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Cambridge, Massachusetts 02139

1. Introduction

It is, of course, not possible in four lectures to present a complete
survey of thé many aspects of the interaction of energetic hadrons with nuclei.
I have therefore selected a number of topics which suffice to illustrate the
wide range of phenomena of interest, that at the same time involve issues of
central importance that can be addressed using broadly applicable theoretical
methods. The first lecture will consider the elastic and inelastic scattering
of intermediate energy (¥ 1 GeV) protons by nuclei, The discussion will focus
on the determination of the proton-nucleus optical potential in terms of the
elementary nucleon-nucleon scattering amplitudes and the properties of the
target and residual nucleus. The result will be a series of terms for the
optical potential of which we will evaluate the first two j1lustrated in Fig. ;
(1.1) for the case of elastic scattering. In Fig. (1.1a} the nucleon-nuclean
interaction, indicated by a broken line, acts once, the target nucleus remaining
in its ground state. In Fig. (1.1b) the target nucleus is excited by the
first interaction returning to its ground state as a result of the second inter-
action. If ‘nelastic scaitering to a particular final state is under consider-

ation, diagras in which the target nucleus can also return to that state in

.
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the final step of Fig. {1.7a} and Fig. (71.1b) should be included. Hence in
inelastic scattering there are four diagrams according to whether the target
returns to the ground or excited state. The optical potential these represent
are suitably jterated by the Schroedinger equation to produce the elastic and
inelastic amplitudes.

The approximation used to evaluate the potential corresponding to Fig.
(1.1b) is referred to as the closure approximation. It assumes first that the
intermediate excited target states which contribute substantially have energies
which are small compared to the incident energy, and second that among these
there are no specially important states which weuld need correspondingly
special consideration. Our application of this formalism, referred to as the
multiple scattering approximation, will be made to proton-nuclear scattering
for protons whose energies are of the order of 1 GeV. However, the same
procedure should be equally valid for sufficiently energetic hadrons generally,

The second topic to be considered in these lectures is the interaction
of pfons with nuclei for energies in the neighborhood of the A-resonance. In
this energy domain an fncident piom will with high probability be absorbed by
a nucleon, producing the a-resonance and forming thereby a a-particle hole
state fﬁ the nucTeus. In this case, the closure approximation of multiple
scattering theory is not valid for, as we shall see, the a-particle hole state
can act as a doorway state having a particulariy large overlap with the inci-
dent channel. This mechanism proposed by Kisslinger and Wang and deye1oped
by Lenz and Moniz and their collaborators is known as the "Isobar Doorway"
mudel. From the conseguent analysis we have an tnsight into the impact of the
nuclear environment on the properties of the a4 inside nuclei and how ;t dapends
upon the nature of that environment. It is clear that this analysis can be
used to discuss the behavior of other baryonic resonances such as the ;* inside

nuclei and their use as probes of nuclear properties.
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The stable baryons can be used as probes. The A hypernuclei (consisting
of a core nucleus and a A) and the recently observed © hypernuclei provide us
with situations in which the core nucleus can be probed by a baryon of roughly
the same mass as a nucleon, with similar 2lbeit not identical interactions
with fiucleons. But, and this is an important point, the A (or £) does not
need to satisty the Pauli exclusion principle with respect to the nucleans
and therefore can be in orbits forbidden to it if it were a nucieon. This
subject of hypernuclei will be the third topic taken up in these lectures.

As the energy of the projectile increases, it becomes correspondingly
more important to take relativistic effects into account. The importance of
these effects is strikingly revealed by experiments involving the collision
of yltra-relativistic hadrons, protons, pions, kaons [up to Fermilab energies)

*iwimh nuclei., This phenomenon will form part of the fourth topic which will

{‘»‘include as well the collision of relativistic heavy ion projectiles with

,_. ﬁhc]ei. A nuclear Weiszicker-Williams method developed for dealing with

peripheral coliisions will be described.

IT. Proton-Nuclear Scattering in the Multiple Scattering Approximation [1,2]

Formally the theory of multiple scattering attempts to solve the following
problem. Let the potential acting between the incident projectile and the

nucleus be given by a sum of two~body potentials:
Zva (2.1)
¢

where v; is the potential acting between the incident particle and the i'th
nuc z2on of the target nucTeus. 62 is the anti-symmetrization projection oper-
ator limiting the action of the interaction to the Hilbert space formed by
anti-symmetric wave functions describing various states of the target nucleus.

The interaction given by Eq. (2.1} is non-relativistic. The only relativistic
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effects which are explicitly included in the thecry to be described below are
primarily kinematic in nature, taking into account the varijation of mass with
energy.* Since the potential description is used, effects of the virtual
bason fields, nucleon isobars, etc. are not completely included. However,
the formalism can be extended to take these additional degrees of freedom
into account.

Two methods have been used to solve the scattering generated by the inter-
action given by Eq. (2.1). We shall 1imit the discussion here to that developed
by Watson [3] and by Kerman, McManus and Thaler [1]. The other associated with
Glauber [4] is described in many texts [5].

The Lippman-Schwinger equation for the transition matrix J is given by

~ ” ' _él_
J= ;%a f,zﬂ‘— =J (2.2)

where a = E(+) ~K - HN
= target Hamiltonian
K = the kinetic energy operatian for the incident
projectile relative to the center of mass of the
target nucleus
N = number of nucleons in the target nucleus.
Qur goal is to relate J and the two body scattering transitinn amplitude
describing the scattering of the incident projectile by a free nucieon. The
Lippman-Schwinger equation for that transition matrix describing the scattering

from the i'th nucleon is

/
T e ‘ (2.4)

where Kp is the kinetic energy operator for the incident projectile relative

-

* A Klein-Gordon equation is used with the optical potential being treated as

the fourth companent of a four vector.

5.

to the i*th nucleon,

As an intermediate step, KMT intrcduce the many-body operator t defined
by:
Iuvd +27 v

T (2.5)

a

L L
A A

Very roughly, t is given by t; averaged cver the scatterers. A precise rela-
tion between 1 and ti will be given later, Eq. (2.5) can be used to eliminate

v. in the equation for :7 . Writing

Tud=(v-IuZ)T

and noting that

Thrvd-raL

substitution in Eq. (2.2, yields
a . Q\y L
F-(n-TuZ)t +(w-seZ)t o T

or

J= Nr ewtdtT- T2 (zewa+Zrat])

Using Eq. {Z.2) again, one obtains _7 in terms of t:

J=wNT +(wdz £ ] (2.6)
Let ;
J = n% 7 (2.7)
Then
I's eyt 4 g T e
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This is just a Lippman-Schwinger equation where the interaction is an effective
one being given not by a sum of two body operitors vy but by the many-body
operator r. The principal advantage of this transformation is that v is more
clearly related to t; than Ve In the following we shall obtain a Schroedinger
equation whose transition amplitude is _J'. To obtain that result will
need to be multiplied by N/N-1.

One can rewrite Eq. (2.8) as a Schroedinger equation for the wave

function of the system y:

(E-K-Hy -(wT) P=o (2.9)

We now proceed to derive the optical modei potential. Two possible forms
will be obhtained. One in which we are concerned with only a single channel,
the elastic. A second form pertains to a two channel situation, an elastic
channel and say one inelastic channel. In this case the optical potential
becomes a two by twp matrix, the non-diagonal components coupling the elastic
and fnelastic channels. It is easy to generalize the results to include several
inelastic channels. Let P be a projection operator which projects ¥ onto these

reaction channels, the elastic and the inelastic one of interest. Explicitly

PP = [o|E + 13¢1| P {2.10)

where |0> and [1> are the state vectors for the ground and excited state

respectively. Let the complementary projection operator be Q so that

g=1-p , PQ=0 , P2=P , (Q2=0Q (z.11)

Introducing the notation
Tpp = PZ'PJ Zon = rzg

one can rewrite Eq. (2.9) as follows:

(‘.
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[E-% - Hpy = (w-0) TpHPR) = (v-0) T, (RE) (2.123)
[E-K- (Mg - (mDTaaT(@F) = (v-0Tp (PE) (2.120)

Solving the second equation for Qv and substituting in Eq. (2.12a) yields

E-K= (U = Ty = (N0 Tpg e~ Tas JPR=o (2.13)
K = (g - (VD Tag

The effective optical potential is given by the termms in ¢ in this equation.
So far no approximations have been made. We shall however eventually neglect
the effect of the Pauli exclusion principle when the incident projectile
contains nucleons. In that case the error for forward scattering amplitude is
small, {See Watson and Takeda [6] for discussion.) A second approximation
to be employed below and to which we referred in the introduction as the
closure approximation involves replacing (N-l)rqu by an average potential v
and (HN)QQ by an average energy t¢. Under these circumstances, the propagator
in the last term in the sguare bracket in Eq. (2.13) is diagonal in the coordi-
nates of the target nucleus. In this approximation, the “closure approximation,"
any explicit reference to the states in the Hilbert space projected by Q
disappears.

To obtain an optical potential in terms of ti it is necessary to relate

t and t;. Toward this end define the operators ;1

- s A ,
T4t =L 7T, (2.18)

Comparing with Eg. (2.5) we have
a 4 JEZ T
T(=1J:» + Y] =

(2.15)

Rather than dealing immediately with ti we define til to which t1 will reduce

in the 1imit of high energies.

I's
£+ 4 - L+ W 4;

- .

R~

{(2.16)
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We may eliminate v; between these last two equations using a method identical

to that which led from £q. (2.2) to £q. (2.6). The result is

=L ’ A . -1

In order to insert this result into the optical potential it is most
convenient to replace {1/a) by {1/a) where

Xz EY_K-Hy-tnnt

Comparing {1/a) and (1/a) one obtains

/ - _i._‘—-—__:_——(NI)T
o oC ol L3

But then the rather remarkable result follows:

a=—y . G-’
=% X

since ((1- 1)@ = 0. Hescs in Eq. (2.17) one can replace a by a. To the

second order of approximation (in t*) Eq. (2.17) becomes

Z‘f’a ¢ ‘l Zfl d/ ¢ (2.18)

It is important to realize that the second term has as one of its functions
guaranteeing that the final result takes proper account of the Pauli principle
for the target nucleons.

