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Abstract

A review i1s given of the use of nucleon-nucleon effective interactions,
or G-matrices, derived from realistic nucleon-nucleon forces and applied to
the scattering of both light and heavy ions. Particular attention is paid to
the usefulness of simple representations of these interactions. It is shown

that they are remarkably successful in describing the data for both elastic
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and inelastic scattering. , . Cn
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1. Introduction /

Relating nucleon-nucleus and nucleus-nucleus scattering to the under-
lving nucleon-nucleon (NN) interaction is an important problem. Much of the
present analysis of such scattering and reactions is in phenomenclogical
terms, using models like the optical model, collective model, etc. Such
models are very useful for correlating information about nuclei from differ-
ent sources and, indeed, when they are successful (as, e.g., the collective
model) they give us some insight into the nature of nuclear dynamics. None-
theless, it is of considerable interest to understand these models in terms
of the individual nucleon motions and interactions. (This is what is meant
by the word 'microscopic' in the title.)

Because of the strong, short-range repulsion in the NN interaction, an
important first step in this program is a transformation to an effectise in-
teractionl). This procedure is closely parallel to what is required for a
justification of the nuclear shell modelz). One way to do this involves a
two-step reduction of the full Hilbert space to the (very much smaller) model
space in which we do actual calculations. The first step is to take care of
the shcit-range repulsion (e.g. 'hard core'). This involves highly excited
intermediate states, and we may reasonably hope that these are not sensitive
to the particular nucleus we are studying; they are, perhaps, more character-

istic of "nuclear matter'. This leads one to some G-matrix as an effective
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NN interaction to be used in the remainder of tha space. This remaining
space may still be too large to handle explicitly so that it has to be trun-
cated furthera) to make calculations convenient or possible. For example, if
this second truncation 1s to the elastic channel alone, we have the optical
model. Trurcation to a few strongly coupled states leads to 2 coupled-
channels problem, perhaps with the use of the collective model for the
nuclear dynamics. If the second truncation is made instead in terms of the
shell model space used, 1ts consequences can be expressed as a further modi-
fication of the effective NN interaction with the addition of what have be-
come called 'core polarization' effects. Obviously there are variations
possible In this program, but at least this is the kind of philesophy that is
uzed. I am not sure that formal red.ctions of this type have really been
carried through all the way to where we do actual scattering calculations
without some drastic simplification at some point. One of these is the popu-
lar use in finite nuclei (in a local-density approximation) of a G-matrix
characteristic of nuclear matterb’s); of course, the construction of a
finite-nucleus G-matrix is beset with many difficulties and has to be redone,
in principle, for every nucleus and for every energy studied6).

Perhaps the most sophisticated works in this direction are due to

4) 5)

and Brieva and Rook™, who concentrate on

Jeukenne, lLejeune and Mahaux
6)

‘average' properties of the interaction. (See also Lerner and Redish who
studied one nucleus in some detail.) Figure 1 shows some results ) based
upon Hamada and Johnston's potential; the agreement with experiment is very
good for an ab initio calculation. (It also emphasises another feature we
shall return to, that theoretical potentials do not necessarily have the con-
ventional Woods-Saxon shapel)

One aspect of this program, with which I am particularly concerned here,
is to look for an approximate effective NN interaction which is sufficiently
simple that it may be easily and widely used. (Hence the modifier 'semi-'
in the title!) If successful, this would give us a unified description of
NN, N-nucleus and nucleus-nucleus scattering, a model which had predictive
power and which could be used to probe nuclear structure. There is certainly
no guarantee that it is possible to achieve this simple objective, however
it is well worth trying. I report here the results of some attempts in this

direction which are very encouraging.
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Fig. 1. (a) Proton scattering calculated®) with a G-matrix from the Hamada-
Johnston potential. (b) Real and imaginary parts of the potential ('LDA'
corresponds to taking zero-range for G, “Folding' includes the finite-range
of G, 'Phenomenological' is a Woods-Saxon potential,)

2. Properties of the Effective Interaction

A formally-derived effective NN interaction or G-matrix has many unde-
sirable features as something to be used in extensive model calculations; it
is non-local and energy-dependent, it does not have an analytic ferm, and it
depends upon the positions and momenta of the two interacting nucleons within
the nucleus. The hope is that some suitable average of this object can be
represented by some relatively simple, local, function. In this way, the
object we seek is 'effective' at two levels:

YNN,bare” & €7 Vyn,eff’ 1

(In what follows I shall frequently refer simply to 'G' even when I usually
mean the averaged G.) We are encouraged to believe that this can be done by

the relative success for both elastic and inelastic proton scattering of the
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carlier use »8) of the Yoszkowski-Scott cceparation method which says that a

first approximation to G is the long-range part of v . bare" This gives us a
My, D

VNN,eff which is both local and simple if we use one of the popular NN po-
tentials such as Reid's or Hamada-Johnston's,

The dependence of G upon the positions of the two interacting nuclecns
within the nucleus is expressed in most treatments by a form of local density
approximation (LDA) which makes the effective interaction density-dependent.
In its simplest forma’s) this takes G(El.gz) to be the same as the G(m)(glz;o)
for infinite nuclear matter at the same density p(f) as is found at the
centre of gravity E = %(El + 52) of the two interacting nucleons within the
finite nucleus, p = p(r). This ignores the effects of density gradients on
G. This may not be so good in the nuclear surface since the 'range' of G is
not much smaller than the surface thickness of nuclear density distributions.
The resulting density-dependence 1s not small; Fig. 2 shows examples from the
work of Jeukenne, Lejeune and Mahauxa).

