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I. Introduction

I t 1s, of course, not possible in four lectures to present a complete

survey of the many aspects of the interaction of energetic hadrons with nuclei.

I have therefore selected a number of topics which suffice to i l lustrate the

wide range of phenomena of interest, that at the same time involve issues of

central importance that can be addressed using broadly applicable theoretical

methods. The f i r s t lecture wi l l consider the elastic and inelastic scattering

of intermediate energy (J 1 Gey) protons by nuclei. The discussion wi l l focus

on the determination of the proton-nucleus optical potential in terms of the

elementary nucleon-nucleon scattering amplitudes and the properties of the

target and residual nucleus. The result w i l l be a series of terms for the

optical potential of which we wi l l evaluate the f i r s t two il lustrated in Fig.

(1.1) for the case of elastic scattering. In Fig. ( l . la) the nucleon-nucleon

interaction, indicated by a broken l ine, acts once, the target nucleus remaining

in i ts ground state. In Fig. (1.1b) the target nucleus is excited by the

f i r s t interaction returning to i ts ground state as a result of the second inter-

action. I f 'nelastic scattering to a particular final state is under consider-

ation, diagrams in which the target nucleus can also return to that state in
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the f inal step of Fig. (T.la) and Ffg. (Lib) should be included. Hence in

inelastic scattering there are four diagrams according to whether the target

returns to the ground or excited state. The optical potential these represent

are suitably iterated by the Schroedinger equation to produce the elastic and

inelastic amplitudes.

The approximation used to evaluate the potential corresponding to Fig.

(1.1b) is referred to as the closure approximation. I t assumes f i r s t that the

intermediate excited target states which contribute substantially have energies

which are small compared to the incident energy, and second that among these

there are no specially important states which would need correspondingly

special consideration. Our application of this formalism, referred to as the

multiple scattering approximation, w i l l be made to proton-nuclear scattering

for protons whose energies are of the order of 1 GeV. However, the same

procedure should be equally valid for sufficiently energetic hadrons generally.

The second topic to be considered in these lectures is the interaction

of pions with nuclei for energies in the neighborhood of the A-resonance. In

this energy domain an incident pion wi l l with high probability be absorbed by

a nucleon, producing the A-resonance and'forming thereby a A-particle hole

state in the nucleus. In this case, the closure approximation of multiple

scattering theory is not valid for, as we shall see, the a-particie hole state

can act as a doorway state having a particularly large overlap with the inc i -

dent channel. This mechanism proposed by Kisslinger and Wang and developed

by Lenz and Moniz and their collaborators is known as the "Isobar Doorway"

model. From the consequent analysis we have an Insight into the impact of the

nuclear environment on the properties of the a inside nuclei and how i t dspends

upon the nature of that environment. I t is clear that this analysis can be

used to discuss the behavior of other baryonic resonances such as the Y* insfde

nuclei and their use as probes of nuclear properties.

The stable baryons can be used as probes. The A hypernuclei (consisting

of a core nucleus and a A) and the recently observed z hypernuclei provide us

with situations in which the core nucleus can be probed by a baryon of roughly

the same mass as a nucleon, with similar ?.lbeit not identical interactions

with nucleons. But, and this is an important point, the A (or l ) does not

need to satisfy the Pauli exclusion principle with respect to the nucleons

and therefore can be in orbits forbidden to i t i f i t were a nucleon. This

subject of hypernuclei wi l l be the third topic taken up in these lectures.

As the energy of the projectile increases, i t becomes correspondingly

more important to take relat iv ist ic effects into account. The importance of"

these effects is strikingly revealed by experiments involving the collision

of ul t ra-relaf iv ist ic hadrons, protons, pions, kaons (up to Fermilab energies)

**wlth nuclei. This phenomenon wi l l form part of the fourth topic which wi l l

, - include as well the collision of relat iv ist ic heavy ion projectiles with

"-. nuclei. A nuclear WeiszScker-Williams method developed for dealing with

peripheral collisions wi l l be described.

I I . Proton-Nuclear Scattering 1n the Multiple Scattering Approximation [1,2]

Formally the theory of multiple scattering attempts to solve the following

problem. Let the potential acting between the incident projectile and the

nucleus be given by a sum of two-body potentials:

where v. is the potential acting between the incident particle and the i ' t h

nuf'.aon of the target nucleus. # is the anti-symmetrization projection oper-

ator l imiting the action of the interaction to the Hilbert space formed by

anti-symmetric wave functions describing various states of the target nucleus.

The interaction given by Eq. (2.1) is non-relativistic. The only relat iv ist ic
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effects which are explicitly included in the theory to be described below are

primarily kinematic in nature, taking into account the variation of mass with

energy.* Since the potential description is used, effects of the virtual

boson fields, nucleon isobars, etc. are not completely included. However,

the formalism can be extended to take these additional degrees of freedom

into account.

Two methods have been used to solve the scattering generated by the inter-

action given by Eq. (2.1). We shall limit the discussion here to that developed

by Watson [3] and by Kerman, HcHanus and Thaler [1], The other associated with

Glauber [4] is described in many texts [5],

The Lippman-Schwinger equation for the transition matrix <J 1s given by

i r n fir a 1

where a = E - K - H

HJJ = target Hamiltonian

K = the kinetfc energy operation for the incident

projectile relative to the center of mass of the

target nucleus

N = number of nucleons in the target nucleus.

Our goal is to relate J and the two body scattering transition amplitude

describing the scattering of the incident projectile by a free nucleon. The

Lippman-Schwinger equation for that transition matrix describing the scattering

from the i ' th nucleon is

(2.4)

where Ko is the kinetic energy operator for the incident projectile relative

* A Klein-Gordon equation is used with the optical potential being treated as

the fourth component of a four vector.
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to the i ' th nucleon.

As an intermediate step, KMT introduce the many-body operator T defined

by:

/ t — GL
i - ̂ f t- i u- Jj L , CL (2.5)

Very roughly, T is given by t̂  averaged over the scatterers. A precise rela-

tion between T and ti will be given later. Eq. (2.5) can be used to eliminate

vi in the equation for J . Writing

and noting that

substitution in Eq. (2.2) yields

or

Using Eq. (2.2) again, one obtains J in terms of T:

Let

Then

Af-I

(Z.6)

(2.7)

(Z.B)



This is just a Lippman-Schwinger equation where the interaction is an effective

one being given not by a sum of two body opentors v. but by the many-body

operator T. The principal advantage of this transformation is that T is more

clearly related to t- than v... In the following we shall obtain a Schroedinger

equation whose transition amplitude is J ' . To obtain that result wi l l

need to be multiplied by N/N-l.

One can rewrite Eq. (2.8) as a Schroedinger equation for the wave

function of the system t:

( M - C"-' J -° (2.9)

We now proceed to derive the optical model potential. Two possible forms

will be obtained. One in which we are concerned with only a single channel,

the elastic. A second form pertains to a two channel situation, an elastic

channel and say one inelastic channel. In this case the optical potential

becomes a two by two matrix, the non-diagonal components coupling the elastic

and inelastic channels. It 1s easy to generalize the results to include several

Inelastic channels. Let P be a projection operator which projects * onto these

reaction channels, the elastic and the inelastic one of interest. Explicitly

^ (2.10)

where |O> and |1> are the state vectors for the ground and excited state

respectively. Let the complementary projection operator be Q so that

l - p pq , q2 = Q (2-11)

Introducfng the notation

one can rewrite Eq. (2.9) as follows:
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[e -K - (HA,, - («-<) (2.12a)

Solving the second equation for Qy and substituting in Eq. (2.12a) yields

i O (2.13); E" - K - (U«VP - xfp - fw-o rPOI —_—

The effective optical potential is given by the terms in T in this equation.

So far no approximations have been made. We shall however eventually neglect

the effect of the Pauli exclusion principle when the incident projectile

contains nucleons. In that case the error for forward scattering amplitude is

small. (See Watson and Takeda [6] for discussion.) A second approximation

to be employed below and to which we referred in the introduction as the

closure approximation involves replacing (N-1)TQ_ by an average potential V

and (H,J)QQ by an average energy E. Under these circumstances, the propagator

in the last term in the square bracket in Eq. (2.13) is diagonal in the coordi-

nates of the target nucleus. In this approximation, the "closure approximation,"

any explicit reference to the states in the Hilbert space projected by Q

disappears.

To obtain an optical potential in terms of t̂  it 1s necessary to relate "

T and t.|. Toward this end define the operators tf:

r«

Comparing with Eq. (2.5) we have

L. s ** • ^ ^ ^ i ^ ^

Rather than dealing immediately with t̂  we define t^' to which

in the limit of high energies.

(2.14)

(2.15)

will reduce

(2.16)



He may eliminate Vj between these last two equations using a nethod ident ical

to that which let! frorc Eq. (2.2) to Eq. (2 .6) . The resul t is

(2.17)

In order to insert th is resul t into the opt ical potent ia l i t is most

convenient to replace ( I / a ) by ( I / a ) where

Comparing (I/a) and (I/a) one obtains

I
Si.

But then the rather remarkable result follows:

asJ- • *ir
since (fl- 1)& = 0. He°cs in Eq. (2.17) one can replace a by a. To the

second order of approximation (in t') Eq. (2.17) becomes

It is important to realize that the second term has as one of its functions

guaranteeing that the final result takes proper account of the Pauli principle

for the target nucleons.

