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A. HIGHLIGHTS

1982 (March) Sede Boqer Symposium in Nonimaging Optics Sede Boger,
Israel

1992 (November) Sacramento Municipal Utility District (SMUD) and
NREL Workshop on the potential of evacuated integrated CPC solar
thermal collectors for application to air conditioning. Sacramento, CA.
FUTURE CONFERENCES SCHEDULED:

1993(July) International Symposium on Nonimaging Optics: Maximum
Efficiency Light Transfer, SPIE 1991 Annual Meeeting at San Diego Ca.

1893 (October) Symposium on Nonimaging Optics and Illumination
Systems, Optical Society of America Annual Meeting in Toronto Canada.

B. NONIMAGING OPTICS AT OTHER INSTITUTIONS

At the Sede Boqer Symposium, a Nonimaging Optics bibliography of
publications in peer-reviewed journals and books was presented. This
contains some 450 articles and 20 books. The following is a partial list
of active work:

Hewlett-Packard has constructed light emitting diodes encapsulated in
CPC collectors, so as to direct the light forward over a well-defined
range of directions. These are used in the '92 Ford Thunderbird rear
illumination red applique.

Midway Labs, a Chicago based company, is manufacturing assemblies
consisting of a Fresnel lens and a nonimaging secondary followed by a
photovoltaic cell.

The original work on focal plane nonimaging astronomical systems with
far infrared radiation carried out by Roger Hildebrand and co-workers has
continued and this system is now in wide use. An example is the John

Mather photometer for measuring the nominally 3° cosmic black body
radiation in space (COBE sattelite launched by NASA in '89).



The University of Chicago has helped to set up a company to apply
nonimaging optics to a wide variety of problems; the company is NiOptics
Inc., Evanston, lllinois.

The New Energy Development Organization of Japan has selected a CPC as
their single choice for mid-temperature solar heat utilization. This is
being developed by Koto Electric Co. in Japan.

In the Weitzmann Institute of Science (Israel) second stage nonimaging
systems are being used for solar pumping of large-scale lasers and
other applications. Laser power has exceeded 300 Watts and is expected
to approach a killowatt. A large energy company in Israel is using and
marketing CPC solar heaters for space heating in institutions and
companies.

At Ben Gurion University (Sede Boqer, Israel) Nonimaging Optics is being
developed for solar collection and for illumination (J. Gordon and
colleagues).

In Madrid at the Polytechnic Institute, as adjunct to the work on

photovoltaics, significant theoretical and experimental work on
nonimaging concentrators is in progress, by Luque, Minano and colleagues.

At the University of Sydney (Australia) nonimaging optics for solar
collection and for illumination is being studied.

At Lockheed/Sanders (J. D. Kuppenheimer) CPC designs for infra-red
countermeasure jammers are in use.
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. OVERVIEW

Nonimaging optics began in the mid 60's with the discovery that
optical systems could be designed and built that approached the
theoretical limit of light collection (the sine law of concentration).

[A semi-popular account is given in R. Winston, Scientific American cover
article, March, 1991.] Since its inception, the field has undergone three
periods of rapid conceptual development. In the 70's the "string” or
"edge-ray” method [W. T. Welford and R. Winston, High Collection
Nonimaging Optics (Academic, New York, i989)]. (the "Hottel string” is a
useful construct for calculating radiative transfer between lambertian
surfaces) [W. H. McAdams, Heat Transmission (McGraw-Hill, New York,
1964)] was formulated and elaborated for a iarge variety of geometries.
This development was driven by the desire to design wide-angle solar
concentrators. It may be succinctly characterized as: { ndl = constant
along a string. [Notice that replacing "string” by "ray” (Fermat's
principle) gives all of imaging optics.] In the early 80's, a second class of
algorithms was found, driven by the desire to obtain idealiy perfect
solutions in thiree dimensions (3-D). (The “string” solutions are ideal only
in 2-D, and as figures of revolution in 3-D are only appoximately ideal,
though still very useful). This places reflectors along the lines of flow of
a radiation field set up by a radiating lambertian source. In cases of high
symmetry such as a sphere or disc, one obtains ideal solutions in both 2-
D and 3-D. The third period of rapid development has taken place only in
the past year; its implications and consequences have yet to be worked
out. This was driven by the desire to address a wider class of problems in
illumination that could not be solved by the old methods. (specifically an
infra-red counter-measure beam). Here are two examples: It is well-
known that the far-field illuminance from a lambertian source falls off
with a power of the cosine of the radiating angle «. For example, strip
radiators produce a cos3« illuminance on a distant plane, while circular
disc radiators produce a cos?x illuminance. But suppose one desires a
predetermined far-field illuminance pattern e.g., uniform illuminance?
The old designs will not suffice; they simply transform a lambertian
source radiating over 21 into a lambertian source radiating over a
restricted set of angles. Another example is more technical. We recall
that older nonimaging designs require that reflectors be positioned very
close to the source (or receiver). Violating this rule introduces



undesirable structure in the radiating or angular acceptance pattern of
the device, typically a dip in the forward direction. The limitation of the
old designs is that they are too static and depend on a few parameters
such as, the area of the beam A, and the diverdence angle 6. One needs to
introduce additional degrees of freedom into the nonimaging designs to
solve a wider class of problems.

Nonimaging optics is the optics of extended sources. That is why
the subject has more in common with radiative transfer than with
conventional optical design and relies on such notions as "Hottel
strings”. In contrast, imaging optics in its geometrical considerations is
the optics of point sources. But in considering extended sources, one is
led to distributions in phase space and inevitably to the theory of
Radiance. This is a mature subject: pioneered by Adrian Walther,
beautifully developed by many workers, notably by Emil Wolf and his
school. Our work in this area is driven by the desire to describe radiance
in nonimaging optical systems. The systems currently studied are quasi-
homogenous which means that the cross-spectral density W(r,r,) has the
form 1 [1/,(ry +ry)lg(ry - ry) so that the correlation is translationally
invariant. [Carter, W.H. and E. Wolf JOSA 67,785-796,1977]. But
boundaries are significant in nonimaging systems (after all, the edge-ray
algorithm is one of the most useful in the subject) so that the quasi-
homogencus model is not suitable . We are collaborating with the
University of California/Berkeley group of Robert Littlejohn and Allan
Kaufman to address this difficult problem. Our approach is to study the
evolution of various distribution functions along rays, since in classical
radiometry this evolution is null (the radiance is conserved along rays)

A. RECENT PROGRESS IN NONIMAGING OPTICS

Slightly over one year ago, we presented the proposal that
nonimaging designs be regarded as functionals of the desired irradiance,
rather than depending on a static parameter such as the "acceptance
angle”. [R. Winston, Nonimaging Optics: optical design at the
thermodynamic limit. In Nonimaging Optics: Maximum Efficiency Light
Transfer, pages 2-6. Proc. SPIE 1528, Roland Winston and Robert L.
Holman, editors, July 1991.] The response of the "nonimaging optics
community” was gratifying; (I have not witnessed comparable excitement
since the solar collector developments of the '70's). Two journal articles



from colleagues are in press. Our own work is best described in a paper
being prepared for publication in JO.S.A. A, in collaboration with Harald
Ries. An earlier version elicited the following remark from an anonymous
referee: "l find the material (in section 4) to be new and original. It
forms an important solution to a fundamental problem in illumination
optics that, to the best of my knowledge, has never been tackled
successfully, namely, generating a uniform far-field illuminance from an
extended radiation source. The method of solution also opens up a new
approach to the more general problem, which the authors show, of
producing almost any illuminance pattern from a given extended radiation
source.” It is reproduced here in its entirety. [The authors are Roland
Winston and Harald Ries.]

Abstract

For many tasks in illumination and collection the acceptance angle is required to vary along
the reflector. If the acceptance angle function is known, then the reflector profile can be
calculated as a functional of it. The total flux seen by an observer from a source of uniform
brightness (radiance) is proportional to the sum of the view factor of the source and its
reflection. This allows one to calculate the acceptance angle function necessary to produce
a certain flux distribution and thereby construct the reflector profile. We demonstrate the
method for several examples, including finite size sources with reflectors directly joining the
source.

1 Introduction

Nonimaging optics was developed to solve a well posed but narrow set of problems [1]. A
prototypical example is the concentration of a light beam with divergence half-angle § and
cross-sectional area A, into the minimum possible area A; without loss of throughput or
conversely, the design of illumination systems that convert a lambertian source into a beam
with divergence half-angle 6 and no stray light without loss of throughput. Two classes
of algorithms have been found which solve these problems exactly or nearly so. These are
summarized here; the details can be found in Ref.[2]. The first is the “string” or “edge-
ray” method. The “Hottel string” is a useful concept for calculating radiative transfer
between lambertian surfaces [3]. It may be succinctly characterized as: fndl = constant
along a string, where n denotes the index of refraction and dl the path length. Notice that
replacing “string” by “ray” gives all of imaging optics. The second class of algorithms places
reflectors along the lines of flow of a radiation field set up by a radiating source. In cases
of high symmetry such as"a sphere or disc, one obtains ideal solutions in both two and
three dimensions. In either case, reflecting and sometimes refracting elements are shaped in
specific ways in combination to solve the problem.

A wider class of problems can not be solved by the known methods. Here are a few examples:



It is well-known that the irradiance on a distant plane at an angle 6 from a long, cylindric
lambertian source of uniform brightness falls off with cos?(#). Strip radiators and spherical
sources produce a cos®(8) irradiance on a distant plane, while circular disc radiators produce
an irradiance proportional to cos*(d). The angular power density of the flat sources (disc and
strip) falls off as cos(9) while the power density of cylindric and spherical sources is constant.
But suppose one desires a predetermined far-field power or irradiance pattern e.g. uniform
irradiance? The classical designs will not suffice; they simply transform a lambertian source
radiating over 2« into a lambertian source radiating over a restricted angular range.

The limitation of the old designs is that they are too static and depend only on a few
parameters, such as the area of the beam A; and the divergence angle §. One needs to
introduce additional degrees of freedom into the nonimaging designs to solve a wider class
of problems. The purpose of this communication is to indicate the lines along which this
additional freedom can be introduced.

2 Determining the reflector profile for small sources

In the usual design methods the profile of the reflector is determined by the given constant
acceptance angle 6 and the geometry of the entrance and exit surfaces. Thus we can regard
the reflector profile R as a function of 8, R(6). However, in certain situations a “constant
acceptance angle” design is unduly restrictive. But suppose 4 is itself made a function of
some other parameter of the problem say, ¢. Then R is determined only after the functional
relationship of § and ¢ is known i.e., R is now a functional of §, R = R{6}.

