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This report reviews a number of conceptual bases for the interpretation of
atmospheric source-receptor phenomena, including spatial attributes, nonlinearity,
and temporal attributes. Source-receptor properties are commonly expressed and
interpreted in terms of statistical parameters. Definitions of these parameters often
vary from one user to the next, however, and the resulting potential for confusion
suggests the need for a standard and accepted set of terms for applied use.

Time-averaging is an important consideration in describing system
Iinearity/nonlinearity as well as temporal and spatial variability. Unless expressed in
terms of a conceptual mode! (such as a steady-state system) where time-averaging is
implied, explicit statement of the averaging time, or period of observation, is necessary
for satisfactory definition of peninent‘statist'ical features. This plus a number of
additional contributing factors tend to complicate the description of source- receptor
phenomena and underiine the need for consistent terminology.

This report provides a description of source-receptor linearity as well as several
statistical measures of spatial and temporal variability in the source-receptor
sequence. These are éuggested for use as standard terminology in future source-
receptor studies and in applied emission-control policy analyses.



This work was funded by the Office of Health and Environmental Research
(OHER) of the U.S. Department of Energy (DOE), under coordination of the National
Acid Precipitation Assessment Program(NAPAP) Task Force, and we would like to
express our thanks to both of these organizations for their guidance and support. We
" would also like to thank the several scientists who have carefully read various early
drafts of this document and have provided comments which have led to substantial
improvements in the final manuscript. The suggestions by Dr. Glen Hilst, Mr. Richard
Easter, and Dr. Rich Barchet were particularly valuabie in this regard.

This report was prepared for publication in Lejlus An abridged version was
resubmitted to the journal based on reviewers' suggestions. This report is for the
reader who wants a lengthier, more complete explanation of the concepts discussed.



CONTENTS

SUMMARY .

ACKNOWLEDGMENTS

1.0 INTRODUCTION

2.0 SPATIAL ATTRIBUTES: SPATIAL DlSTRIBUTIONS AND

INFLUENCE REGIONS
3.0 LINEARITY

3.1

3.3

4.0 TEMPORAL ATTRIBUTES: TEMPORAL DISTRIBUTIONS

'MACROSCOPIC SYSTEMS
3.2 MICROSCOPIC SYSTEMS AND THEIR INFLUENCE

ON MACROSCOPIC SOURCE-RECEPTOR
BEHAVIOR

SUMMARY COMMENTS ON LINEARITY

AND RESIDENCE TIMES

4.1

4.2

ATMOSPHERIC RESIDENCE TIMES AND
TRANSIENT RESPONSE

4.1.1 lIsolated Méchanisms

4.1.2 Simultaneous Mechanisms

4.1.3 Special Cases |

4.1.4 Extension to Continuous Systems

ATMOSPHERIC RESIDENCE TIMES AND
STEADY STATE SYSTEMS

4.2.1 Overview of Bolin-Rodhe Derivation

4.2.2 Extension of Bolin-Rodhe Derivation to
Describe Individual Removal Pathways

4.2.3 Comparison of Transient-Puff and
\ Steady-State Analyses

'4.2.4 Summary Comments on Temporal

Distributions and Residence Times

vii

14
24

27

27
27
29
30
32

34
34

37
38

39



5.0 CONCLUSIONS
6.0 REFERENCES

APPENDIX - NOMENCLATURE .

viii

41
43

A1



FIGURES
1 Hypothetlcal Spatial Probability-Density Functions for Exposure
to a Pollutant Emitted at Center of Grid. |

Examples of (a) Linear and (b) Nonlinear Source-Receptor
Behavior for a Single Receptor Located at Point (x,y).

Hypothetical Plot of Measured Source Strength Versus
Deposition Rate, lllustrating Conceptual Experiments for
Linearity Assessment. . . . .
Schematic of an Idealized One-DimensionaI Linear System.

Schematic of a Continuous Stirred- Atmosphere Reaction
System . .

Linearity Plot for Example Reaction System.

Hypdthetical Probability-Density Functions for Reactive, Dry-
Deposition, and Wet-Deposition Removal Pathways in a
Linearly Interactive System. . . .

Time Series of Probabuity-Densnty Functions for a Series of
Instantaneous Puffs. . . .

ix

11
20

22

23

33

35



~indiscriminate application in cases wheré transients occur can lead to confusing, or
even erroneous, results. The goal of this report is to review several of the most
important of these source-receptor concepts and to provide a group of well-founded
definitions and interpretations, which are suggested for standardized use by both the
scientific and policy-analysis communities. In reflection of the three basic categories of
quéstions posed above, general classes of these terms include spatial attributes, such
as spatial distributions and influence regions, the concept of linearity, and temporal
attributes, such as temporal distributions and residence times. These categories will
be treated sequentially in the sections immediately following.



1.0 INTRODUCTION

The expression "source-receptor relationship” is commonly applied to describe
the composite behavior exhibited by a poliutant, from the time that it is emitted to the
atmosphere until the time it arrives at its ultimate point of reception. The term
“raception” is used here to depict elther deposition, or simply observation in the
gaseous phase by some type of real or hypothetical monitoring device, at any specaﬂc
location on the Earth's surface. Elements of source- receptor behavior can be
illustrated best in terms of the following questions, which are often posed in the context
of its discussion:

. Spatial attributes. What is the spatnal concentration (or deposition) pattern
associated with a specific pollution source? What fraction of the pollutant
molecules arriving at a specific receptor has originzied from this source?

2. Linearity. What are the changes at a receptor that result from extended changes

in source strength, and can this cause-effect relationship be expressed as a linear
function?

3. Temporal attributes. How do pollutant fluctuations at a receptor relate to
fluctuations of the source, and to fluctuations in the atmosphere? How long do
pollutant molecules from a specific source reside in the atmosphere before exiting,
either through deposition or through physicochemical transformation?

Each of these source-receptor questions is of central importance to emission-
control strategy and policy analysis. Unfortunately, however, their interpretation is
often clouded by substantial uncertainty; and at present the scientific community is
working actively to elucidate interpretive aspects of these questions, and to reduce
associated uncertainty levels. As a consequence of this combination of scientific and
policy-analysis activity, these questions can be conveniently viewed as interface
points between atmospheric scientists and policy makers. These interfaces have
become especially active during the past several years, as regional/global issues such
as ozone transport and acidic deposition have grown in importance.

Several concepts and terms are often encountered when dealing with source-
receptor relationships. As is frequently the case with applied atmospheric analysis,
the published literature contains a variety of definitions for and interpretations of these
terms, which often depend on special conditions and/or modeling assumptions. As a
consequence, substantial caution must be exercised when applying published results
for the interpretation of particular situations. Quite often, for example, definitions
applied in the literature are based on an assumed steady-state process, and



2.0 SPATIAL ATTRIBUTES: SPATIAL DISTRIBUTIONS AND
~ INFLUENCE REGIONS

 In assessing the effects of atmospheric processes, particulary those associated
with pollutant deposition, one is generally concerned with fluxes and concentrations in
the immediate vicinity of the Earth's surface. As a consequence we will confine this
~ discussion to surface observations and neglect the distribution of pollutants aloft--a
restriction that permits spatial distributions to be viewed simply as two-dimensional
entities. . |

We begin by considering a single, specific source that is emitting a pollutant to
its surroundings. If one were to measure the exposure of this pollutant (e.g., its
concentration or its deposition flux) at all surface-level points surrounding *he source
at some instant in time, the resulting field could be represented by

expoéure(x,y) = E(x,y) = Eg f(x,y), ‘ | (2.1)

where x and y are coordinate positions relative to the source, Eg is a normalizing
constant, and f(x,y) is an Instantaneous spatial probability-density function for
pollutant ~~currence, which obeys the relationships

25
f(x,y) = E% 38;(;,;‘) | (2.2)
and ‘ o
[ [Hxy) dxdy = 1 (2.3)

where Z(x,y) represents a cumulative exposure across the (x,y) domain. Figure 1a
provides a pictorial example of an instantaneous probability-density function
corresponding to an arbitrary single source.

