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A review is given of the use of nucleon-nucleon effective interactions,

or G-matrices, derived from realistic nucleon-nucleon forces and applied to

the scattering of both light and heavy ions. Particular attention is paid to

the usefulness of simple representations of these interactions. It is shown

that they are remarkably successful in describing the data for both elastic

and inelastic scattering. , „ /
v• -<

1. Introduction

Relating nucleon-nucleus and nucleus-nucleus scattering to the under-

lying nucleon-nucleon (NN) interaction is an important problem. Much of the

present analysis of such scattering and reactions is in phenomenological

terms, using models like the optical model, collective model, etc. Such

models are very useful for correlating information about nuclei from differ-

ent sources and, indeed, when they are successful (as, e.g., the collective

model) they give us some insight into the nature of nuclear dynamics. None-

theless, it is of considerable interest to understand these models in terms

of the individual nucleon motions and interactions. (This is what is meant

by the word 'microscopic' in the title.)

Because of the strong, short-range repulsion in the NN interaction, an

important first step in this program is a transformation to an eff<;ctire in-

teraction

justification of the nuclear shell model'

two-step reduction of the full Hilbert space to the (very much smaller) model

space in which we do actual calculations. The first step is to take care of

the shcit-range repulsion (e.g. 'hard core"). This involves highly excited

intermediate states, and we may reasonably hope that these are not sensitive

to the particular nucleus we are studying; they are, perhaps, more character-

istic of 'nuclear matter'. This leads one to some G-matrix as an effective

By acceptance of th is s n i ^ l u , t i io n u W i ; " M •>•

recipient acknowledges the U S . Gov . r i v n ; n i '

t i g l i t to re ta in a ncn - evc iuswi j , f jy.- i iw - U •••

'^ i O i ' X i T i j 1 ; : . ^ L ' . ' : > . i '••',>' ' ! * p o n s e ' " £"<* t 0 s n y - (?P)''I*'1 '*-•••'••'"•? : f i '
w l \ article. j f

This procedure is closely parallel to what is required for a
2)

1 One way to do this involves a



J.'N interaction to be used in the remainder of tha space. Tin's rc-r.aininK

spare may still be too large to handle explicitly so that it ha« to be trun-
3)

cated further to make calculations convenient or possible. For example, if

this second truncation is to the elastic channel alone, we have the optical

model. Truncation to a few strongly coupled states leads to a coupled-

channels problem, perhaps with the use of the collective model for the

nuclear dynamics. If the second truncation is made instead in terms of the

shell model space used, its consequences can be expressed as a further modi-

fication of the effective NN interaction with the addition of what have be-

come called 'core polarization1 effects. Obviously there are variations

possible in this program, but at least this is the kind of philosophy that is

used. I am not sure that formal red>ctions of this type have really been

carried through all the way to where we do actual scattering calculations

without some drastic simplification at some point. One of these is the popu-

lar use in finite nuclei (in a local-density approximation) of a G-matrix
4 5)

characteristic of nuclear matter ' ; of course, the construction of a

finite-nucleus G-matrix is beset with many difficulties and has to be redone,

in principle, for every nucleus and for every energy studied .

Perhaps the most sophisticated works in this direction are due to
4) 5)

Jeukenne, I-ejeune and Mahaux and Brieva and Rook , who concentrate on

'average' properties of the interaction. (See also Lerner and Redish who

studied one nucleus in some detail.) Figure 1 shows some results based

upon Hamada and Johnston's potential; the agreement with experiment is very

good for an ab_ initio calculation. (It also emphasises another feature we

shall return to, that theoretical potentials do not necessarily have the con-

ventional Woods-Saxon shape!)

One aspect of this program, with which I am particularly concerned here,

is to look for an approximate effective NN interaction which is sufficiently

simple that it may be easily and widely used. (Hence the modifier 'semi-1

in the title!) If successful, this would give us a unified description of

NN, N-nucleus and nucleus-nucleui scattering, a model which had predictive

power and which could be used to probe nuclear structure. There is certainly

no guarantee that it is possible to achieve this simple objective, however

it is well worth trying. I report here the results of some attempts in this

direction which are very encouraging.
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Fig. 1. (a) Proton scattering calculated5) with a G-niatrix from the Hamada-
Johnston potential. (b) Real and imaginary parts of the potential ('LDA'
corresponds to taking zero-range for G, 'Folding' includes the finite-range
of G, 'Phenomenological' is a Woods-Saxon potential.)