For illustrative and pedagogical reasons, we will consider first the simple case when the
size of the source is much less than the closest distance of approach R, to any reflective or
refractive component. Thus the angle subtended by the source at any reflective or refractive
component may be regarded as small. Our approximation of small source dimension d and
large observer distance D amounts to

d<< Ry << D. (1)

In this limit the illumination problem has been solved earlier [4] We briefly review the
classical solution before we introduce a novel approach capable of deriving in closed form
the reflec.or for large sources.

Polar coordinates sre used to represent the reflector profile by R = R(¢), with the source
at the origin. The angle of the reflected ray with the optical axis is denoted by 6, and
the incidence angle at the reflector with respect to its normal is denoted by a as depicted
in Fig.1. The geometry shows that the following relation between the reflector profile and

incidence angle Lolds:

M = ta.n(a). (2)

d¢
Note, that the underlying assumption for this equation is, that the edge rays incident onto
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Figure 1: The reflector profile is represented in polar coordinates R(¢) with the source at

the origin. The reflected radiation has an angle @ with the optical axis y and a with the
normal to the reflector.

the reflector travel along the vector R. Clearly,

_4-0
a= 2 (3)
Equation 2 is readily integrated,
R a(é)
g (B8] = [ taa(a(enyas (4
so that,
a(é)
R(#) = Roesp ( [ aala(9)as). Q

This determines the reflector profile R(¢) for any desired acceptance angle function 6(¢).

Suppose we wish to radiate power with a particular angular distribution P°() from a source
which itself radiates with a power distribution P*(¢). The angular characteristic of the
source is the combined result of its shape, surface brightness, and surface angular emissivity
at each point. A distant observer viewing the source fitted with the reflector under an angle
8 will see a reflected image of the source in addition to the source itself. This image will
be magnified by some factor | M| if the reflector is curved. Ideally both the source and its
reflected image have the same brightness, so the power each produces is proportional to the
apparent size. The intensity perceived by the observer, P°(6) will be the sum of the two

P(8) = P*(8) + |M|P*(¢). (6)

The absolute value of the magnification has to be taken because, if the reflected image and
the source are on different sides of the reflector and we therefore perceive the image as
reversed or upside down, then the magnification is negative. Actually, at small angles, the



source and its reflection image may be aligned so that the observer perceives only the larger
of the two. But if |[M| is large one can neglect the direct radiation from the source.

Thus one is concerned with the magnification of the reflector. A distant observer will see a
thin source placed in the axis of a trough reflector magnified in width by a factor

d
Ma=F @

This can be proved from energy conservation. The power emitted by the source must be
conserved upon reflection: P*d¢ = M P*dé.

For a rotationally symmetric reflector the magnification M,, as given in Eq.(7) refers to the
meridional direction. In the sagittal direction the magnification is

_ dp _ sin(¢)
M., = dus  sin(6)’ (8)

where now y; and p; are small angles in the sagittal plane, perpendicular to the cross section
shown in Fig 1. Equation (8) can be easily verified by noting that the sagittal image of an
object on the optical axis must also lie on the optical axis. The reason is, that because of
symmetry, all reflected rays must be coplanar with the optical axis.

The total magnification M, is the product of the sagittal and the meridional magnification

_ _ dcos(@)
My = MM = dcos(8) ®)
Actually Eq.(9) could also have been derived directly from energy conservation by noting
that the differential solid angle ie proportional to dcos(8) and dcos(4) respectively.

Thus inserting the magnification given in Eq.(9) or Eq.(7), as the case may be, into Eq.(6)
yields the relationship between 8 and ¢ which produces a desired power distribution P°(6)
for a given angular power distribution of the source P*. This relationship then can be
integrated as outlined in Eq.5 to construct the shape of the reflector which solves that
particular problem.

There are two qualitatively different solutions depending on whether we assume the magnifi-
cation to be positive or negative. If M, > 0 this leads to CEC-type devices, whereas M, < 0
leads to CHC-type devices. The term CEC refers to Compound Elliptical Concentrator and
CHC to the so called Compound Hyperbolic Concentrator (5, 6, 7, 8|.

Now the question arises of how long we can extend the reflector or over what angular range
we can specify the power distribution. From Eq.(5) one can see that if ¢ — 6 = = then R
diverges. In the case of negative magnification this happens when the total power seen by
the observer between 8 = 0 and 6 = 6™* approaches the total power radiated by the source
between ¢ = 0 and ¢ = x. A similar limit applies to the opposite side and specifies ™"
The reflector asymptotically approaches an infinite cone or V-trough. There is no power
radiated or reflected outside the range 6™ < 6 < ™.



For positive magnification the reflected image is on the opposite side of the symmetry axis
(plane) to the observer. In this case the limit of the reflector is reached as the reflector on
the side of the observer starts to block the source and its reflection image. For symmetric
devices this happens when ¢+ 8 = x. In this case too one can show that the limit is actually
imposed by the first law. However, the reflector remains finite in this limit. It always ends
with a vertical tangent. For symmetric devices where §™** = —™" and ¢™2* = —¢™" the
extreme directions for both the CEC-type and the CHC-type solution are related by

P 4+ ™ = x. (10)

In general CEC-type devices tend to be more compact. The mirror area needed to reflect
a certain beam of light is proportional to 1/cos(a). The functional dependence of § and
¢ for symmetrical problems is similar except that they have opposite signs for CHC-type
devices and equal signs for CEC-type solutions. Therefore a increases much more rapidly for
the CHC-type solution which therefore requires a larger reflector, assuming the same initial
value Ro. This is visualized in Fig.2 and where the acceptance angle function as well as the
incidence angle a are plotted both for the negative magnification solution.

2.1 Simple Example: strip source

For a narrow, one-sided lambertian strip, the radiant power is proportional to the cosine of
the angle. In order to produce a constant irradiance on a distant target the total radiation
of source and reflection should therefore be proportional to 1/ cos?(8). This yields

cos($) 35

The boundary condition is, in this case, § = 0 at ¢ = £x/2 because we assume that the
strip only radiates on one side, downward. Equation 11 can only be integrated for a = 1:

sin(¢) = 1 ~ | tan(0) — sin(0)|. (12)

The acceptance angle function § as well as the incidence angle for the CEC-type solution
are shown in Fig.2. Integrating yields the reflector shapes plotted in Fig.3.

3 Reflector adjacent to a finite planar source

We have now developed the analytical tools to solve the real problems which involve reflectors
close to the source. We do this by combining the above technique with the edge ray method
which has proved so effective in nonimaging desigas (2]. That is, we apply the above methods
to edge rays. As a first example, we design a reflector for a planar, lambertian strip source
50 as to achieve a predetermined far-field irradiance. We design the reflector so that the
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Figure 2: Acceptance angle function which produces a constant irradiance on a distant plane
from a narrow one-sided lambertian strip source (2D) ; a=1.
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Figure 3: The reflector profile which produces a constant irradiance on a distant plane from
a one-sided lambertian strip source (2D) at the origin, R(¢ = x/2) =1, ¢ = 1. CEC (inner
curve) and CHC-type solutions (outer truncated curve) are shown.



reflected image is immediately adjacent to the source. This is only possible in a negative
magnification arrangement. Then the combination of source and its mirror image is bound
by two edge rays as indicated in Fig.4. The combined angular power density for a source of
unit brightness radiated into a certain direction is given by the edge ray separation

Rsin(2a) = P°(9). (13)
1 A 1 1
0 o -
-t o -
-p - =
-3 T 1 v
-4 -2 -0 2 4

Figure 4: The reflector is designed to produce a reflected image adjacent to the source. The
combined intensity radiated in the direction —4 is determined by the separation of the two
edge rays: Rsin2a.

By taking the logarithmic derivative of Eq.(13) and substituting Eq.(2) we obtain
da sin(2a)dlog(P°(¢ .
%= (2 ) 3(40 (8)) — sin®(a). (14)

This describes the right hand side, where § < 0. The other side is the mirror image.

3.1 Deriving the reflector shape directly for finite source

For 2a = =, R diverges just as in the case of the CHC-type solutions for small sources.
Thus in general the full reflector extends to infinity. For practical reasons it will have to
be truncated. Let's assume that the reflector is truncated at a point T' from which the
edge ray is reflected into the direction 6r. For angles 6 in between +6r the truncation
has no effect because the outer parts of the reflector do not contribute radiation in that
range. Therefore within this range the truncated reflector also produces strictly the desired
illumination. Outside this range the combination of source plus reflector behaves like a flat
source bounded by the point T and the opposite edge of the source. Its angular power
density is given by Eq.(13) with R = Ry = constant. The total power Pr radiated beyond
Or is thus

Pr= R(#r) [_sinydy = R(#r)(1 + co2ar)) (15)
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In order to produce an intensity P°(0r) at 6r, R(f1) must be

_ Pe(07)
R(ér) = sin(2ar)’

(16)

The conservation of total energy implies that the truncated reflector radiates the same total
power beyond 07 as does the untruncated reflector.

1 +cos(2ar) 1 /97-

sin(2ar) ~ P°(dr) P°(y)dy =: B(0r) (17)

maz

This equation must hold true for any truncation 8 = 7. It allows to explicitly calculate o,
and with it ¢ and R, in closed form as functions of 8, if B(0), that is the integral of P°(6)
is given in closed form. Solving Eq.(17) for a yields

2a = arccos 22———1 . (18)
B? +1

Substituting Eq.(3) yields the acceptance angle function

#(0) = 6 + 2a. (19)
iFrom Eq.(13) the radius is given by
ormBE+1
R(9) = P°(6) 55 (20)

These equations specify the shape of the reflector in a parametric polar representation for any
desired angular power distribution P°(8). A straight forward calculation shows that Eq.(18)
is indeed the solution of the differential equation (14). In fact Eq.(14) was not needed for
this derivation of the reflector shape. We have presented it only to show the consistency of
the approach.