It is inconvenient to continue to carry the operator a . Since
(llN)rti' is a symmetric operator, the (2 in the first term is superfluous.
Hence the operator (N-1)t is approximately given by
W-9T = (w-y {i’/ g‘e[ ¢ wn Z{L,é"zé’ i PR (2.19)

Returning to Eq. (2.13), replacing t by expression £q. (2.19), replacing
(N-l)rQQ by v and (HN)qq by & as described above, and keeping only terms which

-5

are bilinear in :i‘ yields after some calculation

V. ® It I L e

orr A 4 ~ 7y c

L e (e
2 )' ¥

At this point we shall replace ti‘ by t;. Comparison of Eq. (2.16) with (2.4)
permits the calculation of a correction for this approximation.
We now consider two situations., The first is elastic scattering.

(a) Elastic Scattering

For this case P projects only on the elastic channal. Consider the

first term in Eq. {2.20) in the momentum reoresentation:

", ray - - iy ¢ &
Vo B = &eEz4]aF) 220

where the state vector describing the target nucleus in the ground state and
the projectile state one of momentum Kris |OF'>. Bezause of the second term

in Eq. (2.4), t; is generally a non-local operator:

& = 4058, T ) S (40T -f G1 )

[3

where 712 and W° are the coordinates of the projectile, /T and 5." the
coordinates of tha target nucleon with which it interacts. ég% can then be

written

m 'N’Z/d /d‘l [J. J:’f,)f-'}.) —tﬁ J‘
)({-(14,—4 4-4)5(-‘/2.“1) lfﬁ'.*g))e
where p(]) is the density matrix:
0 o5 - - - > - - a1
f (ll-}‘-.') = [‘)L‘(”l""Jlt-t,"-,"..h"“)"é{‘!""'g-v,fl-"ldl;,'")(z‘z'”
X dar. , 47, ‘

We briefly summarize the steps taken to evaluate Eq. (2.22}. It is convenient

), i

xe (2.22)

to introduce the Fourier transform of o

"’.-._‘0"“: - . =, ,
_P"’ M” 7] = (:’;3‘]/6'? DRy f/;,i)-f;li (2.28)

!
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and the relative and center of mass variables 5 =4 - ,';1. and R = -;-(EQ +E)

together with similar coordinates for the primed variables. The calculation

is straightforward leading to /’ - -
v AT cwall) el pap (B B2
X §G-F-(5-5)
where - -,
- -iHP s x’-f_
t(, %) = ][e & (5, Fldg 4f (2.26)

The physical interpretation of Eq. (2.25) is straightforward. The projectile
provides a momentum k' the target 4'. After the collision the projectile has
a momentum k and the target §. The delta function guarantees that the momentum
transferred to the target.'q' -9, equals the momentum lost by the projectile
k- K. ’
To obtain the familiar Rayleigh-Lax expression, we assume that
#(%,%) = £(1-3T)

(2.27)
One then obtains the result
V2 (BT 2 (v-pp(R-R) e (R-R) =V,
(2.28)
where >, e
- - (tieie). X
(-k) = [ e () A7
£ f Frxy o= (2.29)
and
*y o tey ;r -
fEr= prima (2.30)

In Eq. (2.28) we have made the energy dependence of tE(k' - k') explicit. This
amplitude is in fact the full off-energy shel? t matrix. Thus more than the

empirical values of the prajectile-nucleon scattering which provides only the

-
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on-shell amplitudes is required. [n fact, the complete characterization of
the projectile-nucleon interaction is needed. In practice, one has proceeded
by {itting the nucleon-projectile transition amplitude on the energy shell,
generally using a function of kK - k' employing parameters which are allowed
to vary with E. This form is then used to calculate the off-energy shell

values required by Eq. {(2.28). A typical form is
B (-}
Ae) e F

We now turn to the next approximation constructed from the last two
terms on the right hand side of Eq. (2.20). In making this calculation we
shall immediately make approximations Eq. (2.26) and the equivalent of Eg.

(2.27): _
My > Y, o, "y =, > _Tapl) 2
F’ ! {‘n'ianji nn—/uj) = Jl-"a') jfn}-"a)f )(n"l“J) ( )
2.31

) - - -, -, -
rm= /(/‘, ORI L A AT o M) g8 B R

and

Z <o|S5@-01807-5)f0)

PRI ,
f R YZ20 B (2.32)

while
Fri0 - [FrapmGRea-pata
(2.33)
We give the final result for the second order terms:
V;:’r = (ok [ tecovdodun ok’
G [ e R ENFIS R

X CHEeE, -
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where C(Z) the second order correlation* is defined by

CMff, Z) = Fq.3) - PEPT) (2.35)
The third order contribution has been calculated by Ullo. As one might
expect the third order correlation function occurs but in contrast with the
second order term given above there are additional terms which depend upon o
and 9(2) which are of importance for light target nuclei.
{a') A Local Approximation
The potential vgs% is non-Tocal, making its use in the Schroedinger
equation comparatively difficult, albeit with modern computers possible. An
approximate method which replaces the Schroedinger equation with the non-local
potential by a pair of coupled Schroedinger equations invalving only local
potentials has been developed [2]. We shall only quote the results. The
equations have the form:
E-K-vir ) = A4
(€--k-ve ) "= A (2.3)

As one can see from this equation, w(]) b]ays the role of an effective inter-
mediate inelastic state. The construction of the coupling potential involves
the following steps.

Let

X(§,3) =2 CYG 14 F)

(2.37)

*[f approximation £q. (2.31) and Eq. {2.26) are not made C(z) is replaced by

™ ('Z,l:"'; 5 ~pw ()P )

while the t's are replaced by the more accurate t(K,kK'';E) and t(K''',K';E)

respectively.
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and its Fourier transform:

s T, ! { -, Iev - .7 -’I'z')
XX, X)) = (,_’,,:)4}4';/&; X7 (7743 (2.38)

Taking the z direction to be that of the vector k + k', and denoting the

perpendicular direction by #, let

24y = [de faz'X (T2, T,2)
P TN 4 (2.39)
sy [ 1D e

where o -
g -4 (-3
and p - ,
x(@)= o [43: X(0s Lo
where - -,
8- 4 -%

Nith these definitions the coupling potential is given by

At = - £ [ plwecvae ot

One advantage of this procedure is that 1t avoids the common practice of
neglecting the Tongitudinal momentum transfer which would limit applicability
to small angle scattering.

(a'') Spin Effects

The above discussion for V(Z) is valid only when t is spin independent.
This is of course not the case when the incident projectile is a nucleon. The
necessary generalizations have been carried out by Lambart [2] and recently

by Parmentola, We shall not describe their results here. Instead, a simpler
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analysis appropriate when the nucleus can be described by LS coupling will
be presented.

The nucleon-nucleon t matrix has the following form

—

- - - - oA
4= A BZ T CGF)F +DERO-QFESETE

where‘go and Ei are the Pauli spin-operaturs for the projectile and target
nucleus nucleon respectively. The vectors . 6 and g are
2. LT . 4 (kT R =(Fx<k’)

k-4 @ = 2 ! (2.42)
In evaluating the first term in Eq. (2.30), the Rayleigh-Lax term, one takes
the expectation value with respect to the target nucleus. If that nucleus
has zero spin the result as far as the spin operators are concerned is

A+C Ei

-

A1l other expectation values vanish., This result translates into a central
plus a spin-orbit optical potential, a result which can te anticipated from
invariance principles. The physical reason for the absence of any contribution
from the other terms can be readily formulated. Roughly speaking, a term like
830-31 results in a spin flip of the target nucleus nucleon, changing the

state of the target nucleus. In order to restore the spin orientation a second
scattering is necessary. Thus the B, D and E terms in Eq. (2.41) will contri-
bute to VSP% and not to vRL‘ Since the relatively tmall energy change invoived
in the spin flip can be neglected, it is clear that V(Z) will be bilinear in
the density in addition to its expacted dependence on the second order corre-
Jation, It is useful to combine these density dependent terms with the first
order term, Eq. (2.30), so that the remainder will depend only upon the corre-
lation. As we shall see this can be done relatively easily. »

Only a simple example will be discussed. Suppose t; has the form:

LA
~15-
n) - - ral
{, =t " +a.0 ¢ (2.43)
Then
okl VyloR) = (w-t"p (2.44)

The calculation of V(z) will involve the evaluation of the quantity:

Z ol T 7 0 f G+ T G ¢ Nga) [

Mgz L
-)x, (2.45)
- PEIPGI ¢ g0 7 ()
Doing the spin algebra one obta1n5~

&) ptad gy [ AT A
# G ) { LA Yo

Assuming that the target nucleus has zevo spin, and can be described by LS

coupling, one can evaluate the sum

MEFY < €"g1e%G) COmp)- 2 ey e g

or using
PG F s PRIPT) v CVqLT)
M becomes
Mg, q) = 2 LG EGIPR P
+C'”(§ ?)[f ) °g)- 2 €7 €G] (2as)

We can now reorder the terms in VGPT so that v(z’ involves only correlations,
that is the second term in Eq, (2.46). Thus in £q. (2.34) the terms )
t(@)E)C(3,3") are repiaced by [t{O@O @) - (am-ne® @@
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while Eq. (2.28) becames:
) o e v [ 2, e ) ,.,,
Ve = oA e p§) + 30 [dE d B g 40 p PR
=, L P~ (2.47)
X <e” l . | R >
Because the factor multiplying { i"l%l F"') factorizes into a function of
d and of ', the Schroedinger equation with this potential can be exactly

written as a pair of coupled equations as given in Eq. (2.36) with
ra -y
= J3cv) ET0FI PR (2.48)
As one can see from Eq, (2.47) this spin correction is important when
g,
lf e’} [O)]
= f_i_l
-f"fo) F
where kF is the Fermi momentum in units of m, The expression on the left is

a conservative estimate of the ratio of the second to the first term in Eq.