It is inconvenient to continue to carry the operator CX , Since

(1/Njrt^' is a symmetric operator, the Q. in the first term is superfluous.

Hence the operator (N-1 ) T is approximately given by

Returning to Eq. (2.13), replacing T by expression Eq. (2.19), replacing

(N-I)TQQ by V and (H N ) 0 0 by E as described above, and keeping only terms which
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are bilinear in t ' yields after some calculation

(2.20)

At this point we shall replace t̂ ' by tj. Comparison of Eq. (2.16) with (2.4)

permits the calculation of a correction for this approximation.

We now consider two situations. The first is elastic scattering.

(a) Elastic Scattering

For this case ' projects only on the elastic channel. Consider the

first term in Eq. (2.20) in the momentum reoresentation:

(2.21)

where the state vector describing the target nucleus in the ground state and

the projectile state one of momentum if ' is |Oft• =•. Because of the second term

in Eq. (2.4), t- is generally a non-local operator:

.22)

where \ and ̂ are the coordinates of the projectile, /% and •*£"* the

coordinates of tha target nucleon with which it interacts. V^pj can then be

wri tten _̂  ^

where p^ is the density matrix:

He briefly summarize the steps taken to evaluate Eq. (2.22}. It is convenient

to introduce the Fourier transform of o' ':

r
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and the relative and center of mass variables o = ;fa - n- and R = ̂ r(«o +A,]
I C 1

together with similar coordinates for the prined variables. The calculation

is straightforward leading to *

where

e

(2.25)

(2.26)

The physical interpretation of Eq. (2.25) is straightforward. The projectile

provides a momentum Jc1 the target q ' . After the collision the projectile has

a momentum k and the target q. The delta function guarantees that the momentum

transferred to the target,~q - "q1, equals the momentum lost by the projectile

t - P .
To obtain the familiar Rayleigh-Lax expression, we assume that

(2.27)

One then obtains the result

- »«c

where

and

f CZ'-k) = [ e ' l k ~k)' f(TZ) ctTT

(2.28)

(2.29)

(2.30)

In Eq. (2.28) we have made the energy dependence of t E (? - i f ' ) expl ic i t . This

amplitude Is 1n fact the fu l l off-energy she1.! t matrix. Thus more than the

empirical values of the projoctile-nucleon scattering which provides only the

- l i -

on-shell amplitudes is required. In fact , the complete characterization of

the projectile-rucleon interaction is needed. In practice, one has proceeded

by : i t t ing the nucleon-projectile transition amplitude on the energy shel l ,

generally using a function of iT - I?1 employing parameters which are allowed

to vary with E. This form is then used to calculate the off-energy shell

values required by Eq. (2.28). A typical form is

We now turn to the next approximation constructed from the last two

terms on the right hand side of Eq. (2.20). In making this calculation we

shall immediately make approximations Eq. (2.26) and the equivalent of Eq.

(2.27):

where

(2.31)

fft K ' K « - *

and

while

- * fiP •' *•?•

(2.32)

(2.33)

We give the final result for the second ordsr terms:

(2.34)

K C * ' -
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c' 'where c' ' the second order correlation* is defined by

(2.35)

The third order contribution has been calculated by Ullo. As one might

expect the third order correlation function occurs but in contrast with the

second order term given above there are additional terms which depend upon o
(2)

and p1 ' which are of importance for l ight target nuclei.

(a1) A Local Approximation

The potential Vgpj is non-local, making its use in the Schroedinger

equation comparatively d i f f i c u l t , albeit with modern computers possible. An

approximate method which replaces the Schroedinger equation with the non-local

potential by a pair of coupled Schroedinger equations involving only local

potentials has been developed [2 ] . We shall only quote the results. The

equations have the form:

<2-36>

As one can see from this equation, *' ' plays the role of an effective inter-

mediate inelastic state. The construction of the coupling potential involves

the following steps.

Let

(2.37)

* I f approximation Eq. (2.31) and Eq. (2.26) are not made r (2 ) is replaced by

while the t 's are replaced by the more accurate t ( i t , i t" ;E) and t ( i t " ' ,tT';E)

respectively.
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and its Fourier transform:

Taking the i direction to be that of the vector t * t', and denoting the

perpendicular direction by -f, let

2.38)

(2.39)

where

{ rf+ V

and

where -. % - V

With these definitions the coupling potential is given by

(2.40)

One advantage of this procedure is that it avoids the common practice of

neglecting the longitudinal momentum transfer which would limit applicability

to small angle scattering.

(a") Spin Effects

The above discussion for V^2' 1s valid only when t 1s spin independent.

This is of course not the case when the incident projectile is a nucleon. The

necessary generalizations have been carried out by Lambart [2] and recently

by Parmentola. We shall not describe their results here. Instead, a simpler
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analysis appropriate when the nucleus can be described by LS coupling wil l

be presented.

The nucleon-nucleon t matrix has the following form

(2.41)

where o0 and ô  are the Pauli spin-operaturs for the projectile and target

nucleus nucleon respectively. The vectors n, Q and q are

In evaluating the f i r s t term in Eq. (2 .30) , the Rayleigh-Lax term, one takes

the expectation value with respect to the target nucleus. I f that nucleus

has zero spin the result as far as the spin operators are concerned is

Then

The calculation of V^pj will involve the evaluation of the quantity:

(2.43)

(2.44)

(Z.45)

Doing the spin algebra one obtains:

All other expectation values vanish. This result translates into a central

plus a spin-orbit optical potential, a result which can be anticipated from

invariance principles. The physical reason for the absence of any contribution

from the other terms can be readily formulated. Roughly speaking, a term like

Bo0-a.| results in a spin f l ip of the target nucleus nucleon, changing the

state of the target nucleus. In order to restore the spin orientation a second

scattering Is necessary. Thus the B, D and E term: in Eq. (2.41) w i l l contri-

bute to VQP| and not to VRL. Since the relatively rmall energy change involved

In the spin f l i p can be neglected, i t is clear that v ' 2 ' wi l l be bilinear in

the density in addition to i ts expjeted dependence on the second order corre-

lation. I t is useful to combine these density dependent terms with the f i r s t

order term, Eq. (2.30) , so that the remainder wil l depend only upon the corre-

lat ion. As we shall see this can be done relatively easily.

Only a simple example wi l l be discussed. Suppose t , has the form:

Assuming that the target nucleus has zero spin, and can be described by LS

coupling, one can evaluate the sum

or using

M becomes

We can now reorder the terms in v c p T so that V^
2' involves only correlations,

that is the second term in Eq. (2.46). Thus in Eq. (2.34) the terms

tq.q1) are replaced by [t(0)(q)t(0)(q') - {3/H-l)t W(q)t W(5' )J
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while Eq. (2.28) becoires:

Because the factor multiplying ^ IT" |-| E ' " ̂  factorizes into a function of

q and of q1, the Schroedinger equation with this potential can be exactly

written as a pair of coupled equations as given in Eq. (2.36} with

A (2.48)

As one can see from Eq. (2.47) this spin correction is important when

iTYoJ
where kp is the Fermi momentum in units of n. The expression on the left is

a conservative estimate of the ratio of the second to the first term in Eq.

(2.47).

(b) Inelastic Scattering

In this case, the projection operator, P, projects on to the space

consisting of the target nucleus in the ground state and in an excited state.

The Schroedinger equation now becomes a pair of coupled equations involving

these two channels, the elastic and the inelastic. The diagonal components

of the coui->d channel are identical with V ^ j + V ^ j of Eq. (2.20). Approx-

imations Eq. (2.28) and Eq. (2.34) apply to the diagonal elastic channel

potential. For the inelastic channel potential one need only replace o by

the p for the excited state. The coupling potential between the two channels

can be similarly evaluated. Let the excited state be designated by u. the

ground state as before by 0, then the coupling potential (Vgpj)p0 is given by

-17-

where

with

(2.49)

(2.50)

(2.51)

The second order term is given by

v<"rL>•

The bracket replaces the second order correlation function of the diagonal

potential. The quantity o „ is

l

These equations have been used by Ullo [2] to discuss inelastic scattering.

It is, for example, possible to extend the factorization procedure of

section (a1) to the coupled equations.

(c) Applications

The Rayleigh-Lax potential, Eq. (2.28), has been used to analyze the

scattering of high energy (T.1 GeV) protons by nuclei. Other examples were to

be provided by another lecturer. The first two of these is taken from Boridy

[7]. Fig. (2.1) compares the elastic scattering calculated using VRL for two

differing neutron density distributions, p . One in which o does not equal

pQ, the charge distribution obtained from a Hartree-Fock calculation using a
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density dependent Hamiltonian [B]. In the other on is placed equal to P0.

We see substantial differences at the larger angles of scattering. In Fig. /

(2.2) one can compare the theory using the VRL for elastic scattering and the

Tassie model for the inelastic coupling potential rather than the less model

dependent result of Eq. (2.50). As one can see, the agreement is excellent

indicating that one can in fact determine the neutron density. This is more

cogently and clearly seen in Fig. (2.3) in which the difference between the

neutron and proton radius is given for the even stable isotopes of Ca [8] .

The f i r s t three points are obtained from 1 GeV elastic proton scattering.

