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Executive Summary

Luff Exploration Company (LEC) focused on involvement in technologies being -
developed utilizing horizontal drilling concepts to enhance oil- well productivity starting in 1992.
Initial efforts were directed toward high-pressure lateral jetting techniques to be applied in
existing vertical wells. After involvement in several failed field attempts with jetting technologies,
empbhasis shifted to application of emerging technologies for drilling short-radius laterals in
existing wellbores and medium-radius technologies in new wells. These lateral drilling
technologies were applied in the Mississippi Ratcliffe and Ordovician Red River formations at
depths of 2590 to 2890 m (8500 to 9500 ft) in Richland Co., MT; Bowman Co., ND; and
Harding Co., SD.

Background

In an effort to improve well completions and ultimate oil recovery, LEC decided to
investigate application of various types of technologies for horizontal drilling. LEC concentrated
initially on technologies that would conceivably be economically feasible to apply in marginal oil
wells. This focus led initially to investigation of various lateral jetting technologies. The major
emphasis was ultimately concentrated on conventional technologies.

Initial efforts were directed toward technology described in United States Patent No.
5,183,111 “Extended Reach Penetrating Tool and Method of Forming a Radial Hole in a Well
Casing.” It was determined that the ownership of the technology was being disputed with lawsuits
therefore making involvement with field applications inadvisable. This tool is called the Excalibur
Tool by its inventor.

Attention shifted to a simplistic technology called Landers Horizontal Drill being
developed primarily for shallow well applications in the Illinois Basin Area. Two unsuccessful
field application tests were witnessed. It was concluded that this technology could not be
successful without significant design changes in the equipment being utilized. United States Patent
No. 5,413,184 “Method of and Apparatus for Horizontal Well Drilling” was issued for this
technology subsequent to LEC’s association with the inventor. It is not known if design changes
have been made that resulted in successful performance in field applications.

LEC then became involved in development of a type of jetting lance technology distinctly
different from the two types previously investigated. This effort began in September 1993. The
first attempt at field application of this technology was in the project area in Harding Co., SD and
was unsuccessful mechanically. Based upon problems encountered in the field test, design changes
were made. Several mechanically successful applications of this technology were later
accomplished in wells in other than the project areas (Colorado, Texas and Wyoming) to depths
exceeding 2440 m (8000 ft). Several lateral extensions up to 15 m (50 ft) were drilled and a few
successful attempts with lateral lengths up to 122 m (400 ft) were completed. Although
mechanical success was achieved with this technology, persistent mechanical problems were not
eliminated and costs incurred significantly exceeded expectations.

After determining that the more experimental lateral jetting technologies discussed above
were not viable options for the project area, a commercially available jetting technique was tried
in the Red River B zone in Bowman Co., ND. This technology was marketed by Penetrators, Inc.
Testing after its field application demonstrated that the tools did not perform in this case as
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represented.

LEC elected then to apply more conventional horizontal drilling technology in the project
areas. An attempt was made to use tools developed by Amoco’s Research and Development
group. Lack of success with the Amoco technology led to application of slim-tool mud motor re-
entry drilling. One successful attempt was made with a total lateral extension of 813 m (2667 ft).
A medium radius horizontal well was also drilled in a partially depleted Red River B zone
reservoir in Harding Co., SD. Lateral extension of 528 m (1733 ft) from the vertical section of
this well was completed prior to the horizontal drilling tools becoming stuck following Ioss of
circulation.

Jetting Lance Technologies

Excalibur Tool. The Excalibur tool is the downhole portion of the equipment necessary

for application of this lateral jetting technology. Tools and equipment utilized on surface and
downhole are as follows:

1) Conventional oil field servicing rig,

2) High pressure pumping unit with fluid filtration equipment capable of pumping
approximately 76 /min (20 gpm) up to 137,900 kPa (20,000 psi) discharge pressure,

3) High pressure hose,

4) High pressure swivel,

5) Power swivel to rotate tubing (conventional tubing power tongs can be used but are
less desirable),

6) Tubing work-string capable of withstanding internal working pressures up to 137,900 kPa
(20,000 psi),

7) Downhole Excalibur tool (see patent for description of tool components).

The Excalibur tool described in U.S. Patent No. 5,183,111 is designed for application in both
open-hole and cased-hole completions. It must be run on a tubing workstring capable of
withstanding internal working pressures up to 137,900 kPa (20,000 psi). All operations of the
tool require use of pressure and/or rotation of the workstring.

Preparation of a well for application of the technology first requires removal of production
equipment utilizing a conventional oil field servicing unit. The downhole tool is then run in the
well on a high-pressure workstring. The tool may be positioned to directionally orient penetration
of the well casing and rock formation. After the tool has been anchored at the desired depth in the
well, a hole is cut in the well casing. This is accomplished by engaging a built-in milling device
with pressure and turning the mill by rotating the workstring. A hole of approximately 2.5-cm
(1.0-inch) diameter is cut in the well casing.

Following cutting a hole in the casing, the tool is shifted to retract the milling device and
lower it below the hole it cut in the casing. This action places a jetting lance in position to exit the
well casing through the hole previously cut. The tubing or workstring is then rotated to extend a
small diameter tube (lance) with a jetting nozzle with a small orifice hole(s). Filtered fluid is
pumped simultaneously at a high pressure level to cut a hole in the formation as the lance is
extended. The lance is retracted by rotating the tubing the opposite direction. The tool can then be
repositioned to cut additional laterals.



The diameter of the hole cut in the formation probably varies depending upon rock type
but may be up to 5.1 cm (2 in.). The tool is designed to extend the lance up to 15 m (50 ft) from
the well casing leaving the well casing at a 90° angle. There is no steering capability or any means
available to record the actual path of the lance after it is retracted. A detailed description of the
tool is provided in the patent.

LEC did not use the Excalibur tool technology on any wells. As a result, there is no actual
cost information.

Landers Horizontal Drill. The tool and process described in U.S. Patent No. 5,413,184
encompass use of equipment as follows for its application:

1) Conventional oil field servicing rig,

2) High pressure pumping unit with filtration equipment and small diameter coiled tubing
spool. Pumping is conducted at 7.5 to 15 I/m (2 to 4 gpm) and pressures up to 41,370 kPa
(6000 psi) (design of unit was witnessed in field),

3) Well tubing workstring,

4) Specially designed guide elbow,

5) Miniature fluid driven motor with flexible output shaft,

6) Mills to cut through casing,

7) High pressure hose, and

8) Jet nozZles.