(2.47).
(b) Inelastic Scattering

In this case, the projection operator, P, projects on to the space
consisting of the target nucleus in the ground state and in an excitad state.
The Schroedinger equation now becomes a pair of coupled equations involving
these two channels, the elastic and the inelastic. The diagonal components
of the coupled channel are identical with Vﬁﬁf - J(z% of Eq. (2.20). Approx-
imations Eq. (2.28) and Eq. (2.34) apply to the diagonal elastic channel
potential. For the inelastic channel potential one need only replace o by
the p for the excited state. The coupling potential between the two channels
can be similarly evaluated. Let the excited state be designated by u, the

ground state as pefore by 0, then the coupling potential (VOPT)uu is given by

-17-

Morrieo = W o +(V0)), (2.49)
where
(%v’:: )“ o (N-,){-(é')f;o (§) (2.50)
with 7
Fuo §)= 4 ‘[ (p/e"gd’f@ (2.51)

The second order term is given by

(Vi) = tv-n* [dE fakm £ @R)<T) =By £ (R-T7)

L2.52)

X [B0(ty, @eto)-p (B2Df -1, g drigain]

The bracket replaces the second order correlation function of the diagonal

potential. The quantity 5 '(2)

B (m=n), (z'—Z“))
L T e [#R)R +(zf—:'w).z}.]]a

= ey Ley

These equations have been used by UlTo [2] to discuss inelastic scattering.
It is, for example, possible to extend the factorization procedure of

section (a') to the coupled equations.
(c) Applications

The Rayleigh-Lax potential, Eq. (2.28), has been used to analyze the
scattering of high energy (»1 GeV) protons by nuclei. Other examples were to
be provided by another lecturer. The first two of these is taken from Boridy
[7]. Fig. {2.1) compares the elastic scattering calculated using Vg for two
differing neutron density distributions, LS One in which on does not equal

py» the charge distribution obtained from a Hartree-Fock calculatior using a

e
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density dependent Hamiltonian {8]. In the other o is placed equal to o.
n 0

We see substantial differences at the larger angles of scattering. In Fig. /

(2.2) one can compare the theory using the VRL for elastic scattering and the
Tassie model for the inelastic coupling potential rather than the lass model
dependent result of Eq. (2.50). As one can see, the agreement is excellent
indicating that one can in fact determine the neutron density. This is more
cogently and clearly seen in Fig. (2.3) in which the difference between the
neutron and proton radius is given for the even stable isotopes of Ca [8].
The first three points are obtained from 1 GeV elastic proton scattering.

We see that this difference is determined tc about x0.03 fm.

The effects of short range correlation do not make their appearance until
one gets to larger scattering angles measured experimentally. However, in
order to extract C(z) it will be necessary to carefully estimate the errors
in the calculation. We note that the smaller angle diffraction pattern is
in excellent agreement with the predictions using the densities of the Pb,

Ca and Ni nuclei obtained with the density dependent Hartree~Fock method.

11I. Pion-Nucleus Scattering [10,17]

In the preceding discussion of high energy hadron-nucleus scattering,
none of the intermediate states were presumed to have a particular importance.
The validity of the closure approximation rests unon this hypothesis. We
turn now to a case in which a particular intermediate state or better in
which a few such states are all important. In the present situation, pion

scattering by nuclei, this occurs becayse these intermediate states are collec-

tive and are readily excited by the incident projectile. 1n other words,
these collective states Form doorway states for the reaction.
Isolated doorway states such as the giant multiple resonances, the isobar

analog resonances, nuclear molecular resonances, Gamow-Teller resonances, shape
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isomer resonances and so on are familiar. The collective state responsible
for the doorway state resonance is roughly described as a proton particle-
proton hole state and a proton particle-neutron hole state in the electric
dipole and isobar analog resonance respectively. The relatively long lifetime
of these states can follow from an approximate symmetry as in the case of the
isobar analog resonance or from dynamical considerations as in the case of
the shape isomers (the large potential barrier which inhibits shape changes),
Of course, one should remember that the doorway states are not exact eigen-
functions of the nuclear Hamiltonian. Under examination with sufficiently
good resolution they fragment into a fine structure. This has been observed
in each of the examples cited above.

In the example to be discussed in these lectures, the collective state
of the nuclear system is a A particle-nucleon hole state. This collective
state is formed when a pion strikes a nucleon in the nucleus, the pion being
absorbed by it to form a &4 (an excited state of .he nucleon with J = 3/2 and
T=3/2, ER = 1232 MeV, I = 115 MeV) leaving a "hole". As we shall see, a
constructively coherent a-hole state is formed when the incident pion energy
is in the a resonance region. Although there is a striking similarity to the
particle-hole states menti-ned in the preceding paragraph, there is also a
most significant difference. In the present case, the particle, the 4, is
unstable. Thus, in this process, it becomes pessible for the first time to
directly consider the impact of a strongly interacting nuclear environment on
a particle resonance. The methods, which are developed for the A case, can
generally be employed in considering the behavinr of other particle resonances
such as the Y* inside nuclei.

For the most part many of the theoretical approaches to pion-nucleus
scattering have not examined and exploited the possibilitv of the foré;;iOn
of collective states by the incident pion but have proceeded using some variant

-
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of the multiple scattering theory described in Section II. It was first
pointed out by Kisslinger and Wang [12] that the isobar-hole state is a door-
way state and could be especially important for elastic and inelastic pion
scattering and more generally in reactions in which a formation has an impor-
tant role. The fact that the states formed are collective is the discovery
of Hirata, Koch, Lenz and Moniz [10]. It is their work, ac well as the results
of Lenz, Horikawa and Thies [11] upon which I shall report in this section.

As a first step we shall develop an expression for the resona.t pion-
nucleon scattering, a representation which will be useful for the later
discussion of the pion-nucleus scattering. The projection operator method
will be used [13,14]. The eguation we wish to solve is the Schroedinger

equation

HE = &
(3.1}

Let the operator P be a projection operator which selects at least the incident
channel as well as other states of the system excluding that one which will
give rise to the resonance as we shall see. Let the projection operator

which selects at least that state be Q so that

Pe Qs |, PP, Qg , PR =0 (3.2

Eq. (3.1) then becomes a pair of coupled equations for Py and Q¥

(- Hpp)(PE) = Hoo (@ E) (3.32)

(E-tag)(QE )= Hap (PD) (3.30)
where

“pp =P HP, HPQE PHR <tc. -

From Eq. (3.3a) it follows that the ;7 matrix is

-
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f - +
Ty = ]ﬁ’)* <4?”J”"* a &> (3.4)

where ¢$"J satisfies the homogeneous ‘equation

(E - Hep) 4}”=° (3.5)

with the indicated boundary condition. ;7 ﬁ?) js the scattering [or reaction)
amplitude generated by HPP' The prompt non-respnant pracesses will be contained
in this term. The wave function v§+) is the soJution of Eq. (3.1) with the
appropriate incident wave indicated by the subscript and outgoing wave
boundary condition indicated by the superscript.
To determine Qw$+) we return to Eq. {3.3) "solving” Eq. (3.3a) as follows:
BN R — o -2 1
o (]
7€ 4: £~ Hpp )
where ¢$+) js also a solution of Eq. (3.5°. Inserting this result into Eq.
(3.3b) yields
t P .
»_'gz—f'*ﬂwq - Har Tl Hea )ﬂid?) = Hop ™
(] d e
Inverting, making use of the fact that Q‘cantains no open channels, and

inserting the result into Eq. (3.4) yield::

_ () - L] ! (es

= L+ H H

j.f( 'ft <¢¢ l q E— h‘aq- i"ap 1) HPQ QP 4; (3_5)
ET-Hyp

This expression is completely general. Let us now specialize to
pion-nucleon scattering. Then the inciden: system will be designated by the
subscript, =n . The interaction HPQ will connect the = + n system with the

A (and other resonances). In the notation ~f HKLM,

Hpo = Frma 4Qr‘j’-,fd (3.7)

and

Z = ”Q f H
: Eeltyy T (3.8)
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The first term ],‘:) just gives the ncn-resonant scattering. Assuming that
only one resonant state, the A, i< important an¢ that its wave function tN

is a solution of

(EA --ao"Z)"e =a

Eq. (3.6} becomes

_J&l = -7 (p)’-

[3

0+)

<‘é{;u f ?nma ‘Pa).(‘/'; l 3:~v4 ¢:‘,nm
E-T, - <gIZ %S

Mote that the "self energy" operator £ is complex and therefore, in the deno-~

(3.9}

minator of the second term, (wA[}:[wA> will shift the resonance energy and
will also add an imaginary term proportional to the width of the resonance.
However, note that since t is energy dependent, this width will have an energy
dependence. This is of some importance because of the substantial width of
the resonance and results in some distortion from the Breit-Wigner form. Eq.
{3.9) needs to be revised because of the requirements of special relativity.
We shall return to this point in the course of the development which follows.
We turn next to pion-nucleus scattering in the ispobar-hole doorway

approximation. We employ the methods of my paper with Kerman and Lemmer [14].
First we separate out the doorway state component by further partitioning Q

space:

QR =D+ (3.10)

where D §s the projection operator for the doorway state space. Secondly, the

strong doorway state assumption is made; namely that

HP o = "’lgf

k4 (3.11)

but HPD and HDq and their adjoints do not vanish. This assumption states tnat

the HamiTtonian connects the open channel subspace projected by P only with
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the doorway states as is illustrated by Fig. 3.1.
For pion-nucleus scattering, the J matrix given by Eq. (3.6) becomes ,

after inserting assumption Eq. (3.1])'

P) ) { 4 “P")
'7”” = J"” + <4‘;/""'l HP’ ® E‘“a&‘ W:; ne O (3.12)

where | .
* o Ho——— Hra = Hyp L——Hip = W,
WQ& = QP Et {an be E"Lupr b (2.13)

i I 3 R
We now must calculate D[1/(E HQQ)]D where HQ[) HQQ + HQQ' To this end

let q‘en L Q"
E- Haq (3.14)
or .
(E—-HQQ ) QQQ =@
Multiplying from the right by D yields
€- Hao)Gap =D ] (3.15)
Mu1t1p1y1:ng from the Teft by D yields the equation
(E-ﬁp,)q” = 'J:I'D? Gp +P (3.16)
while multiplying Eq. (3.15) from the left by q yields
(- ﬁ,;“_) 61.p = '!:‘l%o G”
Inverting this equation and substituting in Eq. (3.16) yields
S0 = E i~ Wi - (37)

where
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4 {
W, - HD — b (3.18)
i TE-Hyq !
Hence
) (+)
va = .7” + <4’,¢,n~$q” 'EH—“‘—C VP%n,J 3.19)

This is the fundamental formula with which we shall work. The imaginary
parts of gquantities HDS anu NDB are proportional to the escape and spreading

widths respectively.

It is now necessary to fill in this expression taking the Pauli-blocking
effect and introducing the necessary modificatians required by relativity.