Similar density functions can be derived for other receptor attributes, such as
wet- and dry-deposition flux fields, as well. All of these density functions have the
mathematical properties characteristic of the usual density functions encountered In

statistics. In particular the centroid coordinates and standard ueviations X, ¥, oy, and
oy of the spatial concentration (or deposition) pattern can be expressed as follows:



X = | [xtixy) dxay, | | (2.4)
7 = ] Jytoxy) dxa, (2.5)
ot = H.o;-i)z fixy) o dy, |  28)
o) = T I v- 9P fy)oxdy. (2.7)

Parameters for higher moments of the distributions can be obtained using
straightforward extensions of these forms. It is important to note the instantaneous
nature of f(x,y) and to recognize that similar density functions can be defined. that
correspond to observations averaged over finite periods of time. In general, one can
denote density functions corresponding to averaging times 6 as fg(x,y), where fg
conforms to the mathematical properties noted for f in Equations (2.2) and (2.3).
Because of temporal variations in pollutant behavior, une would expect the field
described by fy to become progressively more smooth with increasing 8, as indicated
by the curve in Figure 1b. If the temporal variability of f is free from long-term trends,
then for large 9, fé(x, y) will converge to a limiting distribution, which can be taken to be
the long-term average. The moment parameters also will change with averaging time,

in reflection of changes of the density function; thus, time-averaged parameters Xg, ¥,
Oxg, and Gyg May be derived, which correspond to the instantaneous parameters in
Equations (2.4) through (2.7). |

The influence region of a specific pollution source is the geographical
domain where the source's contributions to pollutant concentration and/or deposition
fluxes are considered to be "significant." Obviously this description is flexible,
depending on the direct needs associated with the problem at hand. Typical criterla
for the bounds of an influence region are absolute magnitude, such as the
specification of a lower-limit value for fg(x,y), or relative magnitude, such as
specification of a lower-limit ratio of fo(x,y) to some background contribution. A
moderate SO, source in the polluted midwestern United States, for example, would
not be expected to make a strong relative contribution to pollution fields at extended
downwind distances and thus could be considered to have a limited relative influence
region for most practical applications. The Chernobyl plume, on the other hand, could
righttully be stated to have an influence region encompassing the total northern
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EIGURE 1. Hypothetical Spatial Probability-Density Functions for
, Exposure to a Pollutant Emitted at Center of Grid: a)
Instantaneous Density Function; b) Time-Averaged

Density Function.
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hemisphere, both on a relative and an absolute basis. ‘Consequently, the term
"influence reglon" should be consid: sd as a qualitative descriptor, unless an explicit
quantitative definition has been given to describe some situation of immediate interest.



3.0 LINEARITY

The concept of linearity/nonlinearity represents a juncture between science and
policy analysis that is a particularly important feature of the present international
dialogue on acidic precipitation. in policy analysis, this concept is usually considered
from a macroscopic viewpoint, that is, in the context of the total source-receptor
sequence. Scientific analysis is often concerned with macroscopic manifestations of
nonlineari‘ty as well; in addition, however, scientific evaluations frequently deal
directly with noniineaiity's causative mechanisms, which tend to be molecular-scale,
or microscopic in nature. Moreover, a variety of observational scales, falling between
these two extremes, is possible. Instead of considering the total source-receptor
sequence, for example, one might choose to examine nonlinearities associated with a
limited segment of this sequence, such as pollutant ingestion and precipitation
scavenging by an isolated storm at some location that is remote from the poilutant's
source.

Because of this wide range of analysis scales and alsc because of diverse
terminology applied in associated scientific fields such as mathernatics, engineering,
and systems research, a variety of interpretations of linearity/nonlinearity have
appeared in the atmospheric-sciences literature. In view of the possible confusion
associated with these interpretations, there is a need for a standard characterization of
linearity/nonlinearity that |

+ is sufficiently concise to be of practical use for strategic planmng by the policy-
analysis community

» is sufficiently well-posed to preclude any ambiguity of interpretation

* provides a consistent interpretation over all scales of application, ranging from
microscopic systems to the macroscopic source-receptor sequence

* is consistent with (or at least reconcilable with) standard mathematical terminology.

The purpose of this section is to provide such a characterization. We approach this
goal in the following subsections by first examining rhacroscopic aspects of
nonlinearity, then scrutinizing microscopic features, and finally discussing the
relationships between these two limiting situations.



3.1 MACROSCOPIC SYSTEMS |
Linearity/nonlinearity in the total source-receptor sequence can be described
superficially in ‘relatively simple terms. Basically, if a percentage emissiun change of a
particular pollutant from a specifié source results in the same percentage change in
exposure of that pollutant from that source--at all receptor points over the source's
influence regioh--then the macroscopic source-receptor process is said to be "linear."

That is, the source-receptor relationship can be represented by some equation of the
form - '

Eoij%y) = As(xy) Sajj . - (3.4)

where Eé,i,i(x,y) is the exposure (e.g., the concentration or deposition flux)‘of pollutant i
at location (x,y) that is attributable to source-array j, Se,;,j represents the aggregate
emission rate of the associated poliution source, and Ag(x,y) is a proportionality
function. As indicated by the subscript 8, a finite averaging time for the observations of
- Eg,ijand Sg;jis implied. Sg;;can characterize a single point-source at some fixed
position, or it can depict the combined strength of any chosen array of sources. The
latter case is best visualized in terms of a spatial density function sg; j(x,y,z) of pollutant
emissions, where the source strength at any location, Zg i j(x,y,2), is given by the
product of Sg i and sg,j(x,y,2).

The property characterized by Equation (3.1) implies that the spatial probability-
density function fg; j(x,y) for pollutant deposition (or concentration) is insensitive to
changes in the aggregate source strength Sg jj; in fact, a‘somewhat more revealing
statement of the source-receptor linearity condition can be given as

Eevi»i(x'Y) = EO fe,i,j(K,Y) = A6<X'Y) Se,l,] . ‘ (32)

As wiil be indicated below, these equations do not constitute a complete
definition of macroscopic linearity. They do suffice, however, to indicate this concept's
importance in policy analysis. |f the source-receptor behavior is indeed linear, then an
acceptable control strategy can be designed in a relatively simple and straightforward
manner. Furthermore, confidence in the sirategy's ultimate success will be greatly
enhanced, because one is assured that any incremental rollback in emissions will be
directly reflected by a proportionate drop in exposure to the associated pollutants at
the receptor. Several'hypothetical examples of linear and nonlinear systems, as
characterized in the context of this report, are shown in Figure 2.



Ey fe,i,j(X’Y)

E; j(x.y)

>
a: linear = b: nonlinear
systems D systems.
Y 5 | n
1 — |
-
5 6
/
S, | | Sij

EIGURE 2. Examples of (a) Linear and (b) Nonlinear Source-Receptor Behavior for a

Single Receptor Located at Point (x,y). The density function sij(x,y,2)
characterizing the source distribution is stipulated to remain constant
under these conditions, although the composite source strength Sij is
allowed to vary.

Equations (3.1) and (3.2) are potentially useful for evaluating the presence or

absence of macroscopic linearity. One could, for example, observe a source-receptor

system for two different time periods (say 61 and 63), each of which involves a different
source strength (Se,ij and Sy, j). Subsequent comparison of the resulting exposures

Egp,ij andEez,iJ would allow direct evaluation of system conformance to Equation (3.1),

and thus to linearity. Although this appears superficially to be a simple and
straightforward process, a number of conditions must be satisfied for valid application
of Equations (3.1) and (3.2). Explicit recognition of these conditions, summarized
below, is essential for interpretation of system linearity.

1. Explicit designation of the source array (characterized by index j in Equations (3.1)

and (3.2)), and distinction between pollutant that has originated from this array and
that which has not, is critically important. Ignoring this requirement can lead to a
serious misinterpretation of system linearity/nonlinearity. Definitive source
attribution is a major problem in field measurements of source-receptor
nonlinearity, because usually no convenient way exists to determine explicitly the
sources responsible for specific contributions to the pollutant levels observed at a
receptor site.