Detailed description of the various components of this lateral jet drilling system is provided in the
patent. '

These tools and process are the simplest design explored. The production tubing from the
well or 2 work string must be used. This tubing is not subjected to pressure or movement during
the operations of cutting through the well casing or formation.

Production equipment must be pulled from the well with an oil field servicing rig. The first
step in application of the tool is to then run a guide elbow on the bottom of the well tubing or
workstring. The guide elbow has a small diameter hole inside that changes direction 90° from
pointing upward into the well tubing to pointing horizontally normal to the well casing.

After the guide elbow is set at the desired well depth, a small diameter mill on a flexible
shaft connected to a miniature fluid driven motor is run down the tubing or workstring on small
diameter, 1.6 cm (%8 in.), stainless steel coiled tubing . As the coiled tubing is run in the well,
weights are installed above the motor to provide downward force to assist milling through the
well casing. Fluid is pumped down the coiled tubing to turn the motor and mill for cutting through
the casing. After cutting through the casing the coiled tubing is pulled from the well and the motor
and mill are removed.

The next step consists of running back in the well with the coiled tubing with a high
pressure flexible hose connected to the coiled tubing and a jetting nozzle on the end of the hose.
Fluid is then pumped at high pressure 34,470 to 41,370 kPa (5000 to 6000 psi) through the coiled
tubing, hose and jetting nozzle to cut formation rock. Typical pumping rate is 11 to 15 V/min (3 to
4 gpm). The coiled tubing is progressively spooled down the tubing or workstring as the hole is
cut in the formation and the hose and jet nozzle are extended into the horizontal lateral. The
length of the lateral cut into the rock formation is limited to slightly less than the length of the
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hose.

There is no steering capability with this technology. Likewise, there is no device or
technique incorporated with the tools to record the path of the lateral after it has been cut.

LEC did not apply these tools in any field tests. Two tests on shallow wells in Kentucky
were witnessed by LEC personnel. Both tests were failures. Subsequent testing in 2 machine shop
with the mill being applied to cut through casing utilizing a drill press was also unsuccessful.
Based upon these observations, it was concluded that this technology did not merit consideration
for testing in this joint DOE project. Since there was no field test, no cost information was
obtained.

Long Reach Tool. Starting in September, 1993, LEC supported development of a type of
jetting lance technology that incorporated some components of all types of jet drilling and
conventional horizontal drilling. Unlike the other jetting technologies explored, this procedure
does not deploy the jetting lance at an angle of 90° from the casing. The major components
necessary for its application are as follows:

1) Conventional well servicing rig,

2) Power swivel,

3) Surface pumping unit with fluid filtration equipment capable of pumping
approximately 76 I/min (20 gpm) at up to 137,900 kPa (20,000 psi) discharge pressure,

4) High pressure discharge hose,

5) High pressure power swivel isolation device,
6) Tubing workstring capable of withstanding internal working pressures up to 137,900 kPa
(20,000 psi),

7 In-line filter at bottom of tubing workstring,
8) Downhole tool assembly consisting of
a) Tool body (conventional well tubing),
b) On-off tool,
c) Fabricated whipstock,
d) Anchoring tool,
e) Lance (high pressure small diameter tubing), and
1) Mill with jetting nozzle.

There is no pictorial presentation of equipment utilized in this process because this technology
continues to be in a developmental state.

Production equipment must first be removed from the well with an oil field servicing unit.
The downhole tool assembly is then run in the well on the tubing or workstring. After the tools
are run in the hole, an anchoring device is set such that exit from the casing occurs approximately
9 cm (30 ft) above the depth where it is desired to penetrate horizontally. A jetting lance and
casing mill are then released from the tool body. The lance and mill are lowered within the tool
body until the mill contacts the casing off the face of a retrievable whipstock which is anchored in
place as a part of the tool body. A window is then cut in the casing with dimensions
approximately 5.1 cm (2 in.) wide and 76 cm (30 in.) long. This is accomplished by rotating the
tubing or workstring at surface with the jetting lance and mill below the work string. The mill is
cooled and cuttings are removed by circulating through the work string, jetting lance and mill
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while rotating to cut through the casing.

After the window is cut in the casing the pressure is increased to a level adequate to jet cut
through the rock formations. This typically requires surface pressures ranging from 68,950 to
137,900 kPa (10,000 to 20,000 psi). Jetting action and back pressure at the mill occurs as a result
of use of a jetting nozzle with an orifice size of 0.05 to 0.08 mm near the end of the mill. The
lance is extended to the planned length by lowering the tubing work string at surface as the hole is
jet-cut in the rock formation.

Based upon limited information obtained after jet-cutting of holes with these tools it is
thought that the radius of curvature of the jetting lance is approximately 9 m (30 ft). After a
penetration has been completed the lance is pulled back into and re-engaged with the tool body.
The anchor is then released and the tool is ready to be set again for another penetration or
removed from the well. Three casing windows are the maximum number that has been cut before
wearing out the mill.

The tool is constructed such that the length of the jetting lance and tool body are
determined by the desired length of penetration outside the well casing. This does not pose a
problem of any consequence since both the tool body and jetting lance are made up of sections of

conventional tubing used in oil and gas operations.

This tool has been directionally oriented on several occasions. There has been no attempt
thus far to incorporate steering capability or directional monitoring while jetting.

The prototype of this tool was first applied in a well in Harding Co., SD in the fall of
1993. Work at that time was unsuccessful but it served to provide the basis for necessary design
changes that subsequently led to success. The next attempt with this technology was on a
Niobrara Formation well in Moffat Co., CO. In this test, six windows were cut in the casing.
Laterals were cut from these windows with lengths ranging from 11 to 26 m (37 to 87 ft). Fluid
productivity increased substantially but unfortunately nearly all of the production was water.
Several other mechanically successful jobs have been completed with this technology on wells in
the Austin Chalk Formation in Texas. One lateral drilled from one of these wells extended in
excess of 122 m (400 ft).