Let us start with HPD' In the isobar doorway madel this is given by
g, the vertex function described above which converts a nuclean in ;he target
nucleus by the absorption of a pion. This interaction is summed over all the

target nucleons taking due account of isospin. The matrix element of g is

Ey(§)e <B(8,2algd Uzmary (3.20)

where 2, is the ground state of the target and ¢ is the state produced by pion
absorption where § is the pion momentum. In an independent particle model

dR oLt (uf,)} I7) (%)

@uv

n (g = (3.21)

where y_is the initial nucleon wave function with momentum X, ¥, is the a
wave function with momentum (K + Q) in units of K. The momentum R is the
momentum of the pion relative to the center of mass of the nucleon plus pion
system: .
o i - f—(::};w(’e*i-)

(3.22)

where w_ 1s the pion energy/c?. The quantity § is

F l\(ul);'?r (3_23)
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where +* is the coupling constant modified by some kinematic factors, h is

the vertex form factor parametrized as follows

fmvé 2 A
hix?*) = . ~ _ -1
‘—""w" e W™ with A = 25,5 and a = 1.8 fm

s is a vector operator connecting the spin 1 and spin g systems as follows:

KEma [ BT g may o I <l dmmal 2oms) €

where
-

€, = 3 (:"(“";)/'E ) Ea=#
where ;, ;, 2 are unit vectors in the indicated directions.

A second problem is connected with the propagator (E - HDD...)'1 in Eq.
(3.19) which needs to be given an appropriate relativistic form. This could
have been accomplished at the beginning of our analysis by replacing the
Schroedinger expression (E - H) by the quadratic Klein-Gordon operator and
subsequently employing the projection operator analysis. The energy denomi-

nator in the transition amplitude for the pion-free nucleon resonance is then

not that given in Eq, (13.9) but is rather D! where

?-J—w;+ [dg%",t(?;kn.) M

= Glii-cE (3.24)
where .4 1is the square of the total energy and { 4 - mﬁ)" is the "bare”
operator while the integral is the "self energy” correction, with the imaginary
part proportional to the width.

In the expressiaon for pion nuclear scattering we replace (E - HDD) by
D(E - HA) where HA is the Hamiltonian for the a-nuclear system

”‘ =7;4VA J-IJA-‘ -

with TA the kinetic energy and VA the potential energy of the a4 inside the
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nucleus, while HA-] is the Hamiltonian for the rest of the nuclear system
consisting of A-1 nucleons. HKLM use a shell model potential for VA.
In application, D(E - HA) is linearized:
Dle-Hy)=D(E) ~ M) Hy = Ny E-B v i T - YOI Hy ) (3.25)

where
70/95 = Na Y(E}

Next, consider HDE’ Eq. (3.13). We again replace the propagator by its

Klein-Gordon form and therefore write fr' . )
e () Faan (R
OV S Y f Syt =t
N [wha,»de &P (. Byl (3.26)
M.

where F is given by Eq. (3.21).
To evaluate the spreading width ”DE’ we adopt the optical model strategy
of replacing it by an energy average and then using a phenomenological poten-

tial. Upon the assumption that the major source of the spreading width is

the absorption reaction

d . —» W o

HKLM parametrise ”DE by W = VOpOL)/po where p is the matter density and V0 is
a parameter. As we shall see Horikawa, Theis, and Lenz found it important to
include a spin-orbit term. They use

- = o)
Wz w,prm) +2 L2, Vs pne

- nuat

. {3.27)

where y and V(S) are empirical parameters. For future convenfence w2 write

Eq. (3.27) as follows:

W=V 4z z, 'Ei Ws

27~

Finally, an ad hoc term is added to take the Pauli-blocking effect into
account. Pauli-blocking refers to the forbidden decay of the isobar by pion
emission in which the nucleon ends up in an occupied single particle orbit.
The free width in D(E), Sq. (3.27), must be corrected for this effect. The
correction in the independent particle model is given by

Farw L‘_‘_’_E:.'LQ—-———

(A (‘n’)"lSW’A n >'—_ M’ Z /Gﬂ'}l [F (ﬁ.. € )____ ]_(.) deg (3.28)
where € and ¢ ar. the hole energies.

With the introduction of éW, Eq. (3.19) becomes

. ) { - o
J J l‘F l% 35,"-! f‘l 3.29)

TR D) WE Hy - WY - W= B,

where the matrix elements of all the operators which occur have been defined
above.
The doorway states are introduced as the eigenstates of the denominator

of the propagator:

Die)-vte)H, - w;f, - Wyt - EWeo|D) < (F-Ea e 7 Ef)m} (3.30)

S0 that o
J ](Fl Z £ {,ﬂ"u! 3"*AID><I"|%A,"~| ﬁﬂ.._}_

E-6,+ L -§& (3.31)

The calculation of 7] 7N thus requires the determination of the solutions of
Eq. (3.3D) for the doorway states and then substitution in Eq. (3.31). The
operator in Eq. (3.30) contains VA which is taken to be proportional to the
nucleon density by HKLM with a depth of 55 MeV. The only parameter {complex!)
which remains, omitting the spin orbit term in Eg. (3.27) is Hu.

The numerical results revealed a remarkable feature; for example, in the

calculation of the transition amplitude for the scattering of 140 MeV pions by

160 for the 0 partial wave. Harmonic oscillator wave functions were used.
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The a-hole space was 17 dimensional, The contribution of each of the doorway
state solutions is presertzd in Table 3.1. One irmediately sees that one
state D] pravides by far the largest cantribution to the transition matrix.
Moreover, the(matrix e]ementl%f the interaction with the incident channel
defined by

AR AN

ol Gapn Gy e Ko

turns out te be 0.9. D] is thus a collective state similar to those seen in

(3.32)

the giant multipole resonances.
The fact that the overlap as given by Eq. (3.32) is so large suggests

that it would be more economical to use a complete set based upon
0+)

‘lo g2 9a,0m IL(J",nu (3.33)
rather than upon harmonic oscillator wave functions. There is a standard
procedure developed by Lanczos (see Morse and Feshbach [15], p. 1155) for
developing such a complete setu

2
Let 3‘= Yle) “A + Méd *‘A&"'SMGD
Form the state d] fram d0 as follows:
<df K ldo) d
d = Hd, - ——..—;"s" o {3.34)
<d, | o
Note the orthogonality:
—~
<4, 1) =» (3.35)

State d2 js formed by operating on d] and orthogonalizing with respect to d]

and dn: ~ -
0\1 = 1‘ A. - <d' l...ﬂ ' d">Al - (a’b 1 f{ Id. dc .
<d 14, <o 1dap

(3.36)
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More generally

T (e | 5 il

&y 35

<o [#lded,
T ey

Not only is du explicitly orthcgoral to da_] and du-Z’ but it is orthogonal to

du_nmfor ~ < a as well, The proof is left as an exercise, It also follows

from Eq. (3.37) that the chairina condition is satisfied by the set da:

Cdy | H Y=o b fo,na, (3.38)

A

From Eq. {3.29) we see that for elastic scattering for a given partial

waye one can write

J =

nea

& 1G> [ ¢datdoy
<414 >/ (3.39)

where

!
- —
q = D-H4 {3.40)

and

D = D)

Our problem is thus reduced to a calculation € (; , or more specifically to

expressing G in terms of the set d . Del.'e the matrix element of G tobe

i;, = '<;Et 16 {ay

(3.41)
In terms of this definition Eq. (3.40) can be rewritten
24, - FAIHI4p) G, =k
Using the chaining condition, Eq. {3.38), this equation becomes B
O-H) Gop = Bt Gepo 4 Foy Gawe THe )
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where

2‘(-\',; = (A HIdg)

Let & be the value of o for which § -, ;= 0. Eventuaily we shall let
L4
a + =, Then Eq. (3.42) becomes

“f

(D - #;; ) G = ”-?,:-/ G'-/,a

ito

or

q’—“ = ! #E,E-l qi-/,o

Substituting this result in the equation for (; 5-1.0 yields
»

!
(ﬂ- #i-',a.. - ;‘i‘r,i >2- ”&1 #;fz-') q;-l,ﬂ -r#;,_":-; ;E_.’o

Therefore

/ A
q’i-l = 7 ﬂ_ - ﬂ ! _ #‘-‘l'_‘ q;-z,c
A T Y] A, o T-Hez
ool

ce, ot/
Repeating this process successively and thus reducing the index of CF by one

unit each step one eventually arrives at the final expression in the form of

a continued fraction for
for Gy

qﬂC = D-4,- oz

D- 1‘:. - J{’;l#‘: #u #u (3'43)

The zeros of the denominator inm Eq. (3.43) will yield the eigenvalues g5 of
Eq. (3.30).

The efficacy of this procedure is illustrated by Table 3.2, in which the
results obtained with N iterations are compared with diagonalization using the
harmonic oscillator space. The pion is positive with an energy of 163 MeV and
the target nucleus is 160. It is clear that the process is rapidly convergent,

and that even the first term, N = 1, gives excellent agreement with the exact

&= oW N

LT- T - I N -

10
1
12
13

15
16
17

Table 3.1

t.

1

-.124 + (675i

.043 -
.034 -
.025 -
-.005 -
.004 -
.001 +
-.001 -
-.004 +
.002 -
.002 +
.000 +
.001 +
.000 -
-.000 +
-.000 -
.000 -

.0661
L0271
L0161
. 0087
.007i
.003i
.003i
.002i
.0014
L0011
L0014
.0011
L0011
. 0001
.000§
.0004



1=

2
3
"EXACT"

Res

.155 + ,490i
.159 + 3724
.154 + 3814
.154 + 3814

Table 3.2

e (MeV}

- 154,54
- 138.57
- 138.01
- 138.0i

.060 +
.062 +
059 +
.059 +

. 2807
2461
25T
.250i

e (MeV)
13.9 - 14.4i
2.7 - 1.7
-3.4 - 22,71
-3.5 - 23.7i
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result. These examples refer to one of the eigenvalues and eigenstates Di'

The number required toc obtain the total for the ;7 matrix for each partial

wave is generally very few i1 number. In this case two states were required
for an accurate description of the 4 transition amplitude and only one for

the 0” partial wave.

The contribution of the various terms is shown in Fig. (3.2) in which
the imaginary part of the expectation value of various terms are plotted as
a function of pion energy. We see that the dominant term originates in the
escape width. The Pauli term does reduce the free space width while the
spreading width is of the same order of magnitude as the free space width.

In HLKM, only the first term in the expression for the spreading poten-
tial W, Eq. (3.27) is used. The resulting empirical variation for VSP(O) =
p(0)W(D) is quite severe as can be seen from Fig., (3.3). Horikawa, Theis and
Lenz include the spin orbit term as well. The results are shown in Fig. (3.4).
As we see, the Re HD and the Im HD are now roughly independent of pion energy,
a much more satisfactory result. Table 3.3 gives the strength V'Eg) and range
parameters u for the spin orbit term. .