Equations (3.1) and (3.2) are valid characterizations of linearity only if the source
density-function sg ; j(x,y,2) is invariant in time, or represents a stable time-average
of a fluctuating source array. Because emission patterns are usually subject to
change, sg,jj(,y,z) is difficult to control in practice and often presents a substantial
impediment to interpreting linearity/nonlinearity from field observations. Although
temporal changes in sg jj(x,y,z) may invalidate the application of Equations (3.1)



“and (3.2) for linearity/nonlinearity analysis, this lack of applicability doss not imply
that the source-receptor system is nonlinear under transient conditions.

3. Application of Equations (3.1) or (3.2) for evaluating linearity/nonlinearity is valid
only after sufficient time has elapsed to allow completion of transient responses to
changes in Sg ;. One would not, for example, attempt to assess nonlinear-
behavior by doubling Sg,i at some instant in time, and then measuring Eg,j in the
foliowing few seconds at some (x,y) location several hundred kilometers
downwind. This point is of limited practical concern for field assessments of
nonlinearity but poses a potential basis for misinterpretation of modeling
calculations. ‘

4. The receptor density function fg ; ; (X, y) depends on meteorology and thus will vary
with time, even for a constant source strength and source configuration. The best
one can hope for is that, for sufficiently large averaging time 6, this function will
converge to a stable state, which will be replicated by observations for subsequent
sampling periods. Experimental determination of source-receptor
linearity/norlinearity by measuring Eg ;; for some fixed Sg, i and subsequently
modifying Sg jj and measuring the correspondmg change in Eg,j, depends on thes
ability to rephcate fe,ij(x,y).

5. Application of Equations (3.1) and (3.2) for linearity/nonlinearity analysis is based
on the assumption that either a) the source-receptor relationship is not affected by
other, co-existing pollutants or b) the emissions of these co-existing pollutants
remain unchanged during the total period of obseryation. ‘

Conditions 1 through 5 complicate the description and testing of macroscopic
linearity appreciably. Nioreover, they suggest a distinction between the properties of
a linear system and the conditions that are necessary to test for its existence. Insofar
as necessary test conditions are concerned, it is instructive to view such attributes in
terms of conceptual experiments, which one might propose to evaluate linearity using
either modeling or field-measurement techniques. Two possible conceptual
experiments of this type are:

Conceptual Experiment 1. This experiment is essentially a formalization of the
approach outlined at the beginning of this discussion. Select a source-receptor
system of interest and observe this system for two different periods, 81 and 6. ‘
Assume that the meteorological conditions, averaged for each of the two periods,
are identical. Assume also that the source density functions are identical but that
the aggregate source strengths Se,,ij and Se,,ij differ. Measure Sg,ijand Egj(x,y)

for eacn period, and assess deviations from linearity by plotting as shown in
Figure 3. '

Conceptual Experiment 2. Select a source-receptor system ot interest, which
exists in some well-defined initial state. Observe the system as a function of time
for some defined, but not necessarily constant, values of S;jand s;;. Note values of

10



Eg2,ij» S02,i
4 ‘

Eg1,i,» So1,i,j
@

Eyjii

Se,i,j

EIGURE 3. Hypothetical Plot of Measured Source Strength Versus
Deposition Rate, lllustrating Conceptual Experiments
- for Linearity Assessment

Eij(x,y)|1 at some elapsed time during this process. Repeat the observation,
applying the same source density-function and the same meteorology, but for an
amplified aggregate source strength S;; Note the corresponding values of
Eij(x,y)|2 at the same elapsed time. Assess linearity by plotting in the same manner
as for Conceptual Experiment 1. :

Consideration of these experiments provides insight regarding the importance of
Conditions 1 thiough 5, and gives some indication of the difficulties involved in
measuring linearity/nonlinearity in practice. Both experiments can be performed
conveniently using model simulations, since in such cases the investigator has explicit
control over both the source configuration and the meteorology. Under relatively ideal
conditions one ight expect to conduct Experiment 1 as a field study; because of the
impossibility of repeating the instantaneous meteorological conditions in field
experiments, Experiment 2 is practical only in a modeling context.

These experiments, in conjunction with Equations (3.1) and (3.2), also suggest
the following quantitative measure of nonlinearity:

R
-—
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L* is essentially a normalized sensitivity coefficient and has been suggested as
én appropriate measure of linearity/nonlinearity by previous authors (e.g., Easter and
- Luecken 1988). While L* is certainly not the only measurement index that could be
suggested, this parameter will suffice for the purposés of this report. -As can be
determined by inspection of Equation (3.3), an L* value of 1 corresponds to linear
behavior, as described by Equations (3.1) and (3.2). L* values exceeding and less
than 1 depict positive and negative deviations from linearity, as exemplified by curves
g and n, respectively, in Figure 2. '

Additional interprétive features of macroscopic linearity are not directly related
to observational validity, but are nevertheless worthy of mention at this point.
Equations (3.1) and (3.2), for example, can be applied directly for the
linearity/nonlinearity analysis of reaction products as well as primary emitted species.
Se,,j could be used to describe a source array of SOz emissions, for example, with
Eg,j(x,y) being applied to characterize the associated deposition flux of the SO4=
reaction product. Moreover, Equations (3.1) and (3.2) can be generalized to describe
linearity for sub-elements of the total source-receptor sequence, by allowing Sy and
Ee,ij to depict pollutant inflow and outflow, respectively, for the chosen sub-element.
Se,i,j could be used, for example, to depict the chemical input to a cloud system from
the surrounding clear air, rather than the direct emission of a pollutant to the
atmosphere.

"Global" linearity, that is, linearity of gross behavior across the total (x,y) domain,
is implied by Equations (3.1) and (3.2). Integration of Equation (3 2) over the total (x,y)
domain leads to the obviously linear form

Eo = A Sg,ij. | (3.4)

where the constant A is defined by

12



A = [ [ Agxy)dxdy. | (3.5)

Equations (3.4) and (3.5) demonstrate that the "normalization constant" Eg Is
equivalent to the area-integrated exposure.

As a final point in this review of macroscopic phenomena we note that linearity,
as described by Equations (3.1) and (3.2), is at variance with some of the
intarpretations appearing elsewhere in the literature. This point is illustrated by curve
¢ in Figure 2b, which may be represented by the equation

Eg,i,j(x,y) = Ae(x,y) Se,ij + b L (3.6)

where b is some non-zero intercept, a form that is usually considered to be "linear" in
an algebraic context. A more restrictive characterization of linearity (i.e., zero
intercept) has been chosen for the purposes of this repott for three major reasons.
First, emission-control strategy is greatly simplified under conditions where curves
such as those in Figure 2a prevall, a situation that definitely does not exist in the case
of curve §. Second, it is difficult to conceive of a situation where curve { would be
exhibited in nature, because its implication of non-zero pollutant deposition associated
with sources that are emitting no poliuflon whatsoever is obviously absurd. Any
indication of a source-receptor relationship similar to curve { would immediately be
suspected of either 1) having a radical but unmeasured downturn toward zero in the
vicinity of the origin (and thus being highly nonlinear by both criteria (3.1) and (3.6)) or
2) being an artifact arising from background contributions from unaccounted sources.
Third, as will be demonstrated below, Equation (3.6) is ingonsistent with the -
mathematical definition of a "linear operator,” a concept that will be used in relating
macroscopic linearity to its microscopic origins. For these reasons we will continue
with our more restrictive characterization of linearity for the | tirposes of this report and
will refrain from using terms such as "proportional" and "linear-proportional,” which
have been applied elsewhere to distinguish between behavior exhibited by Equation
(3.1) and Equation (3.6). In so doing we caution the reader to remember that the terms
"linearity" and "nonlinearity" are defined in a variety of ways in the literature, and that
due caution is mandatory to avoid confusion and erroneous interpretation of the
source-receptor sequence.

