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1. Introduction

1.1. Characteristics of heavy-ion scattering

We shall be concerned here with the elastic (or quasi-elastic) scattering

of two heavy ions at low or medium energies (mainly projectiles with < 20 MeV

per nucleon). Normally, the term 'heavy ion' means a composite nucleus of

mass A > 4. However for our purpose, it is convenient to include alpha

particles also since in many respects the scattering of alphas resembles that

of heavier nuclei, both of them exhibiting strong absorption. (Often, also,

more complete data are available for alpha scattering.)

Heavy-ion scattering is distinguished by (a) short wavelengths, (b) strong

Coulomb interactions and (c) strong absorption. The wavelengths are short be-

cause of the large masses and because of the high energies usually required to

surmount the large Coulomb repulsions. Two nuclei, with mass numbers A. and

Ao and center-of-mass energy E (MeV), have a reduced wavelength of
2. cm

. . /21 (A.+A.)

^ F ^ ' - V ^ E fm- (1)

f T. 2 cm

For 160 on 208Pb with E- . = 150 MeV this gives tf = 0.10 fm, while for 136Xe
209

on Bi with E, , = 1130 MeV we have tf = 0.019 fm. (Note that these are
lab

quite 'low' energies, less than 10 MeV per projectile nucleon.) These wave-

lengths remain short even when we take the Coulomb repulsion into account.

When the nuclear centers are separated by r (A. + A- ) fm, the Coulomb

barrier is

1.44 Z.Z.
U = • •c " 1/3 1/3

ro (Aj
/3 + A*'3)

With r - 1.4 fm, this repulsion only increases the values of -3C to 0.15 fm

and 0.031 fm, respectively, in the two cases just cited.

These small values of "Jt (large values of k) also imply that large angu-

lar momenta L are involved. Typically, we need partial waves up to and some-

what beyond the grazing value

Lgr * k (R1 + V = kro



e.g. for the Xe + 209Bi case we have L - 500 if r = 1.4 fm. This means
gr o

that calculations using partial-wave expansions will often be time consuming

since they will involve evaluating many terms.

There are several approaches to describing and understanding this scat-

tering and we briefly review them.
1.2. Semiclassical descriptions

The first two properties (a) and (b) mentioned above suggest the use of

classical mechanics or the developments knc*m as semi-classical theories [1,2]*

whi^h take into account such quantal effects as the superposition and inter-

ference of contributions from different classical trajectories. The basic

idea here is that -K is small compared to other dimensions in the problem such

as the sizes of the nuclei and distances over which : he interaction potential

changes significantly. Then locally at some position x where th* potential

is U(x), we can approximate the wavefunction of relative motion by a plane

wave with a wavelength determined by the local kinetic energy,

,, » - ik(x)x

with k(x) - \2y[E-U(x)]/«2. (4)

This leads to the WKB approximation which is the basis of theories which re-

duce a full quantal (wave) treatment to one of geometrical or ray optica.

The partial wave sum is converted into an integral and the saddle point or

stationary phase approximation is used to evaluate the scattering amplitude.

This amplitude then appears as a coherent superposition of the contributions

from all the classical orbits which result in the same scattering angle. In

this way we take into account the refractive effects due to the nuclear po-

tential acting between the two nuclei, as well as the resulting interference

effects which are essential quantal corrections.

We note that we have only referred to the relative motion of the two

nuclei. This is sufficient to determine the elastic scattering, but it does

imply that the full many-body problem of two interacting composite nuclei has

Rather than attempt a complete bibliography, 1 refer mostly to recent papers
which include references to earlier work.



been replaced by a two-body problem by the introduction of an effective or

'optical' potential. This potential depends only upon the separation of the

two nuclei (together with, in a few cae.,s, some simple collective variables

such as shape deformations) but does not refer explicitly to the many internal

degrees of freedom. The presence of these other degrees of freedom means that

the nuclei can be internally excited. In fact, this is by far the most likely

event when two composite nuclei make 'contact'. Since this removes flux from

the elastic channel being considered, it is equivalent to absorption in this

channel. In potential terms this is represented by an imaginary potential.

Heavy ions (and alphas) are characterised by strong absorption; that is to

say, the scattering matrix elements S are approximately nero for small angu-

lar momenta L < k(R- + R?) and contribute essentially no outgoing, scattered

waves.

1.3. Strong absorption

This property, namely strong absorption, introduces complications for

semiclassical theories. Weak absorption could be taken into account in a

perturbative way, essentially by a damping of the amplitude as the system

progresses along its classical path. However, strong absorption introduces

essentially quantal (i.e. wave) effects such as diffraction (by which is

meant the propagation of waves into classically forbidden or shadow regions).

One response to this problem has been to generalize the semiclassical

theories [3-6] to include complex trajectories, with complex angular momenta

and complex turning points. The use of a complex angular momentum, for ex-

ample, may be thought of as a way of replacing a single (real) angular

momentum L 'ssociated with a given orbit by a packet of angular momenta

centered on L but with a width given by the imaginary part of the angular

momentum. This spreading is introduced by diffraction at the edge of the

'black', absorptive region. These matters have been discussed in detail else-

where [3-6]. Unfortunately, the need to use these complex quantities some-

what obscures the physical insight which could be obtained in cases of weak

absorption with the descriptions based upon real orbits.

1.4. Parameterized S-matrices

An alternative approach [7,8] makes use of the simple structure of the

scattering or S-matrix elements for strongly absorbing systems and parame-

trizes it directly. The crudest version of this is the sharp cut-off model,



ST = 0 , L < L ,
L C (5)

SL = 1 , L > Lc,

where L = k(R. + L ) is a critical angular momentum corresponding to a

peripheral or grazing collision. This was generalized to functional forms

of S(L) with smooth cut-offs, and a. nuclear phase-shift was also introduced.

Such forms are either phenomenological or, more recently [9], have been re-

lated to particular assumptions about the nuclear potential. Closed forms

have been obtained for the partial-wave sums and the wave optics implied

have been examined in detail. In certain limits, the results can be reduced

to Fresnel and Fraunhofer diffraction scattering.

We note that, in general, this approach does not involve any assump-

tions about reducing a complicated many-body problem to an equivalent two-

body one by the introduction of an effective or optical (complex) potential.

It simply makes use of simple, plausible, properties of an S-matrix for

strongly absorbing scattering which involves many partial waves. Herein

lies both its strength and its 'weakness'. It is able to correlate large

amounts of (elastic and inelastic) data. Indeed, even what I chose to call

its 'weakness' is overcome by recent work [9] which rather directly relates

the S-matrix behaviour to an underlying interaction potential.

1.5. Typical angular distributions

Figure 1 shows some 'typical' angular distributions for strong ab-

sorption scattering. Figure l(a) shows a diffraction-lik* structure [10]

which is usually referred co as Fraunhofer diffraction. This occurs for

energies well above the Coulomb bsrrier (which is only about 10 MeV for the

case shown). »̂i the other hand, at energies closer to the Coulomb barrier,

we see patterns like Fig. l(b) [11] where, after some oscillation about the

Rutherford value, the ratio of the cross section to the Rutherford value

falls rt jghly exponentially (by four orders of magnitude in the case shown).

This is referred to variously as Fresnel or (Coulomb) rainbow scattering

depending upon the author's point of view (see below).

Figure l(c) shows results [12] for 140 MeV alphas scattering from vari-

ous targets. The forward angles show (after the initial 'Coulomb rainbow1)

the 'Fraunhofer' diffraction pattern, customary for strongly absorbed

particles, whose oscillations have a period



T? «>
which is characteristic of peripheral scattering. Howe er, at larger angles,

this pattern is damped out and then followed by a smooth, exponential-like

fall-off. This 'shadow' has been interpreted [13] in terms of a further re-

fractive effect which has been called a 'nuclear rainbow'. We return to this

phenomena later, but we note that the rainbow explanation is an example of

something that may be readily and intuitively understood in classical terms

but which is much less clear in the language of partial waves (since many

partial waves may be involved in a correlated way). Such a nuclear rainbow

has not yet been identified for the scattering of heavier ions; (although the

data shown in Fig. l(a) might appear to suggest the onset of such a rainbow

for 6 > 50°, it seems in fact :bat the absorption in this case is still too

strong for it to be fully deve oped). Although the alpha-nucleus interaction

is characterised by 'strong absorption', it appears that it is not quite as

complete in some respects as fcr the heavier ions.

1.6. Rainbow or Fresnel?

The differential cross sections shown in Fig. l(b) are typical of heavy-

ion scattering which is dominated by the Coulomb field, namely some oscilla-

tion about the Rutherford value followed by a shadow, a rapid decrease in

cross section. One question that does not seem to be completely resolved is

whether such a pattern is due to the refractive effects of the real nuclear

potential (i.e., whether it should be called rainbow scattering) or whether it

is diffractive (i.e., whether it should be called Fresnel scattering) due to

the sudden onset of strong absorption at the nuclear surface. The refractive

interpretation [4] says that the Coulomb orbits that would have been scat-

tered into the shadow region encounter the attractive (real) nuclear potential

and are pulled forward. A concentration of such rays results in a rainbow

peak which is identified with the largest and last rise above the Rutherford

value and has been called "the Coulomb rainbow". The diffractive interpre-

tation [7,8] implies that tha would-be rainbow orbits encounter strong ab-

sorption and thus the rainbow effect is strongly damped or completely absent.

Rather, the shadow is due to absorption of the particles on the Coulomb or-

bits which would have scattered into this region and the peak structure is

due to Fresnel diffraction at the edge of the black, absorbing sphere.



It is very unlikely that these two processes could be directly dis-

tinguished experimentally [6]. Indeed, it is possible that neither extreme

interpretation is appropriate [6]. It certainly is true that in practical

cases the cross section in the vicinity of the 'Fresnel' peak is sensitive

to the real nuclear potential and hence to refractive effects, even though

that potential is typically of order -1 MeV and very much less than the

Coulomb potential in the same region. The observed angular distributions

cannot be reproduced by a purely imaginary (absorptive) potential. Indeed

the magnitude of the oscillations about the Rutherford cross section is a

sensitive indicator of the relative strengths of tie real and imaginary po-

tentials at the surface, indicating that both absorptive and refractive

processes play important roles. (Typically, the ratio of imaginary to real

potential ranges from - 4- at low energies increasing to unity as the energy

increases.) First, we see from Fig. l(b) that the imaginary potential alone

does not produce enough 'shadow'; the attractive real potential is neces-

sary to pull the peripheral orbits into the absorptive region. (This in-

terpretation is justified by examining the corresponding scattering matrix

elements.) Further, on the one hand Fig. 2(a) shows [10] that the magni-

tude of the oscillation about the Rutherford value is sensitive to the

amount of absorption (for a fixed real, refractive, potential) while, on the

other hand, Fig. 2(b) shows [14] that these oscillations are not indepen-

dent of the strength of the real potential (for a fixed imaginary, ab-

sorptive, potential). Consequently, it appears that the detailed shape of

this kind of scattering pattern is dependent upon both absorptive (dif-

fractive) and refractive effects.

For convenience, we shall continue to refer to this kind of scattering

pattern as 'Fresnel'-like.