In April 1996, LEC applied this technology in a 1160-m (3800-ft) Almond Formation oil
well in Sweetwater Co., WY. Numerous mechanical problems were experienced but success was
achieved in drilling two laterals, each 15 meters (50 feet) long, from 14.0-cm (5%2-in.) diameter
casing. Prior to being shut-in for this work the well was producing 0.2 m’ oil per day (1 bopd) and
284 m® gas per day (10 mcfd) prior to being shut-in. Following drilling of the two laterals it
produced 0.6 m® oil per day (4 bopd) and 425 m® gas per day (15 mcfd). Total cost was
approximately $134,000. Applications of this tool in other areas apparently had gross costs
approaching or in excess of $100,000 per well. If the problems typically encountered with the
tools and equipment used in this technology could be eliminated, costs per well could easily be
reduced to $60,000 or less.

An attempt was made in June 1995 to use this technology in this DOE project. Mechanical
problems experienced with the equipment and well conditions limiting applicability of the
equipment caused LEC to abort these work attempts.



Penetrator, Inc. Tool. The Penetrator Tool is marketed commercially and most of the
equipment unique to their application comes as a package in their service rates. The equipment
used is as follows:

1) Conventional oil field service unit,

2) High pressure pumping unit with filtration equipment. Its design provides for pumping 76
to 106 V/min (20 to 28 gpm) at up to 68,950 kPa (10,000 psi),

3) High pressure hose,

4) Tubing workstring capable of withstanding internal working pressure up to 68,950 kPa

(10,000 pst) and
5) Downbhole tool as depicted in figure 1.

The Penetrator tool was invented and patented by the same individual as the Excalibur
tool. It was invented first and is designed to penetrate up to 3 m (10 ft) horizontally away from
the well casing. Detailed discussion of this tool and its application is provided in the literature
(Peters and Hansen 1993).

This tool must be run on well tubing or workstring capable of withstanding internal
pressures up to 68,950 kPa (10,000 psi). It is then anchored in the well casing at the depth of the
desired horizontal lateral penetration. The tool may be set so the horizontal lateral is directionally
oriented.

The original tool design incorporates a punch to penetrate the casing. Filtered fluid is
pumped at high pressure to extend a punch from the tool to pierce the casing. An internal jetting
lance then passes through the hole in the casing and is extended into the rock formation up to 3 m
(10 ft) from the casing. The jetting lance extends into the rock formation by pressure imposed on
the tool. The lance departs the well casing horizontally at 90° from the casing. There is no means
of measuring the actual course of the lateral penetration. After the lance and punch are retracted,
the tool can then be repositioned for additional penetrations.

A later tool design replaced the punch with a rotating mill to penetrate the casing. Like the
original tool design, penetrating the casing and extending the lance are controlled by the surface
operating pressure level.

The Penetrator tool technology was applied at the No.1-32 Swanson well in the study area
(e/2sw, Sec.32, T.23N., R.6E., Harding Co., SD) in April 1995. Procedures were conducted to
make nine casing penetrations and jet-cut a 3-m (10-ft) lateral through each penetration. Total job
cost for all services required was $62,426. Fees paid to Penetrators, Inc. for their services were
$25,159.

After work was completed the No. 1-32 Swanson well was returned to production.
Pumping for seven months after this work proved that no increase in production was achieved.
Isolation testing in December 1995 showed that the Penetrator tool did not cut through the casing
in some instances. In some cases it did cut through the casing but likely did not cut the laterals
into the producing formation as contemplated.

After evaluating the downhole results of the Penetrator tool, additional work was done on
the No. 1-32 Swanson. The same zones where the Penetrator tool was applied were
conventionally re-perforated and acidized. A production increase was realized as demonstrated on
figure 2. Based on these results, it was concluded that the Penetrator tool and technology cannot
be beneficially applied in the Red River B zone dolomite at a depth of 2896 m (9500 ft).



Lateral Drilling Systems

Amoco Ultra-Short Radius Technology. Amoco’s Research and Development group

designed a set of downhole tools that constitutes a system for drilling short-radius laterals with a
radius of 30 m (100 ft) and ultra-short radius laterals with a radius of less than 15 m 50 ft) from
existing vertical wellbores (Warren et al 1993). Amoco tested this system with actual drilling
operations at its field testing facility in Catoosa, Oklahoma. It then licenced the technology to
several drilling service companies and a few oil and gas operators.

While Amoco refers to the system as rotary steerable, a more accurate description is
rotary point-able, as the tool cannot be steered while drilling. The key components of Amoco’s
bottom-hole assembly are shown in figures 3 and 4 and described as follows:

1) A muleshoe to seat gyro survey wireline tools,

2) A knuckle joint for transmitting drillstring rotation and loads to the bit while maintaining
flexibility, and

3) An eccentric, non-rotating sleeve assembly, designed in order to keep one side of the

assembly constantly on the low side of the hole, while allowing the drillstring rotation to
pass though the inside of the sleeve (via a mandrel) and rotate the drill bit (unique
components of the eccentric sleeve are a latch assembly and a port, which will be
discussed below),

4) A sub between the eccentric sleeve and the bit, which can be sized for different drilling
radiuses, and

5) A specially designed bi-center, anti-whirl, PDC drill bit.

Amoco’s Research and Development group designed the tools to address two key
concepts: 1) the bit needs to drill exactly in the direction it is pointed and 2) the eccentricity at the
upper end of the eccentric sleeve mandrel has to be held constant and pointed toward the outside
of the curve.

If the tools can accomplish these requirements in actual downhole drilling conditions, then
the geometry presented in figure 5 will be valid, and the assembly will self-correct to drill a curved
section of hole exactly to the planned radius.

Amoco also designed the eccentric sleeve assembly to provide an indication at the surface
of the downhole orientation of the sleeve, using a pressure signal. When the drillstring is rotated
clockwise, the sleeve does not rotate, but the mandrel inside the sleeve transmits rotation to the
drill bit. When the drillstring is slowly rotated counterclockwise, the mandrel latches in a latch
pocket, and the eccentric sleeve rotates, changing the orientation of the bottom hole assembly.
When the rotation of the sleeve occurs, approximately half of the circulating drilling fluid is
diverted through a port, which corresponds to a reduction in pump pressure at the surface. When
this pressure signal is observed, the drill string can be slowly rotated at the surface (using a
compass around the drillstring) the desired number of degrees to adjust the orientation of the
eccentric sleeve. When the drillstring is rotated clockwise, the latch disengages, and normal
drilling can be accomplished while the orientation of the sleeve remains constant.

