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Anisotropic exchange interactions in UNiGe
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{NiGe crystallizing in the orthorhombic TiNiSi-type of structure orders magnetically
below Ty = 50 K with an additional magnetic phase transition at 42 K. Both structures (below
42 K commensurate antiferromagnetic, between 42 K and 7, incommensuratc) are non-
collinear with significant g-axis component (p, = 0.35 pg/U at 20 K). The magnetic properties
are highly anisotropic both in the ordered and the paramagnetic state. There are two
metamagnetic transitions both with the field applied along the 4- and the c-axis. While the
magnetic structure above the sccond metamagnetic transition is forced ferromagnetic for both
field orientations, for the field applied along the a-axis the magnetization curve at 4.2 K is
lincar up to 38 T and no change in magnetic structure is observed.

UNiGe provides strong evidence for anisotropic exchange interaction. The fact that the
a-axis component cannot be aligned by the highest magnetic ficld used indicates that the
antiferromagnetic interaction is much stronger between the a-axis components than between the
others. This behaviour cannot be due to single-ion anisotropy because in that case the free
energy does not depend on the sign of the a-axis component.
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UNiGe 15 one of the most extensively studied equiatomic uranium ternary compounds. It
adopts the orthorhombic TiNiSi-type of structure (space group Pnma) [1-3], n which the
shortest U-U distancc i1s found within zig-zag chains running along the a-axis (with an
amplitude of 0.1¢). Magnetic measurements performed on  high-quality single crystals
prepared by a modificd Czochralski method revealed that UNiGe orders magnetically below
Tn=50 K with an additional magnctic phase transition at 42 K [2,3]. The low-temperature
magnetic structure, determined both by unpolarised and polarised neutron-diffraction
experiments [3.4], is commensurate with a propagation vector ¢ — (0, 1/2, 1/2) (Fig. 1). The
magnetic structure between 42 K and 7', is incommensurate with q =(0,9,0)and 6 = 0.359 at
46 K. Both structures are non-collincar with sienificant a-axis components (i, = 0.35 ug/U at
20 K). The zero-field magnetic structures can be modified by application of a magnetic ficld
along the b and ¢ axes. There arc two metamagnetic transitions in UNiGe with the ficld applied
along the c-axis (at 3 and 10 T) and two transitions with the field along the A-axis (at 17 and 25
T) (Fig. 2). While the magnetic structure above the highest critical field is forced ferromagnetic
tor both field orientations. in the intermediate region an uncompensated antifcrromagnetic
structure exists [2-4]. For the «-axis oricntation, the magnetization curve at 4.2 K is linear up to
38 T and a magnetization value of 0.23 pgp/U is found at 35 T qualifying the g-axis as a hard
magnetization direction. Strong magnctic anisotropy persists also in the paramagnetic state. At
temperaturcs above 60 K, the magnetic susceptibility of UNiGe follows a Curie-Weiss law
with an cffective magnetic moment p,, close to 3.0 pg/U, with paramagnetic Curie-
temperatures 0, of -100, 10 and 40 K for the a-, - and c-axes, respectively [5,6]. These data
indicate that the anisotropy cnergy within the b-c plane, expressed as the difference of
paramagnetic Curie-temperatures (0, - Opb), is about 30 K, while the anisotropy within the a-b
or a-c planes is much stronger.

The observations described above are unusual in two respects. First, it is very unusual
to find a component of the ordered moment aligned with the ncarest-neighbour U-U links.
Secondly, it is surprizing that the ordercd moments have a component in the hard direction.
The first feature contradicts an cmpirically cstablished rule [7], that the moment direction is
always found to be perpendicular to the n.n. U-U links, which itself is only qualitatively
understood. The second observation contradicts any expectation based on models involving
singlc-ton anisotropies of various sublattices. The purpose of this paper is to point out that the
observation constitutes evidence for anisotropic interactions.

Consider a simple two-sublatticc model of an antiferromagnet. The difficulty of
generating a magnetic moment with ficld along the a axis will be reproduced by the model, if
a contribution K /A )7 + M7 )’) s included in the free energy, with the anisotropy
constant
K - (. Here, the superscripts refer to sublattices 1 and 2, the subscripts to the x component of
the magnetization. Clearly, if the interaction between the two sublattice magnetizations is
isotropic, i.e., of the form J M”-M?, the anisotropy energy will suppress the x component of
both sublattice magnetizations. Only an anisotropic interaction of the form J,, M™ M@, + Iy

”,W’ y b 2 MUALY, with J, - Ju . Jn will be found to favour antiferromagnetically
aligned moments in the x dircction. It is casily seen that in this case the energy of the
antifcrromagnctic state, where M M7 M*P the total energy is (2K - J)MP )7 -

[
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J oy (MAP )7 — T (MPP )%, s0 that if J,, > 2K and if J, - 2K, J,, and J, are comparable,
higher-order anisotropy terms can dictate any direction for the ordered moment. On the other
hand, in the forced ferromagnetic state, when MY = M? - M®, the energy is (2K +
J)MP )7~ 2H, MP, if the magnetic field is in the x direction and Jyey(M©P )7 — 2H 4,
Mm? wo» 1f it 1s in the y or z direction. Since 2K + J,, can be much larger than J,, and J,, the
forced ferromagnetic state may be realized with the field in the y or z direction, while being
inaccessible for any available ficld in the x direction.

There is an interesting implication of the above model, which makes it possible to check
its validity experimentally, by neutron diffraction using polarized neutrons. Under the
assumptions made, the antiferromagnetically aligned x component of the magnetization should
prevail when a ferromagnetic state is forced by a field in the y or z direction. Qualitatively, this
can be understood as another manifestation of the inability of the Zeeman energy to overcome
the anisotropic exchange. For a quantitative description one needs a model including higher-
order anisotropies, which is being worked at presently.

This research was supported by the Stichting voor Fundamenteel Onderzoek der Materie
(FOM), the U.S.-Czechoslovak Science and Technology Joint Fund (no. 93039) and by the
Grant Agency of The Czech Republic (no. 202/96/0207).
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Figure captions

Figure 1: Schematic representation of the low-temperature magnetic structure of UNiGe
consisting from two domains. The arrows represent the moment components in the
b-c plane. The dots and crosses represent moment components parallel and
antiparallcl to the a-axis, respectively. For sake of clarity, only U atoms are shown.

Figure 2: Field dependence of the high-ficld magnetization of UNiGe measured at 4.2 K
along the threc principal axcs.



0

R\

3

:

b

2b

domain A

S :

0

b 2b
domain B






Report Number (14) LA‘HR"O\“\) -“40T |
CONF=470 14~

2ubl. Date (11) lng /O
Sponsor Code (18) DQC//M /4 ] X F
IC Category (19) _ (N C_—7/(\ y Dﬁélfﬂ