Figure 2 also illustrates the energy dependence, there expressed as a
dependence on the b.mbarding energy of the nucleon incident on nuclear matter
after averaging over the (Fermi) momentum distribution of the target nucleons.

The effective interaction for scattering differs from that for two
bound nucleons in that it has an imaginary part; when one nucleon is above
the Fermi surface, there are always 2-particle, 1-hole states degenerate with
the initial state into which the nucleons can scatter. Of course, this
imaginary part is essential for the optical model for elastic scattering; it
also is important for determining the angular distributions for inelastic
scattering. Calculating G for nuclear matter in the appropriate wayh’s)
automatically generates this imaginary part. However, it is perhaps more
questionable to use the LDA in applying this to finite nuclei than it is fecr
the real part. The spectrum of excited states for a finite nucleus shows
strong shell effects and collective efrects (due to the possibility of shape
oscillations) which are not present for the Fermi gas of nuclear matter. It
remains to be seen how important these are, but it may be significant that
current calculationsA’S) are less successful in reproducing the imaginary
part of the nucleon optical potential than the real part. However, explicit
calculations of the absorptive processes for a finite nucleus {see Ref. 10

for example) are lengthy and only moderately successful; perhaps we will have

to be content with a semiphenomenological approach to the imaginary
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Fig. 2. Density and energy dependence of real (V(o)) and imaginary (w(°))
parts of G-matrix for nuclear matter based"’ upon Reid's potential. Plotted
is the volume integral of G times the nuclear density. Fermi momenta of
0.82, 1.10 and 1.35 fm—! correspond to densities of 0.22, 0.54 and 1 times

'normal' density.

interaction, based upon theory but normalized by comparison with data (see

also Ref. 11 for example).
The effective interaction is, of course, spin- and isospin-dependent.

@1



The central parts may be writtenl’7)
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(2)
. , 1,12)
and, in addition, there are spin-orbit and tensor components . Elastic

scattering is dominated by v 0’ while the asymmetry component (-~ (N-Z)/A) of

0
nucleon-nucleus potentials and the charge-exchange interaction for (p,n)

01° The other VST terms and the tensor

terms are most easily seen in inelastic scattering transitions which select

reactions arises primarily from v

the appropriate AS,AT. The two-body spin-orbit interaction manifests itself

in the one-body spin-orbit coupling of the nucleon-nucleus optical po-

3)

as well as often playing an important role in some inelastic
12)

tentiall

transitions

3. Folding Calculations for Nucleons

In order to construct a one-body optical poterntial (elastic scattering)
or transition potential (inelastic scattering) for nucleon scattering, some-
thing like the procedure now to be described must be followed. The potential
felt by the scattered nucleon at position 13 starts out being non-local, as
well as dependent upon the bombarding energy. To lowest order, it is given

by
v, = —p! A . T | BN
Ufr,,rq3E) = 8(r -ry) J pLr, )6 (ry e, 3E)dr, + p(r;,0 )G, (51, 3E) (3)

where p(g) is the one-body density (or transition density) of the target

nucleus and p(r,r') is the corresponding density matrix, so that p(r) =
p(g,r). Further, GD is that combination of even and odd interactions7) ap-

propriate for the direct transition (e.g. the S$=T=0 combination in the sense
of Eq. (2) for elastic scattering from an even target with N = Z) and GEx is
the combination for exchange scattering (i.e. the same except for changing
the sign of the odd components).

It is convenient to define an equivalent local potential U for exam-

LE’®
ple by using the relation (where ¢(£) is the scattering wave function)

Upglrdedry) = I Uz, »1;)¢(x )3 (4)

and then making a local energy approximation for ¢(Ei) in the exchange term.

This gives



L) = J p(r,)6(x,,1,3E)dr, + J P(r 1 )G (e Bkl -ri Dars,
(5)

where k is the wavenumber for the local kinetic energy of the nucleon at po-
sition gl. This may be further simplified by introduciug the Slater approxi-
mation to the density matrix

p(c,r') = p(r) k 3q (kps) (6)

where f = %(§+r'), = [r -r | and k is the Fermi momentum corresponding to
the density p(f). If we now substltute the nuclear matter G( )(glz:p(f);ﬁ)
for matter of density p(g), in place of the finite nucleus G(El,EZ;E), the

integrals in (5) become

U p(r iE) = J o(r +)6<)

(s;p3E)ds
(7}

f p(r, + lS)G( ) (s303E) —— (kps)ig(ks)ds

skF Jl
and can easily be done numerically using previously calculated tables of
values for the G(m). (See alsco Lovezs) for a zero-range version of this ex-
change term, obtainable here by assuming the product (GElejO) has a suf-
ficiently short range that we may approximate D(El + %g) = p(El) and remove
it from the integral.)

