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Abstract

We use & newly developed real-space multiple scattering theory (RS-MST) to cal-
culate low-energy electron diffraction (LEED) intensities from stepped surfaces. In this
calculation the electron: wavefunctions are expanded in terms of an angular momen-
tum basis, utilizing the property of removal invariance of systems with semi-infinite
periodicity. This strongly reduces the dependence of the calculation on the interlayer
spacing and thus opens up the possibility of treating more open surfaces. This includes
in particular stepped surfaces, to which conventional methods cannot be applied. Ap-
plications of the formalism to various stepped surfaces are presented. In particular,
the results for Cu(311) and (331) surfaces obtained from both the layer doubling and
RS-MST methods are compared. In addition, numerical techniques which can improve
the convergence as well as the speed of the RS-MST approach are discussed.

1. Introduction

It is known that stepped surfaces are important in studying the properties of many
materials and understanding processes in many tzchrologies. For example, steps can
provide active sites for bond breaking and boad formation in heterogeneous cataly-
sis. They can also affect the mechanical properties of solids through the pinning of
dislocations and crack propagation. In order to understand these phenomena, it is
often necessary to obtain accurate information about atomic positions on the steps of
a surface.

Quantitative determination of the structures of clean stepped surfaces has been
difficult. Conventional theoretical techniques for the study of LEED spectra cannot be
readily applied to stepped surfaces. This is due to the small interplanar spriing and
large two-dimensional (2-d) unit cell of a stepped surface, which causes difficulties with
the convergence of the plane wave expansion used in a conventional LEED theory.

However, a recently developed technique [1-3] has greatly alleviated this problem.
This technique is based on a real-space formulation of multiple scattering theory (RS-
MST) [1] and dispenses completely wit} plane waves (except of course in the trivial
propagation through vacuum from the electron gun to the surface and back to the
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detector). Within the surface, it only uses spherical waves and strongly reduces the
. scaling problems of the plane wave basis used by the earlier methods {4,5]. RS-MST
is based on the principle of removal invariance which holds for semi-infinjte periodic
lattices: removing a layer from the free end of such » lattice does not change the
electronic. states (except for a trivial phase factor), because the resulting surface is
identical to the original one, being merely displaced with respect to that by a single
layer. This removal invariance provides a self-consistency condition for the electronic
states, which can be solved numerically. Detailed discussion of this new approach and
RS-MST can be found in references [1-3). In this paper we will focus on the application
of the method to several stepped surfaces of Cu.

2. Theory

We first consider the ideal bulk termination of the crystal. In general, however, the
selvedge will undergo some form of restructuring, exhibiting planar relaxation perpen-
dicular and/or parallel to the surface and perhaps reconstruction of the first few atomic
layers, and may also involve adsorbates. Such devistions from the ideal semi-infinite
bulk lattice can be readily incorporated and will e discussed later in this section.

The bulk termination of an ideal crystal :xhibits a universal property, a conse-
quence of the semi-infinite periodicity perpendicular to the surface. In simplest terms
it implies that the reflectivity of the crystal is unchanged if an atomic plane is peeled
away from the surface. More generally, we can say that the full scattering t-matrix of
the system is invariant with respect to the removal of any finite number of layers from
the surface. This removal invariance property is the foundation of our new approach to
LEED theory. It allows us to derive an equation within a purely angular momentum
basis to determine the t-matrix corresponding to a semi-' \finite periodic system, which
in turn can be used to evaluate the reflectivity of the e .tire surface.

Instead of using a layer doubling approach as in t} ¢ plane-wave representation, in
the angular momentum representation we use a self-consistency condition to determine
the reflectivity of the half solid. To do this we use the property of removal invariance in
the presence of semi-infinite periodicity [1). We imagine replacing the half solid with a
single renormalized layer which is constructed in such a way as to possess the scattering
properties of the entire half solid. This renormalized layer is described by a t-matrix, 7,
in angular momentum representation. According to the property of removal invariance,
a system consisting of a bare atomic layer, represented by the monolayer t-matrix,
TNay, and a renormalized layer, 7, can also be represented bv the t-matrix, 7. This
constitutes a self-consistency condition from which 7 can be determined. In practice,
a more rapidly convergent procedure is to consider a half-solid being represented by a
stack of N layers, properly renormalized to reproduce all the scattering properties of
the half-solid. The self-consistency condition can be constructed by adding one more
layer, represented by nay, and demanding that the resulting system can still represented
by 7. We call such a procedure an N-layer calculation, or (1, N') mode,