In Fig. (3.5) and Fig. (3.6) the volume integral of the central term in

and the surface integral are given for differing values of the mass number

A and compared with values obtained for the nucleon-nucleus interaction:

4 o
A = lm/(A—l) /Aa‘(vé+ 7vy) S = [A’u ni{_‘f"-)

The comparison of the results of this analysis as carried out by HTL
with experiment is shown in the following figures (Fig. (3.7} - {3.13)).
Fig. (3.7) compares the computed and experimental absorption cross-section.
Fig. (3.8), (3.9) and (3.10) compare the calculated angular distribution with

experiment for pon energies of 120, 148, 162, 226, and 260 MeV. The agreement
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is good except for the back angles particulariy for the 162 MeV case. Figures

(3.11), (3.12) and (3.13) compare the scattering from €0, “He, and 12C at

the indicated energies. From these one can see the very large improvement

which results because of the inclusion of a spin-orbit term in Eg. (3.27).

The solid line is the result of calculations with, the broken one without, Table 3.3
spin-orbit terms, We see the important «ffects at or near the minima in the

angular distributions, filling in or a deepening under different circumstances.

Some discrepancies therefore remain, and one would eventually require w{fm2) Vfg)(ﬂev)
a microscopic calculation of the a-nucleus interaction as contained in H . '
o . . - “He 0.25 -3.6 - 1.8i
rather than the present semi-empirical treatment. Nevertheless it seems fair
to say that the elastic pion-nuclear amplitude is well understood, and that n - 12 9.35 10 - &i
one knows how to calculate the behavior of the A-resonance inside the nucleus.
n - 180 2.3 =10 - &i

Obviously the theoretical . treatment of various processes in which the pion is
involved must take advantage of this fncreased understanding. The doorway
states need not decay only into the elastic channel. In other words, inelastic
scattering, pfon production or absorption, photoproduction and radiative
capture may pass through the doorway states revealed by the above discussi09
of elastic scattering. :

Finally, returning to a theme discussed earlier, the same methods developed
in tkis section should also prove useful for other baryon resonances such as

the Y* which is produced when a K~ s absorbed by a nucleon. Moreover, it may

also be 3 useful way in which to treat the familfar giant resonances.

Iv. Hypernuclei [16]

We turn next to the case where the baryon probe 1s the relatively stable
strange particle, the A, or possibly the . This is to be contrasted with

the sftuatfon discussed in Sec. [II, in which the baryon is the much less

stable aA.

C e ——— e e - e
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Although A hypernucl:‘ were known from experiments involving emulsions
for some time, it was not until the use »f a nearly recoiless method of pro-
duction in the pioneering experiments of Bressani et al. [17] and Povh et al.
[18] that hypernucleus physics attracte! th= attention of the nucClear physics
cammunity, The recoiless method [19] is based on the observation that in the

elementary pracess

k--rm. — /\coﬂ: (4.1

when the pion is observed in the forward direction a kaon momentum exists for b 0 400
which the A% produced is at rest. This result is illustrated in Table 4.1
and Fig. (4.1), Fig. (4.1) also contains a plot of the cross-section for

9. (4.1) g. (4.1) alse s aplo t s _— 250 "

forward production of pions according to process Eq. {4.1) indicating some

advantage in using kaon beams whose momentum is not exactly at the critical

540 MeV/c.
It would be expected that the production of A hypernuclei will be

enhanced when the kaon momentum is rear 540 MeV/c and the pions are observed

in the forward direction. The reaction is
-~ Z z -
K+ "A — A+ % (4.2)
Because of the small momentum transfer a neutron in the target nucleus is

simply replaced by a lambda. By observing the spectrum of the pions one will

be able to determine the spectrum of the hypernucleus farmed, subject of course

to whatever selection rules apply at 0°.

Similarly © hypernuclei can be formed. The elementary interactions are
K4m — Z° + L {a)
Kep —» T° on” (b) (4.3)

kep — I " ()

Table 4.1

540

700

0 40

1000

75

2000

130

MeV/c

Mev/c
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Note the possible formation of a =" which has an enhanced detection. The
incident kaon beam generallv contains many negetive pions and negative pions
are produced by the decay of the K~ in flight.
Examples of the formation of A hyperruclei [21] are shown in Fig. (4.2).
Relatively sharp states have been observed. The formation of I hypernuclei
is indicated in Fig. (4.3) [22]. The oeak corresponding to the I hypernucleus
should occur at the same excitation energy whether the process involves the
production of a n~ or a 'rr+. This is certainly the case for at least one of
the structures involved. In these experiments Py = 720 MeV/c while tha momen-
tum transfer is 130 MeV/c. & states were seen in %Be and 7Li as well.
I shall not attempt to summarize all the experimental and tieoretical nucleus
issues of interest. Two particular points seem to me to be especialiy interesting. r%:p
(a) The first refers to the question: Why are there I hypernuclear
states in gBe. gLi, and 1%C which are relatively narrow? The existence of
these states 15 a surprise because of the expected rapid conversion to a A
hypernucleus via the strong interaction process £ + n » A + n. An estimate

obtained by Batty is confirmed dy Gal and Dover [23] for the case of nuclear
matter. In that case the width is given by

M~ ol S5(Rg-T P> (4.4)

where 47 is the velucity of the £ - p pair converting with total cross-

section, 9 The bar represents the average over the Fermi gas used to

describe the A hypernuc‘leué. The wave function y is that of the £ hyper-

nucleus. The results are given in Table 4.2, _
According to Gal and Dover, the reduction in the conversion rate from

that calculated using Eq. (4.4) is a consequence of the fact that the elemen-

tary process, £ + n + A + n, is dominated by the T = %, S = 1 channel

(Engelmann [24]1). One should therefore replace (wl:‘ﬁ(h’z - ﬁ,-)]w) by

Table 4.2
rT o= 22 Mev

Li 9Be

6.8 8.8

12¢

15.0

16g

14.7

MeV



s ' (4.5)

where the spin and isospin factors project upon the triplet spin and T = %
isospin for the (r,n) pair. Note that tz is chosen so that tg = 2.

Under the experimental conditions the states most likely to be excited
at 0° for the 12C target are given in Table 4.3, In this table, the nucleon,
L configuration is given together with the possible isospins of the final ¢
hypernucleus. The quenchiing factor, @, that is the factor multiplying the
values obtained using £q. (4.4) given in Table 4.2 which is generated if that
expression is replaced by Eq. (4.5) is given in Table 4,4. From this analysis
one would expect that only the T = 3/2 0% state should be visible with a
width given by 0.4 x 14.7 ~ 6 MeV. Presumably this is the state seen in Fig.
(a.3).

Dover and Gal have carried out similar calculations for ?Li and 2Be.

_These are summarized in Table 4,5, where TH refers to the isospin of the core
nucleus to which the £ is bound. The twa lines in the %8e case correspond to
the assumption that the spin of the core nucleus is zeru for the upper line
and one for the lower line. In 7Li one would expect the T = 2 state to be
observable while far %Be, the levels seem to be SN =1, TN =1and T = 2 for
the upper peak and SN =0, TN =0, and T = 1 for the lower peak.

Predictions for an 160 target are given in Table 4.6. At least one
state should be observable. If the £ spin orbit force is weak, two would be
expected. Clearly it is of great interest to understand the mechanism
responsible for the nmarrow I hypernuclear states and in particular to see if
the correct one is that suggested by Dover and Gal. That understanding will

reflect itself in a greater insight into the nature of the transition

T+tn-+Atn,

Table 4.3
a 0*(p3)ss Py, () )
32 P32 3y2* 172
12¢(",n") T=1/2, 3/2 T=1/2, 3/2
Cle ) T=32 T =32



Table 4.4

————i

T=1/2 3/2 T=1/2 372
Q 1.42 0.41 1.17 0.86

(TyoT)

(0,1)

0,92

i

(1.0)

2.65

(1,1)

2.00

Table 4.5
Tower
peak
(1,2) {o,1)
0.7 0.78

upper peai

©n 0,0 0.0

1.22 1.593 1.64
2.01 1.29

(1,2)

1.02
.70



-
0{p3,2273/2)
V2 32
1.32 0.56

Table 4.6
with strong £ spin orbit
coupling
-1 1 3
{py,2:P1/2! Sg Py
172 32 V2 372
1.19 ¢.81 1.44 0,30 1.06 1,086
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{b) 1In this second section on hypernuclear physics, [ wish t2 pay
especial attention to the role of the A in the hypernucleus as a probe of
nuclear structure [25]. The conditions under which the A does act as a probe

can be formulated as fullows., A O'th oruer approximation for the hypernuclear

wave function is

te) () LP“"')
=X (4.6)

where xé“ is the single particle state of the », vy is the wave function for
the nuclear core in the state a. Consider the first order correction to this
zeroth order wave function as given by first order perturbation theory. This
correction will involve excitations of the state of the A and that of the core.
Since the single particle levels are separated by much greater values of the
energy than the core excitations, the latter will dominate unless of course

some special conditions reduce the value of the excitation matrix element.

Assuming this does not occur the expression for LA good to the first order

'-’;“‘",\\L “p{:w“> '-L {tore)
Ea R Eg, r o-..} (4.7)

has the form:

g - ‘x_‘r"){-.l-“(ﬁ'ﬂ‘, Z '4

da
as

where
fA) fA)

\4 = < Xlt I \‘m ‘ x‘ > (4.8)
The probing potential acting on the nuclear core is, in this approximation,
given by the residual A-nucleon potential average over the A density. As a
consequence the energy levels and the electromagnetic transition probabilities
will be altered. It is clear that this effect will be most dramatic when
wécore) are low lying collective states. That this description is qualita-
tively correct is demonstrated by Gal and Dalitz [26] more careful calculation

of the levels of 1;C as seen in Fig. (4.4). Moreover, the DWIA calculations
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of Dover et al, [27] shown in Fig. (4.5) and Fig. (4.6) give excellent fits
to the angular distribution of the reactions 3C{x",7 }!2(*. Their magnitudss
must however be reduced by the indicated factors. The 1~ state is clearly
resolved. In Fig. (4.6) one assumes that the measured excitation is a sum of
the excitation of the 0F and the two 2 states. Note that the contribution
of the sP3s2 and P12 orbitals are includsd. Tha Jevels associated with the
Tatter are shown in Fig. (4.4). At small angles the angular distribution is
dominated by the o* state. The presence of the 2* contribution is indicated
by the shoulder in the experimental angular distribution. The need for sub~
stantial corrections to the magnitude is not surprising in view of the rough
character of these calculations.

