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ABSTRACT

Analytical exploratory investigations indicated that transition effects
such as streaming will cause a considerable spatial variation in the neutron
spectra across resonances; streaming leads to opposite effects in the forward
and backward directions. The neglect of this spatial and angular variation
of the transitory resonance spectra is an approximation diat is common to
all current methodologies.

An integral transport theory formalism was developed for the
description of spatially dependent spectra in isolated resonances. This
treatment differentiates between forward and backward directed
components of the neutron flux in slab geometry.

This theory was applied to an isolated actinide resonance in a simplified
fast reactor blanket problem. The resonance spectra of the directional flux
components , <}>+ and 0~, and even more so the 90° cone components, were
shown to deviate significantly from the infinite medium approximation with
the differences increasing with penetration. The changes in <(>+ lead to a
decreasing scattering group constant which enhances neutron transmission;
the changes in <$T lead to an increasing group constant inhibiting backward
scattering. Therefore, the changes in the forward and backward directed
spectra both lead to increased neutron transmission.

Conversely, the flux (<j) = <|>+ + <|f) was shown both in the analytical
formulas and in the numerical solution to agree closely with the infinite
medium approximation; the directional effects cancel in the summation.
Therefore, flux-weighted ("diffusion theory") group constants cannot yield
the required increase in transmission even using transport theory.

The forward and backward directed flux components were used as
weighting spectra to illustrate die group constant changes for a single
resonance. Results indicate these changes have a magnitude which can
likely account for calculational underpredictions in the blanket region.

I. INTRODUCTION

The refinement of blanket physics predictions requires an understanding of the nature
of the blanket transmission problem. Blanket physics predictions are considerably more
complicated than core predictions because of the transitory nature of the neutron flux and



spectra within the blanket. Most of the neutrons enter the blanket from the core; the
intrinsic source is comparatively small. Thus, the spectrum softens considerably with
increasing penetration as scattering slows down the transmitted neutrons. In addition, the
flux decreases significantly across the blanket and becomes increasingly forward biased.
Therefore, the separability in space and energy which is assumed in group constant
generation is violated in the blanket region.

The blanket transmission problem can be considered a subset of what is commonly
called the "deep penetration" problem which is generally understood as the prediction of
the neutron flux as it leaves a source and penetrates large distances in a
scattering/absorbing medium. Significant underpredictions of the neutron flux that
increase with penetration have been consistently observed using standard methods. This
problem occurs in many shielding and related damage calculations.

There are several basic assumptions which are made in all current group constant
generation methods. The within-group weighting spectra are either simple expressions
(e.g. 1/E or fission spectra) or they result from zero-dimensional calculations (e.g. MC2)
or a "narrow" resonance infinite medium approximation. No consideration is given to the
possible use of special transitional (i.e. non-asymptotic) weighting spectra. Errors in the
generation of group constants will obviously be reflected in flux predictions utilizing
such data.

This paper focuses on the calculation of transitional spectra in the presence of
resonance materials and the effect of these transitional resonance spectra on multigroup
flux predictions in the blanket region. The blanket is commonly the first region for the
radial transmission of the neutron flux coming from a fast reactor core. The radial
reflectors and outer regions of a fast reactor will also be regions with a transitory flux.
Since the flux transition is even more severe for these outer regions due to the total
absence of an intrinsic neutron source, any discrepancies found in the blanket are
expected to increase in magnitude for these outer regions. The blanket investigations
described here reveal the onset of the deep penetration underpredictions.

Discrepancies between predictions and measurements have been fairly accurately
quantified in the blanket region of the Purdue Fast Breeder Blanket Facility1 (FBBF).
The onset of the deep penetration underpredictions is observed as a C/E drop-off from
1.0 to 0.8 in the U-238 capture rate across a 51 cm blanket using both transport and
diffusion theory with refined group constants. The cause of these blanket discrepancies
is investigated and a mechanism for improving blanket predictions is indicated in this
paper.

It appears that significant changes in the resonance spectra develop during neutron
transmission. These transitional resonance spectra will be contrasted to spectral
approximations used in current group constant generation methods in Section II. This
comparison indicates a probable cause for the blanket underpredictions. Section II
focuses on an understanding of the physical phenomena with the detailed treatment
developed later.