2. Properties of the Effective Interaction

A formally-derived effective NN interaction or G-matrix has many unde-

sirable features as something to be used in extensive model calculations; it

is non-local and energy-dependent, it does not have an analytic form, and it

depends upon the positions and momenta of the two interacting nucleons within

the nucleus. The hope is that some suitable average of this object can be

represented by some relatively simple, local, function. In this way, the

object we seek is 'effective' at two levels:

(1)

(In what follows I shall frequently refer simply to 'G' even when I usually

mean the averaged G.) We are encouraged to believe that this can be done by

the relative success for both elastic and inelastic proton scattering of the



I'.irlicr use '' of The *'o.szkowski-Scot_ t ::c-j.;ir.it ion mot hod which says that a

first approximation to (I is the long-range p.jrt of v,,(. , . This gives us a
l\ i\ f U til C

v which is both local and pimple if we use one of the popular NN po-

tentials such as Reid's or Hamada-Johnston's.

The dependence of G upon the positions of the two interacting nucleons

within the nucleus is expressed in most treatments by a form of local density

approximation (LDA) which makes the effective interaction density-dependent.
4 5) (°°)

In its simplest form ' this takes G(r ,r ) to be the same as the G (r _;p)

for infinite nuclear matter at the same density p(r) as is found at the

centre of gravity r = "̂(r.. + r ) of the two interacting nucleons within the

finite nucleus, p = p(r). This ignores the effects of density gradients on

G. This may not be so good in the nuclear surface since the 'range' of G is

not much smaller than the surface thickness of nuclear density distributions.

The resulting density-dependence is not small; Fig. 2 shows examples from the
4)

work of Jeukenne, Lejeune and Mahaux

Figure 2 also illustrates the energy dependence, there expressed as a

dependence on the b<. rsbarding energy of the nucleon incident on nuclear matter

after averaging over the (Fermi) momentum distribution of the target nucleons.

The effective interaction for scattering differs from that for two

bound nucleons in that it has an imaginary part; when one nucleon is above

the Fermi surface, there are always 2-particle, 1-hole states degenerate with

the initial state into which the nucleons can scatter. Of course, this

imaginary part is essential for the optical model for elastic scattering; it

also is important for determining the angular distributions for inelastic
4 5)

scattering. Calculating G for nuclear matter in the appropriate way '

automatically generates this imaginary part. However, it is perhaps more

questionable to use the LDA in applying this to finite nuclei than it is for

the real part. The spectrum of excited states for a finite nucleus shows

strong shell effects and collective effects (due to the possibility of shape

oscillations) which are not present for the Fermi gas of nuclear matter. It

remains to be seen how important these are, but it may be significant that
4 5)

current calculations * are less successful in reproducing the imaginary

part of the nucleon optical potential than the real part. However, explicit

calculations of the absorptive processes for a finite nucleus (see Ref. 10

for example) are lengthy and only moderately successful; perhaps we will have

to be content with a semiphenomenological approach to the imaginary
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Fig. 2. Density and energy dependence of real (V ) and imaginary (W )
parts of G-tnatrix for nuclear matter based'4-' upon Reid's potential. Plotted
is the volume integral of G times the nuclear density. Fermi momenta of
0.82, 1.10 and 1.35 fm"1 correspond to densities of 0.22, 0.54 and 1 times
'normal' density.

interaction, based upon theory but normalized by comparison with data (see

also Ref. 11 for example).

The effective interaction is, of course, spin- and isospin-dependent.