1.7. What do we learn from heavy-ion scattering?

1.7.1. Strong absorption radii

Some brief remarks on the physical quantities about which we may ob-

tain information from heavy-ion scattering. First, of course, we learn

something about the appropriate 'size' of the two interacting nuclei. This

appears in the form of some strong absorption radius, RQA* which character-

ises the separation of the two nuclear centers when they begin to interact

strongly. There is not a unique definition of this distance, although the
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different prescriptions in use give values which differ usually by only a few

times 0.1 fm. The simplest and most empirical is the quarter-point prescrip-

tion, based upon Fresnel diffraction ideas, which is applicable to angular

distributions like those shown in Pig. l(b). Here ReA is taken to be the
5A

distance of closest approach, D.. ,, say, of that Rutherford orbit whose scat-

tering angle equals the angle 6. ., at which the measured cross section has

fallen to -r of the Rutherford value, da(8-,,)/daH - -r. This may be converted

tc a reaction or absorption cross section a. by assuming complete absorption

for all orbits which approach more closely than D... and no absorption for the

others [15]. Let L be the angular momentum quantum number corresponding to a

distance of closest approach D and scattering angle 6 (so that the actual

angular momentum is (L + £)fi, semiclassically). These are related for

Rutherford orbits by

(L •» £•} = n ^

(7)
or (L + £)~ = k D (kD-2n),

where k i s the wwenumber and n i s the Sommerfeld or Coulomb parameter,

n . 0.16

if A. is the projectile mass number. Then the absorption cross section is

given by

M 2
ir k 2 I (2L+1) = ir k 2 (L. ,.+1) , (9)

A L=0 u*

if L = Li/# corresponds to 6 = 6-j/,, etc. This procedure has been useful for

deducing qualitatively reliable values (to < 20%, say) of a. from elastic

scattering measurements, although the accuracy in any given case may be diffi-

cult to assess without further work.

The parameterized S-matrix and optical model approaches may be used to

analyse elastic scattering data of either the 'Fresnel' or 'Fraunhofer' type

and automatically give a complete S-matrix which allows a precise prediction

for a. (within the accuracy of the data and of the fit to it). However,

there is not complete agreement on what is the most useful quantity to



designate as the strong absorption radius. A popular prescription is to take

for R the distance of closest approach D.. .„ of the Rutherford orbit with

that angular momentum L.. .„ for which the analysis indicates a 50% probability

of absorption, or a transmission (or penetration) coefficient

so that

= 1 -

Jl/2

\n
1.
2»

(10)

The value of D. ,„ is obtained from L- .„ through the classical relation (7)

above. Another popular choice [8] is to take the L value for which |S 2
while more recently reasons have been given [9] for choosing the L for which

dls 1/dL has its maximum. The latter prescription generally results in
Li

slighter smaller ralues of L, but all the choices give radii R . which are

fairly close. (We have to remember that, although it has considerable intui-

tive value, R . does not have any absolute significance except within the con-

text of some theoretical framework.) Further, those who favour a refractive

interpretation rather than one based upon Fresnel diffraction emphasise the

distance of closest approach of the 'rainbow orbit1 [16]. Again, one arrives

at critical radii with values rather similar to the values of R obtained in
*>A

the other ways.
T:pically, the values of R obtained are given approximately by

RgA = 1.5
1/3 fm.

Physically, the variation is perhaps better represented by [15]

= 1.1 + 3 fm,

(ID

(12)

which represents a roughly constant separation between the half-density points

of the density distributions of the two nuclei. A collection of values of

critical radii based upon rainbow scattering ideas has been published [16]

and follows these trends also.

These valv,.s of R . are large. The half-density points of the two nuclei

are separated by roughly 3 fm. This corresponds to a very small overlap of

the two density distributions (see Fig. 3). Typically, the two densities
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overlap at a point where they are between 5 and 10X of their central values.

1.7.2. The nucleus-nucleus potential

One of the quantities of most interest that we might hope to extract from

elastic scattering measurements is the potential of interaction between the

two nuclei. This is usually expressed in terms of a complex effective or

optical potential U(r), depending only upon the separation r of their centers-

of-mass: we return to this later.

Learning about this interaction potential is of fundamental importance.

It enters into the description of any heavy-ion collision. It embodies the

initial reaction of the two nuclei to each other as they approach. It is

needed, for example, in descriptions (such as DWBA and coupled-channels) of

direct, peripheral reactions. Elastic scattering is also a doorway through

which the system must go before proceeding to deep inelastic scattering.

Further, this potential is a quantity of interest in itself which we may

attempt to understand from more basic principles. (The folded potential to be

discussed later is one such attempt.)

In practice, we find that in most cases the observed scattering deter-

mines the potential only in the surface or extreme tail. Typically, the

values of the real and imaginary parts of the potential U are determined,

often quite accurately, in the vicinity of the strong absorption radius. In

particular, the ratio of imaginary to real (i.e., the 'phase1 of the potential)

can be determined with some precision with data like those shown in Fig. 2.

For many systems with - 10 MeV per nucleon bombarding energy, this ratio is

found to be close to unity, but it appears to be smaller as the energy is re-

duced and approaches the Coulomb barrier. The value of the real nuclear po-

tential near the strong absorption radius is typically of order -1 MeV, which

is much less than the repulsive Coulomb potential in the same region.

Further, with data that are reasonably precise and complete, constraints

can be put upon the values of the slopes Re dU/dr and Im dll/dr in the same

region. For example, the data of Fig. l(b) were shown [10] to place a lower

limit on Re dU/dr (which ruled out a certain kind of folded potential). In

many cases of Fresnel-like scattering such as Fig. l(b) it is possible to use

Re U and Im U with the same slope in the surface (e.g., a Woods-Saxon po-

tential with aR = a_). However, in other cases improvements in fit can be ob-

tained with different slopes; the tendency is for |lm dU/dr| > |Re dU/dr|.
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At higher energies, when Fraunhofer characteristics are becoming manifest, it

is seldom adequate to have Re U and Im U with the same shape (unless the data

available to be fitted are very limited in angle).

The real potentials obtained from a considerable number of analyses of

elastic heavy-ion scattering have been summarized by Christensen and

Winther [16] in terms of an exponential potential (appropriate for the sur-

face region of r - Rs»):>

R R [r-RrR2J
Re UM(r) = - 50 * * e *• a ' MeV (13)

where R± = 1.233 A*
/3 - 0.978 A~ 1 / 3 fm

and a = 0.63 fm. This gives a good account of the average behaviour of po-

tentials which fit observed scattering, although minor fluctuations in the

values will be found in individual cases.

In almost all cases of heavy-ion scattering, the fits to the data are

very (or completely) insensitive to the potential at separations smaller than

the strong absorption radius; compare Figs. l(b) and 3(b), for example. (This

is true also for alpha scattering at 'lower* energies and/or when the angu-

lar range is limited to forward scattering. However, data such as those shown

in Fig. l(c) are indeed sensitive to the potential over a wider range of radii,

sufficiently so that one may determine unambiguously the parameters of a par-

ticular model potential such as the Woods-Saxon one or even deduce evidence

for different shapes of potential, such as the square of a Woods-Saxon

one [11,13,17].) Partial exceptions occur for heavy ions at higher energies,

when in some cases at least it appears that the scattering is sensitive to

the potential over a range of distances which may extend inside the strong

absorption radius. Even here, ambiguities may exist [18].

There are a few cases, which appear to be quite exceptional, where the

scattering may be sensitive to the potential U(r) for quite small separations,

r = 0. This enables us to raise the question "deep or shallow potentials?".

We return to this later.

When the scattering is sensitive only to the potential in the surface,

there are severe 'ambiguities' in the potential that can be extracted from

the data. A very well-known one is the Igo ambiguity. This may be expressed
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in terms of the Woods-Saxon potential,

V
Re U = - , Im U = - w

1+exp
'*-

a

RI

I

(14 ̂

At 'large* distances like r - RqA» this becomes

Re U = -

_r
aR Im U = -

r
a.

(15)

Clearly, if a_, aT are fixed, any combinations of V and R_, and W and R ,

' "J , L Rilwhich keep the combinations V exp — | and |W exp -—
aR

constant will give the

same scattering. Indeed, in this situation the parameters V and R^, for ex-

ample, have no separate significance. Exploring this ambiguity is a point-

less exercise. Far better, for example, to simply quote the values of U (and

dU/dr if they can be determined) at some suitable strong absorption radius.

(Since it is often convenient to use the Woods-Saxon form, one may fix either

V or L and either W or RT at some reasonable value.)

Often the slopes dU/dr are not precisely determined; potentials U with

somewhat different slopes (different values of 'a' in a Woods-Saxon parame-

terization) may give equally good fits to the data. But then it is usually

found that these potentials will all cross at almost the same radius ([19];

see also [20] for recent examples); this radius will be found to be close to

the strong absorption radii defined earlier. Then the data may be said to

have determined the potential at this radius.

Finally, a word of caution. Since such ambiguities exist, it is very

misleading when fitting data to vary more parameters than the data are capa-

ble of determining. Only too often, independent values of all six Woods-

Saxon parameters are quoted as being 'derived* from fitting the data when in

fact only, say, four are required (such as the values of Re U, Im U and their

slopes at the strong absorption radius. Indeed, if different slopes are not

required, only 3 quantities are determined). This entails fixing two or more

of the parameters at reasonable values, as suggested above. Such a procedure

not only avoids redundancies, it also makes it much easier to compare results

for different energies or different targets. (Another way of attempting to
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avoid redundancies is to use theoretically pre-detennined forms such as the

proximity potential [21] or the folding models [19] discussed later.)

2. Nucleus-Nucleus Optical Potentials

Potentials appropriate for the elastic scattering of two heavy ions have

been discussed by various authors (see, for example, Schroder and
a.w.d HoSel [70

Huizenga [15], Brink [22] DeVries [23]/, where other references may be
found).

2.1. Definition

We have spoken so far as though the inter-nucleus potential was defined

uniquely. This is not so; there are various ways in which we may reduce the

complicated (A, + A2)-body scattering problem to an effective two-body

problem. Failure to remember this has sometimes led to confusion. A con-

ventional optical model potential U(R) for two nuclei A., An is one which

appears in a one-body Schrodinger equation

X(R) - E X(R), (16)V2 + U(R)

where V is the reduced mass of the pair, R is the separation of their centers

of mass and E is the CMS energy of relative motion. The solution X(R) with

the appropriate boundary conditions describes the elastic scattering of

A. + A.. Usually U(R) is assumed to be local (although its parameter values

may vary with bombarding energy) and to have a smooth, simple functional form,

like that of the Woods-Saxon shape (14). Occasionally some L-dependence is

introduced, but only if one is forced to consider such a generalization by

some intractable data. The primary consideration is simplicity.

How do we justify the use of an equation like Eq. (16) which makes no

reference to the many internal degrees of freedom and the corresponding non-

elastic channels? One standard way to make it plausible that such an equation

may adequately describe elastic scattering is to use the projection operator

formalism of Feshbach [24].

Suppose that the complete Hamiltonian for the colliding pair is given by

H = H1 + H 2 + T + V (17)
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where H1 and H denote the internal Hamiltonians for the isolated nuclei, T is

the kinetic energy of relative motion in the center-of-mass system and V is

the coupling interaction between the ions. At this point, we ignore any ex-

plicit reference to antisymmetrization between nucleons in different ions,

although we assume that the wavefunctions for the internal states of the in-

dividual nuclei are antisymmetric. We denote a complete set of states for the

internal Hamiltonians of nuclei A. and A? by i|». and <f>. respectively, where

(H1 ~ Eli) *1 = °» (H2 " £2j ) *j = °* (18)

If the complete wavefunction is denoted by f , we note that measurements of

elastic or inelastic scattering provide us with information about the pro-

jection of the complete wavefunction onto the channel subspace defined by the

particular measurement. We denote these R-dependent projections (amplitudes)

by

X±j(R) = <«1*j|»
(+)>,, (19)

which means that we can express the total wavefunction as

i.J 3 J

A set of coupled equations governing the X .(R) can be found by inserting the

above expansion into the complete Schrodinger equation

(H-E) *(+) = 0. (21)

This yields

[T + < V J M V J > - E ] x Q9 - -J ( v 3 l v l V t > \t<8- <22>
LK,X.?=1, j J

where E.. = E - e-j-eo-j and (i,j=0...°°) .