In Section III, a model will be formulated to analyze the space and energy
dependence of resonance spectra using integral transport theory. This technique will be
applied to a single isolated U-238 resonance in Section IV; the results wi'.! be discussed
in detail and compared to the standard group constant approximations. The need for
"direction dependent group constants" will be shown. A preliminary analysis of the
effect of transitional resonance spectra on the generation of group constants will be
presented in Section V.



II. INFINITE MEDIUM AND TRANSITORY RESONANCE SPECTRA

The neglect of transitional effects in resonance self-shielding is a major
approximation common to all current group constant generation methods. Generally,
infinite medium spectra are used which lead to a space independent source. As a further
simplification, the narrow resonance (NR) approximation is applied; all neutrons are
assumed to scatter into a resonance from well above the resonance energy which leads to
a source that is constant in energy across the entire resonance. These assumptions give
the NR approximation of the resonance spectrum:

where \|/0 is the flux per unit lethargy between resonances, ap is the potential cross
section and ct(E) is the total cross section per resonance absorber nucleus, and f ^ E ) is
the self-shielding factor in the NR approximation.

Several methods calculate the resonance spectra more accurately than the NR
approximation. This is particularly needed in some thermal reactor applications where
resonances at epithermal energies are important. For these epithermal resonances, the
energy loss per scattering on actinides is comparable with or even smaller than the
resonance width and the resonances can no longer be considered "narrow." Most of these
methods maintain an infinite medium treatment and strive for a better treatment of the
energy dependence of the neutron source. An infinite medium scattering source is then
used, leading to a flux shape of the form:

oo

<j>(x,E) = Jo s (E ' -»EXKEOdE' / a t(E) ; (2)
E

where <j>(E') is the infinite medium spectrum. The MC2-2 code2 uses this treatment for
the broad scattering resonances; the integral in the numerator is approximated by a very
fine group zero-dimensional flux solution.

In a transition region, both the approximations presented in Eqs. (1) and (2) are
inaccurate. The flux transition leads to a spatial dependency of the scattering source.
Once the source is spatially non-constant, the differing attenuation rates within the
resonance become important. As an example, consider the simple attenuation of the flux
from a neutron source. The neutrons at the resonance energy will attenuate quickly; the
neutrons in the interference dip will penetrate much further ("streaming"). However, the
effect of these differing attenuation rates is described by a single group constant for most
resonances. The typical error in this approach can be illustrated by the following simple
comparison of linear attenuation formulas:

(3)

where S p is the cross section at the resonance peak, ED is the cross section at the
resonance dip, <|>g is the group flux, and I,g is an average group cross section.
Representation of the entire resonance by a single cross section will obviously
underpredict the streaming in the interference dips and overpredict the transmission in
the resonance peak. The transmission in the interference dip will dominate
asymptotically, but it is absent on the right hand side of Eq. (3) leading to an
underprediction of the group flux at large distances.



In a blanket region, the flux, and therefore the source, is decreasing. Thus, by
observation of Eq. (3) the flux peak corresponding to the interference dip will attenuate at
a much slower rate than the flux dip. This will lead to a "tilting" of the resonance spectra
with an increasing portion of the spectra concentrating in the interference dips with
increasing penetration. Therefore, the flux transition leads to a spatial dependency of the
spectral deformation as well as streaming effects. If these transitional spectra are used
for group constant generation, the low cross sections receive increasing weight as the
source decreases (e.g. with increasing distance from the core).

The simple illustration of the spatial effects in Eq. (3) is refined and further
investigated by a more explicit treatment of the attenuation in a transition problem (see
Ref. 3). In this treatment the source is considered to be a function of space, and the NR
approximation is replaced by an attenuation formula applied to an energy independent
source. Only the forward (|J. = 1) and backward (p. = -1) angular fluxes (<{>+ and <!>_) are
evaluated for simplicity.

S,(x - d/ <Mx,E) = fcj St(x Z)e ~UE)'dl (4)

A Taylor expansion is applied to the source at x so that the spatial integrations can be
readily carried out. The result is:

2S,(E)

Sj(x) S2(x)
S0(x) - -^— +

S0(x) +

It(E)2

S2(x)

(5a)

(5b)

where Sj(x) and S2(x) are the first two derivatives of the spatial source.

