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Abstract

A model was developed to predict the weld pool shape in
pulsed Nd:Yag lascr welds of aluminum alloy 5754. The model
utilized ncural nctwork analysis to relate the weld process
conditions to four pool shapc parameters: penctration, width,
width at half-penctration, and cross-scctional arca. The model
development involved the identification of the input (process)
variables, the desired output (shape) variables. and the optimal
ncural network architecture.  The latter was influenced by the
number of defined inputs and outputs as well as the amount of
data that was available for training the nctwork. After appropriatc
training, the “best” network was identificd and was used to predict
the weld shape. A routine to convert the shape paramcters into
predicted weld profiles was also developed. This routine was
bascd on the actual experimental weld profiles and did not impose
an artificial analytical function to describe the weld profile. The
ncural nctwork model was tested on experimental welds. The
modecl predictions were excellent. It was found that the predicted
shapes were within the experimental variations that were found
along the Iength of the welds (due to the pulsed nature of the weld
power) and the reproducibility of welds made under nominally
identical conditions.

Introduction

The weld pool shape is critically important in terms of
determining the quality of a weld. The depth of penetration, in
particular, is often the most important featurc that governs the
integrity of a weld. Over the last two decades, many fundamental
studics have tried to develop models that predict the weld pool
shape from first principles'®. These models have become
increasingly sophisticated over the ycars and have been very uscful
in providing a better, more fundamental understanding of the
factors that affect the weld pool shape. However, as the modcls
have become more advanced, they have also become more
complicated. Conscquently, although they are better able to
consider the many factors that influence weld pool development

and the final weld pool shape, they are still not totally accurate,
arc often difficult to use. and normally require extensive
computing time. Thus, they are not particularly amenablc to in-
process applications such as control loops where simplicity and
rapid response time are required. For the use of modcls in real-
time process applications. the ability to make instantancous
predictions is desirable and ofien essential.

Onc possible solution for providing rcal-time predictions of
weld pool shape (as well as other weld attributes such as cracking
propensity, properties. etc.) is the utilization of ncural nctwork
modecls. These models arc empirically bascd but they can be quite
sophisticated while still maintaining the essential feature of rapid
response time. Several recent papers have addressed the issue of
predicting weld shape with ncural networks in arc-welding®!' and
laser spot-welding'*®.  The present paper describes the
application of ncural nctwork modcling to the problem of
predicting weld pool shape in pulsed Nd:Yag laser aluminum
welds. The approach that is presented is quite genceral and can be
applicd to any welding process. provided the proper data for
training the ncural nctwork arc available. The present study
shows that good accuracy can be achicved with the usc of ncural
networks, without requiring an extensive data sct for training the
ncural nctwork.

Neural Networks

A very simple description of the concept behind neural
nctworks is given below. There is extensive literaturc on the
theory behind ncural networks. The reader is referred to other
publications for more details'*'®. Necural nctworks arc modcled
after the learning process in the human brain. A nctwork
structure consists of interconnccted layers of nodes; the nodes
include input and output nodes as well as internal, hidden nodcs.
These nodes are “connected” to cach other so that the value of one
node will affect the value of another. The relative influence that
a given node has on another ong is specificd by the “weight” that
is assigned to each connection. A schematic diagram of a simple
neural network is shown in Figure 1. There arc three layers in the
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Figure 1: Schematic diagram showing the multiple layer
structure of a neural nctwork and the inter-connectivity between
the nodes of the nctwork.

diagram. In the example of Figure I, the input layer has three
nodes, representing three input variables, while the output layer
consists of two nodes, corresponding to two output variables. In
addition, one hidden layer with four nodcs is shown in the
diagram. For example, when applied to weld shape modeling, the
input nodes may correspond to weld process conditions such as
welding speed, power, and material thickness while the output
nodes may represent weld pool shape parameters such as width
and penetration depth. The ncural network is trained by
introducing a training set based on experimental data for inputs
and corresponding outputs. A training routine is then carried out
in which outputs are predicted and these are compared with the
true outputs. Starting with a simple initial configuration, the
weights are continuously adjusted by an optimization process to
yield better, more accurate predictions. Through this learning
process of many itcrations, a complicatcd set of empirical
rclationships between input and output variables may be
developed. Eventually, with minimal influence from the user, the
network “Icarns” a scheme in which outputs are associated with
the inputs. In the present analysis, a feed-forward network with
a back propagation learning scheme was utilized®.