The rounded brackets denote integration over the internal coordinates of the

two nuclei and serve to remind us that the matrix elements remain a function

of R.

Now Eqs. (22) represent an infinite set of coupled equations which, al-

though complete, are not very useful. Practical calculations require a se-

vere truncation of these to a small set of equations coupling a few states of
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particular interest. The use of an equation like Eq. (16) in fact involves

truncation to just that one associated with the ground states, i = j = 0. The

price we pay for this is that the interaction V becomes replaced by an

effective interaction. This becomes clear in Feshbach's formalism [24] in

which all explicit couplings to channels other than the one of interest are

eliminated. For that channel in which both nuclei remain in their ground

states this procedure results in a one-body Schrodinger equation for the

oo

[T + U - E] X = 0 (23)
op oo

with the optical potential operator U given by

oo Vo E=Ĥ Hl W (24)

AU.

IL, is defined as the first term in Eq. (24)
r

F v oW'
 (25)

and is called the folded potential for elastic scattering. (Note that this

same folded potential and its generalization to excited states and off-

diagonal couplings also appears in Eqs. (22).) Q is the operator which pro-

jects off the ground states of the two nuclei. By its construction, the exact

elastic scattering amplitude may be obtained from X as R -*- °°.

The folded potential U_ is real (provided that V is real). The remaining

term AU, which we may refer to as a dynamic polarization potential, arises

from coupling to all the other states, is much more difficult to calculate,

and, in general, is complex, non-local, energy- and angular-momentum depen-

dent. (In practice, because of the strong short-range repulsion in the bare

nucleon-nucleon interaction, the V itself will be an effective interaction or

G-matrix which itself includes some 'polarization1 corrections, primarily

those associated with the short-range correlation between the interacting

nucleons.)

In phenomenological approaches it is this object U which is approxi-

mated by a local, complex model potential U(R), for example of the
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Woods-Saxon form, as in Eq. (16). However, although this formalism provides

us with the form of the optical model Eq. (16), it does not guarantee that any

given simple representation of U will be adequate. This question may be

explored both empirically (is a given model successful in fitting data?) and

by studying the structure of AU. For example, we know that in many cases a

non-local potential may be replaced by a local one that is equivalent to it in

some specified sense.

2.2. Relation to other potentials

A particular point that I wish to stress is that with the potential U

(and by Implication an equivalent model potential U) defined in this way, the

solution X(R) of Eq. (16) represents XOQ(R) °f Eqs. (22), (23) and describes

the relative motion of the two nuclei while they both remain in their re-

spective ground states. This may be a very small component of the total wave-

function in that region of space where the two nuclei overlap appreciably; in

that case, the strong absorption into other channels manifests itself through

X (R) becoming very small for R < R + R_.

This is to be contrasted with most of the potentials calculated micro-

scopically for heavy-ion collisions ([15,22,23]; see also, for example, [250).

These calculations may use the energy-density approach, the Thomas-Fermi *

approximation, the liquid-drop model, etc., etc., but tl y all attempt to

follow to a greater or lesser degree the readjustments that the two nuclei

must make as they begin to interact and overlap; distortion of the nuclear

shapes, reaction to the Paul! principle, effects of the saturating nature of

the nuclear forces, etc. Such a potential energy function is not relevant

just to the X component of the wavefunction (20) but is to be used in a de-

scription of the motion of a wave packet which includes a wide range of ex-

cited states of the separated systems. It is not to be identified with U
op

of Eq. (24), and in principle it should not be used in an equation like Eq.

(16) without at least allowing for the corresponding changes in the kinetic

energy term resulting from the changes in the inertial properties [26]. As

soon as we allow the system to be in eigenstates other than their ground

states (i,j ^ 0), then in general the motion cannot be described simply in

terms of the separation R of the centers-of-mass of the pair; other coordi-

nates are needed. Further, there is an infinite number of such potential

functions, each one corresponding to one or both of the nuclei in excited
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states when widely separated. Transitions between these potentials result in

non-elastic scattering and hence absorption from the elastic channel. How-

ever, most of these calculations of potentials are performed in the adiabatic

limit so that such transitions do not occur and their absorptive and other

effects are ignored; static polarization is included but not dynamic effects.

Although I prefer to define the potential so that it reproduces the specific

component X through Eq. (23), I freely admit: that the physical processes

just discussed still manifest themselves through the dynamic polarization

term All. This term certainly gives rise to the imaginary, absorptive po-

tential that represents the implied scattering into non-elastic channels and,

in principle, it also contributes to the real part.

Later we shall consider to what extent the first, 'folded' term U_, is a
r

good approximation to the real part of the nucleus-nucleus potential. First

we should remark briefly on the potentials produced by the other tech-

niques [22] (but which, I stress again, are not designed to simply describe
the evolution of X (R) alone). Although initially the polarization of the

oo

nuclear shapes in their mutual field will be equivalent to an attractive po-

tential [27], the net effect of the various physical processes which occur

when the two nuclei begin to overlap tend to be repulsive; for example, when

there is total overlap, we would have a region with nuclear matter at roughly

twice its normal density unless we allow relaxation. Consequently, while the

simple folded potential U,,(R) is very deep (of the order of 60 A. MeV deep at
r J.

R ' 0 if A. << A_), these other calculations result in much shallower po-

tentials, often with a repulsive 'core*. The precise form of these potentials

depends upon the content of the calculations; whether a 'sudden' or an 'adia-

batic' assumption is made, whether self-consistency (in the Hartree-Fock

sense) is demanded, etc., etc.

The energy-density approaches [28] result in potentials similar to the

proximity form to be discussed below. These take the potential of interaction

to be the energy H of the combined system less the energies of the two sepa-

rated nuclei, H_ and H,,,

U(R) = J [H(p) - H(P;L) - H(p2)] dr (26)

where p(r) is the density of the overlapping system and p.,(r), p_(r) are the

densities of the isolated nuclei. H(p) is the energy functional for nuclear
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matter at density p. If we take p = P. + P_ [28], i.e. if we simply super-

pose the undistorted densities, this method takes account of the Pauli ex-

clusion principle (increase of kinetic energy) and the saturation property of

nuclear forces (density-dependence of effective interaction; e.g., Skyrme),

but does not allow for readjustment of the densities (sudden approximation).

As the nuclei first make contact, the attractive nuclear forces provide an

overall attraction, but as the nuclei overlap more, the saturation and Pauli

effects provide ever increasing repulsion (see Fig. 4). Allowing for read-

justment of the densities reduces this repulsion; the degree of reduction will

depend upon the speed of the collision. In the limit of large separations R,

these U(R) will tend to the folding potential U (provided the finite range

of the forces is taken into account properly). These effects have been dis-
7/

cussed by Mosel (see [29J, for example).

2.3. Proximity potentials

As an example of other nuclear potential functions, we consider a popu-

lar and rather general potential based upon the idea of proximity forces and

developed by the Berkeley group [21]. This proximity potential has the form

U(r) = -V f< ?), 5 = (r-Cj-C^/b, (27)

where

(28)

0.5(c-2.54)2 + 0.0852(5-2.54)3, £ < 1.2511
(29)

3.437 exp(-?/0.75), £ > 1.2511.

Here C. is the half-density matter radius of the ith nucleus and y. its sur-
l _2 i

face energy, y * 1 MeV'fm ;

Ri r " ft] ' Ri = 1<28 A i / 3ci ~ Ri r " ft] ' Ri = 1<28 A i / 3 " °'76 + 0#8

Also, b is a surface thickness parameter, b = 1 fm. We note that this has an

exponential forra at large r values like the empirical potential of Eq. (13),

but that the slope is less. The recommended [21] value of b = 1 fm corres-

ponds to a = 0.75 fm in that equation instead of the empirical a = 0.63 fm.
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Equivalently, ex = 0.63 fm implies b = 0.84 fm. Further, the strength of the

exponential, 3.437 V, has a dependence on the nuclear masses similar to the

empirical one of Eq. (13), although the precise numerical definition of the

radii is slightly different. Ignoring this last feature, the recommended

values [21] of b = y = 1 give a numerical coefficient of about 43 MeV fm

instead of the value 50 shown in Eq. (13). (However, when comparing these

numbers, the different values of the slopes must also be taken into account.

Although this difference appears small, it results in the exponential terms

alone differing by a factor of 2 when r-C.-C = 3 fm.)

The proximity form (29) has a minimum at C = -1.37 with a depth of

-2.55 V, goes through zero at t, - -3.33 and is repulsive for smaller radii.

At r = 0 it has the value

fc+c
U(0) = 3.437 V exp hj±^£ . (31)

16 2ft
As an example, for 0 + Si we have V * 20 MeV, the minimum occurs at

r = 4.5 fm with a depth of about -50 MeV, U goes through zero at r = 2.5 fm

and it has the value of about +200 MeV at r = 0. On the other hand, the sys-
136 209

tem Xe + Bi is predicted to have V s 40 MeV, with a minimum in U of

about -150 MeV at r ~ 11.4 fm and a repulsion of about +7500 MeV at r = 0.

2.4. Fusion barriers

Before two nuclei can fuse, they must surmount the potential barrier UD
D

(repulsive Coulomb Up plus attractive nuclear U ), between them. Hence, one

might expect to be able to deduce further information about the nuclear po-

tential by studying fusion cross sections. Indeed, the simple semiclassical

ideas behind Eqs. (7), (9) give an expression for the fusion cross section

?
fus

it R ? E-ti (32)

where t = R_ is the position of the barrier and UB is its height,
a a

UB = W + W - <33>
Values of U 0 0 obtained in this way [21,30] are in general agreement with,

for example, the proximity potential.
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The particular interest here is that the barrier position Rj, is sig-

nificantly smaller than the strong absorption radii R_. to which the elastic

scattering is sensitive, typically by about 1 fm. Analyses [31] of fusion

excitation functions which take detailed account of the quantal transmission

across the potential barrier give information on the slope of U.,, as well as

its value, at the barrier position. Such analyses have resulted in slopes

considerably less than those extrapolated from the many analyses of elastic

scattering. Using an exponential form like Eq. (13), Bass [31] (but see [70])

obtained a * 1.35 fm rather than the 0.63 fm suggested by scattering data.

Using a Woods-Saxon form, the Wilczynskis [31] obtain fits with diffuseness

parameters suggested by their liquid-drop model,

v 2 / 3]
where the parameters are as defined above for the proximity potential. This

gives values of 'a' of - 1 fm or greater.

I interpret this change in slope as due to the onset of repulsion as the

two nuclear densities begin to overlap. However, this potential is not neces-

sarily the same object (except asymptotically [70]) as the U needed to de-

scribe elastic scattering. There is no reason why fusion should only occur

directly from the elastic channel; some prior non-elastic scattering may

happen, for fusion can take place equally well from these quasi-elastic

channels. Introducing these excitations is just another way of describing the

friction and polarization (shape adjustments such as neck formation, etc.)

experienced when the two nuclei begin to overlap. Various aspects of these

changes are included in the types of potential calculations mentioned earlier,

so that it may be more appropriate to use these for understanding fusion cross

sections than it is for elastic scattering. The definition (24) seems more

appropriate for describing elastic scattering; at least it is unambiguous!

Another criticism [32] is that a one-dimensional description of the

motion in terms of the separation r of centers-of-mass becomes inadequate

when excitation and polarization effects are important. The potential func-

tion U(r) becomes a potential surface; other coordinates are needed and the

dynamical path over this surface must be studied. Simple expressions like Eq.

(32) and their generalizations [31] may then be misleading.
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3. Deep or Shallow Potentials?