Tin- central parts may be written '

Veff = V00^1'?2) + V10(ri'?2)or°2 + V01 (?l'?2)Tl 'T2 + Vll (h ' ^ W l 'T2 '

(2)
1 12)

and, in addition, there are spin-orbit and tensor components ' . Elastic

scattering is dominated by v , while the asymmetry component (- (N-Z)/A) of

nucleon-nucleus potentials and the charge-exchange interaction for (p,n)

reactions arises primarily from v .. The other v terms and the tensor
OX £> 1

terms are most easily seen in inelastic scattering transitions which select

the appropriate AS,AT. The two-body spin-orbit interaction manifests itself

in the one-body spin-orbit coupling of the nucleon-nucleus optical po-
as \
12)

13)tential as well as often playing an important role in some inelastic

transitions

3. Folding Calculations for Nucleons

In order to construct a one-body optical potential (elastic scattering)

or transition potential (inelastic scattering) for nucleon scattering, some-

thing like the procedure now to be described must be followed. The potential

felt by the scattered nucleon at position r.. starts out being non-local, as

well as dependent upon the bombarding energy. To lowest order, it is given

by

f p(r2)GD(-l'-2;E)d~2 + p(?l'-i)GEX(-l'-i;E) (3)

where p(r) is the one-body density (or transition density) of the target

nucleus and p(r,r') is the corresponding density matrix, so that p(r) =

p(r,r). Further, G is that combination of even and odd interactions ap-

propriate for the direct transition (e.g. the S=T=O combination in the sense

of Eq. (2) for elastic scattering from an even target with N = Z) and G is
IL A.

the combination for exchange scattering (i.e. the same except for changing

the sign of the odd components).

It is convenient to define an equivalent local potential UTT,, for exam-

pie by using the relation (where <Kr) is the scattering wave function)

and then making a local energy approximation for <l>(r.') in the exchange term.

This gives



(5)

where k is the wavenumber for the local kinetic energy of the nucleon at po-

sition r.. This may be further simplified by introducing the Slater approxi-

mation to the density matrix

p(r.r') = p(?) -f- j.Oc^s) (6)

where r = - H r + r ' ) , s = |r.-r'| and k is the Fermi momentum corresponding to
1 ~ I -1 -1 F (oo) _

the density p ( r ) . If we now substitute the nuclear matter G (r ;p(r);E)

for matter of density p ( r ) , in place of the finite nucleus G ( r . , r - ; E ) , the

integrals in (5) become

(7)

and can easily be done numerically using previously calculated tables of
(°°) 25)

values for the G . (See also Love for a zero-range version of this ex-

change term, obtainable here by assuming the product (<->„„.}•,j_) has a suf-
LA X U

ficiently short range that we may approximate p(r, + Irs) = p(r,) and remove

it from the integral.)

Brieva and Rook followed this prescription (7) to obtain elastic re-
14)

suits such as those shown in Fig. 1. This has recently been extended to

inelastic scattering from a rotational nucleus by using a deformed density

distribution. Figure 3 shows results for Sm(p,p'); the only parameters

which enter are those for the density distribution and these were constrained

to values taken from electron scattering measurements plus the assumption
that p = (N/Z)p • The fit to the data is astonishingly good for a calcula-

te P
tion free of adjustable parameters. (The dashed curves show the effects of
changing the deformation parameters.)

A)The results of Jeukenne, Lejeune and Mahaux , although derived somewhat

differently, could be viewed as obtained in the same way with the additional

assumption that G is of sufficiently short range that the densities p var>

little over its range. Then the nucleon potential (7) has the form
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Fig. 3. An essentially parameter-free calcu-
lation of inelastic proton scattering11*).

^.E) = p(r1)J(p(r1);E) (8)

where J is the 'volume integral' of G (in which direct and exchange parts

are not separated),

(a>)J(p,E) = j G ( a > )(r 1 2;p;E)dr 1 2. (9)



(It is thuse I' = V + iW which are plotted in Fig. 2 for various densi-

ties.) The approximation (8) is poor in the nuclear surface, as they real-
4)

ised , and results in the potentials U(r) having too snail mean square

radii. This deficiency is corrected by the full folding expression (7).