One observes the expected streaming and spectral effects in the forward flux of Eq.
(5). If S! is negative (S(x) decreasing for increasing x) the second term in Eq. (5a) adds
to the flux particularly in the resonance dip, where £t(E) is small, but nearly nothing at
the resonance peak, where Lt(E) is very large. Thus, the spatial variation of the source
leads to a higher flux in the interference dips caused by the slower attenuation rate.
However, the opposite effects are seen in the backward flux $_; here the Sj(x) term is
negative with a larger subtraction applied within the resonance dip since X,(E) is small.
Thus, if S:(x) is negative, 4>+ is greater than (|>_ for all energies with the differences much
more pronounced at low cross sections.

The streaming effects lead to a forward angular flux bias (0+ > <f>_) with increasing
blanket penetration. In addition, the flux tilting requires a decrease in the effective group
constant because of the increasing importance of the low cross sections in the forward
direction. Therefore, this transitional resonance effect should allow more neutron
transmission, yielding blanket flux (and reaction rate) predictions more in agreement with
experimental results.

Equation (2) gives the resonance spectrum with the energy dependence of the source
taken into account; Eqs. (5) show the forward and backward spectra with the space
dependence of the source taken into account. One would expect even greater effects
when both dependencies are considered. In this case there will be a coupling effect
between the resonance peak and interference dip. Neutrons scattering in the resonance
peak (a highly probable reaction) can readily scatter into the near-by interference dip
with little energy loss (and correspondingly little angular deflection). Thus, one would



expect the resonance scattering to further enhance the spatial "build-up" of the
interference flux peak in the forward direction. This coupling effect can only be
analyzed by a detailed space-energy-angular treatment of the resonance spectra.

In summary, both the space dependence and energy dependence of the scattering
source are needed to model the transitional effects on resonance spectra. An adequate
treatment must address the space, energy, and angular variations of the transitional
resonance spectra. Such a model for calculating the flux as a function of space and
energy for a single resonance in a transition region is developed in the next section.
Since transitional effects are subsequently shown to be important, the desirable
application is to generate a new set of resonance weighting spectra which are used to
replace the NR spectra in group constant generation.

IE. GENERAL FORMULATION OF THE MODEL

Integral transport theory was chosen for this analysis because it allows an exact
representation of the spatial attenuation (streaming) as well as a continuous energy
representation of the sharply varying resonance cross section. Although the formulation
of integral transport theory is based upon a spatial integration of the last collision, direct
numerical solution of this integral equation accounts for all of the neutron collisions
within the resonance. This accounting is realized by "stepping-down" in energy. The
integral transport analysis is performed for the upper energies of the resonance first. For
lower energies , neutrons scattered from the upper energies are part of the source.
Therefore, the detailed energy and angular dependence of the neutron source is
accounted for in this model.

The integral transport analysis is not practical for the entire flux solution (all spatial
and energy detail). However, the goal of this model is a replacement of the NR
approximation for individual resonances. Thus, a simplification is introduced by looking
at isolated resonances. This limits the problem to a small energy range allowing the
practical application of integral transport theory. Furthermore, as the eventual goal of
this transport analysis is the generation of refined group constants, the spatial model may
also be simplified to slab geometry. The resulting group constants can subsequently be
applied to more complicated or higher dimensional geometries. In this approach, the
zero-dimensional or infinite medium weighting spectra are replaced by transitional
resonance spectra which depend on space and direction.

Ill A Theory

The starting point for this derivation is the integral transport equation for the angular
flux in a one-dimensional slab. In the resonance energy range the fission and independent
sources are negligible; thus, the only source is the scattering source:

q(x', E, n) = f f S,(E'-» E, ns)<t>(x', E', S')dE'dQ', (6)'-II
where (i is the direction cosine with respect to the x-axis, \is is the cosine of the scattering
angle, £s is the macroscopic scattering cross section, and q(x', E, |i) is the angular source
calculated from <J>(x', E', a) by integration over all incoming angles.