3.1. Light systems

As we have stressed, in most cases heavy-ion scattering data determine

only the tail of the nucleus-nucleus potential, so that it Is meaningless to

ask whether the potential in the interior is deep or shallow. However, there

are some exceptional cases where it might be possible to learn about the po-

tential at smaller radii. Clearly, these must be associated with (relatively)

weak absorption, in some sense, so that the wavefunction penetrates to smaller

radii and 'feels' the potential there.

Systematic deviations from strong absorption have been found in the

scattering of 'light' heavy ions from light targets [33], The effects are

most pronounced for 0 + 0. They manifest themselves in the S-matrix ele-

ments no longer varying smoothly with L. Figure 5 shows an example for

0 + 0; the smooth dashed curves are for a typical strongly absorbing po-

tential, while the full curves which show structure are for a shallow, weakly

absorbing Woods-Saxon potential. The parameters of the latter were

V = 12 + 0.25 E MeV
cm

W = 0.9 + 0.0063 E2 MeV
cm

(35)

with R = 6.94 fm, a = 0.49 fm. The structure seen in Fig. 5 is explained as a

surface transparency; the surface waves are relatively weakly absorbed so that

there is interference between the waves reflected from the surface or outer

potential barrier and those reflected from the interior, centrifugal, barrier.

1 stress the word 'relatively1 because it is clear that the lowest partial

waves are almost completely absorbed and even the surface ones only show

fluctuations about an average strong-absorption behaviour. (This is to be

contrasted with the scattering of protons say, for which |ST | = 0.2 - 0.3,
Li

typically, for the low partial waves.) In this particular case the surface

transparency effects occurred for a potential whose real and imaginary parts

had the same shape. It is possible to damp out the low partial waves even

further without affecting the surface ones by adopting a deeper imaginary po-

tential but with a smaller radial extent. This has been called a surface

transparent potential. Similar results can be achieved by making the absorp-

tive potential L-dependent so that it is weaker for the surface L-values.
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These effects make the scattering more sensitive to the potential, and

it has been concluded [33], in the context of using Woods-Saxon shapes, that

shallow potentials similar to Eq. (35) are required to fit the data for these

light systems and at these moderately low energies. However, only the sur-

face waves are involved; the low L-waves are still strongly absorbed. Hence,

we are learning about the potential inside the strong absorption radius but

still in the 'surface' or grazing region. Another interesting feature of

these results is the strong energy dependence; both V and W Increase as E

increases.

3.2. The system 16Q + 28Si

1 fc 9ft
Another system that has been studied in detail is 0 + Si. Extensive

data are available (see [23], for example). One attempt [34] made a simul-

taneous analysis of differential cross sections at 11 bombarding energies

from 33 to 215 MeV. It was found that there was a unique potential if one

used the Woods-Saxon form (14) and demanded parameters which did not vary with

energy. This potential was shallow with V » 10 MeV; the imaginary part was

deeper (W s 23 MeV) but with a smaller radial extent so that it was 'surface

transparent' to some extent. However, it was later found [35] that equally

good fits could be obtained vith deep real potentials (including a very deep

folded potential) provided the demand for energy-independence was relaxed to

the extent of allowing the diffuseness of the imaginary potential to vary

with energy. Figure 6 compares the fits with the original shallow Woods-

Saxon and the deep folded potentials. (Comparable fits were also obtained

with a proximity potential of the form (27) which has a repulsive core).

At 215 MeV the strong absorption radius is about 8.2 fm but it was shown

that the scattering was sensitive to the potential into about 6 fm. None-

theless, although the deep and shallow potentials do differ appreciably at

this radius (-30 MeV md -9 MeV, respectively), this extensive set of data

cannot distinguish between them. However, none of the potentials succeeded

in reproducing the oscillatory structure seen at energies from 50 to 66 MeV.

More complete measurements in this region confirmed this structure beauti-
28

fully, for adjacent targets as well as Si; further, it could be fitted (see

Fig. 7) by using a 'surface-transparent' potential quite different from the

ones just discussed ([36] and Dehnard in [23]). Then data became available

for larger scattering angles, out to nearly 180° [37], showing that the cross
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_2
section does not continue to fall but rises to about 10 of the Rutherford

value at 180°. The surface transparent potentials account qualitatively for

these data also (see Fig. 8); better fits are obtained [36] with an In-

dependent absorption.

I do not think that we have reached a final understanding of these data

yet (there is extensive discussion of these and similar data in Ref. [23]).

However, it is clear that they contain information about partial waves with L

less than the grazing values and hence about the interaction at distances

smaller than the strong absorption radius. This is illustrated in Fig. 9

(from Delinard in [23]) which shows the S-matrix elements for various po-

tentials. E-18 is the shallow (but, we see, 'strongly absorbing') one of

Cramer et_ al_. which fits the forward angle scattering but not the oscilla-

tions at larger angles (see Fig. 6) while the other three do reproduce these

oscillations to various extents. The lower partial waves are not completely

absorbed for these latter three potentials and their S-matrix elements show

considerable structure as a function of L, especially around L = 20 at the

energy shown. This structure can be related to interference between waves

reflected from an outer potential barrier and those reflected from an inner,

primarily centrifugal, barrier. For this to occur, the nuclear potential must

be deep enough to produce 'pockets' in the curves for the total 'potential',

Coulomb + nuclear + centrifugal. This is shown on the left side of Fig. 10,

which is typical for the potentials that fit the data. These are still

'shallow' (V - 25 MeV), but sufficiently deeper than the earlier E-18 po-

tential (V = 10 MeV, right side of Fig. 10) to produce pockets accessible at

this energy for L < 25. These potentials are also remarkably like those de-

duced for lighter systems, such as 0 + 0, both in their strengths and in

the energy dependence found [38] (as in Eq. (35)). (It is also amusing that

the very deep, - 600 MeV, folded potential can produce similar cross section

behaviour with a suitable choice of imaginary potential, although not suf-

ficient work has been done yet to see whether equally good fits to the data

can be obtained.)

Of course, there must not be too much absorption for these important

partial waves or else the inner reflected wave will be completely attenuated

and produce no interference: hence, the requirement of surface transparency,

at least. Figure 10 also indicates that different potential prescriptions

result in quite different behaviours of the ST for small L although those for
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L - 20 are similar; apparently it is the latter that are required to fit the

data in this case.

3.3. Barrier penetration and reflection

Whether we finally conclude that these particular phenomena are simply

due to the particular form of an interaction potential or to some more com-

plicated dynamical process, it is of interest that simple potentials can

manifest this kind of behaviour. An illuminating discussion of these effects

has been given by Brink and Takigawa [38], particularly for cases where the

total potential has pockets for the important partial waves, as in the left

side of Fig. 10. They use a generalization of the VKBapproximation which is

applicable to complex potentials and to energies which are either above or

below the outer barrier of the pocket. This involves more than one turning

point for each partial wave, and the turning points are complex (see also

[3,4]). The result is that under certain circumstances the S-matrix can be

written (See /l^pe^iiO

ST s ST
(B) + ST

(I) (36)
Li Lt Li

where B(barrier), 1(interior) denote contributions from the outermost and

innermost turning points, respectively; that is, reflection from the outer
j

barrier and reflection from the inner, centrifugal barrier. ST includes
(I)effects due to penetration of the outer barrier. S. is affected by the
Li

absorption in the inner, pocket, region; if the absorption is strong enough,

then the inner reflected wave is completely damped and S. -*• 0, while S

goes over to the simple WKB value for a single turning point. (Even when the

total potential does not have pockets, such as the right side of Fig. 10,

there is an inner, complex, turning point, but the inner contribution is

completely damped out.)

Corresponding to Eq. (36), the total scattering amplitude can be written

as a sum of two parts,

f(6) = fB(6) + fz(6). (37)

40The scattering of o + Ca at energies of ~ 30 MeV provides a good example of

those effects. This case has become the prototype of so-called "anomalous

large-angle scattering" (ALAS) because the cross section (in ratio to the

Rutherford one) rises at large angles (in fact, as Fig. 11 shows, it rises to
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~ 2 x do at 180° at 29 MeV). Numerous explanations have been put forward
R

for this ALAS, but recently it has been shown [39-42] to be explicable in

terms of simple potential scattering provided (i) the absorption is relatively

weak, (ii) the real potential is deep and has the appropriate shape (for ex-

ample [39], like the Woods-Saxon form raised to the power 2.65 and with a

depth - 300 MeV). Figure 12 shows the cross sections due to fB and fj. sepa-

rately, as well as their coherent sum. The outer barrier scattering,

°u = I^BI » n a s t h e usual characteristics of strong absorption scattering,

while reflection at the inner barrier, o *= |f_| , provides the large angle

scattering. The latter is primarily due to the 'low' partial waves; Fig. 13

shows the scattering matrix elements for the two contributions. As expected,

the inner amplitude is very sensitive to the absorptive potential;

W = 16.6 MeV corresponds to Fig. 12, while increasing it to W = 26.6 MeV re-

duces | ST | by a factor of 5 but has almost no effect on S . We note also

why we speak of 'relatively weak* absorption in these cases. Even with

W = 16.6 which gives the so-called ALAS, |ST | < 0.07 or the transmission
la *

(penetration) coefficients for the low partial waves are T > 0.995. Only a
Li **

small amplitude is needed for these waves in order to produce large effects.

(Note also that plots of da/doR tend to exaggerate the magnitude of these

effects; the actual cross section at 180° is about 6 mb/sr, which is, for ex-

ample, only 1/20 times the cross section on the peak at about 35°.)

The mid-angle range (- 90° here) where the two amplitudes interfere

strongly is particularly sensitive to the real potential shape because this

both affects the relative phase of the two terms and it affects the rate of

decrease of fn(6) with angle. The latter is particularly sensitive to the

surface diffuseness of the potential. The observed interference pattern (Fig.

11) favours a deep real potential with a large surface diffuseness [38]

(which happen to be the characteristics of a folded potential — see below).

The interference between s£ ' and s£ ' is also responsible for the

structure in the total |Sj| for L - 10 (Fig. 13). This is reminiscent of the

structures seen in the heavy-ion cases we studied earlier (Figs. 5, 9). A

recent analysis [43] implies that they have a similar origin for systems like

0 + 0, but in those cases they are associated with the shallow potentials

like Eq. (35).
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3.4. The systems 12C + 12C and 6L1 + 40Ca

12 12
Another system for which there are many data is C + C, detailed

angular distributions being available for various energies up to 127 MeV.

Analyses [44] showed that while the shallow potentials introduced by the Yale

group gave adequate fits to new 70-127 MeV data for angles less than about

45°, no good fit to the larger angles was found with such Woods-Saxon po-

tentials. However, the use of deep (~ 400 MeV) folded potentials resulted in

a marked improvement (Fig. 14). In this case the scattering was found to be

sensitive to the potential for separations of the nuclear centers as small as

3 fm |= 0.66 (A^/3 + A*' 3)! where ReU is well over 100 MeV deep, although the

strong absorption radius is about 7 fm. The folded potential has a shape

which cannot be closely matched by a. Woods-Saxon form in this 3-7 fm region.
40

On the other hand, as in the a + Ca case, the folded potential is closer in

shape to some power (> 2) of the Woods-Saxon form; this form can also be used

to fit the data and such fits also result in a deep potential. Consequently,

we must conclude that, within the context of using simple potential wells,

these

viously.