4. Simplified Effective Interactions

Here we are concerned with simple representations of the effective in-

teraction, the second scage symbolized in Eq. (1). By this we mean represen-

ting the G (s;p;E) in terms of simple functions such as Yukawas and

Oaussians. In this way, we can avoid the need for a completely numerical

representation for G, making calculations easier and faster.

The earliest attempts assumed that 0 could be replaced by simple po-

tentials that fitted low-energy NN scattering (and the dcuteron properties),

iiowever, it was demonstrated that these were somewhat too strong and gave

too deep optical potentials (both for nucleons and for heavy ions ) and too
7 8}

large inelastic cross sections. A later attempt ' approximated G by the

long-range part of the S-state component of a realistic NN potential such as

the Hamada-Johnston. This was quite successful for nucleon scattering but

overestimated heavy-ion potentials by more than a factor of 2. (It is now

realised that the latter was due to the complete neglect of odd-state forces,

which resulted in the interaction having a spurious long-range component from

the OPEP.)

A more sophisticated approach led to an effective interaction that we

shall call M3Y; in it a sum of 3 Yukawa terms were found (for each component

of the force) which would reproduce realistic oscillator G-matrix elements.

One term was fixed to be the OPEP. The next shorter range was chosen to be

0.4 fir. to represent multi-pion exchange and the third tena was arbitrarily

chosen with a range of 0.25 fin. Thus two strength coefficients were left to

be adjusted for each component. For the particular interaction we discuss

here, the singlet- and triplet-even matrix elements were obtained from the

Reid potential, while for the odd-states, the Elliott or 'Sussex' matrix ele-

ments were used. As an example, for the S=T=0 term in Eq. (2) this results

in the expression

h ^vooCs) • I7999 hr ~2134 ^ r s r MeV-
2.5s~j
.5sJ



(Note the iibsence of an Ol'E!' contribution from this expression!)

This represents the interaction G for the direct term of Eq. (3). Note

that since the G-matrix was in an oscillator representation, we do not have

an explicit dependence on either density or energy. Indeed, this M3Y inter-

action corresponds to a certain average over a range of densities and kinetic

energies determined by the oscillator basis used. In addition, from its con-

struction, it is real and the imaginary interaction mist be introduced phe-

nom^noloRlcally.

There is a corresponding expression for G , in which the odd-state con-
EX

tributions have opposite sign. This may be used as it stands if the exchange

terms of Eq. (3) are calculated explicitly * ' . However, the calculations

are greatly simplified if the exchange terms are treated approximately, for

example in the way that led to Eq. (7). An alternate and simpler treatment

leads to the use of a zero-range pseudopotential to represent exchange so

that v f. is replaced by

v^ff(s;E) = veff(s) + J(E)6(s). (11)

The strength J(E), which may be obtained by normalizing against 'exact' cal-
181

culations of the exchange terms , depends sensitively on the spin-,

isospin-character (i.e. S,T in Eq. (2)) but only varies weakly with the ener-

gy E. For example, for E = 10 heV, the pseudopotential for S=T=0 to be added

to Eq. (10) has J_-. = -262 MeV fm and this only varies by a few percent over

the range E - 5 to 20 MeV. The effective interaction v* (s) of Eq. (11) can

then be folded with the nuclear density or transition density to give the po-

tential,

ULE(r;E) = j p(r+s)Vff(s,E)ds. (12)

A nuclear-matter G-matrix interaction has been represented in a similar
19)

way. This G was obtained by Eisen and Day from the Reid potential and

applied successfully to alpha elastic scatteri: g in the LDA of Eq. (7). It

is local (and real) but explicitly and strongly density-dependant. Its oscil-

lator matrix elements were fitted by a similar sum of 3 Yukawa terms by Love

the density-dependence can be expressed in the form

veff(s,p) = Vl(s) + v2(s) e"
ap, (13)
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v'.icli has some calculnt ior.al convenience. This interaction has been found to

j;ive results very similar to those obtained with the M3Y interaction. For

example, Fig. 4 shows almost identical results for the folded potential for

1 60 + 6°Ni near the

1000

Even-State OPEP
A A A A M3Y
o o o o DD(16O)

DD(60Ni)
DD( !60 + 6 0Ni)

strong absorption

radius.. (This figure

also indicates that the

density dependence is

important by comparing

results in which either

the density of 0 o-

that of Ni were neg-

lected. )

The. nuclear matter

G-matrix of firieva and

Rook" has also been

given a simple spatial

representation

recently , as sums of

5 Gaussian 'eras fitted

to the G for several

densit;es.