The Pj approximation to the angular flux is introduced within the angular source
integral. This application of the Pj approximation is much less restrictive than that used



in Pj theory (which leads to diffusion theory) as the spatial attenuation of the source
neutrons is treated exactly using the integral transport equation; the calculated angular
flux can have any angular distribution. Substituting the Pj approximation for the angular
flux and describing the strict correlation between energy transfer and scattering angle by
the Dirac delta function, Eq. (6) becomes:

q(x', E, n) = - L f fZs(E' -> E)8fcs - ns(E', E)]<j>(x', E')dE'd£T (7)
47T &4.47T

-L[Jls(E'-> E)5[ns-

Evaluation of the double integrals in Eq. (7) is simplified by expressing fl' and
7(x', E') in a coordinate system around d (the direction of the scattered neutron, where |J.
is the direction cosine of H ). This is advantageous because & is constant in both double
integrals. The evaluation of these two angular integrals yields the angular scattering
source as:

q(x', E, \i) = ± J IS(E' -> E){ <J>(x', E') + 3^ S (E ' , E)J (x', E'tydE'. (8)
E'

For the analysis of the transitional resonance steaming effects, the distinction of
forward and backward motion is of primary interest since the streaming effects are to be
quantified. It was shown in Eqs. (5) that streaming leads to opposite effects on the
forward and backward directed angular fluxes. Thus, the angular flux is integrated over a
cone in the forward (+) and backward (-) directions to isolate the streaming effects. The
simplest case as presented here is the integration over each half-space; however, the
equations have also been derived for angular cones. The flux obtained from the half-
space angular integration has the form:

1 x I,(E)(x- x')

i L
<j)+(x,E)= I U q(x', E, |a)dx'dn . (9)

i L R

Insertion of the angular source, Eq. (8), and. performing the î integration yields:

(10a)

.dx/.

t>+(x, E) = | J J Ej [z t (E)(x - x')] k ( E ' -> E)4>(x', E')dE'

+ 3E2[ l t(E)(x- x')] Jl s(E'-» E)M,(E/,E)J(x/,E')dE'

' - x)] Jz s(E'-^ E)<Kx',E')dE' (10b)

- 3E2[l t(E)(x'- x)j Jk(E'-» E)^s(E',E)J(x',E')dE'ldx'.



The first term in Eqs. (10a,b) is the commonly used scattering source term for integral
transport codes such as RABANL. This flux term comes from an isotropic source
approximation (J = 0 in the source integral). The second term contains the angular-
energy correlation of the scattering source accounting for the forward bias (as expressed
in the current) of the incoming neutrons. Neutrons with a strong forward bias (large
neutron current) which scatter through small scattering angles (large scattering angle
cosine) will tend to remain forward biased. Thus, this second term models the spatial-
energy coupling caused by the correlation between energy loss and scattering angle.

The neutron current needed for the second integral in these equations, is calculated in
a similar manner. Fick's Law does not apply near a resonance since there is obviously
not free diffusion at the resonance energy. Therefore, an independent current (not based
on an approximation of th>* angular flux) is calculated by utilizing the integral transport
equation for the one-dimensional angular flux and the definition of the neutron current:

J ( x , E ) = Jn<|>(x,E,n)dn. (11)
- l

The current is similarly divided into forward and backward partial spaces and the
corresponding angular integrations are performed.

MB Application of Theory

Equations (10) and the corresponding current component equations form a coupled
set of integral equations since the half-space components are used to calculate <j>(x, E)
and J (x, E) which are in the integrands. A numerical solution method was developed
which minimizes the approximations in calculating the integrands and integrals.

As discussed previously, this model will address the problem of an isolated
resonance. Thus, an "input" flux and current above the resonance are needed to calculate
the scattering source into the resonance. For this model, the assumed spectrum above the
resonance will be 1/E for the flux and current. The spatial variation is approximated by
the multigroup flux and current from a slab diffusion calculation. The multigroup spatial
solution is discretized at several spatial mesh points (typically 75 points); thus, the
integral transport equations are solved at these same mesh points.

As another aspect of the isolation assumption, only the resonance isotope will have
cross section variations in the region of interest. This assumption should be quite
accurate within narrow resonances as addressed in this paper; in the analysis of the
transitional effects of broad scattering resonances this assumption would not be valid. In
addition, constant cross sections for all isotopes are assumed in the energy interval above
the resonance from which neutrons are scattered into the resonance. Thus, the scattering
source above the resonance has the same 1/E variation as the flux.

The numerical solution of these equations is simplified because downscattering leads
to energy integral domains that include only energies above (and including) the point of
interest. Therefore, a "stepping-down in energy" procedure is used to treat the energy
variable. With appropriate discretization of the spatial and energy variables, the
equations can be solved at the highest energy point. Using this result the equations can
then be solved at the next energy point, and the entire energy range is covered in a
similar manner.