13



3.2 MICRQSCOPIC SYSTEMS AND THEIR INFLUENCE ON MACRQSCOPIC

As we have noted above, microscopic phenomena are important practical
considerations because nonlinear molecular-scale processes generally form the
mechanistic basis for macroscopic nonlinearity. The following equations, for
oxample,(® 1opresent the rates of chemical reactions:

rate of loss of species A = - dCa/dt|reaction = Ka(X,y,Z,t) Ca | (3.7)
rate of loss of species B = - 30g/Mtreaction = Ka(X.y.Z.t) cg2 (3.8)
rate of loss of spepies C = - dcc/dtreaction = Ke(x,y,z.t) cc cp , (3.9)

The first of these is considered to be linear (because it depends on the first power of
the conceniration of A), and the second nonlinear (because it depends on something
other than the first power of the concentration of B). The third reaction is also
considered to be nonlinear in general because, although the rate appears superficially
to be dependent on cc to the first power, it also depends on the concentration of
species D, which is presumed to vary with reaction progress in some manner that
depends on c¢. If reactions represented by Equations (3.8) and (3.9) play large roles
in affecting source-receptor behavior, then the total macroscopic manifestation can be
expected to exhibit nonlinearity in the sense of Section 3.1.

Microscopic linearity is important from a modeling standpoint as well. If linear
conditions are assumed to prevail, one frequently can obtain analytical solutions to
model equations (or components of these equations), whereas with nonlinear systems
numerical approximations are almost always mandatory. Moreover, under linear
conditions it is possible to perform relatively simple calculations for individual source-
receptor elements of a multiple-source composite and then derive the total
composite's depiction by adding these contributions using linear superposition.
Sirnple superposition Is not permissible with nonlinear systems. Finally, linear
systems allow greater model-application economy, in the sense that a single model
execution can be applied to describe a variety of source-receptor scenarios. Quite
often this multiple type of scenario analysis has been accomplished by subdividing the

(@) We will use reaction kinetics as our primary lllustration of microscopic linearity/nonlinearity in this report.
The reader should note, however, that numerous additional microscopic interactions, such as solubllity
phenomena and cloud-physics interactions, are potential contributors to system nonlinearity.

14



source regions and receptor regions Into grids, and allocating the emission-density
and receptor magnitudes to corresponding two-dimensional matrices. A single
execution of a linear model can be applied to create, in addition to a matrix of receptor
values correspondit g to the source matrix, a general transformation that permits direct
evaluation of receptor patterns corresponding to any arbitrary emission array. This
transformation, which is often referred to as a transfer matrix, thus can be applied for
multiple scenario analyses without subsequent execution of the model's code. Again,
the application of such techniquies is not permissible under nonlinear conditions.

Any acceptable depiction of linearity must be sufficiently general to describe
both its microscopic and macroscopic aspects, and to conform to the conditions noted
above for model applications. In formulating such a description it is helpful to apply
the mathematical concept of a linear operator, L, (cf. Sokolnikoff and Recineffer 1966)
which satisfies the form ‘

L(Ciu +CoV) = C{L(u)+CoL(V), | (3.10)

where u and v are any two functions of the independent variables and the Cs are
constants. Differentiation and integration are linear operations under this definition.
For example, if one sets L(y) = dy/dx, then Equation (3.10) becomes

d du dv
E‘-;-(C1 u+ Cp) = C‘E; + C, vl
If, on the other hand, one attempts to define L in terms of a nonlinear operation, say

L(y) = y2, then similar introduction into Equation (3.10) results in

(Ciu+ Cuv)? = C2uU? + Civ? + C,uC,v
# C2u? + CEv2.

The operations (3.1), (3.2), (3.4) and (3.7) are linear according to the critetion
(3.10), whereas (3.6), (3.8) and (3.9) are not; thus both microscopic and macroscopic
characterizations of linear systems, as given in this report, conform with this
description. Accordingly, we stipulate that a necessary condition for linearity Is that
both the macroscopic source-response equations and their microscopic root
expressions satisfy the criterion stated by Equation (3.10).

Differential equations of the form

15



i

L(C) 'Q(x|Ynz't) = 0 (3’11)

where q Is any (possibly) spatially and temporally variant function that is independent
of the dependent variable ¢, are considered to be linear differential equations In a
mathematical context. Althbugh L(c) Is by definition a linear operator, the left-hand
side of Equation (3.11) does not in general satisfy condition (3.10). Furthermore,
solutions to differential equations of the form (3.11) do not, In general, lead to linear
algebraic expressions of the form (3.1).

More restricted forms of Equation (3.11), which do lead to algebralc solutions
that are linear in the sense of Equation (3.1), can be stated. In particular, the pollutant-
species conservation equation

ly

"','""L +V‘(VI'] CH) = rl:] = E|J(X$Y’th) = él.] éf.](x'y'z’t) (8'12)
ot : ,

Is considered to be a linear differential equation as long as the divergence and |
reaction terms [V ¢ (vjcj | ) and rj j, respectively], satisfy condition (3.10). This
requirement will be fulfilled if the pollutant velocity vector vj j is independent of ¢j |, and
the reaction rate |, depends on ¢ j to the first power only. If the problem's boundary
conditions satisfy certain restrictions to be discussed below, solutions to this equation
can be expressed in terms of Equation (3.1).

Because macroscopic linearity is usually assessed by time-averaged
observations, it Is ofteri convenient to consider a time-smoothed form of Equation
(3.12). Such an equation can be derived In principle by separating the instantaneous
variables into time-smoothed and fluctuating terms; i.e.,

Cy = Coy +C) (3.13)
L= Ty + Ty (3.14)
Ly o= Ly + Ty (3.15)
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Vij = Vg, + V'M' | (3.16)

and time-averaging on a term-by-term basis with the formula

1 t+0 '
6 =5 et (3.17)
t .
to obtain the result
dc : ' |
—lb + V(v oyl - fay = Zy(xy.2) ‘ (8.18)

We will not dwell on this time-smoothing procedure here except to note that
several rather subtle features are assoclated with this process, which have been
treated at length in the flield of genera! fluid mechanics. These include the turbulent-
transport “closure" problem associated with the second term in Equation (3.18) and the
question of nonlinear reaction phenomena in fluctuating concentration flelds (cf., Bird,
Stewart, and Lightfoot 1960, Donaldson and Hilst 1972).(a) [f 0 is sufficiently large,
then the time derivative will become negligible compared to other terms. This behavior.
s directly associated with the condition demanded by Condition 3 above, regarding
the absence of transients induced by changes in source strength.

Equations (3.12) and (3.18) provide the mathematical link between microscopic
and macroscopic linearity/nonlinearity, and their representation is useful for
elaborating on Condlitions 1 through 5 as well as the additional conditions noted at the
conclusion of Section 3.1. First, Equation (3.12) represents only one pollutant, and

(8) Time-smoothing of the source term can lead to cross-products between the instantaneous aggregate
source strength and the instantaneous souroce density function, If dependences exist in the time-
variability of these terms, As a cunsequence the source strength and density function assoclated with a
time-smoothed £ are not necessarily the same as the source strength and density function obtained from
time-smoothing S and s directly. This distinction !s reflected In the mathematical notation by the tildes
above the instantaneous S and § In Equation (3.12), The reader can verify this by performing a simple
time-smoothing of the relevant terms using the procedure described above,
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similar, simultanieous e‘quatloné can be set forth for other atmospheric constituents.
Because these multiple pollutants react with each other in numerous ways, the
equations are often coupled [usually through reaction terms such as Equation (3.9)],
possibly creating secondary sources of nonlineatity. As a consequence, any reallstic
investigation of linear/nonlinear behavior must consider these possible interactions,
and observations of one species (say sulfur deposition) must be examined and
reported in the context of Its concurrently existing pollutants. Such microscoplc
behavior leads to Condition 5, regarding assumptions pertaining to co-existing
pollutants In the context of macroscopic linearity.

It Is also important to re-examine the constraints placed on the soutce density
function sy, j(x,y,2,t) by Conceptual Experiments 1 and 2. Experiment 1 demands that
sg,i,) remain constart, or at least that its average value remain stable from one
obsetvation period to the next. Experiment 2 allows sg | to vary with time, but
demands that this time-history be replicated between observation perlods. Attempts to
apply these experiments for other types of sj) behavior will result in medifications to the
spatial distribution pattern fg | ;(x,y), which have little to do with nonlinearity, and thus
defeat any possibility ot examining linear/nonlinear effects. If the behavior of sorme
particular source or source area Is in question, it is possible in principle to tag this
source with a unique tracer, vary the Se,i,| corresponding to just this source, and
ascertain the extent of its nonlinear behavior.(® Radioactive isotopes such as 35S
have been suggested as experimental tracers for this purpose, and models can
conveniently simulate virtual tracers simply by incorporating an additional equation of
the form (3.12) with the original equation set. It Is extremely important to note,
however, that any modeling or experimental investigation of nonlinearity must exercise

care to eliminate the possible confusion of spatial/temporal distortions in sg |} with true
nonlinearity.