3.2 Example - constant irradiance

For example to produce a constant irradiance on a plane parallel to the source we must
have P°(0) = 1/cos?(6) and thus B(8) = cos?(6)(1 + tan(#)). The resulting acceptance
angle function and the reflector profile are shown in Fig.5 and Fig.6 respectively. The
reflector shape is close to a V-trough. Though, the acceptance angle function is only poorly
approximated by a straight line, which characterizes the V-trough. In Fig.7 we show the
deviation of the reflector shape depicted in Fig.6. from a true V-trough. Note, that a
true V-trough produces a markedly non-constant irradiance distribution proportional to
cos(d + 7 /4) cos(0) for 0 < —0 < v /4.
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Figure 5: Acceptance angle function which produces a constant irradiance on a distant plane
from a finite one-sided lambertian strip source. There is only a CHC-type solution.
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Figure 6: The reflector profile which produces a constant irradiance on a distant plane from
a finite one-sided lambertian strip source of width two units. Note that there is only a
CHC-type solution and it is truncated.
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Figure 7: Deviation of the reflector depicted in Fig.6 from a true V-trough.
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3.3 Example - specific non-constant irradiance

As a second example we design the reflector which produces the irradiance distribution on a
plane shown in Fig.8. The corresponding angular power distribution is shown in Fig.9. The
acceptance angle function according to Eq.(19) and (18) and the resulting reflector shape
according to Eq.(20) are visualized in Fig.10 and Fig.11.
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Figure 8: Desired irradiance distribution on s distant plane perpendicular to the optical
plane divided by the irradiance produced along the axis by the source alone. Broken line
shows the irradiance of a truncated device
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Figure 9: Angular power distribution corresponding to the irradiance distribution shown in
Fig.8. Broken line refers to a truncated device.

Although the desired irradiance in this example is significantly different from the constant
irradiance treated in the example before, the reflector shape again is astonishingly close
to a V-trough and the reflector of the previous example. The subtle difference between the
reflector shape of this example and a true V-tzough are visualised in Fig.12 and Fig.13 where
we plot the slope of our reflector and the distance to a true V-trough. Most structure is
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Figure 10: Acceptance angle function corresponding to the desired irradiance distribution
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Figure 11: The reflector profile which produces the desired irradiance shown in Fig.8 on a
distant plane from a finite one-sided lambertian strip source of width two units. Note that
there is only a CHC-type solution and it is truncated.



14

confined to the region adjacent to the source. The fact that subtle variations in reflector
shape have marked effects on the power and irradiance distribution of the device can be
attributed to the large incidence angle with which the edge r.iys strike the outer parts of the
reflector.
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Figure 12: Slope of the reflector as a function of vertical distance from the source.
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Figure 13: Deviation of the reflector depicted in Fig.11 from a true V-trough.

As mentioned before, in general the reflector is of infinite sise. Truncation alters, however,
only the disiribution in the outer parts. To illustrate the effects of truncation for the reflector
of this example, we plot in Fig.14 the angle up to which the truncated device matches the
desired power dictribution, as a function of the vertical length of the reflector. Thus for
example the truncated device shown in Fig 11 has the irradiance distribution and power
distribution shown in broken line in Fig.8 and Fig.9. Note that the reflector truncated to a
vertical length of 3 times the source width covers more than 5/6 of the angular range.
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Figure 14: The effect of truncation is indicated by the angle up to which the truncated
device matches the desired power distribution, plotted as a function of the vertical length of
the reflector.

3.4 What power distributions can be produced?

First, evidently the total desired power must match the total power emitted by the source.
Here we investigate what other conditions P°() must meet.

The intensity desired at the center cannot be less than that produced by the source alone:
P°(0) > R, because the reflector can only add radiation. If the intensity and irradiance
d»sired at the center, at § = 0 is larger than that produced by the source alone, then the
reflector shape starts with ¢ increasing at constant § = 0, thus a = ¢/2. Equation(2)
cin then be directly integrated. The shape of the first section is a parabola with axis
prpendicular to the reference plane.

1
R(¢) = Rom (21)

The parabolic section extends until Eq.(13) is met. For larger angles a sudden, step-increase
of the power density, proceeding away from the center, can be produced by adding parabolic
sections. Note that the reflector remains continuous and smooth (differentiable).

The strongest decrease, that can be produced at any péint, is that produced by truncation.
As the incidence angle of the edge ray increases, this strongest decrease becomes more
marked. Thus a step-decrease cannot be produced except in the limit at ™%, where the
reflector extends to infinity. Algebraically this is expressed by the condition that ¢, as given
in Eq.(19), is monotonous so that from each point on the reflector, the opposite edge of the
source can be seen.

If the initial part of the reflector starts as a parabolic section then the view factor of the source
is larger and thus the maximum angle up to which constant illumination can be achieved is



correspondingly smaller. However, the effects of truncation are the same: The radiation will
be strictly as desired in the central part of the range and some of the radiation will be spread
beyond the maximum angle of the untruncated device. The “smallest” possible maximum
angle is 6™** = 0. In this case both sides of the reflector are sections of a parabola with
vertical axis and the opposite source edge s a focus.

Constant illumination over angles larger then % /2 cannot be achieved with a flat 2D source
because this would imply that at & = 0 the combination of source and reflector radiates less
than the source alone.

4 Conclusions

The classical nonimaging reflector shapes can be viewed as functions of an acceptance angle
which is constant along the reflector profile. A variety of problems, however, require variable
acceptance angles. In these cases the reflector profile is a functional of the acceptance angle
function or the function describing the desired power JJensity distribution. For the calculation
of the reflector based on the variable magnification there are in general two different types of
solution, depending on whether the meridional magnification is positive or negative: a CEC-
type, characterized by positive magnification in which the reflection of the source appears
on the side opposite to the observer, and a CHC-type, of negative magnification, where
the reflection is on the same side. The CEC-type reflector is finite and always ends with a
vertical tangent, while the CHC-type solution is infinite and approaches a constant slope.
The end point of the CEC-type solution and the asymptotic slope of the CHC-type reflect
the conservation of total radiant power.

For a finite size source, we have shown how to calculate a CHC-type reflector profile touching
the source. For a flat source the solution can be given in closed form. The method presented
here does not entail in any way an optimization procedure. It yields the reflector profile
which produces a desired irradiance distribution from a given source by straightforward
calculation based on first principles.

The desired irradiance or power distribution in the approach presented in this paper for the
finite sources was produced by designing the reflection of the source immediately joining the
source. The price of this choice is that only CHC-type reflectors and no CEC-type reflectors
result. But the benefit is that, unlike the classical reflectors designed in the small source
approximation, the reflectors described here for finite sources can be readily adapted to the
reverse problem, namely as ideal nonimaging concentrators for given radiation. For example
the ideal secondary concentrator for a Fresnel primary described in a recent publication [9],
can now be given in a closed form by equations.(19) and (20) with P°(6) = |1/ cos(6) - a, )|
where 2a, is the angle subtended by the sun (=~ 0.01 radian).

Subtle differences in the reflector shape have strong effects on the produced power and
irradiance distribution. Therefore a high precision is needed for the manufacturing of such
reflectors.
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1. Introduction

The relationship between classical radiometry and the electromagnetic theory
of light is now a well developed subject. Reviews have been give by Wolf' and
Apresyan and Kravtsov.’ A basic problem in this area, first posed by Walther,**
is how to define the radiance or brightness in terms of the electromagnetic fields
and their statistical properties. It is now understood that there are many possible
definitions, none of which has exactly all the properties expected of the radiance
in classical radiometry, but all of which acquire these properties in the limits of
short wavelength and sufficient incoherence. The various possible definitions of the
brightness are quite similar to the various phase space distributions used in quantum
mechanics, among which the Wigner function® is one of the better known.

This paper is concerned with the deviations from classical radiometry, i.e.,
effects of physical optics which occur when the wavelength is not negligable and
effects which occur only for substantially coherent light. We are particularly inter-
ested in the evolution of various distribution functions along rays, since in classical
radiometry this evolution is null (the radiance is conserved along rays). In this
paper we are concerned only with propagation in a homogeneous medium. This is
the simplest case in which to make a systematic exploration of the corrections to
classical radiometry, and we have chosen to work on it first. Since there are many
ways to define a distribution function representing the radiance, our examination
of the corrections to classical radiometry is different for the different functions, and
we are able to make comparisons.

In Sec. 2 we lay out our physical assumptions and the mathematical formalism
we will use to describe them. The material in this section is standard in the literature
on diffraction and radiometry and coherence. In Sec. 3 we discuss Walther’s first
proposed definition of radiance,’® which is essentially the Wigner function,® and
express its properties in terms of the Weyl correspondence6 and the product formulas
of Moyal.” This material is standard in the literature on the Wigner function. Then
we present some new results, namely infinite series representations for the evolution
of the Wigner function along rays and for the components of the energy flux in
terms of the Wigner function. In Sec. 4 we discuss Walther’s second definition



of radiance,* which we study in both its real and complex versions. We develop
various identities connecting the real and imaginary parts of Walther’s complex
function, inciuding infinite series. We also develop both integral and infinite series
formulas connecting Walther’s function with the Wigner function, and we illustrate
these series explicitly for a Gaussian-Schell model. Then we develop infinite series
representations for the evolution of Walther’s function along rays, in both its real
and complex forms. Finally, in Sec. 5 we present a new distribution function which
has the property that it is exactly conserved along rays.

Our results allow us to draw conclusions about which function is better con-
served along rays, by estimating the order of magnitude of the first correction term.
In the case of Walther’s complex function, such an estimate was made by Walther
himself,3 and our result, obtained by different means, agrees with his. This same
estimate has also been examined by Jannson.® In the case of Walter’s real function,
we find that the conservation of brightness along rays is better than in the case of
Walther’s complex function, and we provide the appropriate estimates. As for the
Wigner function, we find that it is even better conserved along rays than Walther’s
real function, especially for paraxial rays. Finally, our new distribution function
introduced in Sec. 5 is exactly conserved along rays.

2. The Physical Model and Its Mathematical Formulation

In this section we describe the physical model we will adopt for our study of
the propagation of optical radiation, and the mathematical formalism we will use to
represent it. The same physical model is common in work on diffraction, so we will
just quickly summarize our assumptions. The mathematics we use is basically the
Hilbert space formalism of quantum mechanics, which has also been used by other
authors in applications to optics.’ One reason for using this formalism is the strong
analogy which exists between the correlation functions in optics and the properties
of the density operator in quantum mechanics.

We represent the optical wave field by a scalar function ¥(r), which can be
loosely identified with one component of the electric field. We consider only mono-
chromatic radiation of frequency w, and we suppress the factor e~'“* in . The
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field ¥ is complex. The radiation is generated in the region z < 0 by currents
and charges which need not be specified, and propagates into the source-free region
z > 0 which is assumed to be homogeneous and isotropic with a coustant, real index
of refraction n. Thus, in the region 2z > 0, ¢ satisfies the Helmholtz equation,

V23 + kiy =0, (2.1)

where kg = nw/c. We assume that in the region z > 0 the wave field consists only of
waves propagating or damping in the direction of increasing z. We take the energy
density to be n2|y|?, and the energy flux to be

I= 1;—" Im $* V3. (2.2)
0

The modifications required to accout for the true vectorial nature of light are
straightforward, since the medium in the region z > 0 is uniform. All the as-
sumptions which go into this model are standard in studies of diffraction and in the

literature on radiometry and coherence.' ~**~!!