Brieva and Rooks) followed this prescription (7) to obtain elastic re-
sults such as those shown in Fig. 1. This has recently been extended14) to
inelastic scattering from a rotational nucleus by using a deformed density
distribution. Figure 3 shows results for 15I‘Sm(p,p'); the only parameters
which enter are those for the density distribution and these were constrained
to values taken from electron scattering measurements plus the assumption
that on " (N/Z)pp. The fit to the data is astonishingly good for a calcula-
tion free of adjustable parameters. (The dashed curves show the effects of
changing the deformation parameters.) |

The results of Jeukenne, Lejeune and MahauxA), although derived somewhat
differently, could be viewed as obtained in the same way with the additional
assumption that G is of sufficiently short range that the densities p vary

little over its range. Then the nucleon potential (7) has the form
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U(x;»E) = o(r,;)J3(p(x;);E) (8)

where J is the 'volume integral' of G(m) (in which direct and exchange parts

are not separated),

J(p,E) = J ¢ (ry,303E)dr,,. (9



(1t is these U = v(®)

+ iw(O) which are plotted in Fig, 2 for various densi-
ties.) The approximation (8) is poor in the auclear surface, as they real-
isedA), and results in the potentials U(r) having too small mean square

radii. This deficiency is corrected by the full folding expression (7).

4. Simplified Effective Interactions

Here we are concerned with simple representations of the effective in-
teraction, the second stage symbolized in Eq. (1). By this we mean represen-
ting the G(w)(s:p;E) in terms of simple functions such as Yukawas and
Gaussians. In this way, we can avoid the need for a completely numerical
representation for G, making calculations easier and faster.

The earliest attempts assumed that G could be replaced by simple po-
tentials that fitted low-energy NN scattering (and the deuteron properties).
owever, it was demonstrateda) that these were somewhat too strong and gave
too deep optical potentials (both for nucleons and for heavy ionsls)) and too
large inelastic cross sections. A later attempt7’8) approximated G by the
long-range part of the S-state component of a realistic NN potential such as
the Hamada-johnston. This was quite successful for nucleon scattering but
overestimated heavy-ion potentialsls) by more than a factor of 2. (It is now
realised that the latter was due to the complete neglect of odd-state forces,
which resulted in the interaction having a spurious long-range component from
the OPEP.)

A more sophisticated approachls) led to an effective interaction that we
shall call M3Y; in it a sum of 3 Yukawa terms were found (for each component
cf the force) which would reproduce realistic oscillator G-matrix elements.
One term was fixed to be the OPEP. The next shorter range was chosen to be
0.4 fm to represent multi-pilon exchange and the third term was arbitrarily
chosen with a range of 0,25 fm. Thus two strength coefficients were left to
be adjusted for each component. For the particular interaction we discucss
here, the singlet- and triplet-even matrix elements were obtained from the
Reid potential, while for the odd-states, the Elliott or 'Sussex' matrix ele-

ments were used. As an example, for the S=T=0 term in Eq. (2) this results

in the exrression

e—4s e-2.Ss
VOO(S) = 17999 Pl 2134—?:,.3— MeV. (10)



(Note the absence of an OPEP contribution from this expression!)

This represents the interaction CD for the direct term of Eq. (3). Note
that since the G-matrix was in an osciliator representation, we do not have
an explicit dependence on either density or energy. Indeed, this M3Y inter-
action corresponds to a certain average over a range of densities and kinetic
energies determined by the oscillator basis used. In addition, from its con-
struction, it is real and the imaginary interaction mist be introduced phe-
nom=noclogically.

There is a corresponding expression for CEX’ in which the odd-state con-
tributions have opposite sign. This may be used as it stands if the exchange
terms of Eq. (3) are calculated explicitlyl'y'le). However, the calculations
are greatly simplified if the exchange terms are treated approximately, for
example in the way that led to Eq. (7). An alternate and simpler treatment17)
leads to the use of a zero-range pseudopotential to represent exchange so

that v is replaced by

eff

vipp(SiE) = v . (s) + J(E)S(s). (11)

The strength j(E), which may be obtained by normalizing against 'exact' cal-

18)

culations of the exchange terms » depends sensitively on the spin-,

isospin~-character (i.e. S,T in Eq. (2)) but only varies weakly with the ener-
gy E. For example, for E = 10 MeV, the pseudopotential for S=T=0 to be added
to Eq. (10) has 300 = =262 MeV fm3 and this only varies by a few percent over
the range E - 5 to 20 MeV. The effective interaction véff(s) of Eq. (11) can
then be folded with the nuclear density or transition density to give the po-

tential,
ULE(r;E) = J p(z+§)véff(s,E)d§. (12)