The energy integration of Eqs. (10) is carried out analytically above the resonance
range; the s-wave scattering kernel was used for this integration. Within the resonance,
the trapezoidal rule is used. This requires that a further assumption be made between the
energy point of interest and the last energy point only. Very fine energy discretization



(more than 100 points per resonance) is used and a constant flux value for this small
energy rang? is assumed.

The spatial integration of Eqs. (10) can be performed analytically if a linear spatial
variation of the source between mesh points is assumed. This integration of the
exponential integrals is based on the work in Ref. 5 and is detailed in Ref. 4.

In summary, a method has been developed to calculate the spectra for an isolated
resonance as a function of space. This model makes no assumption regarding the angular
distribution of the flux within the resonance and treats the spatial attenuation exactly with
integral transport theory. The Pj approximation of the angular flux is utilized in
calculating the scattering source. The model is applied to an isolated resonance,
assuming a smooth energy dependence of the spatial multigroup flux solution above the
resonance. Only the cross section variations of the individual resonance are modeled.
Thus, for a given spatial multigroup flux distribution, material composition, and
resonance, one can calculate the appropriate transitional resonance spectra.

IV. ANALYSIS OF AN ISOLATED ACTINIDE RESONANCE

IV A Specific Application of Model

The motivation for developing this capability was the presence of calculational errors
in fast reactor blanket predictions. Specifically, the C/E drop-off at the Purdue Fast
Breeder Blanket Facility (FBBF) was addressed. Thus, this investigation considers a
blanket of the FBBF composition.

The material composition is based on the FBBF model discussed in Ref. 1. The
spatial flux profile was generated by performing a one-dimensional "FBBF-like" slab
calculation using the FBBF mid-plane number densities with an extended blanket to
allow analysis of a somewhat deeper penetration. The blanket multigroup flux profile
should provide an adequate model of the spatial dependence of the scattering source
despite the calculational errors identified previously: the C/E drop-off to .8 is small
compared to the overall flux decrease by about a factor of 150.

The neutrons entering the blanket are described by a surface flux. The surface flux is
calculated using a simplified version of Eqs. (10); the simplification is the neglect of the
neutron current in the scattering integral in generating the surface flux.

To assess transitional resonance spectra, it is useful to look at the spectral effects for
a specific actinide resonance. Since the interference effects are governed by the
resonance scattering width, one would expect the largest effects to be for resonances with
a large Fn. In addition, the fast reactor spectrum is concentrated at higher energies well
above 100 eV. Based on these considerations, a U-238 resonance at 2.2 keV was chosen
for this comparison ( Fn = 590 meV, 1^ = 24.3 meV, resonance parameters taken from
Ref. 6). Doppler broadened resonance cross sections are generated in RESITT using the
GENRESM program developed by Mo. *8 This resonance is located in group 29 of the 50
group energy structure; thus, the group 29 spatial flux profile is used.

A computer code, RESITT, was written utilizing the described integral transport
methodology and integration methods. Resonance parameters, potential cross sections,
blanket composition, a spatial flux profile, and a surface flux (from the simplified
calculation) are all input to the RESITT code.

IV £ Infinite Medium Flux Comparisons

As discussed in Section II, the NR approximation assumes a scattering source that is
constant in energy across the resonance. However, the integral transport analysis will



calculate an energy dependent source, Eq. (2). An infinite medium spectrum for the
energy dependent scattering souice was calculated in order to allow a separate
consideration of energy and spatial effects.

The upper half of Figure 1 shows several comparisons:

• First, the NR-spectrum, ((^(E), is compared with the correct (energy dependent
source) infinite medium spectrum, <f>°°(E), indicating a considerable difference. The
increase in the interference peak of the infinite medium spectrum compared to the NR
approximation is caused by resonance scattering. The high scattering cross section in
the resonance peak leads to a larger source than the NR approximation which uses
only the potential cross section. Similarly, the slight dip well below the resonance is
caused by the low scattering cross section of the interference dip leading to a
depressed U-238 scattering source.

• Furthermore, Fig. 1 shows the surprising fact that the transitory flux-spectrum,
(|> (x,E), plotted here at 40 cm blanket penetration, agrees closely with the infinite
medium spectrum, <t>°°(E), both calculated with integral transport theory.