We will write ry = (z,y) and r = (z,y,2) = (r1,2). We will usually regard
z as a parameter and think of ¢(ry, z) as a wave function in the Hilbert space of
wave functions defined over the zy-plane. We use the Dirac notation to write |t)
or |$(z)) for the state of the optical field in a given plane z = const., regarded as
an abstract vector in the Hilbert space, and we write

¥(ri,z) = (ril¥(z)) (2.3)

to show the relation between the abstract Hilbert space vector |¢(z)) and the usual
wavefunction ¥(ry, z) (which is the r | -representation of that abstract vector). Sim-
ilarly, we introduce ithe k -representation by the Fourier transforms,

Biep,) = [ GEE emams e, 2), (24)
2 -
wles,n) = [ S5 etbn gk, 2) (23)
and we write
$kL,2) = (kal(2). (26)



In these equations and below, we use tildes to represent quantities referred to the
k | -representation, and we set k3 = (k¢, ky). The normalization conventions used in
Egs. (2.4) and (2.5) make the transformation between the r, - and k | -representation
unitary, so that

/ dPry (rs,2)|? = / &k, |k, 2). 27)

To find the optical field on some plane z = const. > 0, given the optical field
at z = 0, we solve the Helmholtz equation in the k, -representation. The solution
is

¥k, z) = e gk L), (2.8)

where we write I,Z'o(k 1) for d:(k 1,0), and where

{ kT - k2, ifky < ko,
ky =4
3

(2.9)
VEE =K, if kL > ko

Here and throughout this paper it will be necessary to regard k., not as an indepen-
dent variable like k: and k,, but as a function of k. Exceptions to this rule will
be noted explicitly. The waves for which k; < ko are travelling waves, and those
for which k; > ko are evanescent waves. Now we combine Egs. (2.5) and (2.8) to

obtain,
dzkl ike 7
b(ru,z) = [ S5 e (k). (2.10)
Here we write k = (k 1, k;), so that
k-r=k; -r; +k,z (2.11)

with k; regarded as a function of k ;. Next we use Eq. (2.4) evaluated at z =0 to
express the result completely in the r, -representation. We find

Y(ry,2) = /d’r'L K(ry — 'y, 2)po(r')), (2.12)

where we write 1o(r ) for ¥(ry,0), and where

dsz- ik'r

K(I'J_,Z)= -(-2—”-)—26

(2.13)

o
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Equations (2.8) and (2.12) express a kind of “z-evolution,” which is specified
by a certain operator K(z), parameterized by z, which we call the “z-propagator.”
The matrix elements of this propagator in both the r -representation and the k| -
representation can be read off from these equations; we have

(eLlK(2)e'L) = K(ry —r',,2) (2.14)
and
(kL |K(2)k') = e**§(k - Kk',). (2.15)
Thus, we can write Eqgs. (2.8) and (2.12) in the form,
[b(2)) = K(2)|%(0)). (2.16)

The matrix elements of K(z) in the r,-representation can be expressed in terms of
the free-space Green'’s function G for the Helmholtz equation,

eikor : dzkl eik-r d3k eik-r
G(r) = - =79 o072 k. " | (on K2 — k2"
4rnr 2) (27)? k&, (27)3 k2 — k§

(2.17)

In the second of these integrals, k, is an independent variable of integration, not a
function of k. The Green’s function G satisfies

VG + k2G = §(r). (2.18)

To obtain the relation connecting G and K, we differentiate Eq. (2.17) with respect
to z and use Eq. (2.13) to obtain

K(ry,z) =226 _ et (i _ ”‘°) . (2.19)

0z 2r \r3 r?

The operator K(z) is not unitary, due to the evanescent waves, for we have

d d
< / Py ey, = = / a2k, w(ky, =)

d ——
=3 / d’ky exp(=221/k2 = k) lwo(k )P SO, (2.20)
ky >ko

The final integral is carried out over evanescent waves only. If we should have a
wave field with negligable contribution from evanescent waves, then the norm of the



wave function ¢ in the sense of dq. (2.7) or (2.20) is conserved by the z-evolution,
and K(z) behaves as if it were unitary.

A differential equation like the Schrodinger equation can be written down for
the z-evolution. It is

2 fo(2) = Bl (2)), (2.21)

where the “Hamiltonian” operator H is given by its (diagonal) matrix elements in
the k | -representation,

(koK) = —k. 6(k s - k'), (2.22)
or in the r, -representation,
- etkor 71 ik
(rLlHIr)) = = 5— (;’3 - p—;) \ (2.23)

where p = [ry — ', |. These equations foilow from
R(z) = e 'H2, (2.24)

The Hamiltonian H is not Hermitian for the same reason that K is not unitary
(the evanescent waves). It is sometimes suggestive to write H in terms of the
operator ki (which is iV, in the r,-representation, or multiplication by k, in
the k) -representation). That is,

H=—\kE-k2 =-\/k2+V2, (2.25)

where the square root is defined as in Eq. (2.9).
Now we introduce the angular spectrum. We write s = (s, 8y,5,) = k/ko, so
that s is a unit vector. Then we write
8z = sinfcos @,
sy = sinfsin &,

8; = cosé. (2.26)

so that
d’k = k¥d%s) = s,k3dQ, (2.27)



where dQ is the element of solid angle. When k lies outside the circle k; = k¢ (or
s lies outside the unit circle), then the angle 8 (like s, = k,/k¢) takes on complex
values. Now we transform Eq. (2.10) into an angular integral,

W(rL,z) = / dQa(s)e’ T, (2.28)
where 2 |
i(s) = 728 ok ). (2.29)

The quantity @(s) is the angular spectrum. It actually depends only on s, , although
it is convenient to imagine it as defined over a hemisphere on which the unit vector
s lies. The hemisphere should properly be extended so as to include complex angles,
on account of the evanescent waves.

Next we introduce a statistical ensemble of wave fields {¢4(r)}, a=1,..., N,
with corresponding weights ¢, satisfying ¢, > 0 and

N
co = 1. (2.30)

In some cases, we may promote a into a continuous index and make appropriate
changes to our formulas. The statistical averages we will be interested in can be
expressed in terms of the mutual intensity,

I(r,x') = ) catba(r)W5(r') = U(r)P* (), (2.31)

where the overbar indicates the statistical average. Usually we will be interested
in I'(r,r') only when z = 2'; in this case we will write I'(r,r';; ), which is the
r -space matrix element of an operator ['(z) (the density operator),

I(ry,ry;2) = (L |D(2)IFL) = w(ro, 2)$*(r, 2), (2:32)

where

P(2) =) I¥al2))cal¥al2)l- (2.33)

We will also write
L(ky, k' ;2) = (ko |T(2)k',) (2.34)
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for the k| -space matrix elements of f‘(z) (with a tilde to indicate the k| -represen-
tation).

The z-evolution of ['(z) is straightforward. The basic formula is
['(2) = K(z)[(0)K ()", (2.35)
which is especially simple in the k, -representation:
Dk, k' ;z) = eli®a=ED Pk, k), (2.36)

where k! is given by a primed version of Eq. (2.9) and where we define ['y(k_, k') =
['(ky,k';;0). A differential equation for the evolution of I'(z) follows by combining
Eqgs. (2.24) and (2.30) and differentiating with respect to z. The result is

; dl'(z)
dz
If the statistical ensemble does not contain any evanescent waves (a condition which

is independent of z), then the right hand side of this equation can be replaced by
the commutator [['(z), H).

= Al'(z) - T(2)A*. (2.37)

3. The Wigner Function in Radiometry

In this section we consider the Wigner function as a candidate distribution
function in terms of which the brightness or radiance can be defined. The Wigner
function has certain advantages and disadvantages in comparison to other candi-
date functions in this role. The principal disadvantage seems to be that the exact
expression for the z-component of the energy flux is not identical to the formula
expected on the basis of classical radiometry, although the two formulas do agree
in the limits of short wavelengths and sufficient incoherence. This disadvantage
is offset by a number of advantages. First, in the paraxial approximation (or any
approximation which leads to quadratic phase factors for the r -space kernel of the
z-propagator), the Wigner function is exactly conserved along rays, not only in a
homogeneous medium (which is our main interest in this paper), but also when the
rays pass through lenses, etc. This exact conservation is independent of the degree
of coherence, and applies even to completely coherent light. Second, the Wigner
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function has elegant analytical properties, which allow us to provide explicit forms
for the corrections to classical radiometry, out to all orders in the appropriate small
parameters. Indeed, we have found it convenient, in exploring the properties of
other distribution functions, to express them first in ‘erms of the Wigner func-
tion, so we could invoke the analytical properties of the latter. Third, we find that
the Wigner function is conserved along rays to a higher degree of approximation
than other distribution functions, even for rays which are substantially off-axis. We
begin this section with a summary of the usual properties of the Wey! transform
and the Wigner function, transcribed to the optical context in which we are inter-
ested. Reviews and other articles of interest on the Wigner function and the Weyl
correspondence include Refs. 12-16.

Let A be any operator which acts on the Hilbert space of wave functions defined
over the ry-plane, and let A,(ry,k ) be its Weyl transform, which is defined by

Au(rrks) = [dasemens (s + faldles - Jau)

- / dqy e*iarTs (k| + 1q, Ak, - iqu). (3.1)

The Weyl transform has the following properties. First, if A, is the Weyl transform
of operator A, then the Weyl transform of operator Al is AY. In particular, the
Weyl transform of a Hermitian operator is real. Next, if A and B are two operators
and A, and B, the corresponding Weyl transforms, then

242 d’ri_ dzk_L
'I‘l‘(A'B) = / W Aw(rl_, k_L)*Bw(l‘_L,kJ_). (32)
In particular, since the Weyl transform of the identity operator is unity, we have
2 d2P_L d2k1_
'I\'(A) = /——6_7;)_2—- Aw(rL, k_L). (3.3)

The third property of the Weyl transform is given by the Moyal formula. Let
/i, ﬁ, C be operators with Weyl transforms Ay, By, Cw, and let C = AB. Then

Cy is given in terms of A, and B, by
— — — -
i 0 5} 0 i)
Culru k) = Aulrs ki) e[5 (5 3 ~ 3 ) | Bulrikn). (3:4)




In this expression, the arrows over the partial derivatives indicate the direction in
which the derivatives act, i.e., those with a left arrow act on A,, and those with
a right arrow act on B,. The exponential in this expression can be expanded out,
and the first few terms give

Cw = AuwBuw + %{AW,BW} +..., (3.5)

where the curly bracket represents the Poisson bracket in the variablesr , k|,

A, 0B, 0A. 0B,
or, 0dk, ok, al‘_L

{Aw,Bu} = (3.6)

-~

A variation on the Moyal formula is obtainecd if we let ¢ = AB — BA = [4, B).
Then the Weyl transform C\, can be written,

... .18 3 3 3
Cu = 2”‘"’3‘“[5(3“ T au)]B"" (3.7)

We will find the Moyal formula useful in developing the corrections to classical
radiometry.