A final point relates to the variability of the meteorological field, which is
reflected in Equation (3.12) by the velocity vector vi,j(x.y.z,t) and has direct bearing on

Condition 4 of our characterization of macroscopic linearity. Straightforward model

realizations of Conceptual Experiment 1 can be conducted, where an Initial code
execution is performed for some value of Sg }, using a prescribed Vi, j(x.y.zt) (in

addition to other meteorological features). The code is then re-executed for some

(&) There is, however, a danger of misinterpreting the results of such studies and arriving at inappropriate
measuras of nonlinearity. This issue and its underlying causes will be illustrated by Example 2.
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other value of Sy}, using a meteorological description that is identical to that for the
first execution. Unfortunately one cannot mimic this type of experiment in the real
world. At best one can observe fgf (x.y) flelds experimentally for some value of Zg,,
for the meteorology that ocouts during this experiment period (of length 6).
Subsequently, one can repeat the experiment, accepting whatever meteorology that
oceurs during this second period, with the hope that the two meteorological records
will be sufficlently similar so as to conttibute insignificantly to observed differences In
fo,ij(x,y). Based on observed natural variabillty in annual wet-deposition patterns
(Finkelsteln and Seilkop 1986), such an assumption requires substantial evaluation
before any conclusions regarding linearity from experiments of this type can be made.

Some additional Important features of llnearity/nonllneaﬂty are most
conveniently deccribed using reduced forms of Equations (3.12) and (3.18), which are
sufficiently simple for clear lllustration but can be extended to the more general cases
encompassed by the complete equations. We present here two simple case examples
to lllustrate the significance of boundary conditions and the application of tracer
techniques for nonlinearity analysis.

Example 1: One-Dimensional Linear Systems: lllustration of the Importarce of
Boundary Conditions.

Figure 4 Is a schematic of an idealized atmosphere, which exhibits a one-
dimensional, constant flow In the x-direction. A constant source strength Spls
distributed evenly throughout the system's domain, and advection in the x-direction is
the sole mechanism for pollutant transport. A first-order chemical reaction of pollutant
P proceeds kinetically as

P - Pproduut (31 9)

with a reaction rate described by
ocp/dt|reaction =-Kcp. (3.20)
Under these conditions Equation (3.12) reduces to

U %‘-;f- + ke = S, (3.21)
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EIGURE 4. Schematic of an Idealized, One-Dimensional Linear System

where U Is the x-component of the velocity vectot v. With the boundary-condition
~ stipulation that cp Is equal to some concentration cg at the system's inflow region, this
linear differential equation has the solution '

Cp(X) = %[1 - exp(-k /Ux)] + ¢, exp(-k / Ux). (3.22)

Comparison of this expression with Equation (3.1) suggests that this simple
system adheres to our expréssion for macroscopic linearity only if the inflow
concentration is zero, that is, if all of the pollutant is introduced to the system through
the source term Sp. In cases where cg Is not zero, one can define an effactive source
term as the sum of internal and boundary-condition inputs, allowing the system to
conform to our description of linearity so long as ¢ and Sp are varled in direct
proportion to one another.(a)

This result, which can be extended to more complex and higher-dimensional
systems, demonstrates the simple but important point that fundamentally linear
systems can be interpreted in a nonlinear sense, if boundary-condition changes are
not coordinated with changes in internal source strength. This seemingly trivial point
is particularly important for regional-model! investigations of linearity/nonlinearity. In
such studies the pollutant's inflow boundary conditions must either be zero or must be
incremented in direct proportion to changes of the internal sources to prevent
inappropriate interpretation of linear features of system behavior. Fallure to recognize

() Easter and Luecken (1988), for example, perform a linearity/nonlinearity analysis on a system having no
internal sources whatsoever, with with the total pollution burden entering through the boundaries.
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this point by the modeler or policy analyst will invariably lead to misinterpretation of the
Iinearity/nonlinearity analysis.

.Example 2: Zero-Dimensional Nonlinear Systems: Tracer Applications to
Linearity/Nonlinearity Assessments.

We present this example to illustrate a potential pitfall‘ involved with performing
physical or computational analyses of nonlinearity, through interpretation of a defined
component of pollutant emissions that interact within a larger total emission field. This
situation can be interpreted either as an experimentinvolwng a tracer that is injected
into an existing emission field, or the specific analysis of a minor existing emission
component that somehow can be distinguished from its surroundings. The simple
example that we consider here is a hypothetical steady-state atmosphere contained in
the well-mixed volume V, shown in Figure 5. Three pollutants are emitted
continuously to this atmosphere at the rates Sp, So, and St, and are removed by
chemical reaction and flow through the boundaries. The mean dwell time of air
passing through volume V is constant and is denoted by the symbol t*. Since the
volume is well mixed, the concentrations of these pollutants are uniform in space as
well as being constant in time. The time-derivative of Equation (3.12) is zero and the
- divergence term can be expressed in terms of its boundary fluxes, leading to simple
~ algebraic expressions of the relevant conservation equations. Chemical reactions of
these pollutants have the mechanisms

P+ 0> P (3.23)
T+ 0 - Toroduct (3.24)
witii rates described by the following equations
dcp/dtireaction =-kcp co, (3.25)
aFO/aﬂreaciion =-Kcop (Cp +CT), . (3.26)
oCT/9t|reaction =-KCTCO. ‘ (3.27)

Although this is obviously a highly simplified situation, it strongly resermbles a
number of pollution phenomena of interest. This reaction sequence, for example, is
‘quite similar to the aqueous-phase atmospheric reaction between S(IV) and H202.
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FIGURE 5. Schematic of a Continuous Stirred-Atmosphere Reaction System

Here specie‘s P would represent SOz [or S(IV)], species O would depict H2O2, and
species T some tagged version of SO; added as a tracer.

By application of the divergence theorem to Equation (3.12) (or simply by
performing a material balance over the system depicted in Figure 4) one can set up
the following steady-state material-balance equations for the three species:

Sp/V -cpft* =kcpco, | ‘ (3.28)
So/V - coft* =k (cp +cT)CO, (3.29)
Stwv - ctt*=kerceo. : (3.30)

Furthermore, concentrations of the products resulting from reactions (3.23) and (3.24)
can be expressed as

t* S
Crproduct = Vv £ - Cp, (3.31)
t* S | .
chfoduct = V T - CT- (3.32)

With some algebraic manipulation these equations can be rearranged to obtain
explicit expressions for the concentrations cp, €o, €T, CPproduct, @and CTproduct, and for
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the linearity parameters L*pproduct and L*Tproduct. Although easy to derive, these
explicit forms are somewhat cumbersome. Rather than show the mathematical
expressions here, we simply present some illustrative results obtained from
computations for a single case e..ample. |

Shown in Figure 6, this computed output illustrates a case example whose |
parameters have been chosen to simulate P and O as dominant species and T as a
minor constituent acting as a tracer for P. As can be observed for the S - concentration
curves as well as the corresponding L* curves, the concentration of species Pproguct Is
related to Sp in @ moderately nonlinear manner, whereas the corresponding
relationship for the tracer's product compound approximates linearity very closely. We

2
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EIGURE 6. Linearity Plot for Exampie Reaction System
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assert that this simple result has profound implications to physical and numetical
experiments that propose to apply tagged species as measures of nonlinearity. If the
microscopic origin of the nonlinearity derives from titration of a limiting species, then
addition of tracer for Conceptual Experiments 1 or 2 can be expected to grossly
underestimate the degree of global nonlinearity in most cases.(® Furthermore,
numerical tagging of a particular source or source array that is imbedded in a complex .
of other pollution sources can be expected in general to underestimate nonlinear
behavior of the total system. ‘

3.3 SUMMARY COMMENTS ON LINEARITY

Two general conclusions can be made to this discussion of linearity. First, it is
obvious that the term "linearity" must be defined precisely, in order to avold ambiguous
‘conclusions in any associated analysis. Second, several competing factors may
masquerade as false indications of nonlinearity or linearity in experimental and

- modeling investigations, and proper care to minimize or prevent such effects is
imperative.