We see that this difference is determined tc about ±0.03 fm.

The effects of short range correlation do not make their appearance until

one gets to larger scattering angles measured experimentally. However, in

order to extract c' ' i t wi l l be necessary to carefully estimate the errors

in the calculation. We note that the smaller angle diffraction pattern is

in excellent agreement with the predictions using the densities of the Pb,

Ca and Ni nuclei obtained with the density dependent Hartree-Fock method.

I I I . Pion-Nucleus Scattering [10,11]

In the preceding discussion of high energy hadron-nucleus scattering,

none of the intermediate states were presumed to have a particular importance.

The validity of the closure approximation rests upon this hypothesis. We

turn now to a case in which a particular intermediate state or better in

which a few such states are al l important. In the present situation, pion

scattering by nuclei, this occurs because these intermediate states are collec-

tive and are readily excited by the incident projectile. In other words,

these collective states form doorway states for the reaction.

Isolated doorway states such as the giant multiple resonances, the isobar

analog resonances, nuclear molecular resonances, Gamow-Teller resonances, shape
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isomer resonances and so on are familiar. The collective state responsible

for the doorway state resonance is roughly described as a proton particle-

proton hole state and a proton particle-neutron hole state in the electric

dipole and isobar analog resonance respectively. The relatively long lifetime

of these states can follow from an approximate symmetry as in the case of the

isobar analog resonance or from dynamical considerations as in the case of

the shape isomers (the large potential barrier which inhibits shape changes).

Of course, one should remember that the doorway states are not exact eigen-

functions of the nuclear Hamiltonian. Under examination with sufficiently

good resolution they fragment into a fine structure. This has been observed

in each of the examples cited above.

In the example to be discussed in these lectures, the collective state

of the nuclear system is a A particle-nucleon hole state. This collective

state is formed when a pion strikes a nucleon in the nucleus, the pion being

absorbed by i t to form a A (an excited state of Lhe nucleon with J « 3/2 and

T = 3/2, ER = 1232 MeV, r = 115 MeV) leaving a "hole". As we shall see, a

constructively coherent A-hole state is formed when the incident pion energy

Is in the A resonance region. Although there is a striking similarity to the

particle-hole states mentioned in the preceding paragraph, there is also a

most significant difference. In the present case, the particle, the A, is

unstable. Thus, in this process, i t becomes possible for the f i r s t time to

directly consider the impact of a strongly interacting nuclear environment on

a particle resonance. The methods, which are developed for the A case, can

generally be employed in considering the behavior of other particle resonances

such as the Y* inside nuclei.

For the most part many of the theoretical approaches to pion-nucleus

scattering have not examined and exploited the possibility of the formation

of collective states by the incident pion but have proceeded using some variant
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of the multiple scattering theory described in Section I I . I t was f i r s t

pointed out by Kisslinger and Wang [12] that the isobar-hole state is a door-

way state and could be especially important for elastic and inelastic pion

scattering and more generally in reactions in which A formation has an impor-

tant role. The fact that the states formed are collective is the discovery

of Hirata, Koch, Lenz and Moniz [1DJ. I t is their work, as well as the results

of Lenz, Horikawa and Thies [11] upon which I shall report in this section.

As a f i r s t step we shall develop an expression for the resonai.t pion-

nucleon scattering, a representation which wi l l be useful for the later

discussion of the pion-nucleus scattering. The projection operator method

wi l l be used [13,14]. The equation we wish to solve is the Schroedinger

equation

U£ =£"?
(3.1)

Let the operator P be a projection operator which selects at least the incident

channel as well as other states of the system excluding that one which will

give rise to the resonance as we shall see. Let the projection operator

which selects at least that state be Q so that

Eq. (3.1) then becomes a pair of coupled equations for Pf and Qv

(3.2)

(3.3a)

(3.3b)

where

From Eq. (3.3a) it follows that the J matrix is
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where •f satisfies the homogeneous equation

(3.4)

(3-5)

with the indicated boundary condition. J f-\ is the scattering (or reaction)

amplitude generated by Hpp. The prompt non-resonant processes wi l l be contained

in this term. The wave function * | + ' is the solution of Eq. (3.1) with the

appropriate incident wave indicated by the subscript and outgoing wave

boundary condition indicated by the superscript.

To determine Qv{+^ we return to Eq,, (3.3) "solving" Eq. (3.3a) as follows:

where * j + ' is also a solution of Eq. {3.5'p. Inserting this result into Eq.

(3.3b) yields

Inverting, making use of the fact that Q contains no open channels, and

inserting the result into Eq. (3.4) yields:

This expression is completely genera!. Let us now specialize to

pion-nucieon scattering. Then the incident; system wi l l be designated by the

subscript, im . The interaction Hp(, wi l l connect the * + n system with the

(and other resonances). In the notation -f HKLH,

and

£"'- Hn

(3.7)

(3.8)
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J ( p)f j just gives thr nrn-resonant scattering. Assuming that

only one resonant state, the &, i t important and that i ts wave function •;,

is a solution of

Eq. (3.6) becomes

(3.9}

Note that the "self energy" operator z is complex and therefore, in the deno-

minator of the second term, ty^\t\iji^} wi l l shift the resonance energy and

wi l l also add an imaginary term proportional to the width of the resonance.

However, note that since I is energy dependent, this width wi l l have an energy

dependence. This is of some importance because of the substantial width of

the resonance and results in some distortion from the Breit-Wigner form. Eq.

(3,9} needs to be revised because of the requirements of special relat iv i ty.

We shall return to this point in the course of the development which follows.

He turn next to pion-nucleur. scattering in the isobar-hole doorway

approximation. We employ the methods of my paper with Kerman and Lemmer [14].

First we separate out the doorway state component by further partitioning Q

space:

$ ^ ^ (3.10)

where D Is the projection operator for the doorway state space. Secondly, the

strong doorway state assumption is made; namely that

**» S° * * ' (3.11)

but Hpn and HQ and their adjoints do not vanish. This assumption states that

the KamiTtonian connects the open channel subspace projected by P only with
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the doorway states as is illustrated by Fig. 3.1.

For pion-nucleu* scattering, the J matrix given by Eq. (3.6) becomes ,

after inserting assumption Eq. (3.11)
i(p) s.l?-' i n •» ' 7) (i iLr*; \

f t $ P 'i im /
"at, *Q 1 3 . it)

:.. - X'J - < • £ . I *:.. - XJ - <£.
where

let

w_ (3.13)

We now must calculate D[l/(E-Hq(,)]D where HQr, ' H™ + W Q L To this end

©

E- He<<*c> (3.14)

^ - ^ K a o = Q

Multiplying from the right by D yields

Multiplying from the left by D yields the equation

while multiplying Eq. (3.15) from the left by q yields

(3.15)

(3.16)

Inverting this equation and substituting in Eq. (3.16) yields

where

(3.17)
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— ' -

Hi

(3.18)

,tr/J

This is the fundamental formula with which we shall work. The imaginary

parts of quantities WQQ ano Wpp are proportional to the escape and spreading

widths respectively.

It is now necessary to fill in this expression caking the Pauli-blocking

effect and introducing the necessary modifications required by relativity.

Let us start with Hpp. In the isobar doorway model this is given by

g, the vertex function described above which converts a nucleon in the target

nucleus by the absorption of a pion. This interaction is summed over all the

target nucleons taking due account of isospin. The matrix element of g is

where »0 is the ground state of the target and * is the state produced by pion

absorption where q is the pion momentum. In an independent particle model

ri) 4- (H)
(3.21)

where il^is the in i t i a l nucleon wave function with momentum £, *A is the A

wave function with momentum (IT + q) in units of h. The momentum X is the

momentum of the pion relative to the center of mass of the nucleon plus pion

system:

(3.22)

where a is the pion energy/cz. The quantity g is

- f (3.23)
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v.here l * is the coupling constant modified by some kinematic factors, h is

the vertex form factor parametrized as follows

•f . A
with A = 25.5 and a = 1.8 fm" 1

S is a vector operator connecting the spin j and spin j systems as follows:

where

where x, y, z are unit vectors in the indicated directions.

A second problem is connected with the propagator (E - Hpp,..)" in Eq.

(3.19) which needs to be given an appropriate relat iv ist ic form. This could

have been accomplished at the beginning of our analysis by replacing the

Schroedinger expression (E - H) by the quadratic Klein-Gordon operator and

subsequently employing the projection operator analysis. The energy denomi-

nator in the transition amplitude for the pion-free nucleon resonance is then

not that given in Eq. (13.9) but is rather D~' where

(3.24)

where A- is the square of the total energy and ( -A - mj) is the "bare"

operator while the integral is the "self energy" correction, with the imaginary

part proportional to the width.

In the expression for pion nuclear scattering we replace (£ - HQQ) by

D{E - H&) where H& is the Hamiltonian for the 4-nuclear system

with T the kinetic energy and V the potential energy of the 4 inside the
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nucleus, while H A 1 is the Hamiltonian for the rest of the nuclear system

consisting of A-l nucleons. HKLM use a shell model potential for Vfl.

In application, D(E - H^) is linearized:

(3.25)

where

Next, consider WQJ, Eq. (3.13). We again replace the propagator by its

Klein-Gordon form and therefore write

where F is given by Eq. (3.21).