We now tabulate some Weyl transforms of various operators which will be of
use to us later. If A is an operator, we will use a two-sided arrow to show the
correspondence with its Weyl transform, a function of (ry,k,). First, the Weyl
transform of the identity operatdr, denoted 1, is unity:

le—1. (3.8)

Next, the operators ., k, are defined respectively by multiplication by r, and
—1V 1 in the r -representation, or +:3/0k  and multiplication by k, in the k-
representation. The Weyl transforms of these operators are given by

FLe—ry, fu — k. (3.9)
The Moyal formula can be used to compute the Weyl transforms of higher order
polynomials in ¥, k. More generally, if f and g are any two functions, then we
have

f(EL) — f(ry),  glky) — g(ky). (3.10)

to
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Next, we have the Weyl transforms of two projection operators,

Ir Lo)(F Lo] «— &6(rL —r o), (3.11)
Ik o)(ksol «—— 6(kL — ko). (3.12)

In these formulas, r o and ko are the parameters of the projection operators,
which are distinguished from the variables r;, k) upon which the Weyl transforms
depend.
Finally, we have the Wigner function itself, which is the Weyl transform of the
density operator I'(2):
[(z) — W(ry, ky;2). (3.13)

This can also be written,
W(ry,ky;z) = / d*aye”*+ % P(ry + da,,r; - Lay;2). (3.14)

We regard the Wigner function as a distribution function defined on the 4-dimen-
sional phase space (r;,k, ), and parameterized by z. By writing the definition in
terms of a q -integral as in Eq. (3.1) and using Eq. (2.36), it is easy to express W
in the plane z = const. > 0 in terms of I" evaluated in the plane z = 0. We find

W(ri,ki;z)= /d2QJ. eflasrat(ca=sD)l Pk 4 1qy ky — 2qu), (3.15)

where

Ky =k - (ko £ a.)?, (3.16)
and with the square root of negative numbers interpreted as in Eq. (2.9). An
alternative version of Eq. (3.15) is

! "
Wieskuia) = [ KK 6(k - Sag=h)e® T Byl k), (@)

which is stated in a more symmetrical way.
Basic properties of the Wigner function include its marginal distributions and

lowest order moments. If the Wigner function is integrated over k,, it gives the
average value of the intensity I(r),

/?—;—%‘% W(ry,ki;z)=D(ry,ry,2) = |¢(ry,2)? = I(r). (3.18)
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If the Wigner function is integrated over r, it gives an analogous result in
k , -space:

d’zl‘l_
(27)?

Finally, if the Wigner function is integrated over all of the (r,k ) phase space, it

W(ry,kiiz) =00k, kiz) = ld(ky, 2))2. (3.19)

gives the average of the norm of the wave function, in the same sense as in Egs. (2.7)
and (2.9):
d*r; d*k
/ (;w)2 = W(ry,kiz) = /d’n l(r L, 2)[2, (3.20)

which is also the trace of the density operator ['(2).

In these formulas, the Wigner function would lock more like an ordinary prob-
ability density on phase space if the factors of 2 were absorbed into the definition
of W. If this were done, however, the Wigner function would no longer be the Wey!l
transform of the density operator. We prefer to retain the latter property.

Now we propose a definition of brightness or radiance B(r,s) in terms of the
Wigner function W(r, k; z), in which we use the classical definition of radiance as a
guide in order to obtain the correct factors of proportionality. To recall the classical
definition, we define B(r,s) by saying that the energy flux dJ passing through an
area element dA at position r into solid angle dQ2 centered on direction s is given
by

dJ =(n-s)B(r,s)dAd, (3.21)

where n is the unit normal to dA. On the other hand, the energy density of the
radiation at position r is n?jy(r)|?, and |¢(r)|? is given in terms of the Wigner
function by Eq. (3.18). Since the energy of a photon is hw, we can interpret the

quantity
2

= (2n)hw
as the number of photons in volume element d°r centered at r with wavevectors k
lying in element d?k 1. Thus, with the multiplicative constants shown in Eq. (3.22),

dN W(l‘_j_, kl; Z) dsl' dzkl_ (322)

the Wigner function can be interpreted as a photon number density in the 5-
dimensional (r,k;) phase space. Next, since the photons have velocity ck/nko
and energy fw, the energy flux crossing area element d4 lying in the zy-plane in



the given k -interval is

nes;
(2m)?
which can be combined with Eqgs. (2.27) and (3.21) to obtain the desired formula
connecting W and B:

dJ = —2W(ry ki;z)dAd?ky, (3.23)

2
B(r,s) = cns, (;—;) W(ry,ky;2). (3.24)

We will take this formula as our definition of radiance, and investigate to what
extent it has the properties expected from classical radiometry. Notice that the
factor s, is not a constant, but depends on k. We could have absorbed this factor
into the definition of W, as other authors have done, but we prefer to leave things
as shown so that we can interpret W as a Weyl transform and use the various
properties which follow from this fact.

Let us now compute various moments of our radiance function and compare the
results with the expectations of classical radiometry. First, we expect the integral
of B over all solid angles to be the photon velocity ¢/n times the average energy
density. Indeed, with our definition (3.24) we have

/B(r,s)dﬂ—n /?2

where we use Eqgs. (3.14), (2.27) and (3.18). This result is exactly what we expect.

Next, in classical radiometry the average energy flux J(r) is the integral of
sB(r,s) over all angles. To see whether this relation is fulfilled by our definition
(3.24), we begin with the perpendicular components of J. From Eq. (2.2), appro-

ki;z) = n?[P(r)2, (3.25)

priately averaged, we have
I (r) = }:f Im VL o(r) $(r)"

d’k’', ?k'} K
= 2 Re / —é‘-)—z-——k ik =K' Pk k), (3.26)

where we use Eq. (2.10). By swapping k',, k| and noting the Hermiticity of T,
fﬂ(klik'i)* = fo(ki’ '.L)v (3'27)



we can symmetrize Eq. (3.26) and remove the Re, obtaining
nc [ &%k, d*k'y (k'i_ + k'
ko (2r)? 2
But with the help of Eqgs. (3.17) and (3.24), this is easily expressed in terms of the
radiance. We find

Ju(r)=

)R LK. (328)

d’k
Ii(r) = %f (21);

Thus we see that the perpendicular components of the energy flux are exactly given
by the classical formula.

It is instructive to derive this same result purely by means of the Weyl trans-

k_L W(rJ_,kJ_;z) = /S_LB(I‘, 8) daqd. (3.29)

form, since the derivation provides an illustration of the application of these prop-
erties in a context in which the answer is known. The basic strategy is to express
the quantity we wish to evaluate (in this case, the perpendicular components of the
energy flux) in terms of a trace of a product of operators, and then to use Eq. (3.2)
to compute the trace. In the present case we evaluate J at (ryo,2) and write

ko

;‘EJ.L(r.LOa z) =ImV (10, 2) $(r 10,2)* = Re(r Lok L|¥)(¥|r Lo)

= Re(r 1olk LT(2)Ir 10) = RETr[In.o)(r.Lol R.Lf'(z)]

= 4 e[ (Irso)(r solks + kol Lo)(r Lol B(2)]. (3.30)

The operator in parentheses in the final expression is Hermitian and has a real Weyl
transform, but the Weyl transforms of its two constituent terms are not real. To
compute the Weyl transform of the first term in the parentheses we use Eqs. (3.9),
(3.11), and the Moyal formula, Eq. (3.4). The Moyal formula terminates after two
terms, and we find
- i

Il'J_o)(l'J_olk_L — k_L5(l‘_|_ - I‘_Lo) + '2'V_L6(rL - l'_]_o). (3.31)
The second operator in the parentheses in Eq. (3.30) is the Hermitian conjugate
of the first, with complex conjugate Weyl transform. Adding these together, the
imaginary terms cancel, and we have

%(lh.o)(n.olﬁj. + f(J.ll'J.o)(l‘Lol) «— k_ é(rL —rLr0). (3.32)



Finally, since the Weyl transform of I‘(z) is just the Wigner function, we can use
Eq. (3.2) to obtain

d"rLd’kJ_
(27)?

which agrees with our earlier result in Eq. (3.29).

Ji(rie,2) = k kié(ryL —rio)W(ry,ky;z), (3.33)

The z-component of the energy flux is more complicated. We begin as in
Eqs. (3.26)—(3.28), obtaining
nc r
1. = ot gy

B, P K+ ) ey &
ko/ (21r)2 -L( 2 )e(k Ko (KLK'D). (3.34)

On the other hand, if we follow the formulas of classical radiometry, we expect J,

to be given by

d?ky .
/s,B(r,s)dQ— k (2 )2 k;W(l‘J_,k_L,Z)

nc dzk'l d2k"! k', +k" 2 Kk .
=E/ (2r)?2 \ﬁg—( D) ) ek KT Po(k',,KY),  (3.35)

where we have used Eq. (3.17) in the final step. The expressions in Eqgs. (3.34) and
(3.35) are not equal, because

1 , k', +k1\’
: (,/kg — K74 fkd - kf) ” ‘/kg - (—Lé—-a) . (3.36)

But if the function I'g(k', k'] ) is sharply peaked about k', = k'], i.e., if it has the
form

To(k', k') ~ F(K!)§(k'y — k1), (3.37)

where F is a slow function of its argument, and if we ignore evanescent waves so
that k' is real, then both the expressions in Egs. (3.34) and (3.35) reduce to

ko_

=%, | Gy

k. F(ky). (3.38)

33



(Notice that the expression in Eq. (3.35) is not even real if evanescent waves are
allowed.) The condition (3.37) is essentially that of quasihomogeneity.!"'” Thus we
see that when the source is quasihomogeneous, the z-component of the energy flux
can be computed in terms of B by the formula expected from classical radiometry,
although the calculation is not exact and there are corrections involving an appro-
priate small parameter. We will examine these corrections in more detail later.
For now, however, let us consider another expectation of classical radiometry,
namely the conservation of brightness along rays. Since s, is constant along rays, B
will be constant if and only if W is constant. Let us therefore examine the quantity

| k R . ]
W(r;_ + iﬂ-,kL;z + %c-;‘-) = /dqu eilas tL+(ny —x_)i] To(kyL + %QJ.ak.L _ %qL)

ko

X eia[q...-k;.+(~+—~-)k-1/ko, (3.39)

where we have invoked Eq. (3.15) and denoted the distance along the ray by s. We
are considering only real rays in this expression, so k, is real, and we also assume
k- is real. This expression will equal W(r 1,k ;2) if the final exponential factor in
the integrand is unity. In fact, it is not exactly unity, so W is not exactly conserved
along rays, but if the source is quasihomogeneous, so that the integral is dominated
by small values of q, then we can expand the final exponent out. We find

1
qL-ki+ (ke — 62Dk, = —S?[kf(kj. qu)gt +(kL-qu)’] +0(¢}). (3.40)

In other words, the corrections are only of order q3, which are small for a quasi-
homogeneous source. These corrections are smaller than the ones which arise in
a similar treatment of Walther’s (second) definition of radiance, which gives cor-
rection terms of order ¢}. (The difference is that the Wigner function is a kind
of centered Fourier transform, whereas Walther's definition is one-sided.) We will
return later to the fact that the Wigner function is better conserved along rays than
Walther’s function.