It can be shown that the solution of the self-consistent equation, as formulated in
Ref.[3], takes exact account of all multiple scattering paths within any N + 1 nearest
neighbor layers. All multiple scattering terms between layers further apart are repre-
sented by the products of Green’s functions and translation operators, which involve



internal summations over angular momentum states that are truncated at a finite /.
This consideration provides a basis upon which one can estimate the rate of conver-
gence in terms of the angular momentum truncation and make a proper choice of the
value of N in a calculation. Specifically, N should scale roughly by Nd =const., where
d is the interplanar spacing of the system. Therefore, the size of the basis set for a
RS-MST talculation scales as 1/d, compared with that of a plane wave basis set which
scales as 1/d° 3] '

The above discussion applies to sn ideally truncated unrelaxed surface. A more
realistic model of a surface usually includes several relaxed layers and sometimes ad-
sorbates. The use of the angular momentum representation provides an easy multiple
scattering approach for the treatment of surface relaxations and adsorbates. Once the
t-matrix, 7, of the unrelaxed substrate is known, one can use multiple scattering the-
ory to construct the t-matrix, Trelax, for the relaxed surface by combining the t-matrix,
Toverlay+ Of a0 overlayer with T of the substrate. This process can be used repeatedly -
for relaxations and adsorbates involving more than one layer.

3. Results

In this section we present LEED [-V spectra for Cu fcc surfaces obtained with
the new RS-MST for several surface structures. First we compare the [-V spectra
for uarelaxed surfaces with that obtained by the layer doubling technique. In all
calcuiations the atomic Cu phase shifts are obtained from solving the Schrédinger
equation for the potential provided by Moruzzi, Janak and Williams [6]. We found
that six atomic phase shifts (Imax = 5) were sufficient for energies below 80eV, and
Imax = 6 was required from 80eV to 200eV. We used a three-layer calculation (N = 3
in the self-consistent equation, see Ref.[3]) for the (311) surface, a four-layer calculation
(N = 4) for the (331) surface, and a six-layer mode (N = 6) for the (321) surface when
E < 55eV, a seven-layer mode (N = 7) when E > 55eV. All calculations are for normal
incidence.

Figure 1 shows I-V curves for (10) and (10) LEED beams calculated for a Cu(311)
surface using both a conventional layer doubling technique and the real-space multiple
scattering theory methud. This system has an interplanar spacing of about 1.09A. The
comparison between the RS-MST results (solid curves) and those obtained from the
layer doubling calculation (dashed curves) are in good agreement. We found that both
the numerical stability and the converged solution of the self-consistent equation are
sensitive to the accuracy of the Green functions (structure constants) at high energies.
In Fig. 2, we present similar I-V curves for the Cu(331) surface, which hes an interplanar
spacing of 0.83A. In this case, the layer doubling method (dashed curves) begins to
show signs of failure. We see that the I-V curves obtained by layer doubling shows
sharp spikes at about £ =& 120eV, indicating convergence problems.

Finally, in Fig. 3 we show the I-V curves of Cu (321) surface, with an interplanar
spacing 0.48A, obtained by RS-MST, and for three different top layer positions relative
to the bulk truncation, -5%, 0, 5%, respectively. We included in the calculation the
temperature effects corresponding to T' = 300K. The rather small change in the I-V
curves with respect to the surface relaxation reflects that a 5% change in d represents
a much smaller change in the lattice position when d is small.
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Fig. 1. The comparison of the I-V curves obtained by the RS-MST
method (solid curves) and the layer doubling method (dashed curves)
~ for Cu (311) unrelaxed surface, (a), (10) beam, and (b), (10) beam.
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Fig. 2. Similar comparison as in Fig. 1 for Cu (331) unrelaxed surface,
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Fig. 3. I-V curves obtained by RS-MST for Cu (321) surface with three
different top layer positions, -5% (broken lines), 0% (solid lines), 5%
(dashed lines), relative to the bulk truncation, (), (20) beam, and (b),
(11) beam.



4. Discussion

We have applied the RS-MST method for the calculation of LEED I-V curves of
stepped surfaces. The technique is based on equations expressed entirely in terms of
matrices in the angular momentum representation. The technique, unlike conventional
LEED theory, is equally applicable to both low and high Miller index surfaces since
the increase of the matrix size associated with decreasing interplanar spacing is much
more modest than in conventional LEED calculations. It has clear advantages in
treating high-Miller index surfaces. The new method has been tested on Cu (311) and
(331) stepped surfaces where excellent agreement with the layer doubling method was
obtained, where latter converges. The I-V curves for Cu (321) surface were calculated
for the first time with the new method. This calculation demonstrates the ability
of the RS-MST method to deal with hlgh Miller-index surfaces and to treat surface
relaxations with relative ease.
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