11

R(fm)

Fig. 4. Folded potentials for l e0 + 60Ni near the
strong absorption radius (R = 9.6 ftn). M3Y =
interaction (10), (11); DD = one of the form (11),
(13) based on Day's G-matrix19). The legend indi-
cates which densities were included for the
latter39).

5. Applications to Nucleon Scattering

The M3Y interaction has not been applied in any detail to nucleon

elastic scattering, but Fig. 5 shows examples for Ni based upon the form

(11) and (12). Only the real, central potential is predicted; the imaginary

and spir-orbit terms were simply taken from the global potential of Becchetti
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Fig. 5. Comparison with data of elastic cross sections for folded real po-
tential from M3Y interaction (plus imaginary and spin-orbit terms from
Becchetti-Greenlees global model).

and Greenlees. The agreement with experiment is satisfactory, but not as good

as can be obtained with a phenomenological Woods-Saxon potential. The theo-

retical real potential appears to have a mean square radius which is slightly

too small. This may be due to a deficiency of the zero-range pseudopotential

(11) used for the exchange. A treatment of exchange like that of Eq. (7)

does result in a slightly larger radius. The deficiency does not appear to

be due to a mistreatment of the density-dependence because the interaction
19)

based upon Day's G-matrix gives almost identical results.

Applications to an (n,n') excitation and a (p,n) isobar transition are

shown in Fig. 6. The (n.n1) case, predominantly ?=T=0, shows another
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Fig. 6. Microscopic predictions2J»22) for (n,nf) and (p,n) cross sections
compared to data. Dashed curves: the M3Y interaction; solid curves (DDD):
based on Day's density-dependent G-matrix19). Exchange was calculated
'exactly'.

example of the similarity between cross sections predicted by M3Y and the in-

teraction based upon Day's G-matrix. However, the (p,n) transition (S=O,T=1)

indicates that this isovector component of the latter interaction is too weak.
21)

The (n,n') was calculated using RPA transition densities known to be in

agreement with electron scattering and B(EL) values. The (p,n)'isobar tran-
22)

sition used a neutron excess generated from the shell model.

When we consider inelastic transitions for non-closed shell nuclei and

we use truncated shell model wavefunctions, the amplitudes usually have to be

supplemented by so-called 'core polarization' contributions. These are the

same contributions that necessitate the use of effective charges in shell
23)

model calculations. They may be calculated simply and phenomenologically
24)

or microscopically but with more effort . This is illustrated for a simple

case in Fig. 7. With a simple (d5y2^ configuration, the M3Y interaction

predicts a cross section too small by a factor of A. Adding the
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2 neutrons1and with core polarization
(C). (D = direct, E = exchange).

phenomenological core polarization amplitude brings agreement with the data.

In this case, the phenomenological 'core' part is comparable to the part

being calculated microscopically; the interference between them is very im-

portant. (Figure 7 also illustrated the importance of the exchange (E) term

for the higher tnultipoles7\ Adding it to the direct term (D+E) gives much

more cross section than the direct (D) term alone.)



h . l'o_l<! ir.g for Composite Projectiles

When the projectile is composite (e.g. a 'heavy ion'), the folding

formulae (7) or (12) must be extended to include integrating over the pro-

jectile density distribution (the so-called 'double folding1). For example,

Eq. (12) becomes

ULE(R;E) = (1A)

where the coordinates are defined in Fig. 8, and we have assumed the

zero-range pseudo-

potential (11) to

account for the

interchange of one

nucleon from each

nucleus. (Since in

most cases it is

the potential for

peripheral col-

lisions that is im-

portant, it is

reasonable that this

single nucleon ex-
Fig. 8. Coordinates for double-folding integrals.

change should be the dominant effect of antisymmetry between the two nuclei.)
19)

Eisen and Day in their work on alpha scattering used a double-folded gen-
25)

eralization of Eq. (7). It has been found that one version of this ap-

proach predicts somewhat larger exchange contributions than the approximation

(11). A similar treatment of exchange has recently been advocated for

alpha scattering.