Now, however, we will develop a systematic series of corrections to the con-
servation of W along rays. We begin by assuming that the wave field of interest
contains no evanescent waves; the necessity for this assumption will become appar-
ent in a moment. This means that the right hand side of Eq. (2.37) can be replaced
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by a commutator, and we can write

dl" z

) 4,1 (3.41)
Next we take the Weyl transform of both sides. On the left hand side, we get simply
i{0W/3z. On the right hand side, we call on the Moyal formula in the form shown
in Eq. (3.7). To use this formula, we need the Weyl transform of H, defined in
Eq. (2.25); but by Eq. (3.10), this is just

H=-\kl-#, (3.42)

H is the ray Hamiltonian, and is just another notation for —k,. Then we see that
the operator in the sine function in Eq. (3.7) simplifies, because H depends only on
k, and all r -derivatives acting on it vanish. Altogether, we find

aW(l‘.L,kJ.,Z) =9 /kz k2 sm[ (ak - 3 )] W(ry, ky;z2). (3.43)
L L

Except for the neglect of the evanescent waves and the question of the conver-
gence of the series implied by the sine function, this is exact. The first term of the
sine series gives

k, -V, W, (3.44)

kg — k3
which can be brought over to the left side to give the total convective derivative
along a ray with respect to 2,

dw _aw 1 — __(-pm  @mt+l, gimtiw
-&;_ - —a—z}- + 'k'_‘kl- VAW = Z:: 22m(2m + 1)! akim-i-l ) arim+l . (3.45)

By multiplying this by k;/ko we obtain dW/ds, the convective derivative of W
along a ray with respect to distance s. It is the right hand side of this expression
which would vanish in classical radiometry; the series we see here gives us the
correction terms. In these correction terms, we have used a single dot to represent
the complete contraction of the two tensors involved; for example, the m =1 term
is more explicitly written

-1 3k, PPwW

223! e akuak;jak_l_g 61‘_1_.‘31‘_1_,'61'1_(.

(3.46)
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The first correction term, shown in Eq. (3.46), gives an estimate of the error
committed in neglecting the right hand side of Eq. (3.45). The estimate depends on
whether the ray is paraxial (k; € k,; = ko), substantially off-axis (ki ~ k; ~ k),
or nearly tangent to the reference plane (k; € ki = ko). In the paraxial case, we

dW k. k., W 6 /2\?
7:'"@;@;‘3%(5) W, (3.47)

where 9 is the paraxial angle, A is the wavelength, and L is the spatial scale length of
the Wigner function. This estimate may be constrasted with the analogous estimate

have the estimate

 given by Walther* for his function A, which may be written,

dA 1 /2\?
71-8_~X(Z) A. (3.48)

This is one order of A\/L worse than the estimate for the Wigner function, and does
not contain the paraxial factor.

For substantially off-axis rays the estimate for the rate of change of the Wigner
function along rays is

dW k., (kL K\ W 1(,\3
dsto(k§+k§ o)W (3.49)

which is the same as Eq. (3.47) but without the paraxial factor. The factor in
parentheses in this expression is a schematic indication of the third derivative of H
with respect to k;, with indices suppressed since we are interested only in order of
magnitude. The second term in the parentheses was neglected in the paraxial case;
here both are comparable.

One reason we are interested in rays which are substantially off-axis is that
such rays occur in nonimaging concentrators.'® Indeed, the rays in nonimaging
concentrators typically cover 27 steradians at the exit aperture. Geometric optics
has proven satisfactory for most analysis to date of nonimaging concentrators, but
in newer applications diffraction effects are important. We have such applications
in mind throughout this paper.

For rays which are nearly tangent to the reference plane, the estimate becomes

dW kK3 W 1 /2\?
aw kR 2 (2 50
ds ko k3 L3 )at (L) W, (3:50)
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where « is the angle between the ray and the zy-plane. This expression obviously
diverges when a — 0, but since A/L is presumably also small, the Wigner function
will in many circumstances be conserved along rays even when a is reasonably small.
However, the series (3.45) does break down when a becomes small enough, and it
becomes meaningless for evanescent waves.

The divergence of the estimate (3.50) as a — 0 is caused mathematically by
the square root branch point of the ray Hamiltonian H at k; = ko. Obviously
there is nothing physical about this divergence, since the ray does not know that
it is nearly tangent to an imaginary reference plane. The reference plane used in
all constructions of this sort, not only in this paper but in the vast literature on
diffraction and radiometry and coherence, is essentially a surface of section in the
mechanical sense. There is no reason why other surfaces of section could not be
used, such as spheres, and these might have some advantages. More fundamentally,
it is a defect of the entire approach usually taken in treatments of radiometry and
coherence that a quantity such as radiance, which is supposed to have a physical
meaning if only it could be defined properly, should depend on the reference plane.

For rays which are not too close to k; = ko, the series in Eq. (3.45) will converge
rapidly (or start to converge rapidly; the series may be asymptotic) if A/L is small.
The quantity L in certain cases has the significance of the spatial scale length of
the average intensity of the light. To show this, we write the mutual intensity in
terms of sum and difference variables,

+r P
r(u,rg).—.p(” . l ,rL—rL), (3.51)

where F is a new function and where we suppress the z-dependence for simplicity.
Then we have

W(l‘_L,kL) = /dza_,_ e'kiasL F(ri_,ai_), (3.52)

so that L is the scale length of F' with respect to its first argument. If L is inde-
pendent of the value of the second argument of F, then L is also the scale length
of the average intensity of the radiation, since

|$[? = T(ry,rL) = F(r.,0). | (3.53)



Under these assumptions, we can say that the Wigner function is conserved along
rays when ) is much less than the scale length of the intensity.

In drawing these conclusions we have not had to make any assumptions about
the scale length of F' with respect to its second (difference) argument, but in many
applications this latter length, which is essentially the correlation length, is small
compared to L. In such a case the radiation is quasihomogeneous on the given
plane z = const. (Som:imes quasihomogeneity is defined by demanding that ‘he
right hand side of E+. (3.51) factor into the product of a slow function of the sum
variable times a fast function of the difference variable. But this iz too restrictive;
for example, it recludes the case in which the ccrrelation lengih is a slow function
of position.) We denote the correlation length by £. It is never much less than A,
and for quasihomogeneous sources satisfies

A<t< L. (3.54)

Notice that for paraxial rays the Wigner function is conserved along rays even
if A/L is not small. In fact, if we return to Eq. (3.43) and approximate H in
accordance with the paraxial condition,

o — ke 4
H ko + T (3.55)
then the Moyal series terminates after one term with no assumptions on W. In this

case we obtain

dW oW

For éxa.mple, in some cases of coherent light W has a spatial scale L which is
comparable to a wavelength, but along paraxial rays W is still conserved. This
result is a special case of a well-known result in quantum mechanics, that the Wigner
function is exactly conserved along classical orbits in the case that the Hamiltonian
is at most a quadratic function of ¢'s and p's.'®

The evolution of the Wigner function along rays has been considered previously
by Kim and Wolf,!? but those authors did not derive explicit formulas ‘or the
correction terms nor did they estimate their order of magnitude.

As a final calculation involving the Wigner function, we will work out the

correction terms in the z-component of the energy flux, i.e., the terms which express



iy e

the difference between Eqgs. (3.34) and (3.35). We begin by treating J, much as we
treated J | in Eq. (3.30). We write

by (rs0r) = 1 2R E) i g 2y = - Re (e Ll HIY) (WIr o)

= —Re(r o|HT(2)|rLo) = —ReTr [II‘J.o)(l'J.ol H f(z)]

= -1 Tr[(ln_o) (r 1ol H + H*|rm><rm|) f‘(z)]. (3.57)

Next we need the Weyl transform of the operator in parentheses in the final expres-
sion. We use the Moyal formula in the form (3.4) to compute the Weyl transforms
of the two terms in the parentheses, and add the results. In doing this we simply
treat H as Hermitian (and H as real), and ignore evanescent waves. Such waves do
not contribute to J; anyway, and the Moyal formula will lead to divergences near
k, = ko, just like it did in the calculation of the evolution of W along rays. The
result is

%(|PJ.0)(1‘J.0|I? + I?IP.Lo)(l'.l.ol) — b(r — r;o)cos[‘(arl : Bkl)]H' (3.58)

SR

Next we use Eq. (3.2) to compute the trace, obtaining

Pr,
T(rine) = | [ R WL k)
—

—

X {6(1‘; —r1g)cos [%(5% . 5—%—_)} \ kd - kﬁ_} (3.59)

The first term of the cosine series is the term expected by classical radiometry. In

the higher order terms the r -derivatives acting on the é-function can be transferred

to W by integration by parts, and then the r-integral can be done. The result is
nc [ d?k,

Ji(r) = T (2—"_)'5 k:W(ry, ky;z)
ne e (-1)™ d’k, 0*™W 9*™k,
+7c-o-'§___:l 22m(2m)! / @r)? o Bk (3:60)

This series is similar to that in Eq. (3.45), with the terms decreasing in powers of

(A/L)2.
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4. The Walther Distribution Function

In this section we examine Walther’s (second) proposed distribution function,*
in terms of which the brightness or radiance can be defined, and subject it to some
of the same kinds of analysis we applied to the Wigner function in Sec. 3. (Walther’s
first proposed distribution function® is essentially the Wigner function itself, which
we have already examined.) We will also develop integral and infinite series formulas
connecting Walther’s function with the Wigner function, and use them to find
corrections to the conservation of Walther’s function along rays. We find explicit
formulas for these corrections, which are different depending on whether Walther’s
function is used in its complex form or real form. In the case of the complex form,
an estimate of the order of magnitude of the first of these correction terms was made
by Walther himself*; this estimate was repeated above in Eq. (3.48). In the case
of the real form, we find a different estimate, which is more favorable than the one
given by Walther, but which is still not as favorable as the one given in Eq. (3.47)
for the Wigner function.