To evaluate the spreading width WgJ, we adopt the optical model strategy

of replacing it by an energy average and then using a phenomenological poten-

tial. Upon the assumption that the major source of the spreading width is

the absorption reaction

Q f. VL — » -\n *<**

HKLM parametrise w"D* by W = VOP(«.)/P|) where p is the matter density and VQ is

a parameter. As we shall see Horikawa, Theis, and Lenz found i t important to

include a spin-orbit term. They use

(3.21)

Vf2'where u and Vf2' are empirical parameters. For future convenience, we write

Eq. (3.27) as follows:
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Finally, an ad hoc term is added to take the Pauli-blocking effect into

account. Pauli-blocking refers to the forbidden decay of the isobar by pion

emission in which the nucleon ends up in an occupied single particle orbit .

The free width in D(E), Eq. (3.27), must be corrected for this effect. The

correction in the independent particle model is given by

where E and e arc the hole energies.

With the introduction of 6W, Eq. (3.19) becomes

(3.28)

.29)

where the matrix elements of all the operators which occur have been defined

above.

The doorway states are introduced as the eigenstates of the denominator

of the propagator:

so that

(3.30)

(3.31)

The calculation of "] ̂ thus requires the determination of the solutions of

Eq. (3.30) for the doorway states and then substitution in Eq. (3.31). The

operator in Eq. (3.30) contains V^ which is taken to be proportional to the

nucleon density by HKLM with a depth of 55 MeV. The only parameter (complex!)

which remains, omitting the spin orbit term in Eq. (3.27) is Wo.

The numerical results revealed a remarkable feature; for example, in the

calculation of the transition amplitude for the scattering of 140 MeV pions by
1 60 for the 0" partial wave. Harmonic oscillator wave functions were used.
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The A-hole space was 17 dimensional. The contribution of each of the doorway

state solutions is preserted in Table 3.1. One irnediately sees that one

state Dj provides by far the largest contribution to the transition matrix.

Moreover, the|matrix element!of the interaction with the incident channel

defined by

(3.32)

turns out to be 0.9. D^ is thus a collective state similar to those seen in

the giant multipole resonances.

The fact that the overlap as given by Eq. (3.32) is so large suggests

that it would be more economical to use a complete set based upon

(3.33)

rather than upon harmonic oscillator wave functions. There is a standard

procedure developed by Lanczos (see Morse and Feshbach [15], p. 1155) for

developing such a complete set.

Let ti l *

Form the state d. from dQ as follows:

(3.34)

Note the orthogonality:

(3.35)

State dp ̂  formed by operating on d, and orthogonalizing with respect to

and d Q :

(3.36)
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More generally

Not only is d explicit ly orthogonal to d •• and d , , but i t is orthogonal to

d for -A < o as well. The proof is lef t as ?.n exercise. I t also follows
O-/W. —

from Eq. (3.37) that the chairing condition is satisfied by the set ia'.

(3.38)

From Eq. (3.29) we see that for elastic scattering for a given partial

wave one can write

J.
where

and

(3.39)

(3.40)

Our problem is thus reduced to a calculation „' (q , or more specifically to

expressing <j in terms of the set d . De'.te the matrix element of *F to be

(3.41)

In terms of this definition Eq. (3.40) can be rewritten

Using the chaining condition, Eq. (3.38), this equation becomes

(3.42)
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where

Let a be the value of a for which £j -+1 Q = 0. Eventually we shall let

a * ". Then Eq. (3.42) becomes

Table 3.1

Substituting this result in the equation for G - , „ yields

Therefore

Repeating this process successively and thus reducing the index of 7 by one

unit each step one eventually arrives at the final expression in the form of

a continued fraction for
^ 1

T> - (3.43)

The zeros of the denominator in Eq. (3.43} will yield the eigenvalues c.. of

Eq. (3.30).

The efficacy of this procedure is illustrated by Table 3.2, in which the

results obtained with N iterations are compared with diagonalization using the

harmonic oscillator space. The pion is positive with an energy of 163 HeV and

the target nucleus is 1 60. It is clear that the process is rapidly convergent,

and that even the first term, N = 1, gives excellent agreement with the exact

1

2

3

4

r,

6

7

8

9

10

n
12

13

14

15

16

17

124

043

034

025

005

004

001

001

004

002

002

000

001

000

000

000

000

+

-

-

-

-

-

+

-

+

-

+

+

+

-

+

-

.675i

.0661

.O27i

.016i

.0081

.007i

.003i

.0031

.002i

.0011

.0011

.0011

.0011

.0011

.0001

.0001

.0001



Table 3.2

1

2

3

"EXACT"

C = 0"

.155

.159

.154

.154

Res

+ .

+ .

+ ,

490i

3721

3811

381i

c (MeV)

-53.1 - 154.5i

-68.7 - 133.51

-68.7 - 138.0i

-68.7 - 138.Oi

L"

.060

.062

.059

.059

= 4

Res

+ .2801

+ .2461

+ .251i

+ .250i

E (MeV)

13.9 - 14.41

-2.7 - 17.71

-3.4 - 22.71

-3.5 - 2 3 . l i

- 3 1 -

resu l t . These examples refer to one of the eigenvalues and eigenstates D^.

The number required to obtain the to ta l for the J matrix for each pa r t i a l

wave is generally very few i i number. In th is case two states were required

for an accurate descript ion of the 4" t rans i t ion amplitude and only one fo r

the 0" pa r t i a l wave.

The contr ibut ion of the various terms is shown in Fig. (3.2) In which

the imaginary part of the expectation value of various terms are p lo t ted as

a function of pion energy. We see that the dominant terra or iginates in the

escape width. The Pauli term does reduce the free space width whi le the

spreading width is of the same order of magnitude as the free space width.

In HLKM, only the f i r s t term in the expression fo r the spreading poten-

t i a l W, Eq. (3.27) i s used. The resu l t ing empirical var ia t ion f o r Vjp(O) =

p(0)W(0) is qui te severe as can be seen from Fig. (3 .3) . Horikawa, Theis and

Lenz include the spin o rb i t term as w e l l . The results are shown in Fig. (3 .4) .

As we see, the Re WQ and the Im WQ are now roughly independent o f pion energy,

a much more sat is factory resu l t . Table 3.3 gives the strength v [ ^ and range

parameters u fo r the spin o rb i t term.

In Fig. (3.5) and Fig. (3.6) the volume in tegra l o f the central term i n

and the surface in tegra l are given fo r d i f f e r i ng values of the mass number

A and compared with values obtained *or the nucleon-nucleus i n te rac t i on :

The comparison of the resul ts of th is analysis as carr ied out by HTL

with experiment is shown in the fo l lowing f igures (F ig. (3.7) - (3 .13)) .

Fig. (3.7) compares the computed and experimental absorption cross-sect ion.

F ig. ( 3 .8 ) , (3.9) and (3.10) compare the calculated angular d i s t r i bu t i on with

experiment fo r p'on energies o f 120, 148, 162, 226, and 260 MeV. The agreeirent
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1s good except for the back angles particularly for the 162 HeV case. Figures

(3.11) , (3.12) and (3.13) compare the scattering from 1 6 0 , uHe, and 12C at

the Indicated energies. From these one can see the very large improvement

which results because of the inclusion of a spin-orbit term in Eq. (3.27) .

The solid l ine is the result of calculations with, the broken one without,

spin-orhit terms. We see the important effects at or near the minima in the

angular distributions, f i l l i n g in or a deepening under different circumstances.

Some discrepancies therefore remain, and one would eventually require

a microscopic calculation of the a-nucleus interaction as contained In M ,

rather than the present semi-empirical treatment. Nevertheless i t seems f a i r

to say that the elastic pion-nuclear amplitude is well understood, and that

one knows how to calculate the behavior of the A-resonance Inside the nucleus.

Obviously the theoretical treatment of various processes in whfch the pion is

Involved must take advantage of this increased understanding. The doorway

states need not decay only into the elastic channel. In other words, inelastic

scattering, pion production or absorption, photoproduction and radiative

capture may pass through the doorway states revealed by the above discussion

of elastic scattering.

Finally, returning to a theme discussed ear l ier , the same method; developed

in this section should also prove useful for other baryon resonances such as

the Y* which 1s produced when a K" is absorbed by a nucieon. Moreover, 1t may

also be a useful way in which to treat the familiar giant resonances.

» - '•He

n - 12C

Table 3.3

u(fm"2)

0.25

0.35

0.-3

-4.6 - 1.81

-10 - 41

-10 - 4i

IV. Hypernuclei [16]

We turn next to the case where the oaryon probe 1s the relatively stable

strange particle, the A, or possibly the t. This is to be contrasted with

the situation discussed in Sec. Ill, in which the baryon is the much less

stable A.
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Although A hypernuclc' were known from experiments involving emulsions

for some time, i t was not unt i l the use of a nea-ly recoiless method of pro-

duction in the pioneering experiments of Bressani et a l . [17] and Povh et a l .