A nuclear-matter G-matrix interaction has been represented in a similar

19)

way. This G was obtained by Eisen and Day from the Reid potential and
applied successfully to alpha elastic scatterir-g in the LDA of Eq. (7). It

is local (and real) but explicitly and strongly density-dependent. Its oscil-
lator matrix elements were fitted by a similar sum of 3 Yukawa terms by Love

the density-dependence can be expressed in the form

veff(S.p) = vl(S) + vz(S) e %, (13)
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v .ich has some calculational convenience. This interaction has been found to
give resules very similar to those obtained with the M3Y interaction. For

example, Fig. 4 shows almost identical results for the folded potential for

160 + 6ONi near the

1000 (- 16~ 60n.: strong absorption
-~ O +""Ni radius. (This figure

8 ———— Even-State OPEP also indicates that the

JH aasa8a M3Y density dependence is
cooo DD(‘GO)

eeee DD(GONi)
- DD(‘BO*’GONi)

important by comparing
results in which either

the density of 160 or

QO
that of 6ONi were ueg-

lected.)

The. nuclear matter
G-matrix of Brieva and
RookS) has also been

given a simple spatial

-Re U(R)}(MeV)

o

representation

20)
recently , as sums of
5 Gaussian *“erms fitted
to the G for several

densities.

] ] N}

o1 10 1

) R(fm)

Fig. 4. Folded potentials for 180 + 60Ni near the
stcong absorption radius (R = 9.6 fm). M3Y =
interaction (10), (11); DD = one of the form (11),
(13) based on Day's G-matrix!®’. The legend indi-
cates which densities were included for the
latter3?),

5. Applications to Nucleon Scattering

The M3Y interaction has not been applied in any detail to nucleon
elastic scattering, but Flg. 5 shows examples for 60Ni based upon the form
(11) and (12). Only the real, central potential is predicted; the imaginary

and spir-orbit terms were simply taken from the global potential of Becchetti
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Fig. 5. Comparison with data of elastic cross sections for folded real po-
tential from M3Y interaction (plus imaginary and spin-orbit terms from
Becchetti-Greenlees global model).

and Greenlees. The agreement with experiment is satisfactory, but not as good
as can be obtained with a phenomenological Woods-Saxon potential. The theo-
retical real potential appears to have a mean square radius which is slightly
too small. This may be due to a deficlency of the zero-range pseudopotential
(11) used for the exchange. A treatment of exchange like that of Eq. (7)

does result in a slightly larger radius. The deficiency does not appear to

be due to a mistreatment of the density-dependence because the interaction

19)

based upon Day's G-matrix gives almost identical results.
Applications to an (n,n') excitation and a (p,n) isobar transition are

shown in Fig. 6. The (n,n') case, predominantly 3=T=0, shows another
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based on Day's density-dependent G-matrix!®). Exchange was calculated
'exactly'.

example of the similarity between cross sections predicted by M3Y and the in-
teraction based upon Day's G-matrix. However, the (p,n) transition (S=0,T=1)
indicates that this isovector component of the latter interaction is too weak.
The (n,n') was calculated21) using RPA transition densities known to be in
agreement with electron scattering and B(EL) values. The (p,n) isobar tran-

22)

When we consider inelastic transitions for non-closed shell nuclei and

sition used a neutron excess generated from the shell model.

we use truncated shell model wavefunctions, the amplitudes usually have to be
supplemented by so-called 'core polarization' contributions. These are the
same contributions that necessitate the use of effective charges in shell

model calculations. They may be calculated simply and phenomenologically23)

or microscopically but with more effortza). This is illustrated for a simple
case in Fig. 7. With a simple (d5/2)2 configuration, the M3Y interaction

predicts a cross section too small by a factor of 4. Adding the
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phenomenological core polarization amplitude brings agreement with the data.
In this case, the phenomenological 'core' part is comparable to the part
being calculated microscopically; the interference between them is very im-
portant. (Figure 7 also illustrat«d the importance of the exchange (E) term
for the higher multipoles7). Adding it to the direct term (D+E) gives much

more cross sectiom than the direct (D) term alone.)



t. Folding {or Composite Projectiles

When the projectile is composite (e.g. a 'heavy ion'), the folding
formulae (7) or (12) must be extended to include integrating over the pro-

jectile density distribution (the so-called 'double folding'). For example,

Eq. (12) becomes
U p(RSE) = JJ Py (r)e,(ry)viee(xy,3E)dr, dr, (14)

where the coordinates are defined in Fig. 8, and we have assumed the
zero-range pseudo-
potential (11) to
account for the
interchange of one

q
2 nucleon from each

. nucleus. (Since in
R most cases it is
the potential for
peripheral col-
4 lisions that is im-
! /ﬂz portant, it is
reasonable that this

Fig. 8. Coordinates for double-folding integrals. i
single nucleon ex-

change should be the dominant effect of antisymmetry between the two nuclei.)
Eisen and Day in their worklg) on alpha scattering used a double-folded gen-

25)

eralization of Eq. (7). It has been found that one version of this ap-

proach predicts somewhat larger exchange contributions than the approximation

26)

(11). A similar treatment of exchange has recently been advocated for

alpha scattering.
When an explicitly density-dependent interaction is being used, the
question arises as to what density to use when two composite nuclei collide.