When an explicitly density-dependent interaction is being used, the

question arises as to what density to use when two composite nuclei collide.

The form (13) factorizes in a useful way if we choose the p that G depends

upon to be simply

rather than, say, p. + evaluated at r = (-°urse, the whole

approach must be wrong if the results are very sensitive to the choice we



m.'iko. A norc basic problem concerns the vt-ry definition of C> in this situa-

tion; for example, we have two pieces of nut: 1 car matter moving relative to

one another. Nonetheless, we ignore these problems for the present and

simply ask how good is an effective interaction ouch as the M3Y.

The most direct measure we have of the densities to be used in the

folding model comes from electron scattering. This only tells us about the

charge distribution, i.e. primarily the proton distribution. To extract the

distribution of proton centers p , it is important to unfold the finite
P

charge distribution of the proton (and the neutron). For example, the folded
40 40

potential for Ca + Ca at the strong absorption radius increases by 54% if

we forget to do this. Our information about neutron distributions p is less
n

direct (although analyses of recent high energy proton scattering are

promising). For nuclei with N = Z it is probably adequate to take p = p .

For other nuclei, we resort to the shell model with the same sized potential-

well for both neutrons and protons but with well-depths adjusted to yield the

correct separation energies for the least-bound nucleons. For the closed-

shell nuclei ' Ca, Zr and Pb we also use the Hartree-Fock densities

of Negele.

Since the real potential for strong-absorption scattering is only im-

portant for nuclear separations corresponding to a very small overlap of the

two densities, the range of the interaction is very important. This )'.s

illustrated by Fig. 9 which shows the volume integral required for v ,f to
40 40

produce the correct potential for Ca + Ca as the range of v , is varied.

This implies, for example, that one would have to use with great caution

schematic interactions such as Skyrme's which were derived in situations

where their range was of little consequence. This sensitivity to range also

explains why it is important to treat correctly the long-range OPEP. The
7 8^

early use ' of the long-range part of the even-state Hamada-Johnston po-

tential contained a spurious term from the OPEP; because of its range (1.4 fm)

this contributed a disproportionate amount to the tails of heavy-ion po-

tentials . Figure 4 shows that this spurious term alone gives a potential

larger than the empirical one near the strong absorption radius.

We may ask what parts of the density distribution are sampled in a

folding calculation. The main interest is in the potential at the strong

absorption radius where typically the half-density points of the two nuclei

are still separated by about s = 3 fm. Figure 10 shows how this potential
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Fig. 9. Variation of volume integral of a single to r = c + 9.5a
Gauss or Yukawa term with its mean square radius
needed to give the empirical potential at the (where they are

strong absorption radius (Dj/2
 = 10.6 fm). „ 10 of their

central values and

extend well into the other nucleus). We see that 20% of the potential comes

from p at r > c + 5.4a where the density tail of one nucleus has reached the

half-density region of the other nucleus. In other words, it is not just the

extreme tails of the p that are involved but their whole surface regions.

7. Applications to Alpha-Particle Scattering

First we consider alpha scattering. Although many folding calculations

have been made for alphas with a variety of interactions, including that of
19)

Eisen and Day (see, for example, Ref. 27), rather few applications of the

M3Y interaction have been made. These include the a + a system, for which

the folded potential obtained was found to be almost exactly the same as the
281

potential previously found to reproduce accurately the a + a phase shifts
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up to 40 MeV.

Perhaps the most interesting case is a + Ca which, at energies around

30 MeV, exhibits the so-called anomalous large-angle scattering (ALAS) (see
29)

Fig. 11). It is now known that this can be understood as a simple

4He + 40Ca

Re Up
M3Y "I ..