12 12
these C + C data require a deeper potential than had been thought pre-

12 12
A typical set of the S-matrix elements for this C + C scattering is

shown in Fig. 15. In particular, the magnified section above shows that the

differences between the shallow Woods-Saxon and deep folded potentials are

manifested in the |ST I for low L values. One can visualize a decomposition of
La

the |S | for the deep potential into interior and barrier contributions [45]

just as in Fig. 13. These low L waves play a rdle because of the relatively

weak absorption combined with the depth of the real potential (though again

it must be emphasised that there is very little penetration into the inter-

ior, strong overlap region. TT > 0.9996 for the low L and the radial wave-

functions plotted in Fig. 16 show that the probability of the system being in

this region is small).
16 28

The system 0 + Si was discussed above. It is too early to say yet

whether these data can also be fitted adequately by very deep potentials like

that of the folding model, but clearly it is important to study the data

further in that context. Another heavy-ion system showing similar large-

angle behaviour is Li + Ca at 30 MeV; it has been shown [46] that these

data can be fitted by a deep (but relatively weakly absorbing) potential of
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the folded form (see Fig. 17). The corresponding S-matrix elements for low L

are similar in form to the other cases discussed. Just as with the other

systems, this behaviour goes away as the energy is increased (Fig. la) be-

cause the absorption needed increases and the scattering begins to appear

like the standard strong absorption type.

3.5. Summary

In summary, although most heavy-ion systems at most energies exhibit

strong absorption characteristics that only allow determination of the tail

of the nucleus-nucleus potential there are some cases,especially for s«r*e

lighter systems at lower energies,where the absorption is weaker. This allows

low-L waves reflected from the interior centrifugal barrier to play a small

but important role. These waves are sensitive to the potential at distances

closer than the strong absorption radius. Consequentlys although the infor-

mation obtained may not be completely unambiguous [45], it does provide im-

portant constraints upoi any model. In some cases, at least if we demand a

simple potential model description, it is implied that the real potential

should be 'deep*. There are also indications in these cases, as for recent

work on alpha scattering [39-42,47], that the Woods-Saxon shape is not ade-

quate; better agreement with experiment can be obtained with shapes like some

power n (n > 2) of the Woods-Saxon form. Further, in these cases, the po-

tential can be related to 'realistic' effective nucleon-nucleon interactions

through the folding model. In answer to objections that the potential can

have no meaning at distances where two composite nuclei overlap appreciably, I

can only say that I believe we are dealing with the potential U of Eq. (24)

that describes only the ground-state component X of the wavefunction (20)
oo

whereas one's intuition pictures the violent things that undoubtedly happen
to the two nuclei. Quantai ly, there will always be a small X («fc) even for

oo

small T". The X(1") obtained from the optical potential descriptions is small,

but whether it is small enough, I do not know.

4. Folded Potentials for Heavy- (and Light-) Ion Scattering

4.1. Definition of folded potentials

The idea of a folded potential has, of course, a long history. The

electrostatic potential U (r), due to a charge distribution p , (r')» is given
c - en -
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by a single folding,

C h * dr', (38)

while the electrostatic interaction between two charge distributions is given

by a double folding,

w (39)

where r.« = R + r--r. (see Fig. 18). In the nuclear case, the Coulomb inter-

action 1/r,2 is replaced by a nucleon-nucleon (effective) interaction v_2. We

discussed in Sect. 2.1 a formalism in which the first term UF(R) in Eq. (24)

was identified as a folded potential,

?2 (40)VR> = \\ •X>**«2> £
where nucleon i is in nucleus 1, nucleon j is in nucleus 2 and £,, £« refer to

the internal coordinates of these two nuclei, respectively. If v.. is a local

interaction, v.. = v(r..), then the potential (40) may be reduced to the

analogue of Eq. (39):

Up(R) = jj P1(r1)p2(r2)v(r12)dr1dr2, (41)

where p.(r.) is the one-body density for the i nucleus. This we call a

double-folded potential.

We may break the double folding into two steps and rewrite Eq. (41):

Up(R) = I drx U2N(r12)P1(r1)» (42)

where

U 2 N(r 1 2) = | dr2 p2(r2)v(r12), (43)

and r-2 = ri?""?2
 = ?"Ei* T n e n U

2N *
s a fol<*ed potential for the interaction

of nucleon 1 with nucleus 2 (analogous to Eq. (38)), which we shall return to

later.
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4.2. Single-folded potentials

The form of Eq. (42) has often been invoked but with the use of empiri-

cal, phenomenological nucleon-nucleus optical potentials in place of U-^.

This so-called single-folding model has invariably overestimated the strength

of the real potential required by heavy-ion scattering data by a factor of

about two [48].

This is puzzling at first sight, since we shall see that the folded U.

of Eq. (43), which is an ingredient of the successful (see below) heavy-ion

potential (42), is also moderately successful in reproducing nucleon scat-

tering. Several explanations of this apparent paradox have been offered:

(i) When phenomenological nucleon potentials are used, they are gener-

ally taken to be of Woods-Saxon form. Now the long-range behaviour of Up(R)

is sensitive to the surface features of the potential substituted for U_N in

Eq. (42), and the Woods-Saxon form may not be an adequate representation.

For example, it has been shown [49] that the square of a Woods-Saxon shape may

give equally good fits to the nucleon scattering data but can result in a con-

siderable reduction in the strength of the tail of the single-folded heavy-

ion potential.

(ii) In general, the interaction v is density-dependent; in the folding

integral (41) it will depend upon the densities of both nuclei. A nucleon-

nucleus empirical potential incorporates effects due to the density of one

nucleus alone. When such a phenomenological potential is used in the single

folding integral (42), the effects due to the density of the other nucleus are

neglected, whereas the potential U2N of Eq. (43) remains implicitly dependent

upon the density of nucleus 1. This effect need not be negligible [50].

(iii) A phenomenological nucleon-nucleus potential includes the effects of

coupling to other channels (AU in Eq. (24)) and these are likely to be quite

different when the incident nucleon is bound in another nucleus compared to

when it is free. Indeed, we shall see that the U. , constructed according to

Eq. (43), has some deficiencies compared to phenomenological potentials; in

particular, it has somewhat too short a range. This may be because the con-

tributions to the real potential for nucleon-nucleus scattering from the AU

terms are important. (In this same context, because the AU for nucleons and

for heavy ions will be very different^ we do not expect single folding with

phenomenological nucleon-nucleus potentials to be of any use for predicting
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the imaginary part of the heavy-ion potential.)

4.3. The interaction v

4.3.1. Effective interactions

The bare nucleon-nucleon interaction is too 6trong to be used as the v

which appears in the double folding integral (41). It has been popular to use

for v a simple potential, such as a Gaussian which fits low-energy nucleon-

nuc leon scattering. However, this has been shown [10.48] to overestimate the

heavy-ion potential by roughly a factor of two. (It has also been shown [51]

to predict (p,pf) cross sections which are too large.)

We believe it is desirable to use an effective interaction v which is

based upon a realistic nucleon-nucleon force, since one goal is to obtain a

unified description of nucleon-nucleon, nucleon-nucleus and nucleus-nucleus

scattering. As a consequence, our effective interaction is some kind of G-

matrix. There is no guarantee of the existence of such a single, simple, ef-

fective interaction of this kind which may be used in a variety of physical

circumstances. However, it is certainly worth seeing how far we can go with

such a simple concept and to find what kind of corrections we may have to

make in particular cases.

A 'high energy* approach to this problem was used by Dover and Vary [52].

In the high-energy limit (or impulse approximation) v would become the (com-

plex) t-matrix for free space nucleon-nucleon scattering. However, for the

low-energy (< 20 MeV per nucleon) heavy-ion collisions that we are consid-

ering, there are large corrections to be made for the effects of the nuclear

medium in which the two interacting nucleons are embedded (Pauli principle,

off-shell propagation and Fermi motion of the nucleons). One 'low-energy'

approach that we consider here [53] assumes that the effective interaction v

is similar to the G-matrix for two nucleons bound near the Fermi surface.

One consequence of this assumption is that v is real. More recent work on

nucleon-nucleus scattering [54] has taken into account that the projectile

nucleon is in the continuum above the Fermi sea. This yields a complex G-

matrix; however, it seems probable that the absorptive processes in heavy-ion

scattering are very different so that it may be preferable to treat the imagi-

nary potential phenomenologically.

It is worth remarking that replacing the bare nucleon-nucleon potential

by an effective or G-matrix interaction is a process analogous to the
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derivation of the effective interaction U in Sec. 2.1. The G-matrix trans-
op

formation itself incorporates some polarization effects, namely the short-

range correlations between pairs of nucleons, and in principle allows us to

use simpler nuclear wavefunctions such as those of the shell model. Then a

full derivation of the operator U of Sec. 2.1. would go explicitly through
op

this two-stage projection from the original many-body problem (see, for exam-

ple, [55]).

From its origin as an effective interaction or G-matrix, it is clear

that, in general, this ̂  should be both energy dependent and density depen-

dent. The usual way of handling the density dependence is to use the local

density approximation. In this we assume that the effective interaction be-

tween two nucleons embedded in nuclear medium at some position where the

density has a certain value is given by the G-matrix for infinite nuclear

matter with the same density value. This ignores the effects on G of density

gradients. Also, because the force has a finite range, two positions, rn and

r?, are involved; frequently one uses the density at the centre of gravity,

2"(r. + r_). This kind of uncertainty is further aggravated in heavy ion

double folding because there are two densities, p.(r.) and p_(r.).
"—^ 1 ~L i. -Z

4.3.2. Spin- and isospin-dependence

The effective v also depends upon the spins and isospins of the two in-

teracting nucleons. The central parts of v may be written in the form

V12 " V00(r12) + ^ l ^ V ^ + V10(r12)?l#?2 + vll(r
12

)?1'?2 W
 ( 4 4

In general there will be spin-orbit and tensor terms as well. If neither the

target nor the projectile has any spin, the p. are spherically symmetric and

U_ becomes a function only of the magnitude of R. Then the v terms in Eq.

(44) with S = 1 do not contribute. (Although there are dipole terms, from

the expansion of v. (r-2) into products of spherical tensors in r. and r.,

which can be combined with the o operators to form monopole products, these

are pseudoscalars of the form o*r and have zero expectation value because of

parity.)

More generally, Up will be non-spherical and spin-dependent, but it seems

that the spin terms usually have relatively small effects on the cross

sections (although, of course, they are important for polarization phenomena).

The non-spherical parts of U_.which will result if one or both of the
r 1
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densities p. are non-spherical-can induce inelastic scattering to collective

rotational or vibrational states [52]. They only affect the elastic scat-

tering from spin-zero nuclei explicitly if we make coupled-channel calcula-

tions which include these excited states; 1 do not consider that here. The

non-spherical parts may directly affect the scattering from odd-nuclei (which

have non-zero spin), but one comparison [55] of 0 from Co(I = -̂ ) and
60Ni(I7r = 0+) showed negligible differences.

Equation (41) is oversimplified in that differences in interactions be-

tween like and unlike nucleons are ignored; that is, isospin is not referred

to explicitly. If one or both nuclei have N = Z, and hence zero isospin,

<T.> = 0 and only v,,T terms in Eq. (44) with T = 0 can contribute. However,

even when N / Z for both nuclei, explicit evaluation for typical cases shows

the T-l contributions to U_ to be negligible for 'realistic1 interactions v.
r

These various considerations lead us to evaluate the folding integral

(41) with spherical densities p. and the central S=T=O part, v_n, of the in-

teraction (44).
4.3.3. R61e of the long-range one-pion-exchange potential (OPEP)

The OPEP has a tail of Yukawa form with a range of about 1.4 fm; this is

the component of the nucleon-nucleon force with the longest range. It is al-

so a moderately weak component, and we expect it to reappear in a 6-matrix

essentially unchanged. Hence, the effective v will have an OPEP tail. How-

ever, the OPEP is proportional to o.*a2 T.*T-, that is, it has an S=T=1 char-

acter. So it does not contribute to v.̂ ., and the longest range expected in

vnn is at most that of two-pion exchange.