For the practical purposes of this report, we can characterize a linear
macroscopic system as one whose source-receptor relationship complies with the
definition of a linear operator as given in Equation (3.10) [cf., Equation (3.1)], and in
addition conforms with conditions 1 through 5 in Section 3.1. A linear microscopic
uystem is simply one whose mathematical statement can be characterized in terms of
a linear operator. | ‘

This characterization satisfies the last three of the four objectives listed in the
introduction to this Section. It is sufficiently well-posed to prevent ambiguity in
interpretation, it is consistent over all scales of application, and it is reconcilable with
standard mathematical terminology. Because the description given in this section is
not particularly concise, we feel less satisfied with our ability to achieve the first
objective in this list. Based on this analysis, however, we conclude that, owing to the
involved and complex nature of the linearity/nonlinearity issue, a highly concise
depiction is not possible without violating the remaining three requirements. Because
it is naturally tempting to characterize linearity in simple terms for ad hoc purposes,

(@) This result does not apply to all classes of nonlinear systems. For example, application of a tracer in
Conceptual Experiment 2 to determine L.* for a system which derives its nonlinearity solely from a
microscopic source such as Equation (3.8), will result in a direct measurement of global nonlinearity.
Unfortunately, most systems of practical interest involve a complex of microscopic nonlinearity sources,
and the observer Is seldom totally aware of their exact nature,
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there will continue to be a danger of mislnterprétations in applied analyses. The
material in this section has been presented with the hope of reducing this danger as
much as possible.
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4.0 IEMEQBALEEBME&.IELAEQBAUM&.IBMM
AND RESIDENCE TIMES

Sclentific analysis of temporal source-receptor features has been in progress
for an extended period, and as a consequence terminology in this area is somewhat
more well-established than is the case for nonlinearity analysis. Bolin and Rodhe
(1973), for example, have presented a well-defined set of terms for this subject, which
have been applied and extended by subsequent authors, The currently established
terms and definitions have a number of shortcomings, however, and thus we Introduce
some additional concepts and terms, whose usefulness shouid become apparent to
the reader upon consideration of the following text.

In introducing this section, we note that Bolin and Rodhe based thelr analysis
on the idea of the atmosphere as a steady-state reservoir wherein pollutants are.
continuously emitted and removed, maintaining a constant resident mass of pollutant.
We consider the Bolin-Rodhe idealization In our present analysis as well; but, first we
develop a somewhat less restricted conceptual modei involving the transient behavior
of an instantaneous "prf" of pollutant. Besides having the advantage of greater
generality, the transient-puff approach allows a somewhat easier visualization of key
issues of the development. Subsequently, we compare this treatment directly with the
Bolin-Rodhe approach to arrive at the final conclusions to this section.

4.1 ATMOSPHERIC RESIDENCE TIMES AND TRANSIENT RESPONSE
4.1.1 |solated Mechanisms

We begin this development by considering a pollutant molecule (or aerosol
particle) that is emitted to the atmosphere from some source at time 0. Ultimately that
molecule will either:

 be removed by some sort of chemical (or possibly physical) transformation
* be removed by dry deposition
*+ be removed by wet deposition.

It a puff of several (say Ng) molecules of the same type were released from this
source at time 0, one would expect individual molecules to exit the atmosphere via the
above pathways at different times, which depend on the individual experiences of
separate molecules. If the function N(t) is defined as the number of molecules removed
at times up to and including time t following the release, then an instantaneous
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temporal probability-density function g(t) for pollutant removal can be defined
such that the probability of an emitted molecule being removed in an element of time
between t and t + dt is equal to g(t) dt:

1 dN '
alt) Nt (4.1)
which can be rearranged to give
N(t) = Nojg dt' . (4.2)

All of the moler\ules will have been removed at t = o, at which time N(t) equals
the total number (Np) of molecules released in the instantaneous puff.

As was the case for spatial distributions, the temporal probability-density
function g(t) can be treated using conventional statistical approaches. In particular, the
mean residence time and variance of the ensemble of molecules released at time 0
can be expressed as

t = [tg(t)at (4.3)

0

and

Q
)
i

© Gy §

(t - 12 g(t) dt, (4.4)

with higher moments of the distribution obtainable using direct extensions of
Equations (4.3) and (4.4). 1, which is usually referred to as the "atmospheric residerice
time," (cf. Junge 1963) has been applied extensively in the source-receptor literature,
especially in European contributions to the field.

We i\www consider a hypothetical system almost identical to that just described,
but which differs in the sense that it contains "switches," which can activate or
deactivate specific temoval mechanisms. With this hypothetical system one can
perform repeated experiments with single mechanisms operative and thus measure
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the effectiveness of each mechanisrri in [solation. We use the term gr,(t) to denote the
“Isolated" probability-density function describing the situation when all mechanisms
save chemical conversion are inoperative. Similary, gq,i(t) denotes the density
functlon when all mechanisms are "toggled off," except for dry deposition, and gw,i(t)
denotes the corresponding density function for wet deposition. This leads directly to

N(t) = Ny [g,,(t) ot (4.5)

Xwr, dw

wlthl expressions for the corresponding statistical parameters 1, 'i;d‘a, and tw,|
obtainable using direct extensions of Equation (4.3):

Ty = [tg,(t)dt (4.6)
0 .
‘xur,d.w

4.1.2 Simyltaneous Mechanisms

The terminology of Section 4.1 envisioned N(t) to be the number of molecules
removed from the atmosphere by all active mechanisms, unless special conditions
existed in our hypothetical system where specific mechanisms were toggled off. Ny i(t),
on the other hand, denoted the molecules removed by specific mechanism x acting in
isolation from competing mechanisms. Under the isolated-mechanism s ‘uations,

N(t) = N i(t) (reaction only) (4.7)
N(t) = Ng,t) (dry removal only) (4.8)
N(t) = Nw,i(t) (wet removal only). . (4.9)

Because, under conditions where simultaneous mechanisms are operative, the
total number of molecules removed must equal the sum of contributions from the
individual mechanisms, it is of some Iinterest to define a corresponding set of terms that

describes individual contributions under simuitaneous circumstances. Specifically, we
define
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Nea(t) = Nego [80a(t) it (4.10)

and
Xear d,w
T = [10.(t) ot (4.11)
[}
XKmt, dw

where the varlous terms take thelr obvious significance, the subscript s has been
added to emphasize that these statistics are for simultaneously occurring pathways,
and Ny g o denotes the total number of molecules removed by mechanism x at t = e,
Simple material-balance considerations lead to the relationships

N(t) = Nes(t) + Nos(t) + Nwslt) (4.12)

and
No g(t) = Nrs,00rs(t) + Nd,s,09d,s(t) + Nw,s,0 Ow,st) - (4.13)

Application of Equation (4.11) to the components of Equation (4.13) leads to the
relationship |

Not = Nrg,0%rs+Ndso0ds+ Nws,0w,s - (4.14)

Although 1 conforms to the definition of the "residence time" described in
Section 4.1, the terms 1y ¢ are not the same as their isolated counterparts. While 14,¢
Is indeed the true residence time experienced by an ensemble of molecules being
removed by pathway x in competition with other pathways, 1x,) I8 more of a conceptual
standard and Is only Indirectly related to actual residence-time behavior In true, muiti-
pathway systems. This will be illustrated in more detail below, where a special case
example is considered.