Operators usually rent drillpipe workstrings. Drillpipe previously used with the Amoco
system for the curved and lateral sections of the hole include:



1) 7.3-cm (27-in.) P110 and P105 grade pipe with Hydril PH-6 connections (for short radius
applications),

2) American Open Hole drillpipe (for short radius applications),

3) Composite pipe bonded to Hydril PH-6 connections for ultra-short radius applications
down to 9-m (30-ft) radius sections (When this pipe is used, a casing section must be
removed for the casing exit, since the composite pipe cannot rotate past a whipstock and
through a casing window without damage to the pipe. The durability of the pipe in
downhole oil field conditions is still being tested),

4) 5.2-cm (2.063-in.) Q-125 pipe with IWSV connections (This pipe is typically not used in
the petroleum industry. Amoco borrowed the pipe specifications from companies that drill
bore holes beneath buildings and rivers for fiber-optic cable and telephone lines. Its ability
to withstand downhole oilfield conditions is still questionable.)

Drillpipe for the vertical section of the hole can be 7.3 cm (273 in.) with Hydril PH-6
connections or American Open Hole. It is important to use pipe in the vertical section that has a
shoulder connection (unlike EUE tubing) to prevent orientation problems caused by connection
make-up shifts.

The Amoco system relies on the azimuthal orientation of the drillstring at the surface
reflecting the azimuthal orientation of the bottom-hole assembly. When the bottom-hole assembly
is run, the orientation of the eccentric sleeve is measured compared with the muleshoe (where the
orientation gyro seats) and relative orientation of the drill string is measured and marked joint-by-
joint as the bottom hole assembly is run into the hole. A protractor plate is placed on the rig floor
around the drill pipe string so that azimuthal orientation of the measured marks on the drill pipe
string can be established. This approach makes the Amoco system susceptible to the following
problems:

1) Shifting or creeping of connection make-up in the drillstring. For this reason, EUE tubing
should not be used in the vertical portion of the drillstring and the makeup of shouldered
connections (such as Hydril PH-6) needs to be carefully monitored.

2) Drillpipe wrap from energy stored in the drillstring during drilling rotation. This can be
addressed to a certain extent, but it is still problematic.

3) Errors in measuring and marking the relative orientation of the eccentric sleeve, the mule
shoe and the drill pipe string joints.

The Amoco system can be used with completion rigs, rather than drilling rigs, working
during daylight hours. For the system to work properly downhole, the following equipment is
required (or strongly recommended) at the surface:

1) A power swivel (rather than a rotary table) capable of providing a specified level of torque
and rotations per minute (rpm) and with hydraulic controls (which provide sensitivity in
slow rotation for orienting the bottom hole assembly).

2) A mud pump capable of suppling 341 to 492 /min (90 to 130 gpm) at the likely pressure
levels (which vary by depth). A needle-type pressure gauge on the end of a high pressure
extension hose are useful for observing the pressure signal from the rig floor during
counter-clockwise rotation.



3) Solids control equipment. Amoco claims that solids control with its system is not as
critical as when steered mud motors are used. However, solids control (beyond a shale
shaker) may still be prudent, using either using a centrifuge or using additional holding
tank capacity, augmented with chemical flocculation to remove solids in colloidal
suspension. Ditch magnets are required during the removal of a casing section (or milling
of a casing window) to remove metal shavings.

4) A protractor plate on the rig floor, around the drill pipe string, for measuring azimuthal
orientation.

As previously noted, the Amoco system can be used with completion rigs, typically during
daylight hours. Well preparation includes pulling the existing tubing and artificial lift equipment
and cleaning the inside of the casing using a bit and casing scraper. Casing departure can be
accomplished by either removing a section of casing and setting a cement plug, or by setting a
whipstock inside the casing and milling a window out the side of the casing. If a whipstock is
used, the face of the whipstock needs to be oriented by gyro to the desired direction for the
horizontal lateral. Figures 6 and 7 are schematics for the two approaches for casing departure.

After an effective casing exit has been created, a special pilot hole is drilled, using a bit
similar to the bi-center, anti-whirl, PDC bit. At this point, the Amoco-designed bottom-hole
assembly to drill the curved portion of the hole (as described above) is made up and run in the
hole on a (typically rented) drillstring. Selectively sized drill collars may or may not be added for
weight, and to minimize effects from wrapping of the drill string.

The drilling fluid is typically fresh water, treated water, or brine (depending on weather
and sensitivity of the target producing zone), with occasional gel sweeps to clean the drilled hole.

If a whipstock is used, another gyro shot is taken when the assembly is down at the
whipstock and casing window, in order to verify the orientation of the whipstock face. The
bottom-hole assembly is then lowered into the pilot hole, and the curved section of the hole is
drilled. The orientation of the eccentric sleeve is checked every 0.3 m (1ft) for the first 1.5 m (5
ft) of curved section using counter-clockwise rotation and the port pressure signal at the surface,
as described above. The relative orientation of the drillstring at surface and the eccentric sleeve
downhole is measured and marked on the drillstring each time the bottom hole assembly is run in
the hole.

After approximately half to two-thirds of the curved section has been drilled, the bottom-
hole assembly is pulled out of the hole and a multi-shot directional survey is run using special
tools run on fiberglass sucker rods as shown in figure 8.

The bottom-hole assembly is re-run to bottom and remaining portion of the curved-hole
section is drilled with multi-shot surveys (orientation and inclination) and inclination-only surveys
run as necessary. The bottom-hole assembly is adjusted as necessary after multi-shot surveys in
order to land the curved section of hole in the target zone.

After the curved section has been drilled, the bottom hole assembly is modified and the
horizontal lateral section of the hole is drilled and surveyed with multi-shot equipment.

After the drilling operations are completed, tubing and artificial lift equipment is re-run
and the well is returned to production. Short-term fluid recovery can also be accomplished by
swabbing after the tubing is run and before.the artificial lift equipment (sucker rods and downhole
pump) is run.

Literature and sales brochures from vendors (with licences from Amoco) suggest total job
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costs ranging from $75,000 to $150,000 depending on depth and desired lateral departure.

