should occur. 

Experimental studies of the kinetics of pressure solution are limited bu t  

theory provides some estimates. The biggest uncertainty i n  the models i s  

the appropriate value of the surface diffusivity coefficient. Depending 

upon the diffusion film thickness this coefficient can vary by 2 or 3 

orders of magnitude. 

Taking an empirical approach we performed an exploratory experiment 

designed t o  determine whether observable pressure solution would occur 

under loading conditions similar t o  and times typical o f  the proposed 

permeability experiments. A monolayer of subrounded t o  rounded quartz 

sand grains (ca. 100 m diameter) was sandwiched between ends of two, 

polished, optically f l a t ,  cylinders of Sioux quartzite. The sample, 

saturated w i t h  distilled water, was sustained under a triaxial ' load a t  

30OOC for 4 days 

were adjusted t o  obta 

sure, pore f l u i d  pressure and axial  load 

5 MPa effective norsnal stress across the 

During the experiment, load 

emissions were maintained continuou 

adjustment of axial  load t o  as h i g h  as possible w i t h o u t  extensive 

fracture of the sand grains. Upon completion of the experiment, i t  was 

t h  and acoustic 

s intended t o  allow 
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planned t o  examine w i t h  SEM the sand grains and the quartzite surfaces 

+ 3 , , a  

" G  

planned t o  examine w i t h  SEM the sand grains and the quartzite surfaces 

for evidence t h a t  pressure solution had occurred. 

conf in ing  pressure dur ing  the fourth day and a large number of grains 

were crushed. 

several features suggest pressure solution may have occurred. 

Nevertheless, the effect 'was not dramatic; the extremely small shortening 

Unfortunately, we lost 

SEM studies, (s t i l l  underway) are not definitive b u t  

(ca. 5 x mm) of the loading column further underlines this 

observation. These experiments suggest measureable pressure solution of 
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