For heavier nuclei one can expect the A to madify the collective para-
meters such as the radius or the moment of inertia. The modification of the
radfus is similar to the isotope shift in atoms. The change in the parameter

A in the formuTa R =~ AV3 from its A free value 2, 1is given by

2 1-, B, +1 B 64)‘]
2 A. - S —————p———
EA (4.9)

where A is the mass number of the core, K is the nuclear compressibility,
B, and B,(A) are the binding energies for the A for A infinite and for A
finite. Taking K = 150 MeV, (® - p,)/a, for 158 = _026. It is anticipated
that this effect would be visible in the Coulomb energies of hypernuclei once
the nuclei are sufficiently Targe so that the charge symmetry breaking force
becomes unimportant. The fnfluence of three-body forces has also been
neglected in deriving Eq. {4.9).

As a second example of thz effect of the A I shall discuss the moment

of inertia of a hypernucleus using the deformed harmonic oscillator model.

fhe changz in the moment of fnertia due to the A is given by

AT = MRS [(%'F"" J(sgawyer) ’*Jr;?? (*rf < )(wru,}:{um
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where as usual R and 3 are defined by the equations
0
f 4 ’ =
et R(mJZp) R (-3 f)

so that 8 measures thz dsfarmation. The valuas of ny and n, give the quantum
numbers of the A orbital. The first term in En. (4,10) is the so called
irrotational flow term so that there is an czocortunity to ohserve this term
directly. One should note that Eq. (4.10) does not give the total change in
+he mrment of inertia since the defaormation & will change bucause of the
presence of the A,

It should be quite clear from these examples that the A will change
the properties of the core nucleus. It is not so clear that it will be exper-
imentally possible to observe the spectra of the appropriate hypernuclei.

Looking for the y-decays seems to be the most attractive possibility,

V. The Collision of Ultra-Relativistic Hadron Projectiles With Nuclei [28,29]

The collision of ultra-relativistic hadron prejectiles with nuclei
appears to involve reaction mechanisms which differ gualitatively from those
which govern the three types of reactions we have discussed in Sections II, [II
and [V. We will be dealing with projectilesc whose energies are at least
several tives the rest energy of the projectile. Not unexpectediy, special
relativity plays an important vole. But in addition the interaction between
the incident hadron and the nucleon n the target nucleus is qualitatively
different in nature from the interaction which prevails at a lower energy.

The evidence for these remarks is presented in (a).

{a) We present first the rather startling results obtained by studying
the collision of high energy protons with nuclei. Generally, the target nuclei

are heavy, e.g. U or Au, the particles detected are fragments of the target,

.



~39-

and the means of detection are radiochemica) although one of the experiments
to be reported employs counter detectors.
The phenomena of interest are illustrated in Figs. (5.1), (5.2) end (5.3)

[30,31]. In the first of these the average energy of a recoiling f.agment

in the laboratory frame of reference formed in the reaction p + U is plotted.
We see that beginning at a few GeV as the proton energy increases the average
fragment energy decreases. This is the opposite of what happens at lower
proton energies where an increase in proton energy is reflected by an increase
in ffagment energy. The fragment angular distribution as indicated by the
forward to backward ratio, F/B, of Fig. (5.2) becomes more peaked in the forward
direction as the proton energy increases from 1 GeV till about 5 GeV. For
greater proton energies the angular distribution has been obtained at 28 GeV,
In Fig. (5.3) we see that the angular distribution of the Fourine fragment is
rather flat with a peak at 70° in the laboratory frame. These results imply
that collisfons of the proton with the nucleons inside the nucleus do not
result in energy being transferred to nuclear degrees of freedom, The first
surmise is that in fact the internal degrees of freedom being excited are

those of the nucleon and that the excitea nucleon does not in fact transfer

its excitation to other nucleons in the form of kinetic energy.

It 15 in fact well known that, at Teast at high energies (>60 GeV}),

this process of nucleon or more generally hadron excitation is dominant in

the kinematic region corresponding to non-peripheral reactions. The evidence
is provided by measurement of the multiplicity of high energy {8 > 0.7)
charged particle production. These measurements show tpat the numbar of such
particles rises very slowly with increasing mass number as shown by Fig. (5-4);
and Table 5.1 [32]. No cascading is indicated as cascading would result in
a much more rapid rise in the multiplicity with increasing mass number. The

explanation is again that very 1ittle energy is deposited in the nucleus.

Table 5.1

The average multiplicities of relativistic charged particles

produced in 100 - GeV/c hadron-nucleon collisions.

Jarget Projectile Average Multiplicit
¢ o 7.86 + 0.15
Kt 6.92 + 0.33
p 7.72 £ 0.16
Cu a 10.29 + 0.26
K 8.89 £ 1.10
p 11.00 + 0.32
Pb a 13.21 + 0.30
K* 12.92 + 0.79
P 14.75 = 0.38
+
] . 14.57 + 0.39
'y 12.93 £ 1.33
p 15.94 + 0.50
Hydrogen u+ 6.62 + 0.07
(bubble chamber) 'y 6.65 + 0,31
p 6.37 + 0.06

From Ref. [32].

T
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Empirically the multiplicity ratio, R, the ratic of the multiplicity in

nuclei to that in hydrogen is given by
R=1+40v-1) {5.1)

where v is the mean number of collisions.

The explanation is quite interesting. Upon the collision of the incident
hadron with a target nucleon, the hadron and the target nucleon are excited.
As a consequence the wave function for the excited hadron can be decomposed
into a Tlinear combination of states each with its own characteristic lifetime
To for decay into incident hadron plus a number of pions. This lifetime is

of course given in the rest frame. In the laboratory frame the lifetime is

= 5% (5.2)

where E is the total kinetic energy of the state with lifetime T There can
very well be several ro’s corresponding to the many excitation possibilities.
However a rough average energy E can be obtained by assuming that this new
entity, the excited hadron, is at rest in the center of mass system of the

hadron pTus nuclear nucTeon. Under thesé circumstances

— 4

Efm = (£, [7mc)* (5.3)
The corresponding value of 1, T, is

T e (B frme) e

The critical value of T is given by ¢T = & ~ A where A is the mean free
path of a hadron inside a nucleus. If ¢ is larger than A, the excited hadron
will not have decayed appreciably before it has its second collision. The
second collision reconstitutes the excitation in the hadron and the decay is

halted. Under these circumstances, £ > i, the hadron will pass through the
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nucleus without decaying, decaying by emission of a number of pions only
after it has left the nucleus. The resuit for R is obtained if one assumes
that there is a component generated at each collision, which decays after
lzaving the nucleus, with an average energy given by E® and the multiplicity
by log E® where o = 172,

The critical energy at which nucleon excitation should dominate in the
production of fast secondaries can be obtained from & ~ A, Placing £ ~ 2 fm
and £ ~ 1 fm, one cbtains E]ab ~ 8 GeV. This is in rough accord with experi-
ment, but of course a more quantitative development of these ideas is required
before a critical evaluation is possible and before one can say that the
underlying causes of the phenomena noted in Figs. {5.1)-{5.3) and Fig. {5.4)
identical.

The momentum transfer to the nucleus by the incident hadron is thought
to be relatively small. The transferred transverse momentum, on the basis
of experimental data presently available, is relatively independent of the
proiecfiIe enerav I is thought to be of the order of about 400 MeV/c
leading to an energy of 80 MeV per nucleon, The value of the longitudinal
momentum transfer is not clear. If it iS5 substantial, the incident hadron
would drill a hole through the nucleus. If it is relatively small the nucleons
in the nucleus would instead be pushed aside. The model described above,
which is based upon Gottfried's analysis, presumes a relatively small longitu-
dinal momentum transfer, the generation of the observed relativistic multi-
particle states being associated with the leading incident girticle. However
other models which have been used would predict the formation of a hole in
the target nucleus. The question of the magnitude of the iransfer of longi-
tudinal momentum needs experimental investigation. Its value is intimately

related with the magnitude of the average excitation of the nucleon.
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(b} The collision of a relativistic heavy ion with a nucleus may
involve & “central” collision characterized by the production of a large
number of particles with substantial values of the transverse momentum {27,32].
It may involve a "peripheral" reaction which leads to a fragmentation of the
incident projectile. The fragments, in this case, move with the velocity of
the incident projectile and in the forward direction in the laboratory refer-
ence frame, As a consequence this component of the reaction can be readily
selected experimentally. At the present time the fragmentation process is
understood at the level of the prevailing experimental uncertainties. There
is no corresponding level of understanding of the central collision. The
"fire ball" hypothesis first invoked has proven inidequate, being unable to
provide an explanation of the experimental data. A substantial improvement
has been made by adding an initial blast wave {33], but the theory still
involves the unwarranted assumption of thermal equilibrium.

This Tecture will restrict itself to the peripheral reactions. Not
enough time is available for an adequate description of the central collisions,
the fireball and its modifications as well as of the aother models which are
being developed.

The method to be described below [28,29] is rererred to as the “nuclear
Weiszidcker-Williams method". First let us summarize the experimental facts
abtained by experiments performed at the Bevalac facility [34]. Experiments
were performed with a beam of energetic projectiies {e.g. 160} at energies
of 1.05 GeV/A and 2.1 GeV/A. Projectile fragmentation was detected by observing
reaction products in the forward direction. Inclusive cross-sections, that is
cross-sections for the production of a particular nuclear fragment without a
determination of the correlated production of other fragments were measured.
The results obtained are most simply expressed with respect to the projectile

frame of reference defined as that frame in which the incident projectile is
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at rest and the target nuclei effectively form the incident beam.

a. In the projectile frame, the momentum of a fragment is relatively
small. For exampla, if the target nucleus is Pb, its momentum in the projec-
tile frame is (208) » (2,1} ~ 437 GeV/c when the projectile has an energy of
2.1 GeV/A.  The longitudinal momentum, p, , distribution of 10Be fragments
produced by fragmentation of the projectile, 12C, in the projectile frame is
shown in Fig. (5.5). We see that the 1%Be average longitudinal momentum is
only about 50 MeV/c, while the dispersion of the PL distribution is about
100 MeV/c, which should be compared with the 437,000 MeV/c carried by the Pb
nucleus. Thus a very small fraction (10'4) of the momentum of the lead
nucleus is transferred to the projectile.

b. The distribution, w(pL,ﬁ}), in the longitudinal, P> and transverse

camponents, Br, of the momentum is Gaussian in each, Empirically one finds

that . .
- L -L v
Wl by~ 2P [— ag2 AT *zq;,-lﬁ’]}
(5.5}
where EL as mentioned above is generally several tens of MeV/c.
c. The angular distribution is apbroximately isotropic, that is
o =% {5.6)

However because of the much greater experimental difficulty in the determima-
tion of the transverse momenta, Eq. {5.6) must be considered as approximate.
d. The dispersion, 9 is empirically independent of AT {the target
mass number) depending only on AF {the fragment mass number) and AP {the
projectile mass number). This is a first example of independence of the pro-
Jjectile fragmentation of AT. .
e. A second is given by the fact that the branching ratio for the rela-

tive probability for the production of a fragment type is independent of the



.a'
i
1
3
|

4G~

target nucleus. The cross-section for the production of a fragment F, upon

the collisicn of a target T with a projectile P is found to be

cF (=) e
6‘91" = U;T E.E— where z T' = Fp
- (5.7)
e

The ratio, multiplying Sprs is the branching ratio for the production of
fragment F.

f. The inclusive cross-section o, is proportional to the radius of

incl
the interaction. Empirically
ERS
» -0.%
Ta~ At A (5.8)

g. Cross-sections and o at 1.05 GeV/A and 2.1 GeV/A are approximately
the same indicating within this energy range independence with respect to
the energy.

h. The momentum distribution of the emergent protons is not Gaussian.
It is better described by an exponential, e'p/p°, where py ~ 65 MeV/c.