Experimental Conditions

Autogenous, pulsed Nd:Yag laser welds were made on 3-min-
thick sheet of aluminum alloy 5754 and 2-mm-thick sheet of alloy
6111. Although the neural network analysis considered all the
data for both alloys, only the results for alloy 5754 will be
presented here due to space limitations. The complete results will
be published elsewhere'®. A range of welding conditions was
examined and the parameters are listed in Table 1. All welds
were made at approximately 4 pulses/mm in order to insure
sufficient overlap of the pulses. The average power was varied
from 50 to 250 W to include a wide range of power levels and
corresponding pool shapes and sizes without reaching full
penetration. The aim was to cover typical welding conditions used
in practice. In all cases, the laser beam was focused on the top
surface. The welds were sectioned and transverse cross-sections
were examined metallographically. The first ten conditions in
"Table 1 (along with ten conditions for alloy 6111) were used for
training the neural network. Five transverse views were analyzed

Table 1: Laser welding conditions

ID Weld Pulse Average Pulse
Speed Energy Power Duration

(mm/sec) | (Joules) (Watts) (msec)
5-1-1 6.38 4.1 101 2.2
5-1-2 6.38 2 51 22
5-1-3 6.38 2.9 74 22
5-2 10.2 5.5 203 22
5-3 10.2 4.1 165 2.2
5-4 10.2 3 125 22
5-5 10.2 3.5 158 2.2
3-6 2.55 113 123 7.5
5-7 3.83 13.2 196 7.5
5-8 383 9.5 190 7.5
5-1-R 6.38 4.0 100 22
5-2-R 10.2 5.0 200 22
5-5-R 10.2 3.95 158 22
5-1-N - 3 5 100 22
5-2-N 5 7.5 150 2.2
5-3-N 5 9.05 181 22
5-4-N 3 8.33 100 22
5-5-N 3 6.25 75 22
5-6-N 3 4.17 50 22
5-7-N 7.65 8.13 244 2.2
5-8-N 7.65 6.67 200 22
5-9-N 7.65 5 150 22
5-10-N 7.65 3.33 100 22

for each weld condition to compensate for the variation in weld
profile shape due to the pulsed nature of the welding process.

* Later, thirteen additional welds (with “R” and “N” suffixes in

Table 1) were made and these were used to test the neural network
predictions. Of these thirteen conditions in the second round of
welds, three welds (“R” suffix, Table 1) were made under the
same nominal conditions as three of the welds in the first round.
This allowed for an evaluation of the reproducibility of the welds.
The remaining ten welds in the second round (“N” suffix,



Table 1) were used to test the ncural nctwork prediction
capabilitics as these welds were made under conditions that were
different from those used to train the network.

Network Development

Initially, twenty diffcrent welds were made for the two
different alloys (and thicknecsses) and these were used as the
training sct for the ncural network'®. This is not a very extensive
training data sct. When identifying the ncural network structure
in terms of the number of hidden lavers and hidden nodes. the size
of the training set must be taken into account. If training data for
an unlimited number of welding conditions were available, then
the optimum ncural nctwork structure is likely to be quite
complicated, with many hidden nodes and perhaps even several
hidden layers. However, in the present case, with the small
number of conditions that were examined, it was determined that
only a very simple ncural nctwork structurc was justified'®.
Otherwise, the number of adjustable parameters in the network
(the weights associated with cach of the hidden nodces) would be
greater than the number of training-sct data points and the ncural
network would be over-specified.  Under such conditions. the
ncural nctwork could “learn” and “memorize™ very accurately but
its predictability would be poor. Thus. only one hidden layer with
two nodes was used. A more detaifed analysis justifving this
choice of nctwork architecture is provided clscwhere'®.

Once the optimal ncural network architecture was identified.
the final ncural network was trained and the output was used to
predict actual weld pool shapes. The overall procedure is shown
in Figure 2. A commercially available sofiware program

Make experimental welds’

I

Evaluate shape parameters on multiple cross-sections of each weldJ
I

[
Associate average shape
parameters with each shape template
weld condition from each cross-section
| i
Train neural network
(thousands of iterations)
to predict shape parameters
from weld conditions

[

Use the developed neural network
to predict weld shape parameters
for new weld conditions

l

Identify which pool shape template
has shape parameters closest to
the predicted parameters

[

Scale the template pool shape |
to reflect the predicted pool
shape parameters

Create reference

Figure 2: Flow chart showing the scquence of opcrations to
produce the training data sct, 10 train the ncural network, and to
predict weld pool shape with the developed network.