4.1.3 Speclal Cases

Having distinguished between Isolated and simultaneous characterlzations, we
next illustrate how to convert from one set of statistics to the other. Possession of just
one set of statistics does not describe a system in sufficient detall to derive the second
set unambiguously and additional censtraints are required for this purpose. We
illustrate this point by imposing one of the possible sets of constraints on a puff-release
system, wherein statistics corresponding to the Isolated characterization are known.
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This constraint I8 simply one of system lineatity; that is, removal rates corresponding
to Individual mechanisms are dependent on the remaining quantity of alrborne
material. For removal mechanism x, this constraint Is equivalent to stating that, for the
lsolated mechanism case,

dN : , :
"'a'tw' = Ky(t) (No - Ny)) = No g, (t) (4.15)

and for the simultaneous mechanism case

dN,, '
""a'.f"" = Ke(t) (N = N) = Nyyo9alt) (4.16)
where ky(t) Is a (possibly) time-dependent rate parameter and Ny g0 |5 the total
amount of emitted material that will uitimately be deposited by mechanism x. In the
speclal situation where ky Is a time-independent constant, the corresponding lsvlated
density function is exponential in form,

Since the total removal rate in a simultaneously operative system Is equal to the
sum of its components, one can write

= K+ Kl + K0 (N - N) = Ny g) (417
where the subscripts r, d, and w denote removal by reactive, dry, and wet processes,

respectively. Integrating Equations (4.15) and (4.17) to obtain gy | and g as functions
of time and inserting Into Equation (4.3) gives

Gult) = K, (t) expl-[k,(t) dt], (4.18)
a(t) = k(1) + ky(t) + ki (t)] exp{-j [k (") + kqlt') + Ky (t')] dt'}, (4.19)
T, = ]exp”k,‘(t’)dt'] dt, (4.20)
and ‘
T = iexp{-i[kw(t') FRg(t) + k()] dt)at. (4.21)
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Although under the speclal clfcumstances whete the rate coefficlents are time-
independent constants Integration of (4.20) and (4.21) leads to the relationship
1 1 1

1
- — 4,22
T T, Ty, Tw, (4.22)

this equation does not hold In general for variable ky. This finding Is of some
significance In view of the widespread application of Equation (4.22) In the
atmosphetic-sclences literature and will be examined in more detall below when
steady-state systems are considered.

Equations (4.15) and (4.16) can be applied directly to derive Isolateu statistics
from thelr simultaneous counterparts, and vice versa. An example is shown In Figure
7. From this one can observe that the residence times of pollutants assoclated with
simultaneously operative systems are, in general, shotter than their Isolated
counterparts. This Is not diffiouit to rationalize on an Intuitive basls, since several
mechanisms competing to remove materal should reduce Its lifetime compared to a
situation whereln only one of these mechanisms is operative.

4.1.4 Extension to Continuous Systems

Equations (4.1) through (4.22), which correspond to a single, instantaneous
puff-release of poliutant at time 0, can be extended to longer-period releases by
considering a sequential release of puffs over some tima-period 8. Thus a
corresponding set of time-averaged statistical parameters (e.9., ¢, To,r,s T6,d,ir 90,w,s
. ) can be defined in a manner similar to that employed previously for spatial
statistics. To lllustrate this process, we consider a reservoir wherein a sequential
series of puffs occurs, which are spaced evenly in time. Let gx j(t) and Ny,
respectively, represent a density function and the number of molecules ultimately
deposited, corresponding to the molecules in a puff emitted at time t}, for some single
removal pathway x that occurs in the reservoir. Because metecorological conditions
change with time, each of the puffs will differ from their predecessors, exhiblting forms
similar to the exampies shown in Figure 8a. Their shapes can be averaged, however,
by time-shifting so that the origins of all puffs coincide, weighting according to Ny j,0
and summing. |t some particular puff, denoted by index j, Is emitted at time t; and
displays the probability-density function g j(t), then its form, translated to the origin et t
= 0 is given by gy (t +1t)). Accordingly, a time-average of all density functions in the
serles, as translated to the origin can be expressed as
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exponentlal, log-normal, and normal distributions,
raspectively.

33



2 Nejo Gxy(t + 1) ‘ (4.23)
go.x(t) - '

XNI.].O

Jui

where J is the Index of the last puft emitted prior to time 6. If gaxj(t) Is defined as the
unshifted density function that corresponds to §,,(t), then all gg,x, will have the same
shape but will be displaced In time, as shown In Figure 8b, From this

jtgM t) cit (4.24)

s the average residence time experlenoed by the total ensemble of molecules, emitted
during the time 6, to be removed by pathway x.

4.2 AIMOSPHERIC RESIDENCE TIMES AND STEADY-STATE SYSTEMS

In Section 4.1 we followed the translent behavior of an instantaneously emitted
puff of pollutant, derlved & number of statistical relationships describing this process,
and finally examined the assoclated statistics for a release of several puffs In series.
We now briefly examine the more traditional approach to this general problem, which
Is based on the concept of a steady-state reservoir. As noted earlier this gereral
approach has been described most concisely by Bolin and Rodhe (1973). Accordingly
 we begin by summarizing their derivation and then extend it somewhat beyond thelr
original treatment. Following this we present a comparative linkage between the two
types of analysls and examine some practical aspects of conventional usage in the
fleld.

4.2.1 Qverview of Bolin-Rodhe Derlvation

In the steady-state atmosphetic reservoir visualized by Bolin and Rodhe, some
(undefined) source continuously emits pollution, which Is removed at rate Fg to result
In the steady-state quantity Mo of material in the system. |t one defines F(t) as the
removal rate of molecules that have been resident for periods of time less than t, then
the density function associated with F(t) Is

o) = o (4.25)
0
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Similarly, if M(t) represents the number of molecules existing in the reservoir
 with hfetnmes less than t, then the associated density function is ‘

1 dM(t) - | -
) = — —L,
o(t) M, ot : _ (4.26)
‘Now Fp - F(t') is the exit rate of molecules older than t*. At steady state this exit
rate must equal the rate of production of molecules older than t* in the system; that is,

dl\dnt(t) = Mot = F, - F(t)_, - | (4.27)

- which, upon differentiation, gives

.M, do | o

Bolin and Rodhe define three different time constants that have been applied to
characterize steady-state systems of this type:

ot) =

» the turnover time,

T, = _Mﬁg, ’ (4.29)
0

 the average age,

T, = [t ot dt, © (4.30)
0
» and the residence time,
1, = jtqm)dt, (4.31)

0

Substituting Equation (4.28) into (4.31) and integrating formalily gives

M

T, = -';‘l, (4.32)
0

demonstrating that, for composite removal in a steady-state system, the residence time
and the turnover time are equal, |
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Bolin and Rodhe also refer to 1 as a transit time, but suggest that the term
"residence time" is preferabie, because species transformed by chemical reaction do
not exit by transit through the boundaries of the system. While the definition of 1 given
in Equation (4.31) is consistent with that given for the residence time in transient-p‘uff
systems (Cf. Equation (4.3)), we note that the turnover-time concept has no counterpart
in systems not involving steady-state conditions.

Although Bolin and Rodhe did not consider individual mechanisms in their
original paper, their results can be extended directly to describe component removal
pathways. In so-doing we note that standard past practice has been to define
individual-mechanism turnover times (cf. Rodhe 1978) as

Taao 5 E (4.33)

X=r,d,w

where Fy s 0 denotes the contribution to the overall removal rate by pathway x, but Mg
still pertains to the total amount of material in the reserveir. The distinction between
isolated and simultaneous pathway behavior does not appear to have been dealt with
explicitly in the past literature, and we have inciuded the subscript s to emphasize our
intention here to represent a system where all possible pathways occur
simultaneously. Comparison of Equations (4.29) and (4.33) ieads to the relationship
l=1+1+1. (4.34)

To Tr.a.o Td.s.o Tw.s.o

If one were 0 maintain the emission rate in the reservoir, and toggle off all but
removal pathway x, Mg would increase and approach a new steady state My jo. One
could proceed to use My i g to calculate an “isolated-mechanism” turnover time; it is
obvious, however, that this turnover time will, in general, be larger than its
simultaneous counterpar, Ty s 0. |

Turning our attention to component residence times, we note that application of
the procedure described in Section 4.2.1 to individual removal pathways in
simultaneously operative systems leads to the resuit
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Tgy = —20 |
‘where X8t Freo (4.35)

Xmr, dw

My s,0 is the amount of material currently in the reservoir that will be removed
ultimately by mechanism x. By comparison of Equations (4.33) and (4.35) it is obvious
that the residence time for an individual mechanism differs from the corresponding
turnover time; this contrasts to the composite system, where turnover time and
residence time can be used interchangeably.