We shall now discuss the momentum distribution of the fragments.
(a) Momentum Distribution of Projectile Fragments

The model we shall use was first suggested in Ref. [35]. The deriva-
tion employed below follows essentially that of A. Goldhaber [36]. The model
assumes that the fragment of mass number, AF' is formed from the projectile
of mass AP by removing the binding of a group of AF nucleons. The net momen-
tum EF of the fragmen: -5 then obtained by adding up the momentum of each of
these nucleons. The value of ;F will vary according to which group of AF
nucleons is selected f-am the projectile giving rise to a distribution in EF.
If the mean square momentum c¢f a nucleon in the projectile is <]J2) , the

>
mean square value of PF is, according to a simple statistical considera-
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tion,* given by AF {p2y . The distribution in ;F' following again from
statijstical considerations [35), is Gaussian** at least in the neighborhood of
the maximum of the distribution. This occurs near PF = 0 since the averige
momentum of the fragments is so close to zero. Note that this model auto-
matically assumes that the projectile fragment distribution does not depend
upon the nature of the target.

Suppose then that the projectile breaks up into fragments of mass

number Ai so that

(5.9)

N
Let the momentum of each fragment be Pi‘ Assume that the distribution of

-
momenta for the i'th fragment depends only upon Pi and is Gaussian. Then the

momentum distribution, wr, for a given set of A_i is:
- ? N
w(E,B..) ~ I “P[‘-}"; /A.-<r)] {5.10)

To obtain the observed inclusive momentum distribution we must integrate over
311 momenta except that of the observed fragment, say Ai' subject to the

condition

Z?.:c (5.11)

.

-
*Assume that Pp = EBL where BL are the momenta of the nucleons 1 .ing up the

fragment. Then Pé = rpﬁ +u§vBu'3v' Averaging over the momentum distribution
of the projectile nucleons, we find (uﬁvﬁh-ﬁv) = 0, Hence
2 - 2
<D = CZhIy =A<t
**This result follows simply from the assumption that the momentum distribu-

tion is symmetric about the maximum,
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As shown by experiment the average momentum of a projectile fragment in the
projectile frame of reference is very srall justifying to some extent £q.

(5.11). Hence the single fragment distribution, w(E]), is given by

2 (F)= /‘-"f"_:’:'?-“);(zg)“-’:"“‘ (5.12,

This integral may be easily performed to yield

w{’;)ﬂ Wﬁ(‘ EI/ZU") (5_]3)

where

T2 4 P> (Ap-Ap)a [ap (5.14)

If we adopt the Fermi-Gas model as a description of the projectile nucleus

A ogpry o 2
5 <P = ‘f‘ hv (5.15)

where p. is the Fermi momentum.

The experimental results are shown in Fig. (5.6). As can be seen from
Fig. (5.6), the dependence of o2 on AP and AF' given by Eq. (5.14), is verified
by experimental data. However that data yields a value for e (according to
Eq. (5.14)) equal to 190 MeV/c whereas the value of bp determined from quasi-
elastic electron scattering is, for 160, given by 225 MeV/c. As suggested by
Hifner this discrepancy may occur because fragmentation occurs only after the
emission of a number of nucleons. The fragmenting nucleus is not !0 but a
lighter nucleus with a caorrespandingly lower value of PE-

The distribution given by Eq. (5.10) can also be used to calculate the
angular correlation between two fragments, A] and A2, which exists in virtue
of Eg. (5.11). One obtains

73 PR tAp-Ar,pt Ap-A, ':f"-;]}
-~ - —_— P -g?,_ 4 + 20 P
w(f,£) 24/.{ 365 hoan [. o ~

—d-

This implies a greater probability for the two fragments to go off in opposite
directions, Determination of this anqular correlation would provide a test
of the independence hypothesis as formalized by Eq. (5.10). It appears

however to be very difficult to carry out this experiment.
(b) The Nuclear Weiszdcker-Williams Method [29]

The Weiszdcker-Williams method relates the reaction cross-section
induced by a charged particle to that induced by a distribution of photons.
The electromagnetic field of a rapidly moving charged particle can be shown
to be approximately equivalent to a beam of photons with the frequency
distribution

mleddoz 2 (g dw
P (Zec) PR (5.16)

where Z is the charge of the particle and a is the fine structure constant.
The cross-section 7or a reaction induced by a charged particle is given then

in terms of the cross-section UY(w) for the photon induced reaction by

e [miel o o de - %(u)‘[a;:“’ deo (5.17)

In this section a theory of the fragmentation of a relativistic heavy
ion projectile will be developed. The expression for the cross-section, which
will be obtained, will have a structure similar to that of Eq. {5.17) so that
the theory will be referred to as the “Nuclear Weiszdcker-Williams" method.

The projectile reference frame will be used. In that frame it will be
assumed that the target nucleus travels without deviation and without internal
excitation in a straight 1ine. This assumption is indicated by experimental
result {a) whick demonstrates that the momentum transferred to the projectile
nucleus by the target nucleus is small., It is identical with the assumptions

made in developing the electromagnetic Weiszdcker-Williams result. However,
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after the target nuclei has penetrated into the projectile a distance, 3,
approximately equal to a nucleon mean free path, a strong collision with
Targe momentum transfer will occur. This collision will not contribute to
the process being considered since the reactian products will fall outside

of the small forward cone where the frajrents are detected. This competitive
process is taken intc account by ass.minj t-at the probability of finding

the target nucleus intact attenuates during theAco11isiun with a scale
measuraed by the mean free path, ).

It is assumed that the collision is peripheral. This result is implied
very directly by experimental result {f) as given in Eq. (5.8). The mean
free path, A, used is the value valid on the surface region of the interacting
nuclei.

A qualitative description of the consequences of these assumptions can
be given. The projectile nucleons feel a pulse of force as the target nucleus
passes by. The duration of the pulse, 7, s given by the scale, ), Lorentz
contracted to a/y, divided by the velocity of the projectile, v, which is

very close to c, the velocity of light. Thus

T~ after
(5.18)

where

7= (1-ves) h = £ /A

vhere v is the velccity of the target and E is its energy. From the duration
of the pulse one can calculate the maximum* energy transfer nmc which can occur;

~ tfr = %
hey / 7R/A (5.19)

*By "maximum” we shall mean the value of Hu at which the crass-section is 1/e

of fts vaTue for very small values of fl,
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For a target energy of 2.1 GeV/A and A = 1.75 fm the maximum energy transfer
is found from this equation to be 365 MeV. Ve see inmediately that we are
in fact dealing with a comparatively low energy phenamenon. There will be
other effects to be discussed below which will reduce the maximum energy
transfar to even considerably lower values.

Following an argument of Brown and Deutchmann one can estimate
the corresponding momentum transfer HqL,c' That momentum transfer is given

raughly by

L AR 1;' 2 hu fv (5.20)

This is thus a relatively small momentum. For the case discussed above, the
maximum mMomentum transfer is thus 365 MeV/c. Recall that the Fermi momentum
for a heavy nucleus is about 260 MeV/c while for the 180 nucleus it is

225 MeV/c as mentioned above. Relationship (5.20) is valid more generally
as we shall show below; that is the longitudinal moment transfer, MqL, is

related to the energy transfer as follows

Ry = el (s.21)

The maximum value gf transverse momentum transfer, MqT, is determined
by the transverse scale of the target density, namely a, the parameter measuring
the thickness of the nuclear surface. The maximum transverse momentum transfer

is thus
5 e
For a ~0.6 fm, HqT c is about 333 MeV/c.
?
In addition to these cut-offs fn q; and q, which come from the shape of
the interacting nuclei, additional cut-offs which have a dynamic origin must
be taken into account. Tha most obvious of these is the momentum transfer

-
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which the nucleon-nucleon potential will allow before a substantial reduction
in the amplitude will cccur. From the empirical expression for the nucleon-
nucleon amplitude [37], we find that the nucleon-nucleon potential produces

a momentum cut-off, for both the transverse and longitudinal components, of
370 MeV/c.

The two factors so far described, the geometric factor and the potential
factor when combined yield a momentum cut-off for both components of about
260 Mev/c.

Finally it is necessary to consider the ability of the projectile
nucleus to absorb the energy Hw and the momentum fig. [f the energy is
absorbed by a single nucleon it w?11 be very far off the energy shell, If
it absorbs the full energy Hw it will have a momentum /Zmfw, Tnis however
is very much larger than the momentum transferred which as we have seen is

of the order of Hu/c, that is

Jimaw > Fwfe

or
& v &
J w/2wme (5.22)

This inequality is satisfied by the Wu of interest, that Hw < 260 MeV. The
absorbing nucleon must therefore interact with a second nucleon in the projec-
tile. This absorption by two nucleons can proceed because it is then possible
to conserve both momentum and energy. The momenta of the two nucleons will
be opposite and nearly equal so that the total momentum is small but the
total energy will be a sum of the energies of each nucleon.