(NcuralWorks Professional I/PLUST™ ') was uscd to carry out the
ncural nctwork analysis. A back propagation learning scheme
with a sigmoidal transfer function was uscd'®. Scveral hundred
thousand iterations were made during the learning process to
identify the final ncural network. Various lcarning parameters
were tested in an effort to evaluate their effect on the final network
accuracy. It was found that the learning paramecters had little
influence on the learning ability of the nctwork. In addition, the
starting point (“sced” number) for the learning process was varicd
randomly in order to identify a “best net”.

The accuracy of the network was cvaluated by two means.
First. comparable nets were created with the same architecture
and samc random sced number but with only 19 of the 20 training
points. The 20" point was used as a blind test point. This was
repeated for each of the 10 conditions for alloy 5754 in the first
round of welds. In this way, a quantitative estimate of the
accuracy of the nctwork could be established. A sccond accuracy
test was made by visually comparing the predicted weld pool
shapes with the sccond set of thirteen welds. Both of these tests
indicated that the predicted weld pool shapes were reasonably
accurate and typically within the variation found along cach weld
and among duplicatc welds made under similar conditions. It
should be noted that an absolute best-network is never found since
further learning or a more extended sct of initial sced numbers is
always going to produce some marginal improvement. Therefore,
from a practical perspective, some limits on the lcarning process
must be applicd. In the current study, the nctworks were
cvaluated every 10,000 itcrations and if no improvement was
found after 20 consccutive checks (200,000 itcrations), then the
training was terminated.

Weld Pool Shape Characterization

In order to predict weld pool profilces, it is first nccessary to
identify parameters that characterize the weld pool shape. Onc
approach is to describe the cross-scction profile in terms of an
analytical function. However, this is complicated by scveral
factors. First, the experimental cross-scctions included a wide
range of shapes. from shallow half-cllipses to decp and narrow
welds. In addition, the weld profiles often included inflection
points that could be difficult to describe by simple gcometric
functions. Some typical weld pool cross-scctions are shown in
Figure 3. Third. the number of parameters that could be used to
describe the weld pool shape had to be limited. This was because
there was a limited amount of data available for training, and it
was not appropriate or justifiable to develop a model with a large
number of adjustable parameters. Instcad, it was desirable to keep
the number of parameters that were used to describe the weld pool
geometry toa minimum. Finally, the use of an analytical function
to describe the weld pool shape was avoided because the choice of
the function was somewhat arbitrary, Rather than using an
aralytical function, physical parameters relating to the actual weld
pool shape were uscd.

The four parameters describing the actual shape of the weld
pool cross-scction were penctration depth, width (at the top of the
weld), width (at half penctration, referred to as “half-width), and



Figure 3: Cross-scction micrographs of welds (a) 5-5 and (b) 5-7
(see Table 1) showing the range in pool shapes that were observed.

total arca. These four paramecters were cvaluated from the
experimental weld pool cross-sections. Since pulsed-laser welds
were examined, the weld pool shape was not constant along the
length of the weld but rather, fluctuated as a result of the pulsing
power source. Five weld cross-sections were analyzed from each
weld to account for the variability in pool cross-sections due to the
pulsing power source. The four pool shape parameters were
measured on each of these five cross-sections and the average
values were used in the training of the ncural nctwork.

The top surface of the welds was often highly irregular and
variable, as shown in Figure 3. This presented a problem when
ascertaining the arca of the welds. It was decided to use the actual
weld cross-section areas, without artificially cutting off the
protuberances on the top surface. However, when taking the
output from the neural network model to predict a weld pool cross-
section, a flat top surface was imposed when reconstructing the
weld pool cross-section.

The output from the ncural network model consisted of the
four weld profile parameters, penetration depth, width, half-width,
and area. [t was desirable to convert these four parameters into an
actual weld profile. This was accomplished by using the

experimental weld profiles as templates. The output shape
parameters from the neural network were compared to the entire
set of experimental weld pool profile parameters and the closest
match was identified. Then, the corresponding experimental weld
profile was scaled appropriately so that the final profile
corresponded to the predicted penetration and width parameters.
In this way, the predicted weld shape resembled the experimental
weld cross-sections and there was no need to impose an arbitrary
analytical function to describe the complicated profiles. The
template library of experimental weld profiles was relatively
extensive because all five cross-sections that were taken from each
weld were utilized.

As discussed in greater detail later, the shape of the second set
of welds (“R” and “N” labels in Table 1) showed some features
that were different from the first set. The second set tended to be
deeper and the fusion zone boundaries were steeper near the top
of the weld, even under the same nominal conditions. This
implies that in addition to the four parameters listed in Table 1,
there was at least one other parameter that had an influence on the
weld pool shape, and this parameter was not necessarily held
constant. Without using this additional parameter as an input in
the neural network, scatter in the training data set is introduced
and the ability of the neural network to fit the data is
compromiscd. Furthermore, the pool profiles from the second set
of welds were not included in the template library. This limited
the degree to which the neural network could accurately predict
the pool profiles for the second round of welds. Ideally, the neural
network training set should have included some data from each of
the two sets of welds; development of such an improved network
is being considered for future work.