• o • M245J F

10 "O 60 60 100 >?O WO 'f-O 180

Fig. 11. Real potentials and cross sections for a + 40Ca. U is the phe-
nomenological (Woods-Saxon)2'65 potential29); U F is the foldeS potential

31).
(M245 is an interaction like M3Y but with a slightly longer range31).)

potential scattering phenomenon arising from relatively weak absorption in

the nuclear interior. This allows for a wave to be reflected from the inner,

centrifugal barrier without being totally absorbed which is responsible for
30)

the ALAS . (Thus, the scattering is 'anomalous' only in the sense that the

absorption for this system in this energy region is less than usual.) What

is found is that a folded potential using the M3Y interaction (in the form

(10) and (11)) gives very closely the same real potential (see Fig. 11) as
29)

the phenomenological one deduced from the data. (Indeed, fits to the data

like that shown in Fig. 11 can be obtained with just one adjustable parameter



20

by taking the imaginary potential to have the same shape as the folded real

one and adjusting its strength.) There are two interesting features:
29)

(i) the phenoraenological potential has a Woods-Saxon form raised to

the 2.65 power, thus emphasising again that folded potentials in general have

shapes different from the simple Woods-Saxon one.
29}

(ii) The real potential required ' to fit the data is deep (- 290 MeV

at r = 0) which agrees with the folding model. Since the scattering here is

sensitive to the potential at smaller radii, this implies that the folding

model with this interaction is reproducing the correct potential even in
40

regions where the a and Ca have complete overlap.

Two other points should be noted. First, that the density-dependent in-
19)

teraction derived from Day's G-matrix gives a very similar folded po-

tential. Secondly, there are indications both from the elastic and the

inelastic scattering that the folded potentials would give improved fits if

their mean square radii were increased slightly. This may be further evi-

dence that the zero-range approximation (11) to exchange is not fully ade-

qvaie. Preliminary results suggest that an improved approximation * in

the spirit of Eq. (7) gives better results.
8. Applications to Heavy-Ion Scattering

Many applications to heavy-ion scattering data have been made using the
32)

folding model with the M3Y interaction and will be discussed elsewhere

Most of the applications have been for elastic scattering, although some suc-

cesses have been reported for inelastic scattering also (see Refs. 37 and 38

for example). In most cases the data only determine the potential at some

strong absorption radius. Figure 12 illustrates this; the shaded band en-
33)

compasses many Woods-Saxon potentials which fit the data equally well . We

see that the potential is determined primarily at r * 10.5 fm. The calcu-
33)

lated folded potential from M3Y reproduces the value here to 2%. (Figure

4 provides another example for a similar system.)
•>2)

To summarize a recent review" of applications of M3Y, we list in Table

1 the systems studied, together with the factors N by which the real folded

potential had to be multiplied in order to optimize the fit to the data. (In

each case, a Woods-Saxon imaginary potential was used with a minimum adjust-

ment of its parameters.) The value N = 1.0 means that the model is success-

ful. Undoubtedly, some of the fluctuations of N about unity are due either
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10 '

10 >

G Motr.x UI.02)
Adiobotic (0=1.4)

to uncertainties in the densi-

ties used or to idiosyncracies

in the data being fitted. How-

ever, the trend is for N = 1.1

with deviations mostly around

10%, quite a remarkable suc-

cess for such a simple model

and interaction. (We may say,

in another sense, that the in-

teraction is indeed 'ef-

fective'!)

Figure 13 shows the fits

for some light heavy-ion sys-

tems. Figure 14 provides some

evidence that the scattering

is sensitive to the value of

the real potential. The data

for this particular energy are

anomalous in requiring a deep-

er real potential than is

needed at other energies; Fig.

15 shows that the potential

adjusted to fit the 74-MeV

data (N = 1.14) reproduces

without change the data at other energies except 56 MeV. Finally, Fig. 16
40 40

shows a more massive system, Ca + Ca. The potential was adjusted to fit

the data for 143.6 MeV and then used unchanged for the other energies.