[ IB] that hypernucleus physics attracteJ t ' - attention of the nuclear physics

community. The recoiless method [19] is based on the observation that in the

elementary process

* V«. — * A " * * - (4#1)

when the pion is observed in the forward direction a kaon momentum exists for

which the A0 produced is at rest. This result is i l lustrated in Table 4.1

and Fig. (4.1), Fig. (4.1) also contains a plot of the cross-section for

forward production of pions according to process Eq. (4.1) indicating some

advantage in using kaon beams whose momentum is not exactly at the cr i t ica l

540 MeV/c.

I t would be expected that the production of A hypernuclei wi l l be

enhanced when the kaon momentum is rear 540 MeV/c and the pions are observed

in the forward direction. The reaction is

IC~*. Z A - r A A + JC- ( 4 . 2 )

Because of the small momentum transfer a neutron in the target nucleus is

simply replaced by a lambda. By observing the spectrum of the pions one will

be able to determine the spectrum of the hypernucleus formed, subject of course

to whatever selection rules apply at 0°.

Similarly t hypernuclei can be formed. The elementary interactions are

(a)

(b)

(O

(4.3)

Table 4.1

400 540 700 1000 2000 MeV/c

Z50 40 40 75 130 HeV/c
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Note the possible formation of a IT which has an enhanctcl detection. The

incident kaon beam general!" contains trjny negative pions and negative pions

are produced by the decay of the K" in flight.

Examples of the formation of A hypernuclei [21] are shown in Fig. (4.2).

Relatively sharp states have been observed. The fornation of I hypernuclei

is indicated in Fig. (4.3) [22]. The peak corresponding to the z hypernucleus

should occur at the same excitation energy whether the process involves the

production of a i" or a t . This is certainly the case for at least one of

the structures involved. In these experiments pk = 720 MeV/c while tha momen-

tum transfer is 130 MeV/c. z states were seen in 9Be and 7Li as well.

I shall not attempt to summarize all the experimental and theoretical

issues of interest. Two particular points seem to me to be especially interesting.

(a) The first refers to the question: Why are there :: hypernuclear

states in fBe, 'Li, and :?C which are relatively narrow? The existence of

these states is a surprise because of the expected rapid conversion to a A

hypernucleus via the strong interaction process l * n -<• A + n. An estimate

obtained by Batty is confirmed by Gal and Dover [23] for the case of nuclear

matter. In that case the width is given by

where <r Is the velocity of the z - p pair converting with total cross-

section, a . The bar represents the average over the Fermi gas used to

describe the A hypernucleus. The wave function * is that of the z hyper-

nucleus. The results are given in Table 4.2.

According to Gal and Dover, the reduction in the conversion rate from

that calculated using Eq. (4.4) is a consequence of the fact that the elemen-

tary process, I + n -» A + n, 1s dominated by the T = j, S = 1 channel

(Engelmann [24]). One should therefore replace (*\zfi&z - /»,)!*> by

nucleus

'IP

'Li

Table 4.2

= 22 HeV

9Be 16O

6.8 8.8 15.0 14.7 MeV
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where the spin and isospin factors project upon the triplet spin and T = i

isospin for the (z,n) pair. Note that tz is chosen so that tj! - 2.

Under the experimental conditions the states most likely to be excited

at 0° for the l2C target are given in Table 4.3. In this table, the nucleon,

Z configuration is given together with the possible isospins of the final z

hypernucleus. The quenching factor, Q, that is the factor multiplying the

values obtained using Eq. (4.4) given in Table 4.2 which 1s generated if that

expression is replaced by Eq. (4.5) is given in Table 4.4. From this analysis

one would expect that only the T = 3/2 0+ state should be visible with a

width given by 0.4 * 14.7 ^ 6 MeV, Presumably this is the state seen in Fig.

(4.3).

Dover and Gal have carried out similar calculations for 7L1 and 3Be.

These are summarized in Table 4.5, where Tf, refers to the isospin of the core

nucleus to which the z is bound. The two lines in the 9Be case correspond to

the assumption that the spin of the core nucleus is zero for the upper line

and one for the lower line. In 7Li one would expect the T = 2 state to be

observable while for 9Be, the levels seem to be SN = 1, TH = 1 and T = 2 for

the upper peak and SN = 0, TN = 0, and T = 1 for the lower peak.

Predictions for an 1 60 target are given in Table 4.6. At least one

state should be observable. If the z spin orbit force is weak, two would be

expected. Clearly it is of great interest to understand the mechanism

responsible for the narrow z hypernuciear states and in particular to see if

the correct one is that suggested by Dover and Gal. That understanding will

reflect itself in a greater insight Into the nature of the transition

<:(*",**)

Table 4.3

V 3 } 2 . P3/2)

T = 1/2, 3/2

T = 3/2

(pj/2. 1 / 2)

T = 1/2. 3/2

T • 3/2
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Table 4.6

with strong z spin orbit
coupling

,.P3/2) "

T

q

1/2

1.32

3/2

0.56 1.19 0 .81

1/2

1.44

3/2

0.30

1/2

1.06

3/2

1.06

(b) In this second section on hypernuclear physics, I wish to pay

especial attention to the role of the /. in the hypernudeus as a probe of

nuclear structure [25]. The conditions under which the A does act as a probe

can be formulated as follows. A O'th ortiei approximation for the hypernuclear

wave function is
.)

(4.6)

xwhere x is the single particle state of the A, «, is the wave function for

the nuclear core in the state a. Consider the first order correction to this

zeroth order wave function as given by first order perturbation theory. This

correction will involve excitations of the state of the A and that of the core.

Since the single particle levels are separated by much greater values of the

energy than the core excitations, the latter will dominate unless of course

some special conditions reduce the value of the excitation matrix element.

Assuming this does not occur the expression for 1 . good to the first order
Da

where

V L i *fA)> (4.8)

The probing potential acting on the nuclear core is, in this approximation,

given by the residual A-nucleon potential average over the A density. As a

consequence the energy levels and the electromagnetic transition probabilities

will be altered. It is clear that this effect will be most dramatic when

^icore) arg ]ow lying collective states. That this description is qualita-

tively correct is demonstrated by Gal and Dalitz [26] more careful calculation

of the levels of 12C as seen in Fig. (4.4). Moreover, the DMA calculations
A
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of Dover et a l . [Z7] shown in Fig. (4.5) and Fig. (4,61 give excellent f i t s

to the angular distribution of the reactions ' ;C(i:~,-i") !2C*. Their magnitudes

must however be reduced by the indicated factors. The l " state is clearly

resolved. In Fig. (4.6) one assumes that the measured excitation is a sum of

the excitation of the 0 and the tvio 2 states. Mote that the contribution

of the AP3 /2
 a n d AP1/2 o r b ' i t a ^ 5 a r e included. The levels associated with the

latter are shown in Fig. (4.4). At small angles the angular distribution is

dominated by the 0 state. The presence of the 2+ contribution is indicated

by the shoulder in the experimental angular distribution. The need for sub-

stantial corrections to the magnitude is not surprising in view of the rough

character of these calculations.

For heavier nuclei one can expect the A to modify the collective para-

meters such as the radius or the moment of inert ia. The modification of the

radius is similar to the isotope shift in atoms. The change in the parameter

A. in the formula R =/ l A ' from i ts A free value Ag is given by

, . / • -
8 -

(4.9)

where A is the mass number of the core, K is the nuclear compressibility,

B,. and B,(A) are the binding energies for the A for A inf in i te and for A

f in i te . Taking K = 150 HeV, (•"• - A . )/«•«. for I5N « .026. I t is anticipated

that this effect would be visible In the Coulomb energies of hypernuclei once

the nuclei are sufficiently large so that the charge symmetry breaking force

becomes unimportant. The influence of three-body forces has also been

neglected in deriving Eq. (4.9).

As a second example of ths effect of the A I shall dfscuss the moment

of inertia of a hypemucleus using the deformed harmonic oscillator model.

fhe change in the moment of inertia due to the A is given by

A <9" = MA «« ,10)

-38-

where as usual R and S are defined bv the equations
c

*>' * *• 0 - i *& f)

so that 8 measures the ds'ornaf'on. The values of n and n give the quantum

numbers of the A orbi tal . The f i r s t ten" in En. (4.10) is the so called

irrotational flow term so that there is an c:uortunity to observe this term

directly. One should note that Eq. (4.10) does not give th« total change in

the nrnment of inertia since the deformation f. wi l l change because of the

presence of the A.

I t should be quite clear from these examples that the A wi l l change

the properties of the core nucleus. I t is not so clear that i t w i l l be exper-

imentally possible to observe the spectra of the appropriate hypernuclei.

Looking for the r-decays seems to be the most attractive possibil ity.

V. The Collision of Ultra-Relativistic Hadron Projectiles With Nuclei [28,29]

The collision of ul tra-relat iv ist ic hadron projectiles with nuclei

appears to Involve reaction mechanisms which differ qualitatively from those

which govern the three types of reactions we have discussed in Sections I I , I I I

and IV. We wi l l be dealing with projectiles whose energies are at least

several tiTes the rest energy of the projectile. Not unexpectedly, special

relat iv i ty plays an important role. But in addition the interaction between

the incident hadron and the nucleon in the target nucleus is qualitatively

different in nature from the interaction which prevails at a lower energy.

The evidence for these remarks is presented in (a).

(a) We present f i r s t the rather startl ing results obtained by studying

the collision of high energy protons with nuclei. Generally, the target nuclei

are heavy, e.g. U or Au, the particles detected are fragments of the target,
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and the means of detection are radiochemical although one of the experiments

to be reported employs counter detectors.