Results and Discussion

First, it is informative to examine the reproducibility of the
weld profiles in the laser welds. This can be assessed in two ways.
In Figure 4, five weld pool cross-sections from a typical weld are
superimposed. Clearly, the weld pool shape is not exactly
constant along the length of the weld. This kind of superposition
provides some guidance as to the variation in pool shape that can
be expected within the same weld. The range in weld pool cross-
sections also provides a basis for assessing the accuracy of the
predicted pool profiles.

The second method to assess the reproducibility of the welds
is to compare welds made under the same nominal conditions.
Figure 5 shows the weld pool profiles for three such repeat
welds(5-1-R, 5-2-R, 5-5-R) compared to the original welds (5-1-1,
5-2, 5-5, respectively). Although good reproducibility is shownin
Figure 5 for welds 5-1-1 and 5-1-R, the reproducibility is
noticeably worse for welds 5-5 and 5-5-R. There is a tendency for
the “R” welds to be deeper than the corresponding welds in the
initial set. Several factors may contribute to the lack of
reproducibility. First, the conditions were not exactly the same
(see Table 1). Second, focusing the laser on the top surface was
done visually and this may not be completely reproducible. Third,
the mirrors were slightly different because a defect in the laser
mirror was corrected between runs. Finally, different devices
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Figure 4: Typical variation in weld pool cross-scction along the
length of a single weld (5-7, Table 1). The top line is thc nominal
top surface of the sheet.

were uscd to measure the average power and so the values may
not be exactly the same. Although these differences may have
compromiscd the exact duplication of the weld conditions. the
resultant differences may be comparable to those found in
cveryday practice when trying to reproduce previous weld
conditions. Therefore. the comparisons are considered to be
representative of reproducibility in typical welding environments.
The entire serics of predicted weld pool shapes are shown in
Figurc 6 for all 13 of the welds in the sccond round of tests, along
with the experimental profiles. The thick weld pool outline is the
predicted one while the thinner outlines represent the five
experimental cross-scctions for cach weld. In general, the
predictions compare favorably with the experimental profiles.
There does not secm to be any consistent crror in the predictions
in terms of over-predicting or under-predicting the weld pool
profiles. When compared to the experimental reproducibility
discusscd above and shown in Figures 4 and 5. the accuracy of the
predictions is within the experimental reproducibility. Thus, the
difference between the predicted and experimental weld profiles
is insignificant since repeat welds or cross-sections {rom different
locations in the weld would show the same or more variation.
Two discrepancies between the predicted and experimental
weld pool shapes can be identificd. and these arc associated with
the library of weld pool profile templates that were used. The
template library consisted of the weld pool cross-sections from the
first round of experimental welds (five cross-scctions for cach
welding condition) and these templates were used for calculating
allof the predicted weld profiles. When comparing the first round
of welds to the sccond. two trends are noticcable. First. the sccond
sct of welds were more symmctrical about the centerline: the first
sct of welds tended to be slightly skewed off-center.  Therefore,
this inhercnt asymmetry in the first set of weld profiles was
carricd over into all the predicted weld pool profiles. Second. the
final round of wclds tendcd to be narrower and deeper. Also, the
appearance of the “cars” ncar the top of the weld (sce Figure 3)
was absent in the sccond round of welds. As with the asyminetry,
these differences lead to discrepancics between the predicted and
actual pool shapes since the predicted profile character is based on
the nature of the profiles from the first st of welds. Naturally, if
a greater library of weld profile templates is available. these

Figurc 5: Superposition of weld profiles from two weld runs made
under the same nominal conditions (rcfer to Table 1) for 5-1-1
and 5-1-R, 5-2 and 5-2-R. and 5-5 and 5-5-R.

discrepancics can be minimized.

Ultimately, the accuracy of the ncural nctwork predictions is
controlled by the size of the training sct of data that is available.
Improved accuracy. if needed. could be achicved by using a larger
training sct. In the current case, this is unwarranted because of
the limitations in the reproducibility of the welds.

The ncural network model could be used in conjunction with
other models to predict weld pool propertics. If the weld profile
is known through the network model, estimated thermal profiles
can be superimposed on the weld profile, using the predicted
fusion line as a known boundary condition. With the resultant
spatial variation of thermal exposure, propertics that arc
dependent on the thermal cycle can be estimated and a spatial
variation of propertics can be predicted.