The form (13) factorizes in a useful way if we choose the p that G depends

upon to be simply

p=p,(r) + 0,0y,

rather than, say, pl + Py evaluated at f = %{gl + 52). 0f course, the wl.ole

approach must be wrong if the results are very seusitive to the choice we
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make, A more basic problem concerns the very definition of G in this situa-
tion; for example, we have twg pieces of nuclear matter moving relative to
one another. Nonetheless, we ignore these problems for the present and
simply ask how good is an effective interaction .uch as the M3Y.

The most direct measure we have of the densities to be used in the
folding model comes from electron scattering. This only tells us about the
charge distribution, i.e. primarily the proton distribution. To extract the
distribution of proton centers p_, it is important to unfold the finite
charge distribution of the protoz (and the nsutron). For example, the folded
potential for QOCa + 40Ca at the strong absorption radius increases by 547 1f
we forget to do this. Our information about neutron distributions on is less
direct (although analyses of recent high energy proton scattering are
promising). For nuclei with N = Z it is probably adequate to take Dn = Dp.
For other nuclei, we resort to the shell model with the same sized potential-
well for both neutrons and protons but with well-depths adjusted to yleld the
correct separation energies for the least-bound nucleons. For the closed-
AO,ABCa' 902r a 208

shell nucleil nd Pb we also use the Hartree-Fock densities

of Negele.

Since the real potential for strong-absorption scattering is only im-
portant for nuclear separations corresponding to a very swall overlap of the
two densities, the range of the interaction is very important. This is
illustrated by Fig. 9 which shows the volume integral required for Veoff to
produce the correct potential for 40Ca + AOCa as the range of veff is varied.
This implies, for example, that one would have to use with great caution
schematic interactions such as Skyrme's which were derived in situations
where their range was of little consequence. This sensitivity to range also
explains why it is important to treat correctly the long-range OPEP. The
early use7’8) of the long-range part of the even-state Hamada-Johnston po-
tential contained a spurious term from the OPEP; because of its range (1.4 fm)
this contributed a disproportionate amount to the tails of heavy-ion po-
tentialsls). Figure 4 shows that this spurious term alone gives a potential
larger than the empirical one near the strong absorption radius.

We may ask what parts of the density distribution are sampled in a
folding calculation. The main interest is in the potential at the strong
absorption radius where typically the half~density points of the two nuclei

are still separated by about s = 3 fm. Figure 10 shows how this potential




changes if we put
Tao 4OC~O + 4OCO the two densities
E --Re U(D]/2)= ]35 MeV equal to zcro at n

1200 }— ——Gauss times the diffuse-

———Yukawa ness parameter a be-
yond the half den-
sity radius C; i.e.
we put pi(r) = 0 if
r > ¢y + na.. The

calculation is for
84Kr . 209

Bi with

a1 = 32 = 0.5 fm.

The strong ab-

600 —

sorption radius is
about R = 14.2 fm.

200 r— If we are to attain

the potential at

1 l J this radius correct
6] 1.0 20 3.0 ’

<r2>|/2

Fig. 9. Variation of volume integral of a single tor = c + 9.5a
Gauss or Yukawa term with its mean square radius
needed to give the empirical potential at the

strong absorption radius (01/2 = 10.6 fm). ~ 10—4 of their

to 1%, the densities

must be carried out

(where they are

central values and
extend well into the other nucleus). We see that 20% of the potential comes
from p at r > ¢ + 5.4a where the density tail of one nucleus has reached the
half-density region of the other nucleus. In other words, it is not just the

extreme tails of the Py that are involved but their whole surface regions.

7. Applications to Alpha-Particle Scattering

First we consider alpha scattering. Although many folding calculations
have been made for alphas with a variety of interactions, including that of
Eisen and Daylg) (see, for example, Ref. 27), rather few applications of the
M3Y interaction have been made. These include the a + o system, for which
the folded potential obtaing? was found to be almost exactly the same as the
2

potential previously found to reproduce accurately the a + a phase shifts
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up to 40 MeV.
Perhaps the most interesting case is a + 40Ca which, at energies around

30 MeV, exhibits the so-called anomalous large-angle scattering (ALAS) (see

Fig. 11). It is now knownzg) that this can be understood as a simple
: y
§ He + *°Ca o He + 99Ca, E= 29 MeV
- Re Up 55 — o
——— M3Y L —~~ Up+1#p .
4 T 45] Ur § v
\o?E o'l .
- oF
- C ]
- gf ,
~ L S i
x 162}~
ol |- F
L £ S
[0 I o ’I
b I f
I B f {
- R N N NN RO M 1 N S
nd o 20 a0 &0 80 100 20 a0 170 180
cm
Tl
i
l [ B L 1N
2 3 4 5 3 7 8 9
R(fm)
Fig. 11. Real potentials and cross sections for a + “0ca. U_ is the phe-

nomenological (Woods-Saxon)?2-65 potentialzg); Up is the folde potentialsl).
(M245 is an interaction like M3Y but with a slightly longer range31).)