We begin by providing several equivalent definitions of a distribution function
A, which we will call the “Walther function”:

A(rJ.) k-L; Z) = (2”)eikL.rL t;(kJ., Z)'L'("J., Z)*

- f P!y e~k Tk, K5 2)
= / d?k’, %KM ok K
= /dzr’l_ ek FL =) (! 1y 2). (4.1)

This function is complex; often we will be interested only in its real part. This
definition parallels our earlier definition of the Wigner function in its dimensions
and normalization, so that Walther's proposed definition of the radiance can be
written,

2
B(r,s) = cns,; (g—%) Re A(r,ky;2), (4.2)

just as in Eq. (3.24), with Re A replacing W.
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The Walther function has the following marginal distributions,
d’k kL

(2r )2 A(rl_,k_L,a) =D(ry,r;2)= I(l’), (4.3)
d’rJ_
(2 )2 A(r.l.’ k.Lv Z) F(k.L’ k.l.;'z)a (44)

in analogy with Eqgs. (3.18) and (3.19) for the Wigner function. In the case of both
functions, the two formulas are exact. Also, since the right hand sides of these
equations are real, we can replace A on the left hand sides by Re 4; and we have
the following identities for the imaginary part of A,

/dzl‘_L ImA(l'J_,kJ_;z) = /dsz ImA(rJ_,k_L;z) =0. (4.5)

As for the energy flux, it is straightforward to combine Eq. (4.1) with the
identities of Sec. 2 to obtain

I(r) = R.e / ks =k A(rL, ky;2), (4.6)

which can be compared to Eqs. (3.29) and (3.60). For the perpendicular component
of this equation, the Re operator can be pulled through the integrand adjacent to
A, so that the (exact) formula looks just like Eq. (3.29), with the Wigner function
W replaced by Re A. For the 2-component, the same can only be done if evanescent
waves can be ignored, so that k¥ = k,. In that case, the Walther function gives a
formula for the energy flux which is simpler than in the case of the Wigner function,

d’k
/(% k ReA, (4.7)

although in both cases it is the z-component which gives trouble. Walther’s original
definition of his function was designed to make this equation come out as shown.
Now we turn to the evolution of the Walther function along rays. To study this
question, it is convenient first to make a connection between the Walther function
and the Wigner function, so that the properties of the latter can be invoked. Since
both the Wigner function and the Walther function are related to I'(ry,r';;z) by
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invertible integral transforms, it is straightforward to find an integral transform
connecting W and A. The desired transform and its inverse are

/ ! . , ,
W(rs kyiz) = / &%‘*e""'“'*"“‘*"‘ﬂ Ar'L K2, (48)

d*r', d’k’ ; ' '
Alry,kujz) = / gk L ) W Ka). (49)

These integral formulas are exact, but it is convenient to transform them into
another (differential) form in which the effects of short wavelength and/or short
correlation length will be manifest. We begin with Eq. (4.9), making the changes
of variable, r, =r; +a,, k', =k, +q,, and then expanding W in a Taylor series
about q4 = 0. For convenience, we also suppress the z-dependence. We find

2 .
A(rp, k)= /i_%g_zﬂi e?+ 9L W(r, +a,,ki+qyu)

(- -}

d%a, d? i 1 o \™
J;,-Z L ,ziay-q Z;(qlm) W(ry +a,,ky). (4.10)

m=0
Next we note that the q,-integral can be done in terms of §-functions and their

derivatives, which in turn allow the a, -integral to be done:
— —

A(ri,ky) = / dza';':zq* ;:;o m!(;i)"‘ [ez“*"“ (624, . b%)mw(rL + a.L,kJ.)]
/d’a;_ ,(2 = [ (aL_L)(a&M -a-g-) W(r. + a_L,kJ.)]
0 T\ ™ 82 m
- "2;1;'. (%) (m) W(ry ky). (4.11)

In the the first and second of these formulas, we use a notation as in the Moyal
formula, Eq. (3.4), in which the arrow shows the direction in which the operand of
an operator lies. When no arrow is present, it is assumed that the operand lies to
the right.

Thus we have found an infinite series connecting A with W. It is convenient

to write this series in terms of an operator,
N L
D= ———, 4.12
or 1" ok L ( )
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so that
Ar k) =eDPW(r k). (4.13)

We use a hat on D to denote an operator, but we must remember that this operator
and others to be introduced momentarily act on phase space distributions, i.e.,
functions of (r1,k, ), and not on wave functions defined over r, -space, upon which
the operators introduced earlier, K, H, T, etc., acted.
The operator notation shows its power when we ask for the inverse of Eq. (4.13);
it is simply
Wi(ry ki) =e 0D 4(r, k). (4.14)

Furthermore, since W is real, we can take the real and imaginary parts of Eq. (4.13)
to find

RBA(rJ.»k-L) = COS(%I))W(I‘L, k.L)a (415)
ImA(ry, ki) =sin(3D)W(rL, ki) = tan(}D)Re A(ry, ki),  (4.16)
W(ry,ky)=sec(3D)Re A(r., k). (4.17)

We see that the real and imaginary parts of Walther’s function A are not indepen-
dent of one another, but rather the imaginary part can be derived from the real
one. This fact was noted previously by Walther,?® who derived the relation in a
somewhat different form. (Evidently, the real part cannot be derived uniquely from
the imaginary part without specifying boundary conditions, since the operator D-!
is an integral, not a differential, operator. For this reason, we avoid the cotangent
and cosecant functions in the formulas above.)

In these formulas, the transcedental functions of the operator D are under-
stood as shorthand for the corresponding infinite series, such as shown in the final
expression of Eq. (4.11). The series may be convergent or asymptotic; in the latter
case, the terms may either start out decreasing rapidly in magnitude, or not. If the
terms do not decrease rapidly in magnitude, then the series will not be of much use.

To find out when these terms do decrease rapidly in magnitude, we make the
estimate that the r -derivative acting on W is of the order of 1/L, as in Eqs. (3.47)-
(3.50), where L is the spatial scale length of the average intensity, and we estimate



the effect of the k | -derivative on W by a factor of the correlation length ¢. The rea-
son for the latter estimate is seen in Eq. (3.52), which shows that the k ; -derivative
acting on W is of the order of the spatial scale length of the function F, defined
in Eq. (3.51), with respect to its second argument. This is the correlation length ¢.
Altogether, the estimate of the effect of the operator Dis

D~e/L, (4.18)

which is < 1 in the case of quasihomogeneous sources, as shown by Eq. (3.54).
Thus we see that the terms of the series in Eqs. (4.13)—(4.17) decrease by powers of
¢/L, and that the convergence is good for quasihomogeneous sources. For coherent
or nearly coherent sources, however, we will have £ ~ L, and the series will converge
slowly if at all.

An example will illustrate these features. For the purpose of this example, we
suppress the z-dependence of A and W, and we replace the 2-dimensional zy-plane
by the 1-dimensional z-axis, writing z and k instead of r; and k. To have a model
which is analytically tractible and sometimes even physically relevant, we assume
that I'(z,z') has the Gaussian-Schell form,*!

Io 1 /z+2'\? (z-2')?
L\/Z—wexP[ 2L2( 3 ) - 2z |’ (4.19)

where I is a reference intensity, and where L and £ are the intensity scale length and

I(z,z') =

correlation length as above, defined precisely in a r.m.s. sense. The normalization
is chosen so that

/F(x,z)da: = Ij. (4.20)

The Gaussian-Schell model shown is not physically realizable if £/L > 2, because in
that case the density operator I* has negative eigenvalues; it corresponds to coherent
light if /L = 2, in which case the wave field is given by

¥(z) = \ RI/_O':_T; T (4.21)

and it corresponds to incoherent light if £/L < 2, becoming quasihomogeneous as
¢/L k2.
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Now we compute both the Wigner and Walther functions for the Gaussian-
Schell model, using 1-dimensional versions of Eqs. (3.14) and (4.1). We find,

Il 2 2k
W(z, k) = T exp [— —22, - } , (4.22)
_ 2t 2(—z% — L20%k? + i2zk)
Az, k) = YREWE ex [ YW ] (4.23)

We notice that for coherent light (£ = 2L) the two functions do not approximate
one another well at all, since A has a significant complex part and the two spatial
scale lengths, while of the same order of magnitude, differ by the factor V2. I,
however, we hold the dimensionless parameters z/L and ¢k fixed while letting ¢/L
become small, then we see that the imaginary part of A becomes small and the
real part of A approximates the Wigner function W better and better. These
conclusions are a special case of a general observation made previously by Walther,?®
who noted that in the quasihomogeneous limit, A becomes real and equal to W.
Walther’s observation was more general than ours because he considered lenses and
other complications, and we are restricted to a homogeneous medium. The same
conclusions were drawn for a homogeneous medium by Carter and Wolf.!"

Now we will test a 1-dimensional version of the series shown in Eq. (4.13). First

we note that
dm
dzm

where H,, is the m-th Hermite polynomial, so that

(5‘2%;) Wiz, k) = (21)'"11,,.(217_5)11 (3‘.)W(: k),  (4.25)

e~ = (=1)"Hm(z)e™", (4.24)

and

/DD W (2, k)-z ( ) ,,,(L“\’/E)Hm(%)wu,k). (4.26)

m—o
Next we use the identity,

+ 00

Hp(2) = \/_ (z +it)yme~t dt, (4.27)



46

to replace the two Hermite polynomials in Eq. (4.26) and to make the series a
summable exponential series. This gives

/2)0 e2 k2

W (z, k)—-—//dsdtexp _-2-17—_5—

+ te(Lf/_ +:s) (\E/k_ + zt) - g2 —tz]. (4.28)

Finally, we do the s and t integrals, and find precisely the function A(z,k) of

Eq. (4.23). In this Gaussian-Schell example, the infinite series is actually convergent

for all values of £/L < 2 (it diverges for the nonphysical values £/L > 2). In general

we must not expect such luck.