In an earlier approach [57] we used for v the long-range parts of the

even-state Hamada-Johnston potential, in the sense of the Moszkowski-Scott

separation method [58]. Although this gave moderately good results for

nucleon scattering [51,57], it overestimated heavy-ion potentials by more than

a factor of two [10,48]. Indeed, in some cases, it did not yield an adequate

fit to the data and this discrepancy could be traced [10] to the long range

of the OPEP component in the force. This is illustrated for the 0 + Ni

system in Fig. 19; the even-state OPEP term alone gives a large contribution

to the potential near the strong absorption radius and has an unacceptably

small slope. However, as we just remarked, this OPEP component must be

spurious and arises because initially we took only the even-state interaction
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and ignored the odd-state parts. In a correct approach, at least the OPEP

should be included in odd states. Then in the combination [57] of even and

odd parts which makes up v__,

_ 3 3 9 1
V00 = 16 vtriplet even + 1? Vsinglet even + 16 vtriplet odd + 16~ Vsinglet odd

(45)

the odd and even parts of the OPEP must cancel so that this long-range com-

ponent does not contribute.

Another illustration that the range of the effective interaction is ex-

tremely important is shown in Fig. 20. Folding calculations were made for
40 40

Ca + Ca using either a single Gaussian or a single Yukawa for v but with
various ranges. In each case the strength was adjusted to give a folded po-

40 40tential of 1.35 MeV at R = 10.6 fm, as appropriate for Ca + Ca scattering.

Figure 20 shows the resulting volume integral of v,

J = 4tr I v(r) r2 dr, (46)

against its RMS radius. (The value J = -400 MeV fm is roughly the value de-

duced from nucleon-nucleus scattering, fis well as from realistic

G-matrices [53,54].) For example, a zero-ranged force would require a value

of J that is about five times larger than one with <r2> '2 = 2 fm. Figure 20

also illustrates that, while J and <r2> may be used to characterise the v

fairly well, the choice of its shape is not entirely unimportant. This shape-

dependence may be studied further by expanding in the radial moments of v,

- J P1(r1)p2(|R-r1|)dr1 - \ <r
2> J V p ^ ^U(R) - J p1(r1)p2(|R-r1|)dr1 - j <r
2> J VP;L.Vp2 dj x + .... (47)

where <r2> is the MS radius of v. In the tail regions of interest, both p.

and p2 are falling exponentially and for typical realistic values of <r
2> the

two terms in Eq. (47) are comparable in magnitude. Then some higher-order

terms are needed.

4.3.4. The M3Y interaction

I shall present here some results of using the effective interactions of

Bertsch e£ al. [53] which are expressed as sums of three Yukawa terms; I call

these M3Y. One Yukawa term is taken to be the OPEP; the second was chosen to
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have a range of 0.4 fm which roughly simulates multiple pion exchange, and

the third range of 0.25 fm was chosen for computational convenience. The

strengths of the latter two terms for the even-state v were chosen to repro-

duce the G-matrixelements (in an oscillator basis) of the Reid soft-core po-

tential. For the odd-state v, I use their fit to the "Sussex" matrix ele-

ments of Elliott et^ a±. Full details are given by flertsch e± aX. [53]. Then

the v - component of Eq. (44), which receives no contribution from the OPEP

term, has the form

voo<r> 7999
4r

MeV, (48)

and a volume integral of Jfln = -146 MeV fm . On the other hand, if we assume

that only the OPEP force acts in odd-states, we get instead

vOQ(r) = 6315 ^ - - 1961 V ^ H MeV, (49)

with JQQ = -337 MeV fm . It has been shown [59] that, in the folded po-

tential, there is almost complete cancellation I 2tween the direct and exchange

(see below) contributions arising from the short-range parts of the odd-state

interaction which are included in Eq. (48). Consequently, the two inter-

actions (48) and (49) are essentially equivalent for the construction of

heavy-ion potentials (see Fig. 19). Except when otherwise indicated, the

calculations reported here use the form (48).

The potentials (48) and (49) are not as short ranged as their component

Yukawas might suggest. The form (48) has <r2> = 7.26 fm , the same as a

single Yukawa with a range of 1.10 fm or a Gaussian with a range of 2.20 fm,

while the potential (49) has <r2> = 3.11 fm . Further, Goldfarb [60] has

shown that 50% of the folded potential near the strong absorption radius

comes from v(r) of Eq. (49), with r _> 1.6 fm.

Except for a slow dependence of the knock-on exchange terms (see below),

the interactions (48) and (49) are independent of energy. Indeed, from their

origin as fits to oscillator matrix elements, they represent an average over

a certain range of energies. Further, these interactions are independent of

the density of nuclear matter in which the two nucleons are embedded. Again,

they represent an average of the interaction for densities ranging from zero
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to normal nuclear matter; considering the oscillator matrix elements upon

which they are based suggests that they are representative of an average

density of about 1/3 of nuclear matter. This would seem not inappropriate

for most direct scattering which largely occurs in the surface region of the

nuclear density distribution. Even for the very peripheral heavy-ion scat-

tering (see Fig. 3), the folding integral samples regions into where the

nuclear density has almost its full value. This is illustrated by Fig. 21
84 209

which shows the variation of the potential for Kr + Bi at three separa-

tions R as the density p(r) of each nucleus is cut off at some r = na+c
IH33C

where a = 0.5 fm is the density diffuseness parameter and c is its half-

density radius. (Simple Fermi shapes were assumed for the densities with

c(Kr) = 4.83 fm, c(Bi) = 6.63 fm.) The strong absorption radius for this

system is about R = 14.2 fm, when the half-density points are separated by

5.5 a. We see that at this separation, about 20% of the potential is still

coming from where the tail of one density distribution is penetrating inside

the half-density point of the other. To reach 1% accuracy for R = 14.2 fm,
-4

the cut-off must be displaced to where the density tail has fallen to 10 of

the central value and this is probing the other nucleus into where its density

has reached its full central value.

With such a wide range of densities being sampled, it might be feared

that the kind of density average implied in the M3Y G-matrix would not be

adequate and that an explicit density dependence should be considered. This

was indeed done using a density-dependent 6 of Day jet al. [61] which was also

derived from the Reid potential. It turns out that this gives almost identi-

cal heavy-ion folded potentials. (Applications to light-ion inelastic scat-

tering [62] do not show as close agreement, but the differences are not

large.) Consequently, the averaging implicit in the M3Y G seems to be appro-

priate for this use.
4.4. Exchange

The expressions (25), (40) for the folding potential do not explicitly

show any effects due to antisymmetrization between nucleons in different ions,

although the individual nuclear wavefunctions i|» , 6 are themselves assumed
o o

to be antisymmetric. As we have discussed above, the dominant contributions

to the potential near the strong absorption radius come from the surface and

tail regions of the nuclear densities and the two densities do not overlap
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very much. Then exchange of one nucleon from each ion will be the leading

corrections. Of these, the minimum rearrangement is needed if the two inter-

acting nucleons are interchanged. (This has been called 'knock-on' exchange

in nucleon-nucleus scattering [57,63].) This term is included formally in

the double-folding integral (41) by replacing

V12 * (1 " P12 ) V12' (50)

where P.. exchanges all the coordinates of nucleons 1 and 2. At least two

groups [59,63,64] have estimated the importance of this exchange term for a

common force and have found that it can be included quite accurately by re-

placing ~ P
1 2

V12 in Eq* ^^ k y t*ie Pseudopotential

J(E)6(r ). (51)

Tiki, st.fe*»Atlv " oep«n4«s st+wfliy on- -tWe j>a.-tt:Cculat~
(S,T) component of the interaction (6), but it depends very weakly on the

energy E for energies between about 5 and 20 MeV per nucleon. We have

adopted the approximation (5?) for the calculations reported here. The

values of J were obtained by calibrating [63] against 'exact' DWBA calcula-

tions of this term in proton scattering. At E = 10 MeV, J = -262 MeV fm

for the interaction (48) or J-Q = -81 MeV fm for the interaction (49).

These values change only by a few per cent between 5 and 20 MeV so their

energy dependence can be neglected for our purpose. \

Consequently, the M3Y effective interaction including that is to be

employed in the folding Eq. (41) is

v' = v + J 6(r ). (52}
00 00 00 -12 \-"-/

With the v of Eq. (48), this v' has a volume integral of J' = 408 MeV fm3

*% uu
and mean square radius of <r^> = 2.60 fm . Very similar values are obtained
with a purely OPEP force In odd-states, v of Eq. (49); then we have J' =

3 o 2 00
418 MeV fm and <r2> = 2.51 fm . The former version was used for the results
reported here.

4.5. Nuclear densities

The nuclear densities PAr±) are important ingredients in the folding

integral. We learn something about proton distributions from electron scat-

tering, but we do not have direct knowledge of the neutron densities
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(although presently high-energy proton scattering is being used to deduce the

total matter distribution in nuclei). Uncertainties about the neutrons is

perhaps the largest uncertainty in any test of a folding model. However,

since the folded potential is very sensitive to the extent of the matter dis-

tribution, this raises the possibility of learning about the neutron distri-

bution from heavy-ion scattering, provided some interaction, together with

the folding procedure, can be shown to be valid. An example is provided by
1 f% 20fi

the system 0 + Pb. If we assume neutrons with p = (N/Z)p instead of
n p

the Hartree-Fock neutron density (which has p extending slightly beyond p ),
n p

the folded potential near the strong absorption radius is reduced by 35%.

This has a large effect on the scattering.

The mean square radius (MSR) is a useful characteristic of the densi-

ties. Although the folded potential (near the strong absorption radius) does

depend to some extent upon the detailed surface shape of the densities, it is

largely determined by the MSR. This is illustrated for 0 + Ni in Fig. 22

which shows the potential obtained from a variety of prescriptions for the

densities. Although there are fluctuations, the trend is to increase linear-

ly with the sum of the MSR. (This is better understood in terms of Fourier

transforms; only the small momentum components of the three factors in the

integrand of the folding integral are important [60].)

4.6. Applications to scattering data

4.6.1. Hucleons

Although other G-matrix interactions [54] have been tested against

elastic scattering, the M3Y effective interaction has mostly been applied to

inelastic scattering, using transition densities from RPA calculations whose

proton parts, at least, can be tested by electron scattering and B(EL)

measurements. The overall agreement has been very satisfactory [53,62]. For

completeness, Fig. 23 shows some elastic scattering comparisons. Only the

real, central potential is calculated by folding; the phenomenological imagi-

nary potentials of Becchetti and Greenlees were taken without change. The

agreement is moderately good and could be improved by arbitrarily varying the

imaginary and spin-orbit terms. However, a conventional Woods-Saxon po-
2

tential can give better fits which have a X value which is a factor of two

smaller. When we compare the potentials, we find that this implies that the

folded potential has a mean square radius which is too small. We do not know
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whether this is due to a deficiency in the interaction or in the treatment of

exchange (Sec. 4.4) or to the neglect of the dynamic polarization term AU of

Eq. (24).

Nonetheless, Fig. 23 indicates that the M3Y interaction is not grossly

wrong for nucleon scattering.

4.6.2. Alphas

The M3Y interaction has not yet been applied extensively to alpha scat-
40

tering. Figure 11 did show one example, Ca + a. In this case the folded

potential is remarkably close [41] to the phenoraenological one deduced

earlier by Michel and Vanderpoorten [39], and hence also describes the large

angle scattering.

The folded potential for a + a with M3Y is equally close to the phenome-

nological potential found [65] to fit a + a scattering phase shifts up to an

energy of 40 MeV.

4.6.3. The Li ions

The one exception to the general success of folding with the M3Y inter-

action that has been noted [66] so far is for the scattering of Li ions.