Once the neural network is developed, trends in behavior can
be readily identificd. By inputting fictitious process conditions,
the variation in pool profile as a function of process parameters
could be determined. as long as the conditions were within the
range considered in the training data sct. In this manner, an
“ideal” experiment in which only sclected parameters are atlowed
to vary can be conducted and the response in terms of weld pool
shape can be followed. Also, with the developed network in hand,
it can be uscd as the basis for a ncural network in which other
process parameters such as focus plane position are considered.
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Figure 6: Predicted weld pool shapes compared to experimental pool profiles. The heavy line is the predicted profile while the lighter
lines are the five experimental profiles taken along the length of the weld. The same scale marker applies to all welds.

The criterion that was used to identify the best matching
experimental pool profile with the predicted paramcters gave
equal weight to each of the four pool shape descriptors. If nceded,
this procedure could be readily altered if one or more of the pool
shape parameters is more important and needs to be predicted
with higher accuracy than the others. For example, if the
penetration depth is critical, and the width or area arc less
important, the pool shape prediction procedure could be modified
to lend more weight to the depth when reconstructing the
predictcd weld pool cross-section.

Finally, the primary purpose of the application of neural
networks to weld pool shape prediction was to achieve a method
for rapid predictive capability. With the input of the process
parameters, the time needed by the neural network to predict the
output is a fraction of a second. Thus, the output is basically
instantancous, as was desired. Therefore, this methodology is
ideally suited for quality control and process control applications.

Limitations of the Analysis

There are several limitations to this approach for predicting
weld pool shape as a function of process parameters. First, the

initial development of the neural network can be tedious. This
development includes producing and analyzing the experimental
data that is to be used for the training of the network,
identification of the optimal network architecture, and testing the
network for accuracy. However, once a network is developed,
further learning and improvement should be easier because only
perturbations on the existing network would be needed.

The current study did not consider full penetration welds.
Such welds may introduce additional complications, including the
choice of parameters used to describe the weld pool shape.
Similarly, if more than four shape parameters are important, such
as reinforcement height or undercut, then correspondingly more
data would need to be processed and available to teach the neural
network. With regard to the range of parameters for which the
model is appropriate, one should not lose sight of the fact that the
neural network model is empirically based and, as such, is only
valid over the range of variables used in the learning process.
Therefore, extrapolations to conditions outside the training range
may be suspect.

Finally, it needs to be kept in mind that the neural network is
process and material specific. Thus, the current neural network
cannot be directly applied to other aluminum welding processes



or to other alloys without assessment and modification. For
example, if alloy composition has a strong impact on the weld
pool shape, then alloy composition would have to be treated in
detail and included as input to the ncural nctwork model. Thus,
in stainless stecls where minor additions of surfacc active clements
have a large impact on the final wecld pool shape, the
concentration levels of these critical components would have to be
uscd as an input parameter, and conscquently, sufficient data to
cover the range of possible compositions would have to be used to
train the network.

With these limitations in mind, the ncural network is.
nonctheless, a powerful tool for predicting yweld pool shape.
Furthcrmore, the same technology can be readily used for
predicting other weld features. The present study has clearly
demonstrated that the ncural network approach is a viable and
uscful method for predicting weld pool shape characteristics.

Summary

A ncural nctwork analysis was successfully applicd to predict
the weld pool shape in pulsed Nd: Yag laser aluminum alloy welds.
The predictions were within the experimental variation in pool
shape that was found along the length of the welds as well as in
duplicate welds made under the same nominal conditions.
Variable process parameters included weld speed. average power,
pulse encrgy, and pulsc duration. The weld pool shape was
described by four paramcters, penetration, width, width at half-
penctration, and weld arca. The predicted weld shape parameters
were converted into weld profiles utilizing the actual experimental
weld pool profiles as templates.  In this way, predicted weld
profiles resembled the actual welds and the use of artificial
analytical functions to describe the overall profile was avoided.
Although the ncural network was developed specifically for the
alloy and range of conditions that were investigated in this study,
the feasibility of succcssfully predicting weld pool shapes by
means of ncural network analysis was clearly demonstrated.
Extension of the model to other alloys and other processes with
different process parameters and shape (output) paramcters is
straightforward. This approach to predicting weld pool shapes
allows for an instantancous prediction of weld pool shape and
therefore offers advantages in applications where real-time
predictions are nceded and computationally intensive predictions
are oo slow.
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