potential scattering phenomenon arising from relatively weak absorption in

the nuclear interior. This allows for a wave to be reflected from the inner,

centrifugal barrier without being totally absorbed which is responsible for

the ALASBO).

absorption for this system in this energy region is less than'usuali)

(Thus, the scattering is 'anomalous' only in the sense that the
What
is found3l) is that a folded potential using the M3Y interaction (in the form
(10) and (11)) gives very closely the same real potential (see Fig. 11) as
the phenomenological one deducedzg) from the data. (Indeed, fits to the data

like that shown in Fig. 11 can be obtained with just one adjustable parameter
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by taking the imaginary potential to have the same shape as the folded real
one and adjusting its strength.) There are two interesting features:

(i) The phenomenological potentialzg) has a Woods-Saxon form raised to
the 2.65 power, thus emphasising again that folded potentials in general have
shapes different from the simple Woods-Saxon one.

(ii) The real potential requitedzg) to fit the data is deep (-~ 290 MeV
at r = 0) which agrees with the folding model. Since the scattering here is
sensitive to the potential at smaller radii, this implies that the folding
model with this interaction is reproducing the correct potential even in
regions where the a and 4OCa have complete overlap.

Two other points should be noted. First, that the density-dependent in-

19)

gives a very similar folded po-

31)

tential., Secondly, there are indications both from the elastic and the

teraction derived from Day's G-matrix

inelastic scattering that the folded potentials would give improved fits if
their mean square radii were increased slightly. This may be further evi-
dence that the zero-range approximation {(11) to exchange is not fully ade-
quaie. Preliminary results suggest that an improved approximation25’26) in

the spirit of Eq. (7) gives better results.

8. Applications to Heavy-Ion Scattering

Many applications to heavy-ion scattering data have been made using the
folding model with the M3Y interaction and will be discussed elsewhere32).
Most of the applications have been for elastic scattering, although some suc-
cesses have been reported for inelastic scattering also (see Refs. 37 and 38
for example). 1In most cases the data only determine the potential at some
strong absorption radius. Figure 12 illustrates this; the shaded band en-
33)

compasses many Woods-Saxon potentials which fit the data equally well We

see that the potential is determined primarily at r = 10.5 fm. The calcu-
1ated33) folded potential from M3Y reproduces the value here to 2%. (Figure
4 provides another example for a similar system.)

To summarize a recent reviewzz) of applications of M3Y, we list in Table
1 the systems studied, together with the factors N by which the real folded
potential had to be multiplied in order to optimize the fit to the data. (In
each case, a Woods-Saxon imaginary potential was used with a minimum adjust-
ment of its parameters.) The value N = 1,0 means that the model is success-

ful. Undoubtedly, some of the fluctuations of N about unity are due either
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to uncertainties in the densi-

ties used or to idiosyncracies

T T T i fi d. How-
160463C, — 160+ 63Cy in the data being fitte
_____ 6 Mot (x1.02) ever, the trend is for N = 1.1

Adiabotic (a=1.4) ] with deviations mostly around

0 REUgm(Duz’ : 10%, quite a remarkable suc-

« Coutomb Barrier cess for such a simple model
Position

and interaction. (We may say,
in another sense, that the in-
teraction is indeed ‘'ef-
fective'l)

Figure 13 shows the fits

-Re Ugpt (1) (MeV)

for some light heavy-ion sys-
tems. Figure 14 provides some
evidence that the scattering

is sensitive to the value of

the real potential. The data
r{tm) for this particular enmergy are

. R anomzlous in requiri deep-
Fig. 12. Potentials near strong ab- quiring a P

sorption radius (D7, = 10.5 fm) which er real potential than is

fit the data33). Shaded area includes needed at other energies: Fi
Woods-Saxon potentials, Dashed curve & i E-
is the folded potential from M3Y inter- 15 shows that the potential
action. adjusted to fit the 74-MeV

data (N = 1.14) reproduces

without change the data at other energies except 56 MeV. Finally, Fig. 16

shows a more massive system, 40Ca + 40C

the data for 143.6 MeV and then used unchanged for the other energies.

a. The potential was adjusted to fit

Some special cases must be mentioned. First there are some systems at
40 . . .
some energies analogous to the o + “Ca case just discussed which show rela-

tively weak absorption and which are sensitive to the potential at radii

smaller than the strong absorption radius. Data for one of these, 12C + 12C

at energies from 70 to 126 MeV, was shown34) to be fitted by using a deep,

folded real potential, whereas good fits could not be obtained with a shallow
potential. Another such case is 160 + 2851 at energies of ~ 50-70 MeV whose
cross sections exhibit oscillations and relatively large values at back
angles. This behaviour has been described35) in terms of potential
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scattering. The scattering from
the folded potential can exhibit
similar behaviour but not enough
work has been done yet to know
whether a good fit to these data
can be achieved with it.