Luff Exploration Company attempted to use the Amoco short-radius rotary system to drill
a horizontal lateral from an existing wellbore into the Ratcliffe formation. The well had been
completed conventionally in the Ratcliffe.

Well: M-17 Trudell

Location: swsw, Sec.17, T.26N., R.58E.
Field: North Sioux Pass

Casing size: 14.0 cm (5% 1n.)

Top of Ratcliffe: 2646 m (8680 ft)

Ratcliffe perforations: 2652 - 2670 m (8701- 8759 fi)
Planned kick-off point: 2646 m (8680 ft) in anhydrite
Planned radius: 24 m (80 ft)

Planned departure: 152 to 183 m (500 to 600 ft)
Planned azimuth: 45 to 60° (northeast)

The planned azimuth was chosen so that the horizontal drilling trajectory would be
perpendicular to the suspected orientation of natural fractures (subsequent oriented logs and cores
taken from a nearby well confirmed the natural fracture orientation to be southwest-northeast).
The trajectory was also planned to stay within the regulatory set-back distances for the M-17
Trudell spacing unit shown in figure 9.

Figure 10 presents a porosity log from the well showing the base of the last salt, the
anhydrite section above the Ratcliffe, the top of the Ratcliffe, and the various porosity benches
within the Ratcliffe interval.

Figure 11 presents a conceptual cross-sectional view of the existing conventional
completion and the planned horizontal completion. The kick-off point was chosen to allow the 24-
m (80-ft) radius to encounter each of porosity benches during the curve section of the hole and
again as the planned trajectory climbed back to uppermost porosity bench at the end of the
horizontal lateral (depending on the horizontal departure distance achieved).

By drilling perpendicular to the orientation of natural fractures in the Ratcliffe, and by
designing the curve of the lateral to encounter each porosity bench once and possibly twice, it was
hoped that the horizontal well trajectory would provide maximum exposure to the fracture-
enhanced portions of the Ratcliffe interval.

The directional drilling services were provided by Wilson Downhole, one of several
service companies licenced to use the Amoco technology. A specialized drilling/well-servicing rig
with personnel experienced in horizontal drilling from existing wellbores was selected. Every care
was taken to follow Amoco’s recommendations for the following:

1)  Power swivel,

2) Drilling fluid pump and pressure gauge,

3) Drilling fluid circulation / clarification system,
4) Drilling fluid,

5) Drillpipe for curved and horizontal section, and
6) Drillpipe for vertical section.
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Additionally, Wilson Downhole reviewed drilling plan for the M-17 Trudell with Amoco’s
experts at the Catoosa Research facility in Oklahoma. Although the M-17 Trudell attempt was
deeper than most of the previous applications of the Amoco system, the Amoco experts and the
Houston representatives of Wilson Downhole were confident that the system would perform
successfully. '

The well work was conducted in January 1996 and progress was impeded by unseasonably
cold weather. The tubing, rods, and downhole pump were pulled and the inside of the casing was
conditioned with a bit and casing scraper. A whipstock was successfully set near the planned kick-
off point in the anhydrite section (below the base of the last salt and above the Ratcliffe formation.
Although difficulties were experienced orienting the whipstock, the azimuth of the whipstock face
later measured 58° which was within the desired range. A window was then successfully milled
through the side of the casing.

After the casing window was dressed off, Wilson Downhole directed the drilling of a pilot
hole to a measured depth of 2640 m (8660 ft), or 4 m (14 ft) from the bottom of the casing
window. The hole was circulated for 1.5 hours, which included a polymer sweep to remove
drilling fines. Wilson Downhole then ran into the hole with Amoco’s specialized bit and bottom-
hole assembly (BHA) for drilling the curved section of the planned hole. The Amoco downhole
tools passed though the casing window and through the pilot hole without incident. A single-shot
gyro run was made to orient the tool, and then approximately 0.3 m (1 ft) was drilled to a
measured depth of 2640 m (8661 ft). The drillstring was picked up to check orientation when the
BHA became stuck. The Amoco tools in the BHA supposedly would withstand forces in excess
of 13,608 kg (30,000 Ib) so a force of 4536 kg (10,000 Ib) over the drillstring weight was pulled
three times in an attempt to free the BHA. On the third attempt, the BHA parted and the full
string.was pulled out of the hole. The Amoco BHA parted near the knuckle joint, in an area with
reduced cross-sectional area and likely stress concentrations.

Attempts to fish the bit and portions of the BHA were unsuccessful and field operations
were suspended. During the fishing operations, a mill run reached a depth equal to the depth of
2460 m (8661 ft). This depth and the torquing experienced with the mill suggest that the mill was
along the side of the bit and BHA. However, continued drilling operations past (but very near) the
bit and BHA were considered risky. Luff Exploration Company considers investigations by
Wilson Downhole into the failure of the Amoco tool to be inconclusive.

Slim-tool Mudmotor Short-radius Technology. After failure with tools developed by
Amoco in the M-17 Trudell well, it was decided to make an attempt using conventional re-entry
mudmotor short-radius technology. As with the Amoco tools, short radius was required because
of the short distance between the base of the Charles Formation salt zone and the upper porosity
bench of the Ratcliffe.

Two wells were chosen for application of re-entry slim-tool mudmotor short-radius
technology. The No. 2-16 State well (nwse of Sec. 16, T.26N., R.58E.) was chosen as one
candidate and the M-17 Trudell well, discussed previously, was the other candidate. Baker
Hughes-Inteq was chosen as the directional drilling company. The horizontal lateral on the No. 2-
16 State well was successfully completed with a lateral section length of 812 m (2667 ft) and 604
m (1982 ft) in the Ratcliffe interval. The M-17 Trudell horizontal attempt was abandoned after
attempts to build the angle to depart from the casing were unsuccesful.