The phenomena of interest are illustrated in Figs. (5.1), (5.2) ond (5.3)

[30,31], In the first of these the average energy of a recoiling f.jcant

in the laboratory frame of reference formed in the reaction p + U is plotted.

We see that beginning at a few GeV as the proton energy increases the a/erage

fragment energy decreases. This is the opposite of what happens at lower

proton energies where an increase in proton energy is reflected by an increase

in fragment energy. The fragment angular distribution as indicated by the

forward to backward ratio, F/B, of Fig. (5.2) becomes more peaked in the forward

direction as the proton energy increases from 1 GeV till about 5 GeV. For

greater proton energies the angular distribution has been obtained at 28 GeV.

In Fig. (5.3) we see that the angular distribution of the Fourine fragment is

rather flat with a peak at 70° in the laboratory frame. These results imply

that collisions of the proton with the nucleons inside the nucleus do not

result in energy being transferred to nuclear degrees of freedom. The first

surmise is that in fact the internal degrees of freedom being excited are

those of the nucleon and that the excited nucleon does not in fact transfer

Its excitation to other nucleons in the form of kinetic energy.

It Is in fact well known that, at least at high energies (>60 GeV),

this process of nucleon or more generally hodron excitation is dominant in

the kinematic region corresponding to non-peripheral reactions. The evidence

is provided by measurement of the multiplicity of high energy (s > 0.7)

charged particle production. These measurements show tnat the number of such

particles rises very slowly with increasing mass number as shown by Fig. (5.4) .

and Table 5.1 [32]. No cascading is indicated as cascading would result in

a much more rapid rise in the multiplicity with increasing mass number. The

explanation is again that very little energy is deposited in the nucleus.

Table 5.1

The average multiplicit ies of relat ivist ic charged particles

produced in 100 - GeV/c hadron-nucleon collisions. From Ref. [32],

Target

C

Cu

Pb

Hydrogen

(bubble chamber)

Projectile Average Multiplicity

7.86 * 0.15

6.92 * 0.33

7.72 ± 0.16

10.29 ± 0.26

8.89 ±1.10

11.00 ± 0.32

13.21 ± 0.30

12.92 ± 0.79

14.75 ± 0.3B

14.57 ± 0.39

1Z.93 ± 1.33

15.94 ± 0.50

6.62 • 0.07

6.65 ± 0.31

6.37 ± 0.06
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Empiricaily the multipl icity rat io, R, the ratio of the mult ipl ici ty in

nuclei to that in hydrogen is given by

(5.1)

where v is the mean number of collisions.

The explanation is quite interesting. Upon the collision of the incident

hadron with a target nucleon, the hadron and the target nucleon are excited.

As a consequence the wave function for the excited hadron can be decomposed

into a linear combination of states each with its own characteristic lifetime

T for decay into incident hadron plus a number of pions. This lifetime is
o

of course given in the rest frame. In the laboratory frame the lifetime is

^ ~ S" 7" (5.2)

where E is the total kinetic energy of the state with lifetime T . There can

very well be several xo's corresponding to the many excitation possibilities.

However a rough average energy I can be obtained by assuming that this new

entity, the excited hadron, is at rest in the center of mass system of the

hadron plus nuclear nucleon. Under these circumstances

The corresponding value of x, T, is

(5.3)

(5.4)

The critical value of z is given by CT = e % A where x is the mean free

path of a hadron inside a nucleus. If i is larger than A, the excited hadron

will not have decayed appreciably before it has its second collision. The

second collision reconstitutes the excitation in the hadron and the decay is

halted. Under these circumstances, i > \, the hadron will pass through the
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nucleus without decaying, decaying by emission of a number of pions only

after it has left the nucleus. The result for R is obtained if one assumes

that there is a component generated at each collision, which decays after

leaving the nucleus, with an average energy given by Ea and the multiplicity

by log E a where a = 1/2.

The critical energy at which nucleon excitation should dominate in the

production of fast secondaries can be obtained from t ̂  \. Placing l ̂  2 fm

and i ̂  1 fm, one obtains E, . * 8 GeV. This is in rough accord with experi-

ment, but of course a more quantitative development of these ideas is required

before a critical evaluation is possible and before one can say that the

underlying causes of the phenomena noted in Figs. (5.1)-(5.3) and Fig. (5.4)

identical.

The momentum transfer to the nucleus by the incident hadron is thought

to be relatively small. The transferred transverse momentum, on the basis

of experimental data presently available, is relatively independent of the

proiertile pnerny It is thought to be of the order of about 400 MeV/c

leading to an energy of 80 MeV per nucleon. The value of the longitudinal

momentum transfer is not clear. If it is substantial, the incident hadron

would drill a hole through the nucleus. If it is relatively small the nucleons

in the nucleus would instead be pushed aside. The model described above,

which is based upon Gottfried's analysis, presumes a relatively small longitu-

dinal momentum transfer, the generation of the observed relativistic multi-

particle states being associated with the leading incident j<irticle. However

other models which have been used would predict the formation of a hole in

the target nucleus. The question of the magnitude of the transfer of longi-

tudinal momentum needs experimental investigation. Its value is intimately

related with the magnitude of the average excitation of the nucleon.
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(b) The collision of a relat ivist ic heavy ion with a nucleus may

involve a "central" collision characterized by the production of a large

number of particles with substantial values of the transverse momentum [27,32].

I t may involve a "peripheral" reaction which leads to a fragmentation of the

incident projectile. The fragments, in this case, move with the velocity of

the incident projectile and in the forward direction in the laboratory refer-

ence frame. As a consequence this component of the reaction can be readily

selected experimentally. At the present time the fragmentation process is

understood at the level of the prevailing experimental uncertainties. There

is no corresponding level of understanding of the central coll ision. The

"f i re bal l" hypothesis f i r s t invoked has proven inidequate, being unable to

provide an explanation of the experimental data. A substantial improvement

has been made by adding an in i t ia l blast wave [33], but the theory s t i l l

involves the unwarranted assumption of thermal equilibrium.

This lecture wi l l restr ict i tse l f to the peripheral reactions. Not

enough time is available for an adequate description of the central collisions,

the f i rebal l and i ts modifications as well as of the other models which are

being developed.

The method to be described below [28,29] is reTerred to as the "nuclear

WeiszScker-Williams method". First le t us summarize the experimental facts

obtained by experiments performed at the Bevalac fac i l i t y [34]. Experiments

were performed with a beam of energetic projectiles (e.g. 160) at energies

of 1.05 GeV/A and 2.1 GeV/A. Projectile fragmentation was detected by observing

reaction products in the forward direction. Inclusive cross-sections, that is

cross-sections for the production of a particular nuclear fragment without a

determination of the correlated production of other fragments were measured.

The results obtained are most simply expressed with respect to the projectile

frame of reference defined as that frame in which the incident projectile is
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at rest and the target nuclei effectively form the incident beam.

a. In the projectile frame, the momentum of a fragment is relatively

small. For example, if the target nucleus is Pb, its momentum in the projec-

tile frame is (208) » (2.1) •<. 437 GeV/c when the projectile has an energy of

2.1 GeV/A. The longitudinal momentum, p., distribution of 10Be fragments

produced by fragmentation of the projectile, 1 2C, in the projectile frame is

shown in Fig. (5.5). We see that the 108e average longitudinal momentum is

only about 50 MeV/c, while the dispersion of the p. distribution is about

100 HeV/c, which should be compared with the 437,000 MeV/c carried by the Pb

nucleus. Thus a very small fraction (10 } of the momentum of the lead

nucleus is transferred to the projectile.

b. The distribution, w(pL,pT), in the longitudinal, p^, and transverse

components, p p of the momentum is Gaussian in each. Empirically one finds

that

"* "* {5.5)

where pL as mentioned above is generally several tens of HeV/c.

c. The angular distribution is approximately isotropic, that is

°i "I (5.6)

However because of the much greater experimental difficulty in the determina-

tion of the transverse momenta, Eq. (5.6) must be considered as approximate.

d. The dispersion, o, , is empirically independent of A^ (the target

mass number) depending only on Ap (the fragment mass number) and Ap (the

projectile mass number). This is a first example of independence of the pro-

jectile fragmentation of Ay.

e. A second is given by the fact that the branching ratio for the rela-

tive probability for the production of a fragment type is independent of tht
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target nucleus. The cross-section for the production of a fragment F, upon

the collision of a target T with a projectile P is found to be

" p r I T

(ft

(5.7)

The rat io, multiplying OpT, is the branching ratio for the production of

fragment F.

f . The inclusive cross-section o. ^ is proportional to the radius of

the interaction. Empirically

or - AJ -A* -o.»
(5.8)

S. Cross-sections and o L at 1.05 GeV/A and 2.1 GeWA are approximately

the same indicating within this energy range independence with respect to

the energy.

h. The momentum distribution of the emergent protons is not Gaussian.

It is better described by an exponential, e" p / P o, where p0 •>. 65 MeV/c.

We shall now discuss the momentum distribution of the fragments.

(a) Momentum Distribution of Projectile Fragments

The model we shall use was first suggested in Ref. [35]. The deriva-

tion employed below follows essentially that of A. Goldhaber [36]. The model

assumes that the fragment of mass number, Ap, is formed from the projectile

of mass An by removing the binding of a group of Ac nucleons. The net momen-

tum Pp of the fragmen' s then obtained by adding up the momentum of each of

these nucleons. The value of Pp will vary according to which group of Ac

nucleons is selected f-om the projectile giving rise to a distribution in Pp.