Finally, we must mention the
scattering of 6Li. Results for
this projectile are not included in
Table 1; however, analyses of 6Li
scattering from a variety of tar-
gets at energies from 23 to 156 MeV
show36) that the folding model with
the M3Y interaction overestimates
the 6Li—nucleus potential by almost
a factor of 2. (Most data are con-
sistent with N = 0.6.) This in-
cludes a case, 6Li + 4OCa at 30
MeV, which ¢xhibits ALAS (see Fig.
17) and is sensitive to the po-
tential at small radii, yet which
is fitted well by simply renormal-
izing the folded potential by 0.6.
The reason for this discrepancy is
not yet understood, although it is
likely to be related to the ease

with which "Li may be broken up. The scattering of 7Li has not yet received

much study but does not appear to be anomalous in the same way.



dofoo,

¢y

0.8

0.6

0.4

0.2

1w

.

M A o e i RETER ‘ Ceven e e

ORNL -DWG 7B-14045

Fig. 14. Effect
of varying the

o i R R T )
! strength of the
e 6, 40 real, folded po-
"~ A\ 0+ Ca ~ tential (ob-
- N3 c\ 55.6 Mey tained with the
- gty 4 v ¢ _ M3Y interaction).
s
A
s
\
— Y —
— N=150
B — — N=1.144 ]
------- N=10 kY
\
b— N\ —
L]
N
\.\
Lo T,
0 10 20 30 40 50 60 70 80
Bc.m. deg)
o o B . ) ORY - Dwl 7B 1059
L‘ o “I’o j‘"cﬂ o 1 Fig. 15. Cross sections
[t wes ; from folded real (M3Y) plus
N ] Y .
i LN TT TR VIR eapl SN : Woods-Saxon imaginary po-
P \ i tential for 60 + “Oca.
NPT N ., ’ The potential was adjusted
. . l to fit the 74-MeV data (N =
e hS o 1.14).
. LN
o T
e 5 ..\ '
et ) . \ \'.-\ ‘
s kN |
'-\ . \\ \\ }
v [} 1 {
v \ 4 \ )
AR §
BT ‘
L t \. !
\ 4 \ |
’] \L i) }
¥ d N )
{ \
5, i N \\ I
inn L. .' \f‘
is b \ I
r ' t' |
E . ) }
e RS T S SRS S S T
« ¢ .40 50 &C 70 63 90 Q0 wI €

6, m (otg)



<
p
. 4
i ]

&1
] 3
't E
i ]
lD‘E !
113 3
' ]
< T
sk 3
r p
oF ]
,L =

& o cong

Fig. 16. Cross sections from
folded real (M3Y) and Woods-
Saxon imaginary potential for
40ca + 40ca. The potential
was adjusted to fit the 143.6
MeV data.

e langl

ottt

Loy

Lt

«®
2
8}
é
W'
s F
« 2}
$ o
w?
2T OE
s -
2['
™
*r
2
|0":—
o
Fig. 17.

Scattering from folded real

(M3Y) plus Woods-Saxon imaginary po-

tential for SLi + “0Ca.
tential renormalized by N.

Folded po-

24



References

(Instead of attempting a complete bibliography, often I simply refer to
papers where other references can be found.)

*
Supported by a Research Fellowship of the Japan Society for the Promotion
of Science.

*k
Research sponsored by the Division of Physical Research, U.S. Department of

Energy, under contract W-7405-eng-26 with the Union Carbide Corporatior.
1) See, for example, N. K. Clendenning in Proc. Int. School Phys., "Enrico

Fermi", Course XL (Acacemic Press, New York, 1969); V. A. Madsen, in

Muclear Spectroscopy and Reactions, Part D (Academic Press, New York,

1975).
2) See, for example, M. H. Macfarlane, in Proc. Int. School Phys., "Enrico

Fermi', Course XL (Academic Press, New York, 1969).

3) H. Feshbach, Ann. Phys. 19 (1967) 287.

4) J. P. Jeukenne, A. Lejeune and C. Mahaux, Phys. Rev. Cl6 (1977) 80.

5) F. A. Brieva and J. R. Rook, Nucl. Phys. A297 (1978) 206.

6) G. M. Lerner and E. F. Redish, Nucl. Phys. A193 (1972) 565; G. M. Lerner
and J. B. Marion, Nucl. Phys. A193 (1972) 593.

7) W. G. Love and G. R. Satchler, Nucl. Phys. A159 (1970) 1.

8) D. Slanina and H. McManus, Nucl. Phys. 116 (1968) 271; L. W. Owen and
G. R. Satchler, Phys. Rev. Lett. 25 (1970) 1720; G. R. Satchler, Zeit. f.
Phys. 260 (1973) 209; E. C. Halbert and G. R. Satchler, Nucl. Phys. A233

(1974) 265.
9) G. E. Brown, Unified Theory of Nuclear Models and Forces (John Wiley &

Sons, New York, 1967).