The model consistently overestimates the Li-nucleus potential by almost a

factor of two. As examples, Figs. l(a) and 17 show that good fits to data

can be obtained but only.the real potential is reduced by a factor of about

0.6. It is natural to associate this discrepancy with the polarization and

break-up of the Li in the field of the target nucleus, but no theory based

upon this has yet appeared.

Very little analysis of Li scattering has been done with folded po-

tentials, but preliminary results do not indicate any similar anomaly for this

ion.

4.6.4. Heavier ions

A variety of systems have been studied ([67]; see also [10,18,44,46,56]).

The Hartree-Fock densities of Negele [68] were used for the closed-shell

nuclei ' Ca, Zr and Pb. Shell-model densities were constructed for

the other nuclei with the constraints that (i) the proton radii must be in

agreement with electron scattering measurements, and (ii) the least-bound

nucleons should have the observed separation energies. When N = Z, it was

assumed that protons and neutrons had the same distribution. The real, folded
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potential was multiplied by a normalizing factor N and the value of N was

varied to optimize the fit to the data. If this gives N ~ 1, it means that

the model is successful. The imaginary potential was taken to be of Woods-

Saxon shape and the minimum parameter variation which resulted in good fits

to the data was allowed. In most cases the radius could be fixed at

1.3(A*'3 + A* ) fm; often the diffuseness could be fixed at a = 0.6 fm.

The results are summarized in Table 1. Some of the fits are shown in

Figs. l(a), l(b), 2, 6, 1A, and 17. Figure 24 shows some of the light sys-

tems which exhibit a 'Fraunhofer' type of diffraction pattern. Figure 25
40 40

shows a heavier system, Ca + Ca, in which the data at 143.6 MeV were

fitted and the same potential used at the other energies. Figure 26 shows an

intermediate system, 0 + Ca, at energies from 40 MeV to 214 MeV; in this

case, the 74-MeV data were fit and the same potential used at the other ener-

gies.

Table 1 indicates optimum values of N which are close to unity but which

tend to be a little larger than one; the unweighted average value and RMS

deviation is 1.09 ± 0.13. This deviation from 1.0 might be due to an under-

estimate of the exchange contribution (Sec. 4.4); an alternative approxima-

tion [61] which uses the Slater approximation to the one-body mixed density

predicts larger exchange terms than the pseudopotential (5"!). Some of the

fluctuations in the N values are undoubtedly due to errors in the density

distributions that have been used. Other fluctuations will be due to idio-

syncracies in the data that affect the fitting procedure. Still others may

represent true physical effects. An interesting case is 0 + Ca at

56 MeV [14]. Figure 26 shows that the data at 40 MeV, 74 MeV and higher

energies are nicely fit by a single potential, but that at 56 MeV this po-

tential does not predict a large enough oscillation about the Rutherford

cross section at small angles. This was emphasised in Fig. 2(b) which shows

the 56-MeV cross sections plotted linearly. The oscillation at small angles

would indicate N > 1.5, while the optimum fit to all angles gives N = 1.27

(Table 1), c<*mf><»c4. iz ~djL U-*W or- l^MeV oi N'= M4- i"^i «~ f*.2to.

4.7. Summary

In summary, the M3Y interaction in a folding model is quite successful

(with the exception of Li) in predicting the real parts of nucleus-nucleus

potentials. Further, it shows promise of giving a reasonable description of
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nucleon and alpha scattering. It may be that we need a better treatment of

the exchange terms. It would also be more satisfactory to use an explicitly

density- and energy-dependent effective interaction [54] instead of the M3Y

averaged one. Nonetheless, I believe that this work indicates that it is

worthwhile to pursue the goal of a simple, unified description of these scat-

tering processes.
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Appendix: Barrier Penetration and Reflection Effects

The WKB treatment of potential scattering can be expressed in terms of

radial action integrals of the type

f n 1 / 2

(A.I)

where U = U_, + U + IL is the sum of nuclear, Coulomb and centrifugal po-
tot N , c L

tentials and r., r. are zeros of the integrand (i.e., the classical turning

points); r- may also be 'infinity' (i.e., some value of r for which U N be-

comes negligible). The simplest WKB approximation describes reflection from

the outermost

partial wave

the outermost turning point at r = r J f giving a nuclear phase shift fur this

6 < o ) = S(rB,») - Sc(rB,«) (A.2)

where the Coulomb S is obtained by putting U = 0. (For simplicity, we do

not label the partial wave L explicitly.) The S-matrix element is given by

n = e . (Here we use the notation n instead of S to avoid confusion with

the action integral?)

Near the top of the barrier, quantal penetration effects become impor-

tant and modify the expression (A.2). They can be included in a factor

N [38] so that for example the S-matrix element for reflection from the outer

barrier can be written

2
n = — g — . (A. 3)

When the total U (r) has a 'pocket' (like Fig. 10) and E is below the

top of the outer barrier but above the bottom of the pocket, there are three

turning points for real potentials. If U., is complex, the WKB theory may be

generalized by analytically continuing into the complex plane; then there are

always 3 or more turning points r. which are complex. The expressions for

the S-matrix become more complicated but can be written in the physically

transparent form

n = nfi + ilj. (A.4)
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Here no can be identified as the amplitude of the wave reflected from thejts

outermost turning point (B = barrier), while n is the amplitude of the wave

resulting from reflection at the innermost turning point associated with the

centrifugal barrier (1 = internal). The barrier wave amplitude n can be

written in the form (A.3). The internal wave amplitude n is affected by the

degree of penetration through the outer barrier, the amount of absorption in

the interior and the possibility of multiple reflections (and quasi-bound

states) within any pocket in U
tot

If the absorption is very weak and there is a potential pocket, multiple

reflections will occur for E below the outer barrier and above the bottom of

the pocket. If the energy is such that the internal wave just 'fits' into

the pocket, a resonance occurs. It has been suggested [69] that this is seen
16 12

in 0 + C scattering. Mostly the absorption is too strong and multiple

reflections do not occur [43]. At the other extreme, if the absorption is

strong, the inner wave is completely damped out, i i + O and n = n_. The mag-

nitude of n_ for low partial waves may be estimated from mean free path argu-

ments. For example, for the S-wave we have

K l » e-R/A (A. 5)

where R is a measure of the size of the absorptive region and A is the local

mean free path,

2

, K2 = ̂ - [E-ReUN(0)-Uc(0)]. (A.6)

Here K is the local wavenumber at r = 0 and W is the imaginary potential

strength. If further the absorption is strong enough at the outer barrier

itself, N •*• 1 and nB •* \ , the simple WKB value from Eq. (A.2). There are

intermediate situations in which both r\ and nT play a role; some were dis-

cussed in the text; even small values of n can produce relatively large ef-

fects at large angles, 6 - IT (for example, see Figs. 12 and 13).

We may distinguish two kinds of this intermediate situation. In one, nT

is significant for all the low-L partial waves ('low-L' meaning L values less

than the grazing value); the a + Ca case of Fig. /3 is an example. In the

other kind of situation we have a kind of 'surface transparency'; a group of

partial waves with L around and just below the grazing value are weakly ab-

sorbed, while those with small L are strongly absorbed. Then |ru(L)| is
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peaked near the grazing L. This behaviour is somewhat like that of a Regge

pole.

Surface transparency can be obtained in two ways, although the under-

lying physics is quite different [43,69]. In one way, we restrict the radial

extent of the imaginary potential by letting it have a smaller radius and/or

diffuseness than the real potential, but keep the imaginary strength large

enough to strongly absorb any waves penetrating it. Then |nT| - 0 for small

L. In this case the nT arise primarily from reflection at the surface of the

imaginary potential which is now inside the barrier due to the real potential.

The other w?y is to use an L-dependent imaginary potential, for example

W (r)
ImU(r.L) = ° {. T ., (A. 7)fL-L V

c
exp

where usually the cut-off L is near or just below the grazing value. This

also reduces the absorption of the surface waves compared to the lower-L

waves. However, the surface waves are now exposed to a weakly absorbing po-

tential over all r, not just in the surface, so that now n, for these waves

does come from reflection at the inner, centrifugal, barrier. We still have

nT - 0 for the lower-L waves.



R-l

References

[1] K. W. Ford and J. A. Wheeler, Ann. Phys. 7. (1959) 259.

[2] R. A. Broglia, S. Landowne, R. A. Malfliet, V. Rostokin, and A. Winther,

Phys. Repts, 11C (1974) 1.

[3] T. Koeling and R. A. Malfliet, Phys. Repts. 22£ (1975) 181.

[4] J. Knoll and R. Schaeffer, Ann. Phys. 97_ (1976) 307.

[5] S. Landowne, C. H. Dasso, B. S. Nilsson, R. A. Broglia, and A. Winther,

Nucl. Phys. A259 (1976) 99.

[6] K. W. McVoy, Notas de fisica (Universidad Nacional Autonoma de Mexico)

1. (1978) No. 4.

[7] W. E. Frahn and D. H. E. Gross, Ann. Phys. 101 (1976) 520.

[8] W. E. Frahn and K. E. Rehm, Phys. Repts. 37C (1978) 1.

[9] S. K. Kauffmann, Z. Physik A282 (1977) 163; W. E. Frahn, to be published.

[10] J. B. Ball, et al., Nucl. Phys. A252 (1975) 208.

[11] H. Rebel, et. &L., to be published.

[12] D. A. Goldberg, S. M. Smith, and G. F. Bardzik, Phys. Rev. C10 (1974)

1362.

[13] D. A. Goldberg and S. M. Smith, Phys. Rev. Lett. J33 (1974) 715; see also

Goldberg in [23].

[14] D. G. Kovar, Proc. Sym. on Macroscopic Features of Heavy-Ion Collisions,

Hakone, Japan (1977).

[15] W. U. Schroder and J. R. Huizenga, Ann. Revs. Nucl. Sci. 2J_ (1977) 465.

[16] P. R. Christensen and A. Winther, Phys. Lett. 65B (1977) 19.

[17] D. A. Goldberg, Phys. Lett. 55B (1975) 59; A. Budzanowski, et a^., Phys.

Rev. C17. (1978) 951.

[18] G. R. Satchler, Nucl. Phys. A279 (1977) 493.

[19] G. R. Satchler, Proc. Conf. on Reactions between Complex Nuclei,

Nashville, Tn., 1974 (North-Holland Publishing Co., 1974).

[20] W. Henning, et_ al., Phys. Rev. C15_ (1977) 292; K. Wojciechowski, et al.,

Phys. Rev. C17 (1978) 2126.

[21] J. Blocki, J. Randrup, W. J. Swiatecki, and C. F. Tsang, Ann. Phys. 105

(1977) 427.

[22] D. M. Brink, European Conf. on Nucl. Phys. with Heavy Ions, Caen, 1976,

J. de Phys. C-5 (1976) 47.

[23] R. M. DeVries, editor: Proc. Sym. Heavy Ion Elastic Scattering,



R-2

University of Rochester (1977).

[24] H. Feshbach, Ann. Phys. 19 (1967) 287.

[25] J. Fleckner and U. Mosel, Nucl. Phys. A277 (1977) 170.

[26] U. Mosel, Particles & Nuclei 3. (1972) 297.

[27] W. G. Love, T. Terasawa, and G. R. Satchler, Nucl. Phys. A291 (1977)

183.

[28] C. Ngo, et al., Nucl. Phys, A252 (1975) 237; D. M. Brink and Fl. Stancu,

Nucl. Phys. A299 (1978) 321.

[29] J. Fleckner and U. Mosel, Nucl. Phys. A277 (1977) 170.

[30] J. R. Birkelund and J. R. Huizenga, Phys. Rev. C17. (1978) 126.