The tools used for re-entry work on the two Ratcliffe wells were as follows:
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1) Workover rig rated at 113,398 kg (250,000 Ib) capacity equipped with normal tools plus
generator, pumps, mud tanks, sub-structure, rotary table with winterization components
for conduction 24 hour operations,

2) Drillstring consisting of 7.3 cm (27%-in.) drillpipe and 7.3 cm (27%-in.) heavy weight
drillpipe,

3) Baker Model “D” packer,

4) Packer anchored casing whipstock system,

5) Casing window milling systems,

5) Articulated and fixed-angle build 7.9 cm (3%-in.) motors,

6) Short radius measurements while drilling (MWD) system, and

7 Wireline surface-readout gyro equipment.

No. 2-16 State. The No. 2-16 State well was originally completed in the Ratcliffe in 1982
after depletion of the deeper Red River. The original Ratcliffe completion was by perforation and
ac1d121ng with 38,000 hters (10,000 gal). Production from the Ratcliffe completion had declined
to 1.9m" oil and 1.6 m’ water per day (12 bopd and 10 bwpd) by 1994 and was shutin after a
cumulative of 17,200 m’ (108,193 bbl) oil. A pressure-transient test was performed by injecting
water for 10 days prior to drilling the re-entry lateral to quantify bottomhole pressure and
transmissibility. The bottomhole pressure was measured to be 21,800 kPa (3160 psi) which is
6200 kPa (9 (2 00 pst) less than the original pressure. Permeability to water was calculated to be
5.9E-4 um” (0.6 md) for the 21 ft of reservoir. An oriented core from a well one mile west
indicated natural fractures orienting northwest-southeast in the Ratcliffe. It was concluded that
the presence of natural fractures and high bottomhole pressure made the No. 2-16 State well a
good candidate for a lateral drain hole.

Work on the No. 2-16 State well commenced in November 1996. After cleaning the
wellbore, a Baker Model “D” packer was set at a depth of 2606 m (8879 ft). The casing
whipstock was then oriented and set on the packer. Several orientation measurements were taken
prior to setting the whipstock. The casing window was then cut and a 1-m (3-ft) pilot hole was
drilled outside of the casing. Time required for these operations was 3.5 days.

A fixed-angle build (3.8°) motor was first attempted for starting the curve build section of
the lateral. The bit and motor assembly could not be pushed through the BOP stack and the 14.0-
cm (5%:-in.) casing so those tools were removed from the drillstring. An articulated motor system
was then run to start drilling the curved section. A total of 14 m (47 ft) was drilled with this
assembly but it was determined that it was not building angle as required so it was pulled from the
well. The hole drilled was plugged back into the casing with cement so another attempt could be
made to drill the curved section.

After drilling out cement for the second attempt, the curve section was successfully drilled
with a fixed-angle build assembly with heavy-weight drillpipe. Solids introduced into the drilling
fluid system during the cement clean-out operation contributed to causing an MWD and motor
failure while building the curve. However, after the solids were removed from the system,
completion of drilling the curved section and landing in the target interval was completed. The
total time to successfully finish drilling the curved section was 12 days.

Of the 12 days spent drilling the curved section, 9.5 days were spent attempting to drill the
section, plugging back, waiting on cement to harden, drilling out cement and trying to get tools to
operate properly. The successful attempt was slower than it should have been due to downhole
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equipment failures and tripping for bits. Six equipment failures and four bit replacements resulted
in trip time in excess of 50 percent of the actual time spent drilling the curve portion of the hole.

Following drilling of the curve section, the horizontal section was successfully drilled
using a 1.2° fixed-build motor assembly. Conventional MWD equipment was used to monitor
inclination and azimuth while drilling. Total time required to drill the horizontal section was 11
days. Significantly more time was required for drilling this section than anticipated due to trips for
bits and equipment failures. Six bits required to drill this section and two equipment failures
resulted in trip time of approximately 30 percent of the actual time spent drilling the horizontal
section .

Total costs estimated to drill the horizontal lateral from the No. 2-16 State wellbore were
$360,000. The actual costs to successfully drill the lateral ($616,800) exceeded the original cost
estimate by 71 percent. Numerous factors contributed to the cost over-run. The most significant
components of the excessive costs were as follows

1) Extra time required due to downhole equipment and bit failures,

2) Multiple whipstock and tool orientation surveys, and

3) Unsuccessful first attempt to drill curve section and associated plugging back

operations.

The time required for all of these events led to excessive costs for numerous rental items
as well as for personnel whose time could not be effectively used while waiting for problems to be
corrected. Additionally, costs were increased as a result of severe weather conditions experienced
while conducting operations during November and December 1996. Table 1 summarizes costs
incurred on the No. 2-16 State well.

Although costs exceeded original estimates and considerably more time was required than
planned, a re-entry horizontal lateral was successfully drilled from 14.0 cm (5% in.) casing in the
No. 2-16 State well. As discussed above, numerous problems were experienced in the process of
completing this work. The total length of hole drilled outside the casing was 812 m (2667 ft) with
604 m (1982 ft) being in the Ratcliffe porous interval. Figure 12 illustrates time to drill the lateral
and drilling bit history.

After drilling operations were completed, the well was put on pump. The well was
produced for 108 days and averaged about 0.5 m’ oil and 16.7 m* water per day (3 bopd and 105
bwpd). Although the well was producing significantly more fluid than from the conventional
vertical completion, it was an economic failure.

M-17 Trudell. The attempt to drill a horizontal lateral from the M-17 Trudell well was
unsuccessful. A whipstock had previously been set and a casing window had been cut when use of
the tools developed by Amoco was attempted. The hole drilled along side the casing with the
Amoco tool was plugged back with cement. After drilling out cement to outside of the casing
window, the same procedure that was successful in the No. 2-16 State well was attempted. A
fixed-angle build motor was used to initiate the curve section, but the bit appeared to follow the
hole previously drilled during the attempt with the Amoco tool. As a result of this problem, work
on the M-17 Trudell well was terminated. Costs incurred on the M-17 Trudell well, before the
attempt to drill a horizontal lateral was terminated, amounted to a total of $135,090.
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New Well Medium-Radius Technology. There has recently been a significant
exploitation effort by application of horizontal drilling from new wells in the Red River B zone
within and near to the study area of this project. Typical wells are drilled with lateral extensions
up to 1524 m (5000 ft). Operators frequently drill vertically through the Red River, evaluate
prospective zones, plug back and then drill the curve section. Casing is run and cemented in the
vertical hole and through the curve section such that it is landed with the bottom of the casing
being nearly horizontal, immediately above or barely into the top of the Red River B zone. The
horizontal section is then drilled and left open for production or injection operations. Drilling a
horizontal well in the study area in the Red River B zone averages approximately 30 days.