To return to the problem of finding the rate of evolution of the Walther function

along a ray, we differentiate Eq. (4.13) to obtain
94 _ imp W
0z 0z’

where we can pull the operator 8/8z through the exponential since 0/9z commutes

with D. Next, for notational convenience we introduce the operators

ok, o"
T ok} ary
using the same convention for the contraction of indices illustrated in Eq. (3.46).

In terms of these operators, we write Eq. (3.45), the equation for the evolution of
the Wigner function, in the form,

W m
= Z (431)

(4.29)

Sn (4.30)

The m = 0 term of the right hand side is S\W = —(ky - Vi W)/k,, which, when
brought over to the left hand side, gives dW/dz, the rate of change of W along a
ray with respect to z. The terms m > 0 are the corrections which go beyond clas-
sical radiometry, with m = 1 being dominant for short wavelengths. Substituting
Eq. (4.31) into Eq. (4.29) and using Eq. (4.14), we obtain an equation of evolution
purely in terms of the Walther function A,

( Hm i/2)D & -(i/2)D
Z  23(2m + 1)! [/ 23 amare =00 ] 4, (4.32)
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If the exponentials on the right hand side are expanded out, we get a triply
infinite series for the rate of change of A along rays; but it turns out that this can be
simplified to a singly infinite series. The first step in the simplification is to invoke
the identity,

eABe~A =B +[A,B)+

:o|._.

A (4,B])+..., (4.33)

where A and B are any operators and where the right hand side is an exponential se-
ries of iterated commutators. This formula is standard in the theory of Lie algebras,
and is commonly used in quantum mechanics. It allows us to express Eq. (4¢.32) in
terms of the iterated commutators of D and $,. But a direct computation shows
that

[D’ S"] = S'R-Hv [b’ [D* Sw"]] = $n+2: (4.34)

etc., so that Eq. (4.32) can be reexpressed in terms of a doubly infinite series of the
S operators:

0A & 1)ym P
9z = 22m( 2,,‘)+ 1)1 Z (—) Sam+p+14. (4.35)

Now this doubly infinite series can be simplified further to a singly infinite
series. First we collect all the terms on the right hand side for which the index p
is even or odd, calling the corresponding operators E and i0 respectively. Then,
with a redefinition of the index p, we have

(=)™ . 3
, ,§§ 22m+2p(2m + 1)!(2p)" 2m+2p+1» (4.36)
( 1)m+p i
O ..;o;» 22m+2p+1(0m + 1)!(2p + 1)!52m+2p+2- (4_37)

Working first on E, we write m’ = m + p, rearrange the summation, and drop the
prime to obtain

(-1)™8m 1
E= Z 2im — Z (2m - 2p +1)!(2p)!" (4.38)

m=0
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The finite p-series on the right is easily expressed in terms of binomial coefficients
and summed; it turns out to be 22™/(2m + 1)!. Therefore we have a rather simple

result,
(=™ A
Sam+1- (4.39)
"4:40 (2m +1)!
Similarly, we find
(=)™
—=S2m+2. (4.40)
,;, (2m + 2)!

Altogether, we find the equation for evolution of the Walther function along a
ray in the form,

Gm+1) @mian| (4.41)

m=0

=(E+i0)A = Z( 1)"'[ Same) +1i Sam+2

The r = 0 term of the E series is S'IA, which, when brought over to the left hand
side and combined with 0A/3z, gives dA/dz, the rate of change of A along rays
with respect to z. The leading correction term is the r = 0 term of the O series;
thus, when the terms are rapidly decreasing, we can estimate the deviations from
classical radiometry by

dA i 9%k, 0%*4 A 1 /22

F 20Ky orl kLT 3(7) 4
Here we are assuming that the rays are either paraxial or substantially off axis,
but not nearly tangent to the reference plane. This is the same estimate made by
Walther* and repeated in Eq. (3.48), except that here we have not just an estimate,
but an explicit formula for the first and all higher order correction terms.

In the quasihomogeneous limit, the Walther function A is almost real, but we
see from Eq. (4.42) that its rate of change along a ray is dominantly pure imaginary.
This suggests that the real part of A is better conserved along rays than A itself.
Indeed, taking the real part of Eq. (4.41), we have

ORe A

0z
where we have called on Eq. (4.16) to express the answer purely in terms of Re 4.
This is the equation of evolution of Re A along a ray. Again, it is the m = 0 term of

—SzA = (4.42)

= E(Red) - O(Im4) = [E-0 ta.n(%f))](ReA), (4.43)
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the E series which, when brought to the left hand side, gives d(Re 4)/dz; and the
dominant correction is the leading term of the product, —O tan(D /2). Therefore in
the quasihomogeneous limit we can approximate and estimate, finding

dRed 1 10%,  O%ReA)

g~ g D(Red)=—¢ ok " rZ(dry -ok,)
1 ¢ 176\ /2\?
~ k—z-z-j'(ReA) ~ -,-\' (-L-) (E) (Re A) (4.44)

This is indeed better than the estimate for the complex function A, but it is not as
good as the estimate (3.47) for the Wigner function, since it does not contain the
paraxial factor and since it does contain the factor ¢/), which can be large.

It is interesting that the equations of evolution for both W and A involve only
the S operators, so that the terms of the series can be estimated in terms of the
single dimensionless parameter A/L, which does not contain the correlation length.
But the equation of evolution for Re A4 involves the additional parameter ¢/).

Apart from other considerations, one would have to conclude that the Wigner
function would be preferable to the Walther function, if the errors committed in
using the classical rules of propagation are a concern. On the other hand, the
Walther function may have other advantages over the Wigner function, e.g., it may
be easier to compute in some circumstances, in which case the results of this section
can be used to control or compensate for the errors.

5. A New Distribution Function

We now introduce a new distribution function, which has the property that it
is exactly conserved along rays. We follow Walther® in motivating this definition.
First we write down a formula for the energy flux,

- nc Jlk'.l- dzk’.l'. k' + k" Wk =k')r 1 ' 1"
J(r) = k—o- (2n)? ( 5 ) e To(k' , k'), (5.1)

which is a combination of Egs. (3.28) and (3.34). The same formula was used
previously by Winston and Ning,22 who used it to construct a conserved flux from
plane waves. We have made the z-components of k' and k" real in this equation,



assuming for simplicity that the wave field specified by [’y contains only travelling
waves. Next we perform a change of variables in the integral, (k' ,k'l) & (k1,q.),
where the new variables of integration are defined by

q=k'-k", (5.2)
kl+kll _

k= 5D (5.3)
_ N k' k'y k' +k"| i

D—\/2(1+ ) L e (5.4

Since the independent variables of integration are the 2-vectors (k'/,k'|) or
(k1,q1), the z-components of Egs. (5.2) and (5.3) must be understood as func-
tions of the perpendicular components. We do this as follows. First, if (k',,k'[)
are regarded as the independent variables, then k), k7 are defined as in Eq. (2.9).
This gives meaning to D, g, and k, as functions of (k/, , k'l ), as well as to q 1, k..
Notice that we have the important identities,

k|? = k2, (5.5)
q-k=0. (5.6)

Next, if (k1,q.) are regarded as independent variables, i.e., if we want the inverse
transformation, then we define k, as a function of k| as in Eq. (2.9), we define g,
and D by

s = -E-L—k’zi*—, (5.7)
D = \/1-la.l?/4k (5.8)
and finally we write
k' = Dk + q/2,
k" = Dk - q/2. (5.9)

Next, to transform the integral (5.1), we need the Jacobian connecting (k'; , k' )
and (ky,q.). The calculation of this Jacobian takes some effort; we were unable to
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find a clever way of doing it, sc we report here the result of a brute-force approach.
It is

Ak, k)| _ KLk

B(ki,qu)| = k2 (810
Thus, we are able to write,
nc dsz_

I(r)= % ] @)t kR(r, k), (5.11)

where the new distribution function R is given by

k'zk,z'D iqr '

R(r,ky) = /dqu e Falkl, kL), (5.11)

Here the vectors k', k" are regarded as functions of (k1,q ) as in Eqs. (5.7)-(5.9).
Thus, by construction, the distribution function R reproduces exactly the formula
for the energy flux which is expected from classical radiometry.

But the most notable property of this function is its exact conservation along
rays. This follows by replacing r in Eq. (5.11) by r + sk/kq, where s is the distance
along a ray. Because of Eq. (5.6), we have

R(r + sk/ko, k1) = R(r,k ), (5.12)

exactly.

As an example, let us compute the R-function for a plane wave,
\/E iKr
—e y
2n
where [j is a normalization intensity and K is a real wave vector satisfying |K|? =
k3. Then we have

Y(r) = (5.13)

To(k'y, k1) = Tob(k!, — K1)6(k'] - K.) = Lo6(qu)é(k, — K): (5.14)
Substituting this into Eq. (5.11), we easily find
R(r, k) =Ié(k. - K,). (5.15)

This function is indeed exactly conserved along rays, because it is independent of
r; it is also exactly what we would expect for the phase space distribution function
representing a plane wave.
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If we try to compute R for a less trivial example, say, a Gaussian-Schell model,
then we find that the integral in Eq. (5.11) cannot be done in terms of elementary
functions. This is as it must be, since a Gaussian-Schell model on some plane z =
const does not remain Gaussian under the exact free space propagation discussed
in Sec. 2, and since the R-function is exactly conserved along rays. In other words,
doing the integral of Eq. (5.11) necessarily inciudes all the complications involved
in an exact propagation. For a plane wave these complications are not serious, so
we are not surprised that we are able to do the integral in this case. Of course, if we
are doing numerical integrations, then computing the R-function is no more difficult
than computing any other distribution function, and it makes the z-propagation
much easier.

6. Conclusions

We will conclude this analysis with some proposals for further study. First,
the conservation of tke Wigner function along rays is remarkably good, especially
when the paraxial factor and the numerical factor of 1/2%3! = 1/24 are taken into
account. One suspects therefore that it might be possible to come rather close, say,
to an edge, and stil! obtain good results by ray tracing. It would be intcresting to
consider this question from a practical point of view. Next, it is easy to develop
various perturbation schemes which use the rays for a zeroth order approximation,
and which take the correction terms developed in this paper as perturbations. It
would be interesting to examine these questions more closely. Third, the results
developed here should be extended to more complicated optical systems, such as
those including lenses. Again, the Wigner function can be expected to be a useful
place to start, although one must proceed carefully when discontinuitites such as
the transition from air to glass are present. Finally, the new distribution function
R presented in this paper should be understood better. For example, we would like
to know what the most general distribution function is which is exactly conserved
along rays, and whether they can be generalized to take care of lenses, etc. We
hope to report on some of these questions in the future.

. ®
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