The probability for two nucieon absorption will therefore depend
critically upon the correlation length, Tes the mean distance between the
first nucleon and the second. From the uncertainty principle, the lifetime

=51~

of the nucleon absorbing the momentum and energy is of the the order of (1/c).
This nucleon moves with a velocity equal to / %ﬁm and thus covers in the time

(1/w) the distance / %% . This distance must be of the order of or greater

than r_:
¢ A
(4 /mw)s 5 n,
or
Ewe 2t fmnl
(5.23)
If we take r.as 1/2 EHE , one half of the pion Compton wavelength, this
n
inequality becomes
Kw < 165 MoV
(5.24)

Combining this result with the geometrix and interaction potential gives a
longitudinal momentum cut-off of 120 MeV/c, of the same order as the experi-
mental value. It a’so implies a maximum value for the energy which can be
transferred to the projectile equal to 120 MeV, This energy is split between
the two absorbing nucleons so that the cut-off energy for one of these
nucleons is approximately 60 MeV and the cut-off momentum of the order of

60 MeV/c.*

The Tow value of the momentum transferred {+Mw/c) indicates that the

*It has been suggested by A. Goldhaber that in addition to the two nucleon
mechanism, there is the possibility of nucleon excitation to form a a.
However the momentum change would then be of the order of 300 MeV/c. This
combined with the other factors would yield a cut-off of 190 MeV/c which
would be too large to explain the fragmantation data. However as Deutchmann

and Brown pointea out, it could be an important mechanism for pion preduction.



angular distributiun of the nucleons will be roughly isotropic. In the
collision of the two nucleons as discussed above, tneir final lipear momentum

is Hw/c so that their angular momentum 24 is of the order of (nu/c)rc so that

4 = %ﬁ;—"—‘ (5.25)

Inserting a maximum value for Kw of 120 MeV and r. = 0.7 fm yields
Lzoy {5.26)

demonstrating that for nearly all values of Mw the angular distribution of
the nucleon pair will be isotropic.*

These qualitative considerations provide a simple explanation of the
projectile fragmentation as a consequence of the action of the "fringing
field" of the target nucleus as it moves past the projectile. Our principal
conclusion is that the process is essentially a low energy phenomenon. The
energy of the nucleon pairs produced is predicted to have the observed order
of magnitude. These nucleons will deposit energy within the projectile
nucleus and by that means fragmenting it. The net maximum momentum which
can be transferred is calculated to be of the experimental order of magnitude.
A rough isotropy is also predicted. Energy dependence in the GeV/A range is
weak since the energy occurs only in the geometric cut-off given by Eq. {5.19).
The cut-off energy is changed by only a few percent when the heavy 1on energy
is changed from 2.1 GeV/A to 1.05 GeV/A as observed, since the dynamical
conditions, Eq. (5.23) and the 1imits imposed by the nucleon-nucleon potential
are energy independent in this range of energy. Finally it should be observed

that none of the cut-off conditions depend upon the target nucleus. This

*Actual calculation shows in fact that this estimate is over-generous and that

the maximum value of % is considerably smaller than that given by Eq. (5.26).
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does indicate that the widths of the momentum distribution of the fragments
is independent of the target. It is obviously a necessary condition for
showing that the branching ratios are target nucleus independent. However
the quantitative calculation we snall repert telow shows that indeed the
nucleon spectrum and therefore the projectile fragmentation is target inde-
pendent.

We turn now to the formulation of the nuclear Weiszlcker-Williams
method. We shall use the projectile frame of reference so that the incident
system is the target nucleus. The derivation is similar to that used to
develop the results for the Coulomb case. As in that case, the target
nucleus is assumed to continue to move along a straight line along the inci-
dent direction. Secondly, it is assumed that the interaction is weak so
that first order perturbation theory can be used. In the present case it is
the Tong range part of the nuclear interaction, the "fringing field”, which
is assumed to be weak. Under these circumstances it can be shown that the
total cross-section analogous to Eq. {5.17) is given by [29]

@ - arjor® | a5 AR des | R, -opdl |7 (K, )] $lo-2)

(5.27)
where .
F; - {I/jﬂlr) V(i, ﬁ-yLr) fr (’I!’—m/fv)
(5.28)
and
- l..- ,‘A -‘: —-' -t far
? ,20/;['41'(; Bl F b ) {5.29)

In these formulas, K gives the transverse momentum transfer and w/v the Tongi-
tudinal in units of #; v is the velocity. The energy transfer is Wgis with
the projecti'e being excited to an energy EB. The density of these levels

is given by g The target form factor, FT' involves the Fourier transform

-



-54-

of the nucleon-nuclean potential V{4 ):

CIE /w;-(—:‘»?.x/'/(?i)dr

The factor 5 is related to the transform 2f tne peripheral target density
corrected for absorption as discussed above. Ffinally, the form factor Fp is
Jjust the matrix element of the fourier corconent of the perturbation. Only

a rough evaluation of the factors p and Fp have been made. A quasi-deutercn
model was used to evaluate the latter, Tais invalves the aaly empirical
parameter which has been used, namely the correlation lengthrbc. The

results are shown in Fig. (5.7), (5.8) and (5.9). In Fig. (5.7) the upper
curve prevides the longitudinal part of the form factor |FTIZ; the transverse
part is given by Fig. (5.8). The lower curve in Fig. (5.7) contains the
additional factor coming from lelz. The latter is exact in the limit of

a large projectile radius. For finite radii it is in error at the small
momentum end because of the lack of orthogonality of the crude representa-
tion used for wﬂ and ¥ A more precise calculation is needed, but the error
should be small for momentum above h/R where R is the projectile radius.

Fig. (5.9) gives the cross-section for a Ca target and an oxygen projectile
as a function of . It is clear that a reasonable vilue of ~ ¢ will yield
the correct order of magnitude for the cross-section. A more severe test is
the calculation of thz branching ratio. Zabhek [38] has obtained the results
given in Table 5.2 where he has included the effect of single nucleon transfer
as well as the process described above. The agreement is excellent.

Other applications of the nuclear Weiszlcker-Williams method are given

in the second of the references in [28].

Branching Ratios:

TARGET

o{12€)/argy
o(}1CV/orgr
o(!18)/oror

o(198)/a 70

0.105

0.031

0.08

0.040

Table 5.2

Fragmentation of 2.1 GeV/nucleon 60

Cu

+ 0.016

+ 0.003

+

+ 0.003

+ 0.006

+

0.123

0.036

0.05

7.034

Pb

+

+ 0,024

x 0.009

4

+ 0,006

+

+ 0.011

Theory (rC = 0.8 fm)

0.128
0.029
0.040

0.043



Figure 1.1.

Figure 2.1.

Figure 2.2.

Figure 2.3.

Figure 3,1.

Figure 3.2.

Figure 3.3.

Figure 3.4.

Figure Captions

{no caption)

Elastic scattering of 1.04 Ge¥ protons by 208Pb. The theore-

tical predictions for on "

Ref. [7]).

°p and o 7 o are compared (from

Comparison of experiment with theoretical predictfons for the
elastic and inelastic scattering of 1.04 GeV protans by 208pb

{from Ref. [7]).

The difference between the neutron and proton radii for the
Calcium isotopes as obtained from the elastic scattering of

1 GeV protons and other hadrans (from Ref. [9]).

{no caption)

Decomposition of the imaginary part of the expectation value

of the isobar-hole Hamiltonian. T is the free space isobar

width {from Ref. [10]".

The energy dependence of the spreading width potential in the

absence of a spin-orbit term (from Ref. {10]).

The energy dependence of the spreading width potential including

the spin-orbit potential {from Ref. [11]},

Figure 3.5.

Figure 3.6.

Figure 3.7.

Figure 3.8.

Figure 3.9.

Figure 3.10.

Figure 3.11.

Figure 3.12.

Figure 3.13.

The volume integral of the central part of single particle

potentials. For a definition of U see text (from Ref. [11]).

The surface integral of the L-S potential (from Ref. [11]).

Absorption cross-section for » - 12C as a function of the pion

kinetic energy (from Ref. [11]).

Angular distribution for » - 12C slastic scattering for indicated

pion energies {from Ref, [11]).

Angular distribution for s - }2C elastic scattering for indicated

pian energies (from Ref. [11]).

Angular distribution for m - 12C elastic scattering for

indicated pion energies (from Ref. [11]).

n - 180 elastic scattering at 114 and 240 MeV. Solid lines:
spin orbit term included. Dashed Tines: without spin-orbit

term (from Ref. [11]).

n - “He elastic scattering at 220 and 260 MeV. For significance

of solid and dashed lines, see caotion for Fig. 3.11 (from Ref.

.

m - 12 elastic scattering at 180 and 200 MeV. For significance

of solid and dashed lines, see caption for Fig. 3.11 (from Ref.

[n.



Figure 4,1,

Figure 4.2.

Figure 4.3,

Figure 4.4.

Figure 4.5,

Figure 4.6.

Figure 5.1.

Figure 5.2.

Figure 5.3.

The broken line gives the momentum of the A formed in the
reaction Eq. (4.1). The solid line is the differential cross-
section fcr the forward production of a pion in this reaction

(from Re®. [16]).
Production of A hypernuclear states (from Ref. [21]).

Praduction of © hypernuclei (presented at the Jablona, Poland

Canference, 1979}.
Energy levels of 12C (from Ref. [26]).

Angular distribution of pions in production of indicated hyper-
nuclear states in !2C (from Ref. [27]. Experimental data from

Chrien, et al., Phys. Lett. 898, 30 {1979)).

Angular distribution of pions in production of indicated hyper-
nuclear states in }2C (from Ref. [27]. Experimental data from

Chrien, et al,, Phys. Lett. 898, 30 (1979),.

Energy dependence of ranges of Sc nuclei produced when protons

of energy Ep are incident on a 238y (from Ref. [30]).

Ratio of forward (F) to backward {B) production as a function

of the incident proton energy Ep. The target is 238y (from Ref.

[30]).

Angular distribution of Flourine fragments produced by 28 GeV

protons incident on Uranium (from Ref. [31]).

Figure 5.4.

Figure 5.5.

Figure 5.6.

Figure 5.7,

Figure 5.8.

Figure 5.9.

Angular dependence of the ratio of the multiplicity for the

indicated target nuclei with the multiplicity for a hydrogen

target (from Ref. [32]).

The longitudinal momentum distribution in the projectile frame
of reference of the !0Be fragments produced by the fragmentation

of a 12C projectile with an energy of 2.1 GeY/nucleon (from Ref.

f34]).

Target averaged values of the dispersion o of the longitudinal

momentum distribution in the projectile frame. The plotted

numeral gives the charge of the fragment. The projectile is
180 with an energy of 2.1 GeV/nucleon, The salid line is a

best fit using Eq. (5.4) (from Ref. [34]).

Longitudinal frequency spectrum. The lower curve gives the
combined effect of tuc longitudinal frequency spectrum and the

two nucleon absorption probability (from Ref. [29]).

Transverse momentum spectrum for a “0Ca target in arbitrary

units (from Ref. [29]).

The cross-section 9ca when the projectile energy is 2.1 GevV/n

as a function of the carrelation length A
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