Two horizontal wells in the study area were included in this project, the M-20H Stearns
well drilled by Luff Exploration Company (swsw, Sec. 20, T.22N., R 4E., Harding Co., SD) and
the 1-26H Greni (w/2 Sec. 26, T.129N., R.103W., Bowman Co., ND) drilled by UMC as
operator with Luff Exploration Company as a joint interest owner.

Conventional drilling rigs with all typical ancillary equipment were used for these drilling
operations. Rigs capable of drilling to a vertical depth of 4267 m (14,000 ft) were required since
the depth of the Red River B zone was nearly 2743 m (9000 ft) from surface and the lateral
extension could be drilled up to a length of 1524 m (5000 f).

After the vertical portion of the holes were drilled with conventional rotary drilling
equipment, the curve sections were drilled using conventional downhole motor/steering/MWD
systems. Likewise, following setting casing, the horizontal sections were drilled with downhole
motor/steering/MWD systems. A 11.4-cm (4Y2-in.) drillstring was used for drilling the horizontal
section down through 17.8-cm (7-in.) casing.

Horizontal wells in the study area typically have a 31.1-cm (12V-in.) surface hole drilled
to about 610 m (2000 ft). The surface hole is drilled using fresh water to protect shallow aquifers.
Next, 24.4-cm (9% -in.) casing is run and cemented up to ground surface. The vertical portion of
the hole is then drilled with 22.2-cm (8%-in.) bits to either the kick-off point for the curve section
or through the Red River.

The 1-26H Greni well was drilled vertically to a kick-off depth of 2594 m (8510 ft)
without drilling through and evaluating the Red River B zone before drilling horizontally.
Conversely, the M-20H Stearns well was drilled through the Red River and evaluated by logs and
drillstem tests before drilling the curve and horizontal section. The other significant difference in
procedures used in drilling the M-20H Stearns and 1-26H Greni wells was the drilling fluid
systems. An oil-based, reverse-emulsion system was used on the M-20H Stearns and a saturated
saltwater gel-chemical system was used on the 1-26H Greni. The oil-based system is typically
more expensive. It has advantages over the saturated-salt system as it provides better lubricity and
it typically results in gauge hole through salt sections. Gauge hole through the salt sections is
generally accepted by industry to be beneficial in reducing risk or subsequent dynamic movement
that can displace or collapse the well casing.

M-20H Stearns. The M-20H Stearns was drilled between two existing Red River B zone
completions to evaluate both oil productivity and water injectivity with the aim of using the
technology for waterflooding the partially depleted field (a porosity log of the Red River B zone is
shown in figure 13). The Red River B and D zones were both drill stem tested prior to drilling to
total vertical depth in the M-20H Stearns well. After drilling the vertical hole, open-hole logs
were then run to aid with evaluation of both intervals.
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Following evaluation of the Red River Formation in the M-20H Stearns well, a cement
plug was set in the hole from bottom from 2448 to 2755 m (8033 to 9044 ft. After allowing time
for the cement to harden, the cement plug was drilled out down to a depth of 2536 m (8321 ft). A
down-hole assembly designed to drill off the cement plug in a pre-determined and controlled
direction was then run in the hole. Initiation of the curve was achieved by carefully time drilling
off of the cement plug. The curve section was then drilled with a radius of approximately 128 m
(420 ft) to a total drilled depth of 3066 m (10,059 ft) and true vertical depth of 2664 m (8743 ft).
The end of the curve section was immediately on top of the Red River B zone at an angle of 89°
from vertical. Downhole motors with 1.5 to 3.0° angle-build assemblies, using mud-pulse MWD
systems were used to drill the curve portion of the hole.

After drilling the curve section was completed, 17.8-cm (7-in.) casing was run and
cemented in place from surface to the end of the curve section. The horizontal section was then
drilled with a 15.6-cm (6%&-in.) bit using down-hole motors with 1.3° angle-build assemblies and
MWD equipment. Unfortunately, circulation was lost after drilling horizontally 314 m (1029 ft)
into the Red River B zone and as a result, the directional drilling tools and some of the drillstring
became stuck in the hole. The main cause of loss of circulation was low bottomhole pressure of
7600 kPa (1100 psi) in the partially depleted Red River B zone.

A total of 30 days had been spent drilling the M-20H Stearns well when the directional
drilling assembly became stuck in the hole. An additional 13 days were spent attempting to fish
the stuck tools from the well. The only significant problem experienced prior to sticking tools in
the horizontal section was initiation and drilling of the curve section. Initiating and drilling the
curve section required 13 days time whereas without problems it should have taken approximately
3 days. .
Estimated costs to drill and equip the M-20H Stearns well as an injection well were
$914,000. Actual costs incurred up to the point in time when the directional drilling tools became
stuck in the hole were approximately $810,000. Total costs incurred after attempting to fish stuck
tools from the well were $1,434,000 (includes payment of $136,569 for tools stuck in well) . The
cost over-run was attributable mainly to fishing operations; however, other factors such as severe
winter weather conditions and relatively inexperienced drilling rig crews also contributed to over-
expenditures.

Luff Exploration Company successfully used conventional steered motor horizontal
technology to drill the M-20H Stearns well up to the point where directional drilling tools were
stuck in the hole. The low bottom-hole pressure conditions were a known risk prior to drilling the
well. Although the horizontal section of the wellbore was concluded at a shorter distance
than planned, the well was pump tested as a producing oil well for 42 days followed by a 30-day
water-injectivity test. The well produced at an average rate of 11.1 m’ oil and 11.3 m® water per
day (70 bopd and 71 bwpd) during the last 10 days. The average production from the two offset
wells was 3.0 m* oil and 4.0 m® water per day (19 bopd and 25 bwpd) per well during that time.
This indicates an improvement of productivity by a factor of 3.1 with a relatively short lateral with
junk in the hole. Immediately after the short production test, a water injection test was performed.
Water was injected at 800 bwpd for 9 days then reduced to 550 bwypd for the remainder of a 30-

day test. The final pressure at reservoir depth of 2670 m (8760 ft) was 27,920 kPa (4050 psi)..