Some special cases must be mentioned. First there are some systems at
40

some energies analogous to the a + Ca case just discussed which show rela-

tively weak absorption and which are sensitive to the potential at radii
12 12

smaller than the strong absorption radius. Data for one of these, C + C
34)

at energies from 70 to 126 MeV, was shown to be fitted by using a deep,

folded real potential, whereas good fits could not be obtained with a shallow

potential.

r()m)

Fig. 12. Potentials near strong ab-
sorption radius (D2/2 = 10.5 fm) which
fit the data33). Shaded area includes
Woods-Saxon potentials. Dashed curve
is the folded potential from M3Y inter-
action.

1 f\ 9ft
Another such case is 0 + Si at energies of - 50-70 MeV whose

cross sections exhibit oscillations and relatively large values at back
35)

angles. This behaviour has been described in terms of potential
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scattering. The scattering from

the folded potential can exhibit

similar behaviour but not enough

work has been done yet to know

whether a good fit to these data

can be achieved with it.

Finally, we must mention the

scattering of Li. Results for

this projectile are not included in

Table 1; however, analyses of Li

scattering from a variety of tar-

gets at energies from 23 to 156 MeV

show that the folding model with

the M3Y interaction overestimates

the Li-nucleus potential by almost

a factor of 2. (Most data are con-

sistent with N = 0.6.) This in-

cludes a case, Li + Ca at 30

MeV, which exhibits ALAS (see Fig.

17) and is sensitive to the po-

tential at small radii, yet which

is fitted well by simply renormal-

izing the folded potential by 0.6.

The reason for this discrepancy is

not yet understood, although it is

likely to be related to the ease

with which Li may be broken up. The scattering of Li has not yet received

much study but does not appear to be anomalous in the same way.

Fig. 13. Fits with folded real po-
tentials and M3Y interaction (re-
normalized by N, Table 1).
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Fig. 17. Scattering from folded real
(M3Y) plus Woods-Saxon imaginary po-
tential for 6Li + l|0Ca. Folded po-
tential renonnalized by N.

Fig. 16. Cross sections from
folded real (M3Y) and Woods-
Saxon imaginary potential for
••0Ca + lt0Ca. The potential
was adjusted to fit the 143.6
MeV data.
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Table 1. Heavy-ion scattering using a folded real potential based upon the
M3Y interaction. The potential is multiplied by N and N is varied

to optimise the fit to the data.

System

32£

32£

32E
32q

16c
16c
160
160
16o
16«

16c
1 6c
1 6c
1 6 c
1 6c
1 6 c
1 6 c
i 6 c
i 6 c
1 6 c
1 60

i6o
1 6c
16«

Energy N
(MeV) _

130-240 1.32

System

48Ca

Ca
40

32S
27A1
208

83

100

91

100

Pb 313
208

208
Pb 192

Pb 130

59
88

88

88

60

Sr

Sr

Sr

Ni

59

59
i

59

59

59

59

48
40

40(

40

Co
I

Co

Co

Co

Co

Co

Ca

Ca
Ca

'ca

40
Ca

56

52

48

142

61

142

56

52

49

46

40

56

214

140

104

74

56

1.09

1.26

1.22

1.06

1.05

0.95

1.16

1.22

1.21

1.19

1.36

1.00

1.04

1.00

1.00

0.99

1.10

0.87

0.98

0.98

1.05

1.23

0.99

1.14

1.27

16

i6(
16,

16C

16,

15>
14..

1 2c
1 2c
i 2c
1 2c
12C
12C
12,

28

28

28

28

28

28

28

28

1 2C
89y

1 60

207

208

208

Si

Si

Si

Si

Si

Si

Si

Si

Pb

Pb

Pb

90

40

28

28

12C

209

208.

Zr

Ca

Energy
(MeV)

142

215

81

72

66

60

53

38

168

50

154

156

86

116

96

70

98

45

Si 132, 186

Si

Bi

Pb

40

70-126

75

72

99

Average

0.91

0.76

1.00

1.00

1.01

1.01

1.00

1.01

1.11

1.18

1.30

1.03

1.27

1.26

1.25

1.15

0.98

1.14

0.97

1.02

1.01-1.13

1.45

1.26

1.04

1.09 ± 0.13