If the mean square momentum of a nucleon in the projectile is (, p 2^ , the

mean square value of Pp is, according to a simple statistical considera-
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tion,* given by Ap<p') . The distribution in P-, following again from

statistical considerations [35], is Gaussian** at least in the neighborhood of

the maximum of the distribution. This occurs near Pp = 0 since the avenge

momentum of the fragments is so close to zero. Note that this model auto-

matically assumes that the projectile fragment distribution does not depend

upon the nature of the target.

Suppose then that the projectile breaks up into fragments of mass

number Ai so that

I A, = AP
(5.9)

Let the momentum of each fragment be P^. Assume that the distribution of

momenta for the i'th fragment depends only upon P. anc

momentum distribution, "Ur , for a given set of A. is:

momenta for the i'th fragment depends only upon P. and is Gaussian. Then the

(5.10)

To obtain the observed inclusive momentum distribution we must integrate over

all momenta except that of the observed fragment, say A^, subject to thp

condition

(5.11)

•Assume that Pp = Ep where p are the momenta of the nucleons aa ing up the

fragment. Then Pp- = EpJ +
(1|UP1J'PV. Averaging over the momentum distribution

of the projectile nucleons, we find ( 5 p -p )= 0. Hence

**Th1s result follows simply from the assumption that the momentum distribu-

tion is symmetric about the maximum.
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As shown by experiment the average momentum of a projectile fragment in the

projectile frame of reference is very snail justifying to some extent Eq.

(5.11). Hence the single fragment distribution, w(P.), is given by

This integral may be easily performed to yield

where

(5.12;

(5.13)

(5.14)

If we adopt the Fermi-Gas model as a description of the projectile nucleus

where pF is the Fermi momentum.

The experimental results are shown in Fig. (5.5). As can be seen from

Fig. (5.6), the dependence of a2 on Ap and Ap, given by Eq. (5.14), is verified

by experimental data. However that data yields a value for p f (according to

Eq. (5.14)) equal to 190 MeV/c whereas the value of p F determined from quasi-

elastic electron scattering is, for 1 60, given by 225 MeV/c. As suggested by

Htlfner this discrepancy may occur because fragmentation occurs only after the

emission of a number of nucleons. The fragmenting nucleus is not 160 but a

lighter nucleus with a correspondingly lower value of p,-.

The distribution given by Eq. (5.10) can also be used to calculate the

angular correlation between two fragments, A^ and A2, which exists in virtue

of Eq. (5.11). One obtains

-4/'-

This implies a greater probability for the two fragments to go off in opposite

directions. Detenrrination of this angular correlation would provide a test

of the independence hypothesis as formalized by Eq. (5.10). I t appears

however to be very d i f f icu l t to carry out this experiment.

(b) The Nuclear Weiszacker-Williams Method [29]

The Weiszacker-Williams method relates the reaction cross-section

induced by a charged particle to that induced by a distribution of photons.

The electromagnetic f ie ld of a rapidly moving charged particle can be shown

to be approximately equivalent to a beam of photons with the frequency

distribution

i - •*_. i t . . i* d*>
(5.16)

where Z is the charge of the particle and a is the fine structure constant.

The cross-section for a reaction induced by a charged particle is given then

in terms of the cross-section o (ID) for the photon induced reaction by

r<O (5.17)

In this section a theory of the fragmentation of a relativistic heavy

ion projectile will be developed. The expression for the cross-section, which

will be obtained, will have a structure similar to that of Eq. (5.17) so that

the theory will be referred to as the "Nuclear WeiszScker-Williaros" method.

The projectile reference frame will be used. In that frame it will be

assumed that the target nucleus travels without deviation and without internal

excitation in a straight line. This assumption is indicated by experimental

result (a) which demonstrates that the momentum transferred to the projectile

nucleus by the target nucleus is small. It is identical with the assumptions

made in developing the electromagnetic WeiszScker-Williams result. However,



after the target nuclei has penetrated into the projectile a distance, >,

approximately equal to a nucleon mean free path, a strong collision with

large momentum transfer will occur. This collision will not contribute to

the process being considered since the reaction products will fall outside

of the small forward cone where the fracrents are detected. This competitive

process is taken into account by ass-ninj t ' ^ t the probability of finding

the target nucleus intact attenuates during the collision with a scale

measured by the mean free path, >..

I t is assumed that the collision is peripheral. This result is implied

very directly by experimental result (f) as given in E<\. (5.8). The mean

free path, A, used is the value valid on the surfaco region of the interacting

nuclei.

A qualitative description of the consequences of these assumptions can

be given. The projectile nucleons feel a pulse of force as the target nucleus

passes by. The duration of the pulse, t , is given by the scale, A, Lorentz

contracted to \/y, divided by the velocity of the project i le , v, which is

very close to c, the velocity of l ight. Thus

T ~
(5.18)

where
7=

where v is the velocity of the target and E is i t s energy. From the duration

of the pulse one can calculate the maximum* energy transfer Hu- which can occur:

•By "maximum" we shall mean the value of Mu at which the cross-section is 1/e

of fts vaTuB for very small values of (tu>.
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For a target energy of 2.1 GeV/A and x. = 1.75 fm the maximum energy transfer

is found from this equation to be 365 MeV. We see immediately that we are

in fact dealing with a comparatively low energy phenomenon. There will be

other effects to be discussed below which will reduce the maximum energy

transfer to even considerably lower values.

Following an argument of Brown and Deutchmann one can estimate

the corresponding momentum transfer flq. . That momantum transfer is given

roughly by

ft,t x i (5.20)

This is thus a relatively small momentum. For the case discussed above, the

maximum momentum transfer is thus 365 MeV/c. Recall that the Fermi momentum

for a heavy nucleus is about 260 MeV/c while for the l 6 0 nucleus i t i s

225 MeV/c as mentioned above. Relationship (5.20) is valid more generally

as we shall show below; that is the longitudinal moment transfer, mL>
 i s

related to the energy transfer as follows

* ? * = * C J ' " ' . (5.21)

The maximum value of transverse momentum transfer, HqT> is determined

by the transverse scale of the target density, namely JJ, the parameter measuring

the thickness of the nuclear surface. The maximum transverse momentum transfer

is thus

For a 10.6 fm, HqT is about 333 MeV/c.
i , c

In addition to these cut-offs in q» and q. which come from the shape of

the interacting nuclei, additional cut-offs which have a dynamic origin must

be taksn into account. The most obvious of these is the momentum transfer
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which the nucleon-nucleon potential wi l l allow before a substantial reduction

in the amplitude wi l l uccur. From the enpirical expression for the nucleon-

nucleon amplitude [37], we find that the nucleon-nucleon potential produces

a momentum cut-off, for both the transverse and longitudinal components, of

370 HeV/c.

The two factors so far described, the geometric factor and the potential

factor when combined yield a momentum cut-off for both components of about

260 MeV/c.

Finally i t is necessary to consider the abi l i ty of the projectile

nucleus to absorb the energy Hu and the momentum flq. I f the energy is

absorbed by a single nucleon i t w ' l l be very far off the energy shell. I f

i t absorbs the fu l l energy flu i t wi l l have a momentum /2mflu. Tnis however

is very much larger than the momentum transferred which as we have seen is

of the order of flw/c, that is

or

J * ^ < < ! (5.22)

This inequality is satisfied by the flu of interest, that flu < 260 MeV. The

absorbing nucleon must therefore interact with a second nucleon in the projec-

t i l e . This absorption by two nucleons can proceed because i t is then possible

to conserve both momentum and energy. The momenta of the two nucleons wi l l

be opposite and nearly equal so that the total momentum is small but the

total energy wi l l be a sum of the energies of each nucleon.

The probability for two nucleon absorption wi l l therefore depend

cr i t ica l ly upon the correlation length, r , the mean distance between the

f i r s t nucleon and the second. From the uncertainty principle, the lifetime
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of the nucleon absorbing the momentum and energy is of the the order of (1/u.).

This nucleon moves with a velocity equal to /j-jMu and thus covers in the time

(1/iu) the distance /~ . This distance must be of the order of or greater

than r :

(rt

(5.Z3)

If we take rc as 1/2

inequality becomes

JJJE_ t one half of the pion Compton wavelength, this

(5.24)

Combining this result with the geometrix and interaction potential gives a

longitudinal momentum cut-off of 120 MeV/c, of the same order as the experi-

mental value. It also implies a maximum value for the energy which can be

transferred to the projectile equal to 120 MeV. This energy is split between

the two absorbing nucleons so that the cut-off energy for one of these

nucleons is approximately 60 MeV and the cut-off momentum of the order of

60 MeV/c*

The low value of the momentum transferred {^(Wc) indicates that the

•It has been suggested by A. Goldhaber that in addition to the two nucleon

mechanism, there is the possibility of nucleon excitation to form a A.