• Less surprising is the fact that the spectrum for the cone complcr-^:, ;j)cc(E), which
pertains to the angular domain with a forward and backward-directed 90° cone
subtracted, agrees equally well with <J)°°(E). This is expected because the sideward
integrations in a slab geometry are similar to the infinite medium integrations since
the slab is infinite in the transverse direction. The ramifications of these agreements
are discussed below.

IV.C Spatial Neutron Flux Comparisons

The RES ITT code was applied to generate the space dependent resonance spectra
throughout the extended blanket region. A comparison of the integral transport theory
predictions at 40 cm blanket penetration to the infinite medium approximation is shown
in the lower half of Fig. 1. where <j>c

+ and <f>~ refer to 90° cones in the forward and
backward directions respectively. The infinite medium spectrum agrees well with the
spatial results near the converter/blanket interface. However, within the blanket the
forward directed components, 0+(x,E) and <J)*(x,E), show a large flux increase outside the
resonance peak and especially in the interference dip. Opposite effects are observed in
the backward directed components. The deviations of the components from the infinite
medium spectrum compound with penetration.

The effects in the forward directed flux components correspond to the expected
streaming effects. The relative importance of the low cross section energies increases
because of the slower attenuation rate. However, Jiese same streaming effects lead to the
opposite trend in the backward directed flux components since the source has the
opposite behavior (if the source is decreasing in the positive direction, then it is
increasing in the negative direction). Therefore, when one adds the forward and
backward directed components to form the total flux, the streaming effects cancel out to
an amazing degree as shown in the upper half of Fig. 1.

This numerical result can be understood analytically in the simplified treatment
expressed in Eqs. (5). The first derivative term of the source expansion cancels out when
the forward and backward fluxes are added and only the much smaller second derivative
term remains.

The spatial changes in the spectra observed in Fig. 1 are more extreme for the cone
components than for <J>+ and <)>". This difference is attributed to the fact that by
integrating over the entire angular half-space the streaming effects are "diluted" by lar^c
contributions from angles near the "infinite" direction; thus, the cone results lead to a
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better isolation of the one-dimensional transition effects.

If the spectra <)>+(x, E) and ({f (x, E) of Fig. 1 were used to generate two separate sets
of group constants, the forward-directed scattering group constants would be smaller than
those calculated with <j>~(E) since they give a higher weight to small XS(E) than does
<t)°°(E). "Furthermore, the group constants would decrease with penetration, allowing
increasingly more transmission. Conversely, the backward-directed scattering group
constant would increase, inhibiting backward scattering. Thus, the directional effects
will complement each other to yield higher neutron transmission in blanket predictions.
However, when the components are combined to form a weighting flux, the observed
differences cancel (<j>(x,E) agrees very closely with <f>°°(x,E)) and the transitional spectra
effects are lost. Therefore, increasing the accuracy of flux weighting-spectra for the
generation of group constants has no effect in increasing blanket transmission; direction
dependent (flux component weighted) group constants need to be used instead.

V. PRELIMINARY EVALUATION OF DIRECTION
DEPENDENT GROUP CONSTANTS

The purpose of this evaluation is to assess the effect of spatially dependent resonance
spectra on group constants. The transitional resonance effects are accounted for by
utilizing the transitory resonance spectra in place of the NR approximation in group
constant generation. This significantly complicates the group constant computation
because the transitional spectra are both space and direction dependent (unlike the
infinite medium NR approximation).

The forward and backward half-space flux components can be used to generate two
different group constant sets. These group constants would yield increased blanket
transmission predictions when applied in an S2 transport calculation utilizing direction
dependent group constants. Alternatively, the two 90° cone spectra, <\>*(x,E) and <j)~(x,E),
give a more pronounced description of the angular dependence of the spectra. They can
be used to generate two group constant sets which are combined with a set applying the
infinite medium self-shielding approximation as <t>~(E) agrees well with ^ ( E ) . These
three group constant sets, used in an S4 (or higher Sn) calculation should yield even more
accurate fluxes in transition problems since the large portion of the angular flux, <|>cc(x,E),
which agrees well with the infinite medium spectrum has been split off. It should be
noted that all current transport theory codes use direction-independent, i.e. "diffusion
theory group constants;" thus, application of direction dependent group constants will
require significant modification of existing methods.