At this point we demonstrate closure between the transient-puff and steady-
state reservoir analyses by reconsidering a time series of sequential puff releases
somewhat similar to that described in Section 4.1.4. Here, however, we impose the
additional constraint that each puff must contain an equal number of molecules No.
We also stipulate that the progression of puffs has continued for an extended time so
that a steady state has been reached where, on the average, the pollutant's input rate
is balanced by its removal processes.

Following the general approach of Section 4.1.4 and the Bolin-Rodhe
terminology, we describe the combined-mechanism pollutant removal rates as

Isa
and Fo = N, Zg|(tss)- S (4.36)
jmt
Ias

F(t) = N, szg,ass). (4.37)

where tgg denotes some large value of time where steady-state conditions are
attained, jgs is the index of the corresponding puff, and j; is the index of a puff
occurring at any time t.

Based on the discussion in Section 4.1.4 we assume that, in the mean,
2 g = 3 g, (4.38)

then
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las . )
Fit) = N, g: Do, (tss) (4.39)

i

ss
No 2 ge(tss - tg)

I=l¢

tm-lh

- o Jawa
tSB""M

= F jg0 t)dt

where At is the time interval between puffs. Direct comparison of Equation (4.39) with
Equation (4.25) demonstrates the equivalency, for steady-state conditions, between
our g,(t ) (which was formulated on the -asis of transient puffs) and the ¢(t) of Bolin

and Rodhe (which is based on the concept of a steudy- -state reservoir). With reference
to Equations (4.25) and (4.31), the Bolin-Rodhe residence time 7 is seen to be equal
to that formulated on the basis of time-averaged puffs. This essentially provides the
bridge between transient and steady-state analyses necessary to justify application of
the relationships between the aggregate and component residence times, described
above, to both types of situations.

4.2.4 Summary Comments on Temporal Distributions and Residence Times

The discussion in the preceding subsections is essentially an extension of
selected earlier work on pollutant lifetimes, particularly that by Bolin and Rodhe. This
has led to several findings, many of which seem not to have been recognized in the
previous literature; the more significant of these are itemized as follows:

« The steady-state analysis of pollutant residence times published by Bolin and
Rodhe can be extended to describe transient systems as well. We have chosen to
demonstrate this by working in the reverse direction, starting with a development
describing transient systems, and then applying this to the special situation of a
steady-state reservoir. Most statistical parameters, such as density functions for
pollutant lifetimes and their associated residence times, have a common basis for
both transient and steady-state systems. Parameters such as the turnover time,
however, depend on a steady-state conceptual model and have no meaning for
transient systems.

 When a system contains multiple removal pathways, temporal behavior of one
pathway is usually affected by the behavior of others. Temporal statistics
corresponding to an isolated remove! process are not, in general, equal to those for
this process when it takes place in competntlon with other removal pathways.
Because of this one must use caution in applying statistics, such as residence
times and turnover times, from one situation to the next.
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« Bolin and Rodhe have demonstrated that the residence time and turnover time are
equal when used to describe composite removal in multiple-pathway systems. A
similar equivalency does not hold, however, for the description of indlvidual

pathways within the composite. ,
« Composite and individual turnover times, by definition, satisfy the relationship

SR E A v (4.34)

To Tr,8.0 Td,8,0 Tw,s,0

A similar relationship for residence times is obeyed only under highly specialized
conditions. |

40



5.0 CONCLUGIONS

Concepts and terminology associated with the description of atmospheric

source-receptor phenomena contain a number of important and sometimes rather
subtle elements. This report has examined a number of these elements, which are
summarized In the following conclusions:

Averaging time is important in specifying all measures of source~receptor
phenomena. Any characterization of spatial characteristics, temporal features, or
linearity should be accompanied by an explicit statement of the assoclated
averaging time or observation period.

Source-receptor linearity has been interpreted in‘a varlety of ways In past
evaluations, and a well-posed, standardized description is needed. We have
presented such a description and suggest that it be used as a standard by future
investigators In this field.

Owing to a variety of complications, source-receptor linearity Is difficult to document
on the basis of field measurements. Modeling analyses, with their acknowledged
shortcomings, are much more amenable to such evaluations. Even model
analyses, however, can be subject to conceptual pitfalls. Model (or field) tests of
linearity involving the application of tracer species, for example, have been
demonstrated capable of leading to erroneous results unless interpreted with
caution.

A transient analysis has been applied to the description of temporal variability. The
relationship between statistics for transient systems and those of their steady-state
counterparts has been examined to demonstrate that most relationships linking
composite-mechanism statistics with their indiividual components apply in both
transient and steady-state situations. Sum= of these linking relationships apply
only for certain classes of density functions, however, and caution is mandatory to
ensure valid usage.

The statistical characterization of temporal source-receptor behavior can be carried
out in a variety of ways. Some ambiguity is apparent in the past literature dealing
with the temporal behavior of systems containing multiple removal pathways, and
in this report we have attempted to resolve this problem by presenting two types of
statistical characterizations: one based on the behavior of the component
pathways "in isolation" from their counterparts, and the other based on
simultaneous interaction of these mechanisms. Application of both types of
statistics to a source-receptor evaluation, rather than just one or the other, will
usually provide substantially greater insight to the analysis.
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APPENDIX

NOMENCLATURE

normalization constant, #/3 or 1/2

probortlonallty constant, ¢/ or dimensionless

pollutant concentration, m//3

exposure to pollutant, m/3 or m/(2 t)

normalization coefficlent, (area-integrated exposure) m/ or m/t

removal rate of molecules resident In a steady-state reservoir having
lifetimes less than t, m/t

total removal rate of molecules from a steady-state reservoir, m/t
spatial ‘probabllitymder\sity function, 1/2

temporal probability-density function, 14

average denslty function for puffs emitted during time-interval g, and
shifted to the origin, 14

reaction-rate coefficient, 1/ or 13/(m )
linear operator

linearity parameter, dimensionless

number of molecules In a steady-state reservoir having lifetimes less
m

total number of molecules in a steady-state reservoir, m

number of molecules removed from an instantaneous puff at time t, m

total number of molecules in instantaneous puff, m
arbitrary function in equation (3.11)

reaction rate, m/(13 t)

A.l



x}

<}

3]

aggregate emission rate, mA

Instantaneous aggregate emisslon rate, m/t

spatial denslty function for pollutant emléslons, 113

spatial density function for Instantaneous pollllutant emissions, 1/18
time, t

release time of puff J, ¢

dummy integration variable, t

dwell time in hypothetical flow reactor, t

x-component of wind-velocity vector, I/t
volume of hypothetical reactor, 13
wind velocity vector, 4

spatial coordinate, /

spatial coordinate, /
x centroid of spatial distribution, /

y centrold of spatial distribution, /
cumulative pollutant exposure for influence regibn. m/3

averaging time, t

probabillity-density function for molecules of age t removed from steady-
state reservoir, 1/

probability-density function for the number of age-t molecules existing In
a steady-state reservoir, 14

point emission rate, m/(I3 t)

x variance of spatial distribution, /2

A.2



y variance of spatial distribution, /2

of  temporal vatiance assoclated with molecules in Instantaneous putf, t2
T residence time assoclated with molecules In Instantaneous puff, t
1g average age of molecules In a steady-state reservolr, ¢

Tt residence time of molecules in a steady-state reservolr, ¢

tQ  turnovertime In a steady-state reservolr, t

V  divergence operator, 1/€

Subscripts

| . pollutant-specles Index; alternatively Isolated pathway
] source Index; alternatively, puff‘lndex

d dry removal

r reaction

SS steady state

s simultaneously operating pathways

t t dimension; also denotes residence time in the Bolin-Rodhe term
0 time-averaged quantity

w wet removal

X arbitraty pathway Index, or x dimension

y y dimension

A.3
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