[31] R. Bass, Nucl. Phys. A231 (1974) 45; K. Siwek-Wilczynska and J.

Wilczynski, Phys. Lett. 74B (1978) 313.

[321 H. J. Krappe, in Proc. Intern. Workshop on Gross Properties of Nuclei

VI, Hirschegg, Austria, 1978 (Publication AED-Conf 78-007-014).

[33] R. H. Siemssen, in Nuclear Spectroscopy and Reactions, Part B (Academic

Press, New York, 1974); R. H. Siemssen, in Proc. Int. Conf. on

Resonances in Heavy-Ion Reactions, Hvar, Yugoslavia, 1977 (North-

Holland Publishing Co., to be published).

[34] J. G. Cramer, et al., Phys. Rev. C14 (1976) 2158.

[35] G. R. Satchler, Nucl. Phys. A279 (1977) 493.

[36] V. Shkolnik, et. al., Phys. Lett. 74B (1978) 195.

[37] P. Braun-Munzinger, et al., Phys. Rev. Lett. 38_ (1977) 944.

[38] D. M. Brink and N. Takigawa, Nucl. Phys. A279 (1977) 159; N. Takigawa

and S. Y. Lee, Nucl. Phys. A292 (1977) 173.

[39] F. Michel and R. Vanderpoorten, Phys. Rev. C16_ (1977) 142.

[40] H. P. Gubler, et al., Phys. Lett. 24B (1978) 202.

[41] W. G. Love, Phys. Rev. C17 (1978) 1876.

[42] Th. Delhar, et al., Phys. Rev. C (Sept., 1978).

[43] S. Y. Lee, N. Takigawa, and C. Marty, "Semiclassical Study of Heavy-Ion

Optical Potentials", submitted to Nucl. Phys. A.

[44] R. M. Wieland, et. al., Phys. Rev. Lett. .37. (1976) 1458, and to be

published.

[45] N. Rowley, H. Doubre, and C. Marty, "Low Partial Waves in 12C + 12C

Elastic Scattering", to be published.

[46] G. R. Satchler and W. G. Love, Phys. Lett. 2 M (1978) 23.

[47] D. A. Goldberg, Phys. Lett. 55B (1975) 59;



R-3

A. Budzanowski, et al., Phys. Rev. C17 (1978) 951.

[48] G. R. Satchler, Phys. Lett. 59B (1975) 121.

[49] L. D. Rickertsen and G. R. Satchler, Phys. Lett. 66B (1977) 9.

[50] W. G. Love, Phys. Lett. 72B (1977) 4; F. Petrovich, D. Stanley, and

J. J. Bevelacqua, Phys. Lett. 7IB (1977) 259.

[51] E. C. Halbert and G. R. Satchler, Nucl. Phys. A233 (1974) 265; G. R.

Satchler, Zeit. f. Physik 260 (1973) 209.

[52] P. J. Moffa, C. B. Dover, and J. P. Vary, Phys. Rev. C16_ (1977) 1857.

[53] G. Bertsch, e£ al., Nucl. Phys. A284 (1977) 399.

[54] J. P. Jeukenne, A. Lejeune, and C. Mahaux, Phys. Rev. C16 (1977) 80;

F. A. Brieva and J. R. Rook, Nucl. Phys. A291 (1977) 317.

[55] V. A. Madsen, in Nuclear Spectroscopy and Reactions, Part D (Academic

Press, New York, 1975).

[56] G. R. Satchler, et al., Nucl. Phys. A298 (1978) 313.

[57] W. G. Love and G. R. Satchler, Nucl. Phys. A159 (1970) 1.

[58] G. E. Brown, Unified Theory of Nuclear Models and Forces (North-Holland

Publishing Co., 1967).

[59] G. R. Satchler and W. G. Love, Phys. Lett. 65B (1976) 415.

[60] L. J. B. Goldfarb, Nucl. Phys. A301 (1978) 497.

[61] Y. Eisen and B. Day, Phys. Lett. 63B (1976) 253.

[62] D. E. Bainum, et al., Phys. Rev. C16 (1977) 1377; W. G. Love, Phys. Rev.

C15 (1977) 1261.

[63] W. G. Love and L. W. Owen, Nucl. Phys. A239 (1975) 74.

[64] M. Golin, F. Petrovich, and D. Robson, Phys. Lett. 64B (1976) 253.

[65] B. Buck, H. Friedrich, and C. Wheatley, Nucl. Phys. A275 (1977) 246.

[66] G. R. Satchler and W. G. Love, Phys. Lett. 76B (1978) 23.

[67] W. G. Love and G. R. Satchler, to be published.

[60] J. W. Negele, Phys. Rev. Cl (1970) 1260; C9_ (1974) 1054.

[69] N. Takigawa, S. Y. Lee, and C. Marty, Phys. Lett. 26B (1978) 187.

[70] R. Bass, Phys. Rev. Lett. 39. (1977) 265.

Co.y



Table 1. Heavy-ion scattering using a folded real potential based upon the
M3Y interaction. The potential is multiplied by N and N is varied

to optimise the fit to the data.

System

40Ca
32s
32s
32S
32s
i6o
" o
16o
i6o
i6o
16o
" o
16o
16o
16o
16o
16o
i6o
160
i6o
i 6 o •

16o -
i60 •
16o -
ifio -
16o -

+ 40Ca

+ 48Ca

+
 A0Ca

+
 32s

+
 27A1

+ 208Pb

+ 208Pb

+ 2°8Pb

+
 88Sr

+
 88Sr

+
 88Sr

+
 88Sr

+ 60Ni

+
 60Ni

+
 59Co

+
 59Co

+
 59Co

+ 59Co

+ 59Co

+
 59Co

+• 4 8 C a

f 40Ca

¥ A0Ca

.•40Ca

rA°Ca

h40Ca

Energy
(MeV)

130-240

83

100

91

100

313

192

130

59

56

52

48

142

61

142

56

52

49

46

40

56

214

140

104

74

56

1

1

1

1

1

1

0,

1,

1,

1,

1,

1.

1.

1.

1.

1.

0.

1.

0.

0.

0.

1.

1.

0.

1.

1.

N

.32

.09

.26

.22

.06

.05

.95

.16

.22

.21

.19

,36

,00

04

00

00

99

10

87

98

98

05

23

99

14

27

System

160
160

IV
IV
1 60-
1 6o-
1 6o-
iV
1 6o-
15N -
1AN H
1 4NH
1 3CH
12CH

"en
12CH
12CH

12CH
12c-.
12C-.

i2C 4

U B -t

UB 4
1°B +

+ 28Si

+
 28Si

+
 28Si

¥ 28Si

¥ 28Si

f 2 8Si
r 28 S,

f 2 8Si

- 1 2 C

h 89Y

h X 60

h 1 2C

1- 207Pb

v 2 0 8Pb

v 2 0 8Pb
h
 142

Nd

^ 9 0 Z r

- 4 0Ca

- 2 8Si

• 2 8 S i

• i 2 c

• 2 0 9 B i

• 2 0 8 P b
16o

Averae

Energy
(MeV)

142

215

81

72

66

60

53

38

168

50

154

156

86

116

96

70

98

45

132, 186

40

70-126

75

72

99

e

N

0.91

0.76

1.00

1.00

1.01

1.01

1.00

1.01

1.11

1.18

1.30

1.03

1.27

1.26

1.25

1.15

0.98

1.14

0.97

1.02

1.01-1.

1.45

1.26

1.04

1.09 ±
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Figure Captions

Fig. 1. Some typical angular distributions for strong absorption elastic

scattering: (a) a Fraunhofer-like diffraction pattern [111 (b) a Fresnel-

like diffraction pattern [10], (c) scattering of 140-MeV alphas from several

targets [12].

Fig. 2. Sensitivity of Fresnel-type angular distributions to (a) the imagi-

nary potential [10] and (b) the real pr.ential [67]. (In (b), N multiplies a

folded real potential; see text.)

Fig. 3. Overlap of the nuclei at the critical or strong absorption radius

(here about 12.5 fin) [10]„ (a) Densities along the line joining the nuclear

centers, (b) Nuclear (U.T), Coulomb (U ) and centrifugal (UT) potentials.
N C L

The U is the folded potential used for Fig. l(b). Also shown is U flattened

for r £ 11 fin; the scattering for this potential is also shown in Fig. l(b).
90 208

Fig. 4. Interaction energy of Zr + Pb calculated using an energy-density

approach and a Skyrme force [28] (solid curve). The points are the proximity

potential, Eqs. (27)-(29). The crosses are for a modified proximity form.

16 18
Fig. 5. Magnitudes of the S-matrix elements for 0 + 0 at several cm.

energies. The solid curves fit the data, the dashed curves are for a strongly

absorbing potential [33]. (S is here denoted n .)

16 28
Fig. 6. Potential fits to 0 + Si data, one shallow Woods-Saxon [34] and

one deep folded potential [35], both strongly absorbing.

Fig. 7. Showing the forward angle oscillations in 0 + Si isotopes and po-

tential fits ([36] and Dehnard in [23]).

16 28
Fig. 8. Large-angle oscillations in 0 + Si [37] and a simple potential

fit (Dehnard in [23]).

Fig. 9. Typical S-matrix elements for potential scattering. (E-18 is the

potential used in Fig. 6.)

Fig. 10. Total real potential (sum of nuclear, Coulomb and centrifugal) for

'shallow' E-18 and for a deeper potential which fits the large-angle data

(Dehnard in [23]).

40
Fig. 11. Large angle scattering for a + Ca. The solid curve is for a
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phenomenological (Woods-Saxon) * potential [39], the dashed curve for a

folded potential [41].

Fig. 12. Separate cross sections for reflection from outer (o_) and inner
a

(a ) barriers and their combined effect (a ) [38].
J- SC

Fig. 13. S-matrix elements corresponding to Fig. 12 [38]. (Here S. = n»).
12 12

Fig. 14. Fits to C + C elastic scattering using a folded potential [44].

Fig. 15. Typical S-matrix elements corresponding to Fig. 14 [44] (here S =

V*
Fig. 16. Some typical wave functions corresponding to Fig. 15 (solid

curves) [44]. (Dashed curves are for a shallow Woods-Saxon potential which

only fits the small-angle data.)

Fig. 17. Large-angle oscillations for Li + Ca. The curves are for a

folded potential, renormalized by N [66].

Fig. 18. Coordinates used in folding calculations.

Fig. 19. Folded potentials, using the M3Y interactions (a) from Eq. (48) and

(b) from Eq. (49), near the strong absorption radius (here about 9.6 fm).

The dots are obtained from scattering data. D stands for 'direct1, E stands

for 'exchange' (the contribution from the pseudopotential (51)), and D+E is

their sum. (D+E is the same for the two potentials [59].)

Fig. 20. Combinations of volume integral and range needed to give a po-

tential of -1.35 MeV at D ^ = 10.6 fm (Love in [23]).

Fig. 21. Folded potential at various separations R for Kr + Bi as the nuclear

densities are cut off at na beyond the half-density points [67].

Fig. 22. Folded potential at 9.7 fm for various choices of density distribu-

tions for 0 and Ni plotted against the sum of their mean square radii [67].

Fig. 23. Scattering predicted using real folded potential (and M3Y inter-

action) plus Becchetti-Greenlees imaginary and spin-orbit terms [67].

Fig. 24. Some light heavy-ion scattering with the folded potential normal-

ized as in Table 1 [67].

40 40

Fig. 25. Folded potential for Ca + Ca normalized as in Table 1 and ob-

tained by fitting the data at 143.6 MeV [67].
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Fig. 26, Folded potential for 0 + Ca obtained by fitting the data at 74

MeV (with N = 1.14) [67].
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