This preliminary investigation analyzes the transitory scattering self-shielding factors
for the forward and backward directed half-space flux components, <|>+(x, E) and <jT(x, E).
This analysis is further simplified by applying the 2.2 keV resonance results throughout
the energy group which exaggerates the effect on the group constant as this resonance
has one of the largest revalues in this group. Because of this simplification, the analysis
is merely an illustration of transitional group constant effects for the blanket problem.

The scattering self-shielding factor is defined as:

(12)

i.e. as ratio of group averaged self-shielded and infinite dilution cross sections. The
corresponding self-shielded resonance reaction rate is calculated by utilizing the integral
transport solution within the resonance and applying the narrow resonance approximation
to the (far out) wings as detailed in Ref. 4. Thus, the self-shielding factor at x, fs(x) is



generated by using the transitional weighting spectrum at x in the calculation of the self-
shielded resonance reaction rate.

Figure 2 presents f-factors based on flux, infinite medium, backward directed flux
component, and forward directed flux component spectral weighting; the percentage
difference compared to the NR f-factor is plotted. The integral transport infinite medium
f-factor is slightly larger than the NR f-factor. The flux-weighted group constants
decrease with penetration; however, even for this extreme case the f-factor deviates only
about 3% from the infinite medium results across the blanket. The special interface
effects seen in the flux weighted group constants in Fig. 2 have been treated earlier by
Mo.Ref. 7.

If the group constants are generated using <(>+(x, E) and <jT(x, E) instead of the flux,
they are now representative of S2 direction dependent group constants. Large deviations
are seen for these group constants in Fig. 2; this finding is consistent with the large
spectral deviations seen in these quantities. The forward directed scattering f-factor
increases by about 5% across the first 20 cm of the blanket; the backward directed f-
factor decreases by about 5% over the same distance leading to a 10% difference
between the two directional group constants. These differences increase continuously
throughout the transition region to about a 20% difference between the two directions 60
cm into the blanket. As described previously, these deviations are complementary, both
lead to more transmission; thus, this preliminary investigation indicates that the
differences between forward and backward directed group constants are large enough to
have a significant effect on the flux calculation.

SUMMARY

An integral transport theory for analyzing spatially dependent neutron spectra within
isolated resonances was developed in this paper. This transitional resonance analysis is
designed to replace the NR approximation as the source of within resonance weighting
spectra for group constant generation. The attenuation effects are treated rigorously
using the integral transport equation with no assumption regarding the angular flux
distribution. A Prrepresentation for the angular distribution of the flux was used only
within the scattering source integral.

Transitional effects on the within-resonance spectrum are illustrated for a U
resonance near 2.2 keV. For proper comparison the NR spectrum is replaced by the
transport theoretical infinite medium spectrum. The transitional effects lead to large
changes in the forward and backward directed resonance spectra. However, these effects
cancel when the components are combined to form the flux weighting spectrum which
agrees very closely with the infinite medium spectrum. Thus, an accurate description of
streaming in transition regions requires refined group constant generation using different
weighting spectra for forward and backward directed neutrons. The integral transport
formalism presented here allows the calculation of the forward and backward directed
spectra in a transition region; therefore, it is the first step toward the generation of the
required direction dependent group constants.

The differences in forward and backward directed group constants will increase
blanket neutron transmission. The decrease in forward scattering group constants will
allow more penetration (streaming); conversely, increased scattering group constants will
inhibit backward motion. Therefore, the directional effects complement each other to
yield higher blanket predictions.

In conclusion, selective results indicate that transitional resonance effects are of a
magnitude that they could account for the discrepancies observed in worldwide blanket
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and other neutron transmission results. Thus, the onset of the deep penetration problem
in the blanket region can likely be eliminated by utilizing refined direction dependent
group constants. It was shown that a reduction of the transmission discrepancies is not
possible by using diffusion theory group constants, even if they are based on rigorous
within-group flux weighting spectra. An appropriate description of the spatial attenuation
requires the treatment of direction dependent group constants.
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20

~ 15

a

cc

o

a
u

a.

!0

5L

o
QJ

£ -5

-10 1-

•15

-20
20

4>-/

$*
\\

—
—

I

0*

I (

N
\

\
\

\
\
\

40 60
Radius (cm)

80 100

Fig. 2. Spatial variations of U-238 scattering self-shielding factors, fs(x), calculated
with different weighting spectra: <t>"°(E), <|>(x,E), 0+(xJE)g and <JT(x,E).
Presented are the percent difference of fs(x) and the space independent NR-
result.