However the momentum change would then be of the order of 300 HeV/c. This

combined with the other factors would yield a cut-off of 190 MeV/c which

would be too large to explain the fragmentation data. However as Deutchmann

and Brown pointed out, it could be an important mechanism for pion production.
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angular distribution of the nucleons wi l l be roughly isotropic. In the

coll ision of the two nucleons as discussed above, tneir final linear momentum

is Hu/c so that their angular momentum i(t is of the order of (nWc)rc so that

Insert ing a maximum value fo r Ku of 120 MeV and r = 0.7 fm y ie lds

JLi. Of

(5.25)

(5.26)

demonstrating that for nearly all values of Ku the angular distribution of

the nucleon pair w i l l be isotropic.*

These qualitative considerations provide a simple explanation of the

projectile fragmentation as a consequence of the action of the "fringing

f ie ld" of the target nucleus as i t moves past the projecti le. Our principal

conclusion is that the process is essentially a low energy phenomenon. The

energy of the nucleon pairs produced is predicted to have the observed order

of magnitude. These nucleons w i l l deposit energy within the projectile

nucleus and by that means fragmenting i t . The net maximum momentum which

can be transferred is calculated to be of the experimental order of magnitude.

A rough Isotropy is also predicted. Energy dependence in the GeV/A range is

weak since the energy occurs only in the geometric cut-off given by Eq. (5.19).

The cut-off energy is changed by only a few percent when the heavy ion energy

is changed from 2.1 GeV/A to 1.05 GeV/A as observed, since the dynamical

conditions, Eq. (5.23) and the l imits Imposed by the nucleon-nucleon potential

are energy independent in this range of energy. Finally i t should be observed

that none of the cut-off conditions depend upon the target nucleus. This

•Actual calculation shows in fact that this estimate is over-generous and that

the maximum value of l is considerably smaller than that given by Eq. (5.26).
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does indicate that the widths of the momentum distribution of the fragments

is independent of the target. It is obviously a necessary condition for

showing that the branching ratios are target nucleus independent. However

the quantitative calculation we snail report below shows that indeed the

nucleon spectrum and therefore the projectile fragmentation is target inde-

pendent.

We turn now to the formulation of the nuclear Weiszacker-Williams

method. We shall use the projectile frame of reference so that the incident

system is the target nucleus. The derivation is similar to that used to

develop the results for the Coulomb case. As in that case, the target

nucleus is assumed to continue to move along a straight line along the inci-

dent direction. Secondly, it is assumed that the interaction is weak so

that first order perturbation theory can be used. In the present case it is

the long range part of the nuclear interaction, the "fringing field", which

is assumed to be weak. Under these circumstances it can be shown that the

total cross-section analogous to Eq. (5.17) Is given by [29]

where

and

fr

ff - z

fT (~Z,-

f. I, I <k

(5.27)

(5.28)

(5.29)

In these formulas, t gives the transverse momentum transfer and u/v the longi-

tudinal in units of t l ; v is the velocity. The energy transfer 1s u ., with

the projectre being excited to an energy E . The density of these levels

1s given by pg. The target form factor, FT, involves the Fourier transform
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of the nucleon-nucleon potential

9'ok).-

The factor p is related to the transforn : f t ie peripheral target density

corrected for absorption as discussed above, f inal ly , the form factor Fp is

just the matrix element of the Fourier ctyrJonent of the perturbation. Only

a rough evaluation of the factors P and Fp have been made. A quasi-deuteron

model was used to evaluate the latter. This involves the only empirical

parameter which has been used, namely the correlation lengths . The

results are shown in Fig. (5.7), (5.8) and (5.9). In Fig. (5.7) the upper

curve provides the longitudinal part of the form factor | F J 2 ; the transverse

part is given by Fig. (5.8). The lower curve in Fig. (5.7) contains the

additional factor coming from |F p | z . The lat ter is exact in the l imit of

a large projectile radius. For f in i te radii i t is in error at the small

momentum end because of the lack of orthogonality of the crude representa-

tion used for *„ and •]>-. A more precise calculation is needed, but the error

should be small for momentum above n/R where R is the projectile radius.

Fig. (5.9) gives the cross-section for a Ca target and an oxygen projectile

as a function of *-c. I t is clear that a reasonable vi.'ue of A c wi l l yield

the correct order of magnitude for the cross-section. A more severe test is

the calculation of ths branching ratio. Zabek [38] has obtained the results

given in Table 5.2 where he has included the effect of single nucleon transfer

as well as the process described above. The agreement is excellent.

Other applications of the nuclear WeiszScker-Williams method are given

in the second of the references in [28].

Table 5.2

Branching Ratios: Fragmentation of 2.1 GeV/nucIeon 160

TARGET Cu

0.105 i 0.016

0.031 ± 0.003

0.041 4 0.003

0.040 ± 0.006

Pb

0.123 t 0.024

0.036 ± 0.009

0.051 ± 0.006

".034 ± 0.OU

Theory (rc = 0.8 fin)

0.128

0.029

0.040

0.043



Figure Captions

Figure 1.1. {no caption)

Figure 2 .1 . Elastic scattering of 1.04 GeV protons by z(l8Pb. The theore-

t ical predictions for pR = p and pn t P are compared (from

Ref. [7 ] ) .

Figure 2.2. Comparison of experiment with theoretical predictions for the

elastic and inelastic scattering of 1.04 GeV protons by 208Pb

(from Ref. [7 ] ) .

Figure 2.3. The difference between the neutron and proton radii for the

Calcium isotopes as obtained from the elastic scattering of

1 GeV protons and other hadrons (from Ref. [9] ) .

Figure 3.1. (no caption)

Figure 3.2. Decomposition of the imaginary part of the expectation value

of the 1sobar-hole Hamiltonian. r is the free space isobar

width (from Ref. [10]1.

Figure 3.3. The energy dependence of the spreading width potential in the

absence of a spin-orbit term (from Ref. [10]).

Figure 3.4. The energy dependence of the spreading width potential including

the spin-orbit potential (from Ref. [11]).

Figure 3.5. The volume integral of the central part of single particle

potentials. For a definition of U see text (from Ref. [11]).

Figure 3.6. The surface integral of the L-S potential (from Ref. [11]).

Figure 3.7. Absorption cross-section for it - UC as a function of the pion

kinetic energy (from Ref. [11]).

Figure 3.8. Angular distribution for n - I2C elastic scattering for indicated

pion energies (from Ref. [11]).

Figure 3.9. Angular distribution for IT - liZ elastic scattering for indicated

pion energies (from Ref. [11]).

Figure 3.10. Angular distribution for u - l2C elastic scattering for

indicated pion energies (from Ref. [11]).

Figure 3.11. * - 160 elastic scattering at 114 and 240 KleV. Solid lines:

spin orbit term included. Dashed lines: without spin-orbit

term (from Ref. [11]).

Figure 3.12. TT - '•He elastic scattering at 220 and 260 MeV. For significance

of solid and d?shed lines, see caption for F1g. 3.11 (from Ref.

[11]).

Figure 3.13. it - I2C elastic scattering at 180 and 200 MeV. For significance

of solid and dashed lines, see caption for Fig. 3.11 (from Ref.

[11]).



Figure 4,1. The broken line gives the momentum of the A formed in the

reaction Eq. (4.1). The solid line is the differential cross-

section fcr the forward production of a pion in this reaction

(from Re'. [16]).

Figure 4.2. Production of A hypernuclear states (from Ref. [21]).

Figure 4.3. Production of r hypernuclei (presented at the Jablona, Poland

Conference, 1979).

Figure 4.4. Energy levels of l2C (from Ref. [26]).

Figure 4.5. Angular distribution of pions in production of indicated hyper-

nuclear states in 12C (from Ref. [27]. Experimental data from

Chrien, et a l . , Phys. Lett. 89B. 30 (1979)).

Figure 4.6. Angular distribution of pions in production of indicated hyper-

nuclear states in 12C (from Ref. [27]. Experimental data from

Chrien, et a l . , Phys. Lett. 89B, 30 (1979),.

Figure 5.1. Energy dependence of ranges of Sc nuclei produced when protons

of energy E are incident on a 238U (from Ref. [30]).

Figure 5.2. Ratio of forward (F) to backward (B) production as a function

of the

[30]).

of the incident proton energy E . The target is 238U (from Ref.

Figure 5.3. Angular distribution of Flourine fragments produced by 28 GeV

protons incident on Uranium (from Ref. [31]).

Figure 5.4. Angular dependence of the ratio of the multipl icity for the

indicated target nuclei with the multipl icity for a hydrogen

target (from Ref. [32]).

Figure 5.5. The longitudinal momentum distribution in the projectile frame

of reference of the 10Be fragments produced by the fragmentation

of a UC projectile with an energy of 2.1 GeV/nucleon (from Ref.

[34]).

Figure 5.6. Target averaged values of the dispersion a of the longitudinal

momentum distribution in the projectile frame. The plotted

numeral gives the charge of the fragment. The projectile is
160 with an energy of 2.1 GeV/nucleon. The solid line is a

best f i t using Eq. (5.4) (from Ref. [34]),

Figure 5.7, Longitudinal frequency spectrum. The lower curve gives the

combined effect of tnc longitudinal frequency spectrum and the

two nucleon absorption probability (from Ref. [29]).

Figure 5.8. Transverse momentum spectrum for a '•"Ca target in arbitrary

units (from Ref. [29]).

Figure 5.9. The cross-section a ^ when the projectile energy is 2.1 GeV/n

as a function of the correlation length A. •
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