
ANL/TM--484

DE91 002956

THE ADVANCED SOFTWARE DEVELOPMENT
AND COMMERCIALIZATION PROJECT _

Progress Report PR-1

T. R. Canfield, M. Minkoff, C. Mueller, E. Plaskacz, D. Pi Weber,
D. M. Anderson, I. U. Therios

Computing and Telecommunications Division

ATyonne National Laboratory

9700 South Cass Ave., Argonne, IL 60_39-48_4

S. Aslam, R. Bramley, H.-C. Chen, G. Cybenko,

E. Gallopoulos, H. Gao, A. MMony and A. Sameh

Center for SupeTvomputing Research and Development

University of Illinois at Urbana.Champaign
Urbana, Illinois 6180I-_932

E. Ga.llopoulos, editor

September 1990

MASTER
1Work supported by the State of Illinois Technology Challenge Grant., Grant No. 90-82144 with additional

support from the National Science Foundation Grant No. CCRg00000N fbi' the use of the Cray X-MP/48 at

the National Cen_er for Supercomputing Applications, University of Ilinois at Urbana.-Champaign. _7'b

-

T

Contents

1 Introduction 1

1.1 Summary progress for first phase . . 1
1.2 Acknowledgments ... 2

2 Computational Environment 3

2.1 Methodology .. 3

2.2 Compiler and restructurer switches 4
2.2.1 Cray-X/MP48 4
2.2.2 Alliant FX/8[0] , :........ 4

2.3 Performance evaluation tool,s 5

2.3.1 Cray X-MP 5

2.3.2 Alliant FX/8[0] 6

3 COMMIX code 7
3.1 Data sets 8

3.2 Results from COMMIX 1AR/P 10
3.2.1 Cray X-MP , 11

3.2.1.1 Summary of baseline runs , 12

3.2.1.2 Enhanced optimization options and further results 12

: 3.2.2 Alliant FX/80 20
3.2.3 Dynamic program execution tracing analysis 26

3.3 Results from COMMIX-1C 26

4 WHAMS-3D description 31
4.1 Data sets .. 32

4.2 Results from WItAMS-3D 33

4.2.1 Cray X-MP/48 33

4.2.2 Alliant FX/80 36
4.2.3 Additional Results 38

= 4.2.4 Dynamic program execution tracing analysis , , . • 40

5 Conclusion 42

_

Bibliography 43

A Appendix: Milestones for, FY 1991 44

iii
=.

_

List of Tables

2.1 Computational engines. 3

3.1 Execution times for SV, SV(Zr) and SVC COMMIX-1AR/P on the Cray X-MP/48
and Alliant FX/80 11

3.2 Execution times and MFLOPS for COMMIX-1AR/P baseline SV performance on
Cray X-MP/14 (from HPM) 12

3.3 Characteristics of most time-consuming subroutines of COMMIX-1AR/P for data

set Plr0 running in baseline SV mode on Cray X..MP (from PERFTRAC_) 13
3.4 Characteristics of most, time-consuming subroutines of COMMIX-1AR/P for data

set Plrl running in baseline SV mode on Cray X-MP (from PERFTRAC_,)...... 13
3.5 Characteristics of most time-consuming subroutines for data set Plr2 running in

b_eline SV mode on Cray X-MP (from PERFTRACE). 13
3.6 Characteristics of most time-consuming subroutines for data set P2 running in base-

line SV mode on Cray X-MP (from PERrTRACe). 14

3.7 Characteristics of most time-consuming subroutines for data set P3 running in base-
line SV mode on Cray X:MP (from PERFTRACE) 14

3.8 _PM group 0 summary for baseline SV COMMIX-1AR/P code running on Cray

X-MP/14 with data sets Pl, P2 and P3 14
" 3.9 HPM group 1 summary for baseline SV COMMIX-1AR/P code running on Cray

X-MP/14 with data sets Pl, P2 and P3 15

__ 3.10 HPM group 2 summary for baseline SV COMMIX-1AR/P code running on Cray

X-MP/14 with data sets Pl, P2 and P3. 15
3.11 HPM group 3 summary for baseline SV COMMIX-1AR/P code running on Cray-

- X-MP/14 with data set P1 15

3.12 HPM group 3 summary for baseline SV COMMIX-IAI_/P code running on Cray

" X-MP/14 with data sets P2 and P3 16

- 3.13 Execution times and MFLOPS for SV(Zv) COMMIX-1AR/P code running on Cray
X-MP/48 (from HPM)................................... 16

3.14 Timing profile for COMMIX-1AR/P running on Cray X-MP/48, compiled in SV(Zv)=

mode ... 16

3.15 Profile of the most time consuming subroutines in SV(Zv) mode for COMMIX-

1AR/P running on Cray X-MP/48 (from FLOWTRACE) 17

3.16 MFLOPS profile of the most time consuming subroutines in baseline SV, and en-
hanced vectorization SV(Zv) modes for the COMMIX-1AP_/P code running on Cray

= X-MP using data decks Plt0 and Plt2 (from PERFTRACE) 18
-

_

3.17 Execution time profile for the SVC version of COMMIX-IAP_/P running on Cray
X-MP/48 (from ttPM) 18

3.18 HPM group 0 summary ¢,,r SV(Zv) and SVC COMMIX-IAR/P code running on Cray

X-MP/48 with data set Pl. 19
3.19 Ratio of scalar and vector floating operations for COMMIX-1AR/P code running on

Cray X-MP/48 with data set P1 19

3.20 HPMgroup 1 summary for SV(Zr) and SVC COMMIX-IAR/P code running on Cray
X-MP/48 with data set P1 20

3.21 HPM group 2 summary for SV(Zr) and SVC COMMIX-IAR/P code running on
4-CPU Cray X-MP/48 with data set P1 • 21

3.22 HPMgroup 3 summary for SV(Zv) COMMIX-1AR/P code running on Cray X-MP/48
with data set P1 21

3.23 HPM group 3 summary for SVC COMMIX-1AR/P code running on Cray X-MP/48
with data set P1 22

3.24 Execution times for SV, SC and SVC COMMIX-1AR/P code running on an Alliant
FX/80 23

3.25 Effect of number of CEs on execution times for SVC COMMIX-IAR/P code running
on an Alliant FX/80 23

3.26 Execution times of various phases for COMMIX-1AP_/P code running on an Alliant
FX/80 for Plr0 2_,

3.27 Execution times of CPU intensive routines in COMMIX-1AR/P code running on an
Alliant FX/80 for Plr0 24

3.28 Execution times of various phases for COMMIX-1At_/P code running on an Alliant
FX/80 for Plrl 24

3.29 Execution times of CPU intensive routines in COMMIX-1AP_/P code running on an
Alliant FX/80 for Plrl 25

: 3.30 Execution times of various phases for COMMIX-1AI_/P code running on an Alliant
FX/80 for Plr2. • 25