10) P. W. Coulter and G. R. Satchler, Nucl. Phys. A293 (1977) 269.

11) G. Baur, V. A. Madsen and F. Osterfeld, Phys. Rev. C1l7 (1978) 819.

12) See, for example, W. G. Love and L. J. Parish, Nucl. Phys. Al57 (1970)
625; W. G. Love, Nucl. Phys. Al92 (1972) 49.

13) F. A. Brieva and J. R. Rook, Nucl. Phys. A297 (1978) 206.

14) F. A. Brieva and B. Z. Georgier, to be published.

15) G. R. Satchler, Phys. Lett. 59B (1975) 121.

16) G. Bertsch et al., Nucl. Phys. A284 (1977) 399.

17) F. Petrovich et al., Phys. Rev. Lett. 22 (1969) 895.

18) W. G. Love and L. W. Owen, Nucl. Phys. A239 (1975) 74.



24)
25)
26)
27)

28)
29)
30)
31)
32)
33)
34)
35)
36)
37)
38)
39)

Y. Eisen and B. Day, Phvs. Lett. 63B (1976) 253.

. A. Brieva, H. V. Geramb and J. R. Rook, to be published.
D. E. Bainum et al., Phys. Rev. Cl6 (1977) 1377.
W. G. Love, Phys. Rev. C15 (1977) 126l.
W. G. Love and G. R. Satchler, Nucl. Phys. A101 (1967) 424; Al72 (1971)
449,

F. Petrovich et al., Phys. Rev. Cl6 (1977) 839.

W. G, Love, submitted to Nucl. Phys.

2. Majka et al., Phys. Rev. C18 (1978) 1l14.

See, for example, Gubler et al., Phys. Lett. 74B (1978) 202; see also
Proc. Conf. on Radial Shape of Nuclei (Cracow, 1976).

B. Buck et al., Nucl. Phys. A275 (1977) 246.

F. Michel and R. Vanderpoorten, Phys. Rev. C16 (1977) 1lé&2.

D. M. Brink and N. Takigawa, Nucl. Phya. A279 (1977) 159.

W. G. Love, Phys. Rev. Cl7 (1978) 1876.

W. G. Love and G. R. Satchler, to be published.

H. Wojciechowski et al., Phys. Rev. Cl7 (1978) 2126.

R. M. Wieland et al., Phys. Rev. Lett. 37 (1976) 1458.

V. Shkolnik et al., Phys. Lett. 74B (1978) 195.

G. R. Satchler and W. G. Love, Phys. Lett. 76B (1978) 23.

J. Moffa, C. B. Dover and J. P. Vary, Phys. Rev. C16 (1977) 1857.
G. R. Satchler et al., Nucl. Phys. A298 (1978) 213.

W. G. Love, Phys. Lett. 72B (1978) 4.



Table 1. Heavy-ion scattering using a folded real potential based upon the
M3Y interaction. The potential is wuitiplied by N and N is varied
to optimise the fit to the data.

System Energy N System Energy N
(MeV) _ (MeV)

40ca + %%, 130-240 1.32 00+ %5y 142 0.91
32 448, g3 1.09 1604+ 285; 215 9.76
325 4+ %0ca 100 1.26 100 + 28gs 81 1.00
325 4 32 91 1.22 160 4 2854 72 1.00
25 + 270 106 1.06 60+ %8sy 66 1.01
165 4 208p, 393 1.05 150 4 28y 60 1.01
160 4+ 2085, 192 0,95 169 4+ 285y 53 1.00
165 4 2085, 439 1.16 100 + %8g; 38 1.01
165 4 88, 5 1.22 169 4+ 12%¢ 168 1.11
16, 4+ 885, 5 1.21 Pn+ 8 50 1.18
16, 4+ 88 5o 1.19 L4y 4+ 16 154 1.30
16, + 885, 4 1.36  n o+ 1% 156 1.03
160 + %0y 142 1.00 3¢ +2%m g 1.27
1% + 80y s 106 Y204+ 2%, 116 1.26
60 + %0 142 1.00  t2c+ 208y 96 1.25
65 + %0 56 1.00 o+ By 70 1.15
165 + %0 52 0.99 1%2¢ + 90 98 0.98
65 4+ %0 49 1.10 ¢+ 4%, 45 1.14
%5 + %0 4 0.87 Y2c+ %835 132, 186  0.97
65 +°%0 40  0.98 1%c 4+ 28gy 40 1.02
165 4 48ca 56 0.98 12c+1c  70-126 1.01-1.13
165 4 40c, 214 1.05 g 4+29%; g5 1.45
165 + %0ca 140 1.23 g 4 208, 72 1.26
169 4+ 40ca 104 0.99 105 4 163 99 1.04
166 4 40ca 74 1.14
165 4+ 40c, 56 1.27 Average 1.09 + 0.13