No. 1-26H Greni. The No. 1-26 Greni was drilled as an offset to existing production in the
Red River B zone in State Line Field, Bowman Co., ND. The well is located on the west flank of
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a relatively large Red River structure. The existing well was producing water-free oil and with
indications of a large reservoir which could not be efficiently drained with the existing vertical
well. The No. 1-26H Greni well is the fourth well on a small Red River feature that has produced
over 143,090 m’ (900,000 bbl) of oil from B and D zones of the Red River since 1973.

The 1-26H Greni well was drilled to a vertical depth of 2594 m (8510 ft) at which point
the curve section was initiated. A medium-radius curve section with a 150-m (493-ft) radius was
drilled in a time period of 3 days. Procedures and equipment used were identical to those used on
the M-20H Stearns well. Total length of the lateral drilled from the vertical wellbore was 1129 m
(3705 ft) and the total drilled depth was 3723 m (12,215 ft). Drilling operations for the 1-26H
Greni well took a total of 34 days. As operator of the 1-26H Greni well, UMC estimated gross
costs to drill and equip it as a producing well to be $936,861. Actual gross costs incurred were
$1,172,493. The 1-26H Greni was drilled and completed as a horizontal well as planned. The
horizontal section of the well was successfully drilled with a lateral of 902 m (2959 ft) in the Red
River B zone.

The well encountered the Red River B at a subsea datum which was 20 m (67 ft) low to
the most updip well. The well was produced from the open-hole lateral section in the Red River B
zone ﬁ'om October 1996 through April 1997. Production from the well was about 1.6 m> oil and
54.2 m® water per day (10 bopd and 341 bwpd) after 60 days. At that point it was decided to
produce from the far portion of the lateral by isolating the near portion Wlth inflatable packers and
tubing. Production afer placement of the isolation equipment was 0.6 m’ oil and 24.2 m’ water
per day (4 bopd and 152 bwpd). The drilling of the No. 1-26H Greni appears to have resulted in a
mechanical success but a failure with regard to reservoir development. The low structural position
relative to offset production and poor oilcut indicate completion of the lateral below an oil-water
contact.

Conclusions

In theory, all of the horizontal drilling techniques explored in this project have merit for
application fitting specific criteria. From a realistic point of view, the only relatively trouble-free,
adequately-proven technology employed was the medium-radius steered motor/MWD
technology. The slim-tool steered motor/MWD re-entry technology has been used extensively but
appears to still be significantly in developmental stages. This technology will probably always be
more troublesome than the technology used to drill new wells because the smaller diameter
required for the tools contributes to both design and operational complexities.

Although limited mechanical success has been achieved with some of the lateral jetting
technologies and the Amoco tools, their predictability and reliability is unproven. Additionally,
they appear to be limited to shallow depths and certain rock types. The Amoco technology
probably has the most potential to be successfully developed for routinely reliable, field
applications. A comparison of the various horizontal drilling technologies investigated is
presented in Table 2.
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Table 1
Wells Cost of Short-Radius Horizontal

Description Total
Location, Roads & Damages $7,800
Directional Drilling Services $ 163,700
Completion & Servicing Unit $ 167,500
Log, Perforate & Wireline $3,700
Water Source & Hauling $4,800
Bits, Coreheads & Reamers $ 41,500
Cement & Cementing Services $ 3,900
Drilling Fluids and Chemical $ 6,200
Equipment Rental $ 91,800
Trucking $ 14,800
Company Labor $700
Contract Labor $ 39,200
Company Supervision $ 1,300
Contract Supervision $ 31,300
Administrative Overhead $ 3,200
Other Costs $ 35,400
Total Intangible Costs $ 616,800
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Table 2

Summary of Drilling Technologies for Lateral Drain Holes

Hydraulic Jetting Amoco Re-entry Re-entry Steered- New Well Steered-Motor
Motor Short Radius Medium Radius
Lateral Reach 3m (10 ) 229 m (750 ft) 762 m (2500 ft) 1524 m (5000 ft)

Radius

Casing Departure

Casing Limitation

Orientation and
Telemetry

Drillpipe and BHA
Equipment

Surface Equipment

Maturity of
Technology

Typical Cost

Vendors

less than .3 m (1 ft)

Milled hole

11.4cm (4% in.)
possible

14.0 cm (5% in.)
recommended

None

No rotation
High-pressure tubing
BHA is proprietary

Conventional well
service unit with
special high-
pressure pumps

Delicate BHA,
Successful at depths
less than 1524 m
(5000 ft), No surface
indication of
penetration

10 holes
$60,000 at 2743 m
(S000 ft)

Limited

9-27m (30-90 ft)

15 to 30-m (50 to 100-ft)
casing section with
cement plug, also side-
cut window with
whipstock

11.4cm (4% in.)
possible

140 cm (§%in.)
recommended

Surface orientation
Post-drilling telemetry

Carbon fiber or steel for
curve section
BHA is proprietary

Conventional well service
unit with power swivel
and fluid circulating
equipment

Successful at depths
less than 1524 m
(5000 ft)

305-m (1000-ft) lateral
$200,000 at 2743 m
(9000 ft)

Small number of
licensees

24- 46 m (80 - 150 ft)

15 to 30-m (50 to 100-
ft) casing section with
cement plug, also side-
cut window with
whipstock

11.4cm (4%in.)
possible
14.0cm (5%in.)
recommended

Downhole orientation
Electric wireline or mud-
pulse MWD telemetry

Proprietary
motor/steering/ MWD
BHA

Special 24-hr operation
well service unit with
rotating and fluid
circulating equipment

Rapidly improving in bit
and MWD systems

762-m (2500-ft) lateral
$450,000 at 2743 m
(9000 ft)

Several, well-
established

107 - 152 m (350 - 500 ft)

Drill out from bottom of
long string

17.8 cm (7 in.)

Downhole orientation
Mud-pulse MWD
telemetry

Proprietary motor/steering/
MWD BHA

Conventional drilling rig

Very mature, large casing
diameter provide better
options for bits, MWD and
BHA

1372-m (4500-ft) lateral
$1,200,000 at 2743 m
(9000 ft)

Several, well-established
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Figure 5: Geometry of Amoco-system for drilling curve of horizontal departure.
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Figure 8: Tools and method for obtaining a direction survey in a hole drilled with the Amoco-system.
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Figure 12: Drill-ime curve for State 2-16 Ratcliffe re-entry with drill bit history.
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