3.31 Execution times of CPU intensive routines in COMMIX-1AR/P code running on an
Alliant FX/80 for Plr2. 25

3.32 Routine events for COMMIX-1AP_/P trace graph obtained from the Cray X-MP/48. 25

3.33 Timing results fl'om COMMIX-1C runs on the Sparc, Cray X-MP/14 and Alliant
FX/S......................... 2S

3.34 HPMgroup 0 summary for baseline SV COMMIX-1C code running on Cray X-MP/14
with data set Clr2 : . 28

3.35 HPM group 1 summary for baseline SV COMMIX-1C code running on Cray X-MP/14
with data set Clr2 29

° 3.36 HPM group 2 summary for baseline SV COMMIX-1C code running on Cray X-MP/14
with data set Clr2 29

: 3.37 HPM group 3 summary for baseline SV COMMIX-1C code running on Cray X-MP/14
with data, set Clr2 29

_

4.1 Execution times for WHAMS-3D on the Cray X-MP/48 (from XPM)......... 33

4.2 Execution times for SVC version of WHAMS-3D on the Cray X-MP/48 (from IJPM). 34

4.3 Floating point operations on Cray X-MP/48 for the S version (from group 0 of Itr'M). 24

4.4 MI_'LOPS for WHAMS-3D on the Cray X-MP/48 (from I-IBM) 34

A

Y

4.5 Performance data for WHAMS-3D on the Cray X-MP/48 usiitg data'::_et :cylpanel

(from FLOWTItAC_,)...................................... 35
4.6 Execution time for WHAMS-3D on the Alllant FX/80 (from GPROF)......... 36

4.7 Execution time for the SC version of WHAMS-3D on tile Alliant]_X/80 (from

GPROr) '. 36
4.8 Execution times for the SVC version of WHAMS-3D on the Alliant FX/80 ;(from

GPROP). ' 36

4.9 MFLOPS forWHAMS-3D on theAlliantFX/80 37
4.10 Performance data for WHAMS-3D on the Alliant FX/80 using datt_i set cylpanel

(from GPaOr) :,........ 37
4.11 Characteristicsofthe datasetsusedinWHAMS-3D 38

4.12 ExecutiontimesforWHAMS-3D on theANL AlliantFX/8 38

4.13 Execution times for WHAMS-3D on the Sparc, Cray X-MP/14, and _lliaflt FX/8. 39

4.14 _PM performance data summary for WHAMS-3D running on the Cray X:MP/14. . 39
4.15 Routine events for WHAMS-3D trace graph 40

=

vi

=

Chapter 1

Introduction

This is the first of a series of reports pertaining to progress in the Advanced Software Development
and Comme.r_'_alization Project, a joint collaborative effort between the Center for Supercomputing

Research and Development of the University of Illinois and the Computing and Telecommunications

Division of Argonne National Laboratory.

" Tl{e purpose of this work is to apply techniques of parallel computing that were pioneered by
-- University of Illinois researchers to mature computational fluid dynamics (CFD) and structural

-_ dynamics (SD) computer codes developed at Argonne.
The collaboration in this project will bring this unique combination of expertise to bear, for

the first time, on industrially important problems. By so doing, it will expose the strengths and
weaknesses oi' existing techniques for parallelizing programs and will identify those problems tha.t

- need to be solved in order to enable wide spread production use of parallel computers. Secondly, the
increased efficiency of the CFD and SD codes themselves will enable the simulation of larger, more

accurate engineering models that involve fluid and structural dynamics. Such an enhanced capa-

bility is fundamental to industrial efficiency and competitiveness, and could serve as an exemplary
model for similar future activities,

In order to :realize the above two goals, we are considering two production codes that have been
developed at ANL and are widely used by both industry and Universities. These are COMMIX and

WHAMS-3D. The first is a computational fluid dynamics code that is used for both nuclear reactor

_- design and safety and as a design tool for the casting industry. The second is a three-dimensional
: structural d_,Jlamics code used in nuclear reactor safety as well as crashworthiness studies. These

codes are currently available for both sequential and vector computers only. Our main goal is

to port and optimize these two codes on shared memory J,ultiprocessors. In so doing, we shall

establish a process that can be followed in optimizing other sequential or vector engineering codes
for parallel processors._

I

1.1 Summary progress for first phase

We have completed the first phase of tasks and deliverables specified in the work plan shown ia
Appendix A, as copied from the Proposal of the Advanced Software Development and Commercial-

ization Project funded by the State of Illinois Technology Challenge Grant, Grant No. 90-82144.

= We summarize our accomplishments here.

1. The codes have been ported to the target multiprocessor machines (Cray X-MP/48 at NCSA,

]

,' ' _ _, , ,, iii H _, M ,, ,

Alliant FX/8(0) at CSRD and ANL).

2. Appropriate data sets have been selected to test the codes' performance. These fully exercise

all aspects of the codes, in anticipation for the industrial data sets to be obtained in the
context of close cooperation with Illinois industry (see below).

3. lt was stated from the beginning that our main objective is to demonstrate the effectiveness

of our techniques for problems of industrial application. We have established collaboration
with Commonwealth Edison and the Thermal Hydraulics Section of their Nuclear Fuel Ser-

vices Department has given to ANL ali important industrial data set for one of our CFD

codes (COMMIX 1AR/P). This problem requires a 12 hour simulation when performed on
one vector processor of Commonwealth Edison's IBM 3090. Discussions are underway with
General Motors, Inland Steel and other companies to secure inputs and collaboration for the

structural dynamics code.

4. The codes have been profiled for the first time, their baseline (unoptimized) performance on
each of the target machines was recorded, and the most time consuming subroutines have
been identified.

5. We have already started applying automatic restructuring tools on some of the codes.

Overall the first phase has sh, zn that significant improvements in the codes' performance
result from vectorization. This is partly because of the effectiveness of vectorizing compilers,

and partly because the principles of vectorization have been available to programmers for over 15

years. The first phase also Shows that applying existing automatic restructurers for multiprocessing

gives little improvement or even degradation in performance, but provides clues on how to achieve
better results. This emphasizes the need to move the highly successful tools and techniques for

multiprocessing from our research centers to the industrial base.

1.2 Acknowledgments

The authors would like to thank R. N. Blomquist, H. M. Domanus, E. M. Gelbard and J. M.
Kennedy from Argonne National Laboratory, T. Belytschko from Northwestern Uri'_., and M.

Berry from CSI_D for their help during this project.

2

Chapter 2

Computational Environment

As described earlier, our work is oriented towards standard and mini supercomputers with mul-

tiprocessing capabilities. By all accounts these are the machines which are able to sustain the

_ performance requirements for production runs with the complex codes we are dealing with.
For this phase of the experiments we have used the Cray and A1]iant machines shown in Table

2.1. In some cases we also report results from runs performed on Sun Spares at ANL, due to the
natural interest in understanding the performance on what is very likely to be on a scientist's desk,

namely a fast workstation used for code development.

A planned addition to the machines of Table 2.1 is the CSRD Alliant FX/2800, whose 28
processors based upon the i860 RISC chip will be an interesting case study of parallelism and

software emula;ted vector processing.

2.1 Methodology

Our overall strategy in these experiments has been the following: We first compile and]ink on the

target machine. If baseline performance is needed we run the code to obtain baseline timing and
validate runs. We then compile under different options described Jn Section 2.2 to test the effect of
automatic parallelization and vectorization. The performance for each run was analyzed with the
tools described in Section 2.3.

Table 2.1: Computational engines.
Machine O/S Memory Location

CRAY X-MP/14 Unicos 4MW ANL
CP,AY X-MP/48 Unicos 8 MW NCSA

AI, LIANT FX/80 Concentrix/Xylem 80 MB CSI_D

ALLIANT FX/8 Concentrix 64 MB ANL
-3

;]

,I , ,al,r,, III_ll''Irr_ ePll ''_'lllrl r_n_'_rll"l'rni' ii ,_t,,l'_ l'l"11'_,m '_ ii rll111'lHl,'illl'" 'qq!l_a'llIl'11',l_lq" ,',q,,l,_

2.2 Compiler and restructurer switches

In this section we provide a summary of some of the compilation options used when performing
the experiments. We note that since most of these options at some stage invoke source-to-source

restructuring compilers, thus attempting automatic vectorizatton a,nil parallelization, their use and
our comments also belong tO Phase 2 of this work.

No hand optimizations were performed,

2.2.1 Cray-X/MP48

The following optimization modes were used for our benchmarks,

Symbol Command options Optimizations

S cft77 -o novoctor scalar optimization
SV cf77 -c -Zc scalar and vector O1%

cft77 -o

SV(Zv) cf77 -c -Zr enhanced scalar and vector
SVC cf77 -Zp scalar, vector, concurrent (autotasking)

With no options specified, the compiler attempts vectorization of the innermost loop. The
-Zr option causes the compiler to invoke the dependency analyzer FPP, which attempts more

complicated data dependence analyses and inserts directives for vectorizatton, Although it also

inserts directives for microtasking, it doesnot interpret them (see below),
Both the cft77 and. cf77 commands invoke the CFT77 compiler; cf77 also includes the load

step for creating an executable file. Otherwise, cf77 uses most of the options available with the
eft77 command. The -o is an optimization option which, by default, implies both scalar optimiza-

- tion and vectorization. When -o is followed by the word novector, vectorization is suppressed and

only scalar optimization is performed. The option -Zp causes the compiler to invoke _'Pp, which

inserts directives for vectorization and microtasking. This automatic detection of and instrumen-
tation for microtasking is called autotasking.

Although no hand optimizations were attempted, there were a few cases, documented in Section

3.2, where the code contained inline optimization directives for the Cray compiler.

2.2.2 Alliant FX/8[0]

" The code was compiled with Alliant's Fortran compiler and VAST restructurer, with switches se-

lected from the following:

Symbol Command options Optimizations

S fortran [-[D]AS] [-r8] -Og global scalar
SV fortran [-[D]AS] ['r8] -0gr global scalar, vector

SC fortran [-[D]AS] [-r8] -0gc global scalar, concurrent

SVC fortran [-[D]AS.'I [-r8] -0[gvc] global scalar, vector, concurrent
_

The option -[Di AS means that transforinations for optimizing recurrences (based on the cur-
rently available number of processors, if the D option is also in effect) can use the associative law

of addition. Unless stated otherwise, the use of this option will be assumed,
' e7h_ option -r8 forces the transformation of all REALvariables and intrinsics into REAL*8.

4

We note that Cray's rPp preprocessor is very similar to Allta,nt's VAST, as they _re both products

of Pacific Sierra., purcha, sed by the respective computer companies to restructure code specifically
for ttle corresponding machines. Although options and defaults differ, restructuring ts done ba.scd
oil essentia,lly the same d_ta. dependence information.

2.3 Performance evaluation tools

Unless mentioned otherwise, ali times are in seconds,

2.3.1 Cray X-MP

Performance utilities such a,s Ft,ow'rRAC_, tlPM, PERFTRACE oil the subroutine level, and PERI,'-

TItACE on the loopnest level are available on the Cray X-MP [6]. FLOW'rltAC_, tlPM, and PERF-.
TR'ACEon the subroutine level were developed by Cray Research, Inc.; PEItFTRACF_on the ioopnest

level for the Cray X-MP/48 w_ts developed by John Larson a.t NCSA.
_'LOW'rRACEgenerates printed information about all procedure calls in a program; its summ_try

contains the following information:

® The time spent in each routines: amount, percenta,ge of the total execution time, _nd average
time per ca,ll.

. Number of calls to each procedure.

• Lists of routines that call and are called by each routine, .

• A dynamic call tree of the m,_in program a,nd all c_lled subprograms.

HPM reports performance of the entire pro[. :n. It c_n issue any of four kinds of reports, na,reed
groups O, 1, 2 and 3,

' S ' ,Grou_', 0 Sc_l_r activity: number of In tructmns, memory references floating-point additions,

multiplications, reciprocals, MFLOP.

Group 1 Conditions that delay instruction issue: Percent of time (in clock periods) waiting oa
resources such _s semaphores, shared registers, scal_r, vector and a.ddress registers function_fl

units, scalar and })lock memory references.

Group 2 Information on central memory references and conflicts.

: Group 3 Instru_:tion types and vector operations,

PERF'I'RACI;3gives tile same type of statistics about computer performance as those generated

. by the lt_'M, but with details for individual program units.
For the Cray X-MP we r,'_n the codes through all four groups of the Ilardware Performance

Monitor (HPM), We also compiled and linked with euch of rl, OWTttAC_, PERFTRACE and the

_ profiler pROP for routine-by-routine performance monitoring.
As u start of Phase 2 advanced performance analysis, we have generated some preliminary traces

'3of COMMIX-1AR/P _nd WHAMS- D, The goal is to study performance behavior at a more refined

- level using tru,ce data of routine entry and exit actions. We used tr_cing tools developed for the

Cr_y X-MP and Cra.y 2 which are described in [9]. In summary these tools can c_pture detailed
- llistories of routine invoca, tion togetll(,r with machine performa.nce statistics,

- 5
2

, _............ I Jp= j, 31'='' ,i ,I],,'11_1111,,'1,,....... IJl' ',V, I''II ai'" '1"' _' II ' ,l_JI' Hill _']l'lf" '"'I'' "',,'", I'1'" 1r,l_Iltt..... lit.... IIi]lll_I ,,ii ,,,, ,, Ir_ IlIPI

2.3.2 Alliant FX/8[0]

The tools for performing performance analysis of the Codes running on the Alliant FX/8[0] were
the standard Alliant facility GP_OF and calls to the crime() facilities.

The utility GPltOV is used to obtain execution profiles of FX/t_brtran codes, For each routine,
GPROF £ounts the number of times it was Called and determines the time elapsed in its execution,

6

Chapter 3

COMMIX code

COMMIX is one of the world's premier thermal-hydraulics codes, used at scores of government
and industrial sites in support of a vast range of research and deveJopment projects. Argonne's

development and refinement of COMMIX, which has continued for more than ten years, was orig-

inally supported by the U.S. Nuclear Regulatory Commission for application to a wide variety of
reactor safety problems. COMMIX has been developed using a unique porous media approach to

the solution of the Navier-Stokes equations in an arbitrary three-dimension_l region. In its various
versions, COMMIX can model separate single-phase fluids, multiphase flows, and free surface flows.

The code uses differenced momentum/mass conservation equations which are combined to form a
pressure equation. Once the pressures are known, the fluid velocities are updated to provide input

to the energy simulation and the next iteration or time step. The hydraulic driving force may

be flow or pressure boundary conditions at inlets and outlets, one of several pump models, or a
fluid temperature/density distribution. The energy equations are differenced using the updated
velocities, and the source terms are accumulated from the treatments of convection boundaries,

conduction boundaries, thermal structures, or heat generation in the fluid itself.

One-dimensional shell structures superimposed on the fluid geometry model various fluid sys.

tem thermal components such as vessels, pipes, baffles, tube-shell heat exchangers, and reactor
• fuel. Once the fluid temperature distribution is updated, the submerged thermal structures' inter-

nal temperature distributions are recornputed, assuming one-dimensional conduction through each
" thermal structure segment.

The momentum and fluid energy equation time differencing is implicit, which requires that the

difference equation coefficients be constructed from end-of-timestep temperatures and velocities.

: Since these are not known when the coefficients are computed, a set of "outer" iterations is com-

pleted in which the momentum and energy equations' coefficients are computed from ever-better

: estimates of end-of-step values, a process repeated until the "outers" converge to the end-of-step

solution. Each outer iteration consists of pressure matrix equation construction, pressure equation
solution, velocity update, energy matrix equation constructioL, energy equation solution, and, fi-

nally, a structure- fluid heat flux update. Only when the time step converges are the radiation heat
fluxes between thermal structures up_!ated.

: The COMMIX code exists in two ve.,sions, COMMIX-1C and COMMIX 1AR/P. The COMMIX

family of codes were developed to analyze steady-state/transient, single-phase, three-dimensional
compressible/incompressible flow with heat transfer in a reactor system. These codes are also ap-

plicable toa broad range of applications. Due to the wide range of applications fundamentally

different codes have evolved out of a common software ance._'.tor. We are using COMMIX-1AP_/P

-I 7

and COMMIX-1C, both of which are tile latest derivatives of the COMMIX-1A code and its prede-

cessors. The COMMIX-1A code _va.sdesigned for thermal-hydraulic analysis of reactor components.
It solves the conservation equations of mass, momentum, and energy as a boundary-value differen-

tim equation in space and an initial-value problem in time. Spatial discretization is accomplished by

a staggered grid system to describe field variables at cell centers and flow variables at cell surfaces.
The codes described below represent totally different extensions in both modeling capabilities and

targeted computer architectures.

COMMIX-1AR/P is based on COMMIX-1A and contains new models and formulations which
were added to the code over a period 0f about 5 years [5]. These include a pump model, radiation

heat transfer, boundary conditions for inlet flow as a function of r_diation surface temperature
and to simulate expansion ceils for constant mass calculations, multiple fluid capability, conjugate

gradient solution technique for momentum/mass equations, implicit coupling of thermal structures

to fluid, and change-based automatic time step control. It is run primarily on the Cray X-MP/14,
and is substantially vectorized.

COMMIX-1C is based on COMMIX-IB [1, 2] (and ultimately on COMMIX-1A). It applies
three new models to treat turbulence effects including the two-equation ;: - e model which has been

. discretized to simulate subsonic compressible flow. A new porous-medium formation was developed
: which can be used to model anisotropic flow with stationary structure_. The flow-modulated

skew-upwind differencing scheme has been implemented to reduce numerica!ly..induced diffusion of
scalar transport. Other distinctive options include transient mass flow boundary conditions and

-_ application of direct solution of sparse matrix equations. It is run primarily on Sparc workstations
at ANL.

3.1 Data sets

The data sets used for these experiments are routinely applied by ANL for testing the validity of

= any modifications to the code. For that reason they are designed to fully exercise the code and are
very suitable for the goals of the first phase. We here summarize the results obtained from one

data set for COMMIX 1C and COMMIX 1AI_/P.
r.

IAR/P data sets

Data set P1 Simulatestwo-fluid(sodium,air)flowand heattransferinthe90 degreesector
-_ of a generic modular pool-type liquid metal (sodium) reactor. This transient simulates

the reactor system's response to a postulate pumping failure in which the pump ramps

to zero power linearly over five seconds, and the reactor power ramps to 7% (initial

: decay heat) during the first ten seconds. Cylindrical coordinates (r, _, z) are used. The

computational domain consists of 22 unique surface types_ 330 (regular) surface elements
and 205 computational cells for a maximum of 8, 3, and 12 cells in the r, _ and z

directions respectively. The data set consists of four input decks corresponding to the
following phases"

-_ Plt0 Cold Start to Steady State (1000 time steps)"

Plrl Restart of Steady S_,ate (100 time steps);

Plr2 Transient Problem from Steady State (1100 time steps);

Plr3 Restart of Transient Problem (400 time steps).

Data set P2 This data set simulates the Steady-state behavior of an experiment performed

at Karlsruhe, Germany, to study the transient behavior of a seven-pin assembly during
a flow transient. There are 48 axial meshes, and each pin and its adjacent coolant is

represented by four x-y cells. The sodium flows vertically through tlm pin bundle, which

is enclosed in a hexagon steel can. The sodium is heated by the pins as it flows upwards.

The transient analyzed (not in this data set) is a linear fiowrate decrease, and the event
of interest is the time of odium boiling onset. Rectangular geometry is used for 6 unique

surface types, 594 surface elements (some of which are irregular), 432 computational
cells, for a ma_dmum of 3, 3, and 48 cells in each coordinate direction. There are 4 force
structures.

Data set P3 The object of the simulation is to determine in steady-state the degree of ther-

.. mal relaxation in the Clinch river breeder reactor outlet plenum above the (:ore. The

sodium exits reactor subassemblies of three types (driver, blanket, or control), eafh with

a specific design , power, and flow rate. The mitigation of thermal stress and sliock (dur-
ing transients) depends on the mixing of relatively hotter sodium with the cooler sodium
flowing out of the neighboring subassemblies, This issue is also being addressed in the

case of state-of-the-art liquid metal cooled reactor designs. The geometry is cylindrical,

with 11 unique _urfaces, 446 (regular) surface elements, and 346 computational cells, for

a maximum of 6, 3, and 23 cells along each coordinate direction.

lC data set This data set was used as input for the lC version of COMMIX. The TMLB'

is one of the postulated reactor accidents that is currently being investigated by the U.S.
Nuclear Regulatory Commission. In this accident, several different significant events and

physical phenomena occur. During the progression, of the TMLB' accident scenario, there
is a time when the hot legdries out and the core becomes uncovered, From that time on,

multidimensional natural-circulation phenomena play an important role in heat transport and
_- the heat-up of the various components in a reactorsystem. The multidimensional capabilities

= of the code make possible the simulation of the natural convection phenomena which are

probable in the TMLB' scenario. The generated flow patterns, temperature distributions, and

steam generator heat transfer rates provide useful guidance for simulation of one-dimensional

systems. This data is needed to support the system analyses being performed at Los Alamos,
- Sandia and Idaho National Laboratories. In the transient that is simulated, the entire system

at time t = 0 is isothermal, i.e., it contains saturated steam at p = 1.61 × 107Pa. l)br time
t > 0, decay heat was added to the core. While natural convection flow pattern wasbeing-

: established, the system was being perturbed by the opening and closing of the POI_V v_flue.
--_. The analysis was performed using a POI_V model that is at the end of the surge liue that is

:-_ connected to the pressurizer. The geolnetry is a Cartesian box, with 1606 surface elements

and 947 computational cells. The pressure equation is solved by means of the Yale Sparse
Matrix Package (YSMP). For this test case, a constant turbulent viscosity model is used.
There are three decks of interest:

Clr0 Run to steady state;

Clrl 137 time steps;

Clr2 45 time steps.

Consistent with the goals of this project, to demonstrate the benefits from using multiprocessor
architectures on large important codes used by Illinois industry, a data set for a real world problem

9
_

-_

..... _l _ ' ilq,, rlq,ii , Fir N'" " ' irl rp (,,

has been obtained from the Thermal Hydraulics Section of Commonwealth Edison's Nuclear Fuel
Services Department. This data set, which uses COMMIX to verify the conservatism in RETRAN

licensing calculations which simulate the reactor's response to a steamline break accident, and

takes up to twelve hours of simulation when performed on Commonwealth Edison's IBM 3090
vector processor, will be described in the context of our efforts in future phases of this work.

3.2 Results from COMMIX 1AR/P

As a reference point for the 1AR/P code we obtained the baseline performance for this data set,
meaning that the code was compiled and ran without any automatic optimization options applied

. to it. The code was originally written so that it runs best on architectures with vector processing.
Tile pressure equations of the mass-momentum loop are solved using a preconditioned conjugate

gradient technique, which converges at an acceptable rate without requiring any sensitive iteration
parameters from the user. Incomplete Cholesky factorization approximates the matrix inverse, and

is mostly vectorized, but with vector lengths frequently f_r from optimum. No attempt has been

made to exploit parallelization here. A large amount of the computing time is spent construct-
ing matrix equations, a process which would require massive recoding to vectorize because of its

large, logic-loaded loops. Such loops, however, are expected to lend themselves very well to the

parallelization efforts which we plan to pursue in the context of this work.

From the !AR/P data sets we described, we observed that the results obtained when using the
decks Plr0 and Plr2 (begin steady state and begin transient) were very similar to those obtained

from the restart decks 1 and 3. Moreover, although data sets P2 and P3 are useful for code
development purposes, they exercised the code less than Pl. Since we did not want to clutter the

report with tables, we decided to provide only data from the most interesting and representative
o experiments. This means that, except for the baseline runs, we usually omit any information from

Plrl, Plt3 and P2, P3.

Overall the code consists of six major groups of computations:

1: Momentum-related equations construction.

2. Momentum-related equations solution.

3. Energy-related equations construction.

4. Energy-related equations solution.

5. Thermal structure temperatures computation.

6. Thermal structure radiative heat flux computation.

We next list the function of the most important routines in the set:

WNW_tGlConstruct coefficients in the energy equation.

._ LOWFCV Solve the upper triangular system as part of the conjugate gradient solution of the pressure
equation.

PEQN Construct the coefficients in the pressure equation.

10

,r , ,,

QSTRDS Calculates finite differences of solid/fluid heat transfer rate over tile thermal structures,

QSTRUC Set so!icl-to-fluid source term for the fluid energy equation.

SOt,VF,V Solver of linear system for the energy equation using Gauss-Seidel rela,xation on red-black

ordering.

XMOMI, YMOMI_ ZMOMI Sweep over all fluid cells to set-up the x, y and z direction momentun_

equations.

The original code is instrumented with calls to the Cray intrinsic function s_cond to Summa.rize
run times for each of its major steps. Indeed, whenever presenting timing results for the above
stages, these results were derived from the original code instrumentation.

As the code was written to take advantage of vector processing in some of its solver routines and

in anticipation of the great costs involved otherwise, we decided not to explicitly disable vcctorization
for the baseline runs.

We note that the only subroutines of the original code containing inline Cray compiler directive
lines CDIR$ were DAXPXC, DAXPYC and LOWFCV. In those routines vectoriza,tion was helped using

the IVDEP directive., which causes the compiler to ignore vector dependencies in its attempts to
vectorize the corresponding DOloops. The effect of this is clearly seen in the performance results

presented in Section 3.2.1.
For future reference, we first show Table 3.1, which summarizes the runtimes for each of the

machines and compilation options for datasets Plr0 and Plt2.

Table 3.1: Execution times for SV, SV(Zv) and SVC COMMIX-1AR/P on the Cray X-MP/48 and

Alliant FX/80.

Routine Plr0 Plr2

Cray sV 93:96 920.9,1
Cray SV(Zr) 81.48 872.90
Cray SVC 225.25 2025.4.8

1 CPU 22.35 297.28

2 CPU 31.76 405.18
3 CPU 47.19 461.88

: 4 CPU 123.95 861.20

Alliant FX/80
SV (1 CE) 1,322.4 12,331..2

-

SC (8 c,,,_,_,,j 1,128.7 10,015.0
: SVC (8 CE) 1,136.7 10,048.6........

3.2.1 Cray X-MP

First we summarize the baseline performance obtained for each of the d_ta _;ets. As mentioned
earlier, the code was written to take take advantage of the vector processing capabilities of a single

= processor of the Cray X-MP. For the purpose of lA R/P we thus consider as baseline the performa.nce
obtained from the code in SV compilation mode (of, Section 2.2). When appropria,te, in the t,_lcs

_

k

of this section, we mention the performance tool used to obtain the results (e.g. PEItFTRACE,

FLOWTRACE, etc.)

3.2.1.1 Summary of baseline runs

We first report results from the baseline runs (mode SV), as needed to satisfy our milestones for
the first phase (cf. Appendix A).

The runtimes for each of the data sets are summarized in Table 3.2.

Table 3.2: Execution times and MFLOPS for COMMIX-I_R/P baseline SV peribrmance on Cray

X-MP/14 (from HEM).

I:Data set Plr0 Plrl Plt2 Plr3 P2 P3

I Time 93,9'6 9A4 920.94 665.]0 17.84 42.24MFLOPS 9.12 7.93 7.68 7..14 llA3 10.02

We next order the most time-consuming subroutines for each of the data sets except Plt3, and

report their MFLOPS, the number of times they were called, and the percentage of time (clock

periods) spent on each. This data is obtained from PERFTRACE and shown in Tables 3.3--3.7.

3.2.1.2 Enhanced optimization options and further results

As mentioned earlier, by using special (automatic) restructuring options, the results in this section
could also be considered as Phase 2 results. Since they were available however, we thought that it

is appropriate to report them here.
Table 3.13 summarizes the execution times and MFLOPS for the code under SV(Zr) mode of

compilation. We notice an improvement over the baseline times of Table 3.2, implying that the
F_P optimizations were effective in certain cases. As will be seen, the greatest effect is seen in the
SOLVEV routine.

'_ We show in Table 3.14 the breakdown of times for each phase of the computation, when compiled

with tim SV(Zv) option.

COMMIX 1AR,/P consists of approximately 150 subroutines. Table 3.15 shows that for those
data sets examined, the nine listed subroutines consume over 60% of the time in all cases. Compar-

ing with the baseline runs presented in Tables 3.3-3.5, we notice that tile percentage of time spent
in SOLVEr is almost halved by the additional vectorization that is achieved after preprocessing

with the dependency analyzer l_eP. This gives an indication of the advantages one can sometimes
achieve when using more advanced automatic vectorization techniques.

Comparing Table 3.15 with Tables 3.3-3.5, we note that the small differences in the number of

calls shown for some subroutines is due to the different methods Of accounting used by PERFTRACE

and FLOWTltACE.

Table 3.16 shows how the best MFLOPS rate is achieved for the SOLVEVsubroutine. With the

exception of LOWFCV - whose relative weight in the total runtime of the code is much smaller than
SOLVEV's - the achieved rate is far superior than all other listed subroutines.

P_egarding LOWFCV, we note that its superior performance for the simple SV compilation option,

is due to the use of the IVDEP inline Cray compiler directives CDIR$.

I 12

Table 3.3: Characteristics of most time-consuming subroutines of COMM1X-1AR/P for data, s_:_l,

Plr0 running in baseline SV mode on Cray X-MP (from PERFTRACE',,

-_ankProgram Unit Times Called % Execute MFLOPS_ !

1 i SOLVEr 1000 14.76 10.29

2 ' QSTRDS 1001 11.52 6..20
3 ENEItGI 1000 10,97 6.06
4 ZMOMI 1000 9.43 6.42

5 YMOUi 1000 6,18 6,97

6 QSTRUC 1001 4,68 6,67

7 PBQN 1000 4.53 3:05
8 XMOMI 1000 4.31 6,93
9 LOWFCV 26303 3.78 30.98

10 HSTRUC 1001 3,44 2.13

Table 3.4: Characteristics of most time-consuming subroutines of COMMIX-1AR/P for (t_tt_ set

Plrl running in baseline SV mode oil Cray X-MP (from PERI,_TItACE).

l_ank iSrogram Uifit TimesCMled %Execute MFLOPS....._,

1 SOLVEV 100 18.31 10.26

2 QSTRDS 100 11.48 6.20
3 ENERGI 100 10.94 6.06

4 ZMOMI 100 9,40 6.42

5 YMOMI 100 6.16 6.97

6 QSTRUC 100 4.66 6.67
7 PEQN 100 4,52 3.05
8 XMOMI 100 4,30 6,93

, Table 3,5: Characteristics of most time-consuming subroutines for data set P lr2 running in basclitlc

" SV mode on Cray X-MP (from PERFTRACE).

• _ank Program Unit Times Called % Execute MFLOPS
- 1 QSTRDS 12998 15.18 6.19

2 BNB_aI 12998 14.45 6.06

3 ZMOMI 12998 12,41 6,42

4 YMOMI 12998 8.1.3 6.97

5 QS'rRUc 12998 6.17 6.66
6 PEQN 1.2998 5.96 3.06
7 XMOM[12998 5.67 6.93

_-, 8 HSTRUC 12998 4.53 2.15
................

J:3

Table 3.6: Characteristics of most time-consuming subroutines for data set P2 running in baseline

SV mode on Cray X-MP (from PEKFTItACE).

Rat& Program Unit Times Called % Execute MFLOPS
1 QSTItDS _ 65 1'0,32 7,71
2 ENE_tGI 64 8.27 2.84

3 HSTRUC 65 7.17 1,12

4 ZMOMI 64 7.15 5.33
5 DUCTWA 130 6,97 1.70

6 TI, IQ 51321 6.85 1.73

7 QSTRUC 65 5.31 7,46
8 LOWFCV 3961 5.02 22,53

Table 3.7: Characteristics of most time,.consuming subroutines for data set P3 running in baseline

SV mode on Cray X-MP (from PERFTR, ACE).

Rank i Program Unit Times Called % Execute MFLOPS

"_]'.... ZMOMI 459 16.12 6,69
2 EN EP,.GI 459 15.18 3.92

I

3 XMOMI 459 12.37 7.31
4 YMOMI 459 10.56 7.25

5 PEQN 459 7.38 3.25
6 SOLV_V 459 4.94 35,87

7 SOItTC 459 4.60 0,00

8 LOW_CV 9090 4.].5 30.15

Table 3,8: HPM group 0 summary for baseline SV COMMIX-1AR/P code running on Cray X-
MP/14 with data sets Pl, P2 and P3.

Plr0 Plrl Plt2 Plt3 P2 P3

Million inst/see (MiPS_"-- 37.23 37.91 36.45 36,62 35.70 35,98
Avg. clock periods/inst 3.16 3.10 3.23 3,21 3,30 3,27
% CP holding issue 49,16 48.0 48,75 48.3{ 50,67 49,45
Inst,buffer fetches/see 0,40M 0,40M 0.47M 0.47M 0,47M 0.47M
Floating adds/see 3,77M 3,14 3.20M 2,94M 4,46M 4,04M
Floating multiplies/see 4,84M 4,28M 4.02M 3,74 6.31M 5,45M

= Floating reciprocal/see 0.51 0,51 0,46 0,45M 0,65M 0,53M
I/O mere. references/set 0.57M 0.55M 0.55M 0,70M 0.1lM 0,37M
CPU mem. references/see 16,32M 13.93M 13,30M 12,15M 18.70M 19,04M
Floating ops/CPU second 9.12M 7,9_M 768M 7.14M 11.43M 10,02

f

=

14

Table 3,9: IfPM group 1 summary for b_sellne SV COMMIX-1AR/P code running on Cra,y X-

MP/14 with data sets Pl, P2 and P3,
% of ali CPs

Waiting on A-registers/funct,units 9,54 I 9,6_1-- 10.1i3 1'10,25 [1 9,42110",'2-9-"

Waiting on S-regisr.ers/funct, units 27,91128,35[3,40131,15 [[28,74 [26,55
Waiting on V-registers 5,39[4,65 [2,71 [2,81 [[6,25[_. r;3
Waiting on vector functional units 3,63] 3,24 [0,13 [2,45 [] 3,69 [3.8i
Waiting on scalar memory references 0,10 [0.10] 0.13 I 0A3 [] 0,19] 0,16
Waiting on block mernory references 4,353,70 2.'22 1,77 4,82_,04

Table 3.10: HPM group 2 summary for baseline SV COMMIX-1AII_/P code running on Cray X-

MP/14 with data sets PI, P2 and P3.
........... % of ali CPs

. PlrO I Plrl i Plr2 I Plr3 li P21 P3
lnst' buffer fetches/see 0,40M 0,40M 0.47M 0,47M 0.47M 0.,17M
Scalar memory refs/sec 5,79M 5,81M 6,82M 6.95M 5.68M 7,08M
% having cortflicts 28,38 28,55 30.61 30,53 42,50 41 ,(16

I/O memory refs/sec 0,48M 0,69M 0,64M 0.57M 0,16M 0.33M
% having conflicts 56.74 49.84 51.37 48.76 71,50 65,61
Block memory refs/sec 10,53M 8.12M 6,47M 5.21M 13:02M 11,96M
% having conflicts 62,43 68,61 75,91 84,24 60,63 73,37
Vector memory refs/sec 10.19M 7,79M 6,15M 4,90M ll.71M ll.70M

Table 3.11: IIPM group 3 summary ibr baseline SV COMMIX-1AR/P (:ode running on Cray X,

MP/14 with data set Pl.

Plr0 Plrl Plr2 P ra

type of instruction inst, per % of ali inst, per % of ali inst, per % of ali inst, per % of al 1
CPU see inst, CPU sec inst, CPU sec ins{,, CPU sea inst,,

jump/special 3,47M 9,32 3,64M 9,59 3,1SM 8,64 3.18M 8,67
scalar 32.94M 88,50 33,59M 88,57 32,67M 89.64 32,89M 89.80

vector integer/logical 0.19M 0,51 0,2lM 0,55 0.20M 0.55 0.20 0,55
vector floating point 0,20M 0,55 0.15M 0,4 0.13M 0,36 0,11M 0.29
vector memory 0.42M 1,12 0,33M 0,8 0.29M 0,81 0,25M 0,09

type of operation ops per avg. ops per avg, ops per avg. ()ps per avg.
CPUsec VL C,PUsec VL CPUsec VL CPUsec VL

Vector integer&logical 3.22M 16.91 4,23M 20.30 2.12M 10,61 2,04M 10.13
Vector floating point 5,11M 24.99 3,92M 25,57 2,94M 22.32 2,31M 21.53
Vector memory 10.19M 24,41 7,79M 23,41 6,15M 20,87 4.90M 19 ' _

15

Table 3.12: tlPM group 3 summary for baseline SV COMMIX-1AR/P code running on Cray X-

MP/14 with data sets P2 and P3,
P2 P3

ty pe _.)f inst r u ct iol'| inst, per 1% ofall inst, per 1% ofallCPU see. inst, .CPU sec inst,
jump/special 3,25M .i 9,10 2,57M 7,13
scalar 31,54M 88,37 32,60M 90.57

vector integer/logical 0,16M 0,46 0,2lM 0,58
vector floating point 0,25M 0,70 0,20M 0,56
vector memory 0,49M 1,36 0,42M 1,17

type of operation ops per avg;: ops per avg,

[CP l/see_ VL CPUsec VL
Vector integer&logical 3,73M 22,62 3,65M 17.62
Vector floating point 5.71M 22,93 5,88M 29,26
Vector memory 11,70M 24,03 11,70M 27,88

Table 3.13: Execution times and MFLOPS for SV(Zr) COMMIX-1AI_/P code running on Cray
X-MP/48 (from HPM).

i Pir_ Plr2 Plr3

Time 182.35 18.17 1880.64 628.17

MFLOPS I 11.76 I 10.96 I 8.76
• : .,.__..._...._._._

Table 3.14: Timing profile for COMMIX-1AR/P running on Cray X-MP/48, compiled in SV(Zv)
mode.

Data', Plr0 [P i_-] Plt2 Plr3
- w _._._._ _

Total Execution Time 77.71 I 7,64 I 869,04 622.37

Momentum Eqns. Construction 21,93 I 2.12 1297.70 204.49

Momentum Eqns, Solution 20.39 I 1.72 1220,46 149.68

Energy Eqns. Construction 25.58 I 2,56 I 338.06 247.22

= EnergyEqns. Solution 6.48 I .836 I 18,12 13,13
ThermaiStruct 2,81 I ,281 I 3,10 1.13
Thermal Struct Radiation 0,065 I ,0065 I .072 0.026

16

1 "H ', r, H _ II........ ar..... 'l' II ggl' I,',I_I 1,n ,,a, ' ' '" F1r I'I ,, , •ml lilt l,l, _i, ,, ,, ,, ,[[r]...... i_fri,l ii[i 'II_"rlvrfrilr'_ _r,.,

•t ITable 3,15: Profile of the most time consuming subroutines in SV(Zv) mode for COMM X-1AR/P

running on Cray X-MP/48 (fr0m rl, OWWlthCl_).
lZoutlne Plt0 P lrl P lr2 P 1r3

Calls : (percent) Ca,ils (percent) Calls - (percent) C,alls (percm_t)
QS'I'ItDS 100i 11.49 i00 11,53 13156 13,99 --_29 14,32
ZMOMI 1000 9.69 100 9,69 13156 11,77 9629 12,05
ENERGI 1000 9,52 100 9,64 13156 11,73 9629 12,(}0

SOLVEV 1000 7,45 100 9,95 13156 1,69 9629 1,72
('YMOMI 1000 6.52 100 6,59 1.3156 8,0 9629 8,19

QSTKUC 1001 5,10 100 5,12 13156 6,22 9629 6,26

PF,QN 1000 4,69 100 4,72 13156 5,73 9629 5,87
XMOMI 1000 4,55 100 4,59 13156 5,58 9629 5,71

Lowrcv 2637 a 4,28 [1238 :. 2,10 178939 2,86 89659 2,01

The linear system solver SOLVer, although expensive in number of computations, has been
written to take advantage of vectorization and thus performs at 35 MFLOPS on one CPU of the

Cray X-MP, This is tn contrast to a meager average of 6,5 MFLOPS for those sections of the code
working on the task of matrix construction. This of course causes the overMl perform_mce to drop

to almost ll MFLOPS, even for the full vector optimization, It is thus clear that a first step in

improving the performance of the code is going to be the restructuring of the matrix construction
phase,

. We remark here that Table 3. I6 reveals a great deal about the nature of work to be done during
;. this project:

, The difference in performance for SOLVEr under the different compilation options tells one

about the ability of restructuring compilers to take adwmtage of the machine capabilities, if

the code is written properly. It also shows that the use of more sophistlcated restructurers
can be very beneficial. We should keep in mind however that SOLVSV was coded for vector

: processing.

® The high perform;Lnce of Lowr'cv for both SV and SV(Zv) shows tha.t even a less sophisticated

restructurer can do well if lt has some help from the user (in the form of l_lline directives),

® The low performance for both SV and SV(Zv) options for ali other routines, shows that there

is work to be done until these commercial compilers can handle satisfactorily dusty-decks

("dusty-decks" as the matrix assembly routines were not coded to take advantage of the

architecture.) We will thus investigate the use of novel restructurers as part of Phase 2 of out'
= work.

® The overall low performance for both compilation options, and the small difference amongst

tile two, shows that it is dangerous to concentrate only on those stooges of the code which are

related to well defined algebraic computations irl need of new algorithn-ls (e.g. line,_r system
solvers), at least until the automatic transformation tools become more powerful,

_

_ Finally, Tables 3.1 and 3,17 show the pertbrmance of the code when run in the nmltiprocestdng

- environments of the klliant FX/80 and the Cray X-MP/a8, with restructuring performed auto-

- 17

_
_

, , ,, ,, ,:

Table 3,16: MFLOPS profile of the most time consuming sub,'outhles in baseline SV, and enhanced

vectorizatton SV(Zr) modes for the COMMIX-IAR/P code running on Cray X-MP using data

decks Plr0 and Plr2 (fromil'Bltr:I'!thCr,),
Data set Plt0 Plr2

Routino sv sv(zr) sv sV(zr)
qsTRoS.....6'20.... i6S 6,19 6169
ZMOMI 6,42 7,19 6,42 7,15
r,N_RGI 6,06 6,61 6.06 6.64

SOI,VEV 10,29 36,28 10,37 33,51

YMOMI 6,97 7,78 6,97 7,81

QS'I'_tUC 6,67 7,28 6,66 7,29
PEQN 3,05 3,49 3,06 3,50
XMOMI 6,93 7.82 6,93 7.84
LOW,eV 30.98 34.12 30,99 34.57

: Ove rdll 9,12 11.76 7,68' 8.76
,, , _

Table 3,17: Execution time profile ibr the SVC version of COMMIX-1AR/P running on Cray
X-MP/48 (from HPM),

Concurrency Plr0 Plr2 Connect seconds Connec_xCPUs
1 CPU 22,25 297.28 412,6 412,6

2 CPU 31.76 405.18 303,3 606,5
3 CPU 47,19 461,88 231,9 695,9

4 CPU 123.95 861,20 364,5 1458,1

Totals 225,25 2025.48 1312,4 3173.2

matlcally by the respective compilers. It is clear that multiprocessing is of little benetlt without
manual intervention.

_lab e 3 17 gives the .job accounting Information for tlm vector-concurrent version, TMs infor-

mation provides the connect time in each active CPU and the number of active CPUs, Let 7_,
i = 1, ,.., 4, be the connect time in each active CPU when i CPUs are active, The total execution

time and totaJ CPU time, as shown in the last two rows of this table, are defined as :

total execution time = Tl + T2 + 7_ +T4, and

totM CPU time = T1 + 2T2 + 3T3 + 4T4, (3,1)

- The average number of concurrent CPUs is thus the r_tio of the totM number of connect-seconds

and the Connect×CPUs product. Thus 3173,2720/1312,4346 = 2,42,

The following observations can be drawn regarding the statistics reported in Table 3,18,

1, For the performance to be considered acceptable, the MFLOPS (last row in T,_ble 3,18) should

be between 20 and 200 MFLOI S; the average MFLOPS for vector SV(Zr) ('.ode is about 9
_

18

Table 3,18: ltr'M group 0 summary for SV(Zr) arid SVC,COMMIX-1AR/P ('.()de running oI_ Cray

X-M.p/48 with data set Pl,
Category ,SV(7.v) S_/C

' Plr0 Plrl Plt2 Plt'3 Plr0 I Plrl Plr2 Plr3

-MTfli0ninst/see (MIPS) 37,11 36,92 38,62 16:79 i===i9:,03..... 17,83 ' 16,3J-
Avg, clock periods/inst 3,17 3,19 3,05 7.01 I 6,18 6,60 7,22
% CP holding issue 52,61 52,49 50,09 78.88 I 76,25 77,11 79,07
Inst,buffer fetches/aec 0A4M 0,,1SM 0,47M 0,17M I 0,19M 0,2lM 0,20M
Floating adds/see 4,76M 4,17M 3,84M 1,7lM I 1,63M 1,66M 1,41M
Floating multiplies/see 6,34M 6,08M 4,41M 2,03M I 2,02M 1,85M 1,57M
Floating reclprocal/sec 0,67M 0.70M 0,50M 0,2lM I 0,24M 0,2lM 0,19M
I/O morn, references/see 0,1SM 0,33M 0,49M 0,14M 10,22M 0,23M 0,1lM
CPU mere, references/soc 21,12M 19,14M 16,25M 7,62M I 7,49M 7,09M 5,98M

Floattng ops/CPUsecond 11,76M 10,96M 8,76M 3,96M.,13,SSM___j,.73M 3,17M

• ' Table 3.19: Ratio of scalar and vector floating operations for COMMIX-1AR/P code running oll

Cray X-MP/48 with data set Pl.
...... sv zr)

rl I plt2I r'lr3II
" I1R,,,t!o:I !,62 /ii1:421o:.74I. 1[a o:79i-o:7- - 11

MFLOPS which is very low, The reported MFLOPS for vector:concurrent (-Zp) code (SVC

tn our notation)is even lower, an average 3,6, But one has to keep In mind that the code was
" running on up to four CPUs in multiuser mode. An average of 2,42 CPUs wa,s used for _he

: runs that produced the statistics in the table, The average MFLOPS Is thus 8,9 (3,6 x 2,42)
for the SVC version of the code,

2, The MIPS rate for the Cray X-MP should be between 20 and 80, For vector code the average

MIPS is about 37. A low value accompanied with high MFLOPS indicates long vector

instructions, This is not the case here indicating that code should be vectorlzed further,

= 3, 'the MFLOPS rate reported at the bottom of the table Includes scalar ttnd vector II.eating point
__ operations. An Important measure of extent of vectorlzation is the vector to scalar floating
_- operations ratio, The lt PM group 3 statistics report the vector floating point operations, Such

data_ reported later in Tables 3,22 and 3,23_ can be used in conjunction with Table 3,18 to
-' compute the vector/scalar ratio, Such ratios were computed and are presented in Table 3,19,
- These ratios are very low indicai, ing that the code is spending most of its time in scalar operations.

- The following observations can be drawn regarding the statistics reported in Table 3,'20.
-

: 1, For multitasked (concurrent) code, a, very large (55) percentage of the executiol_ time wa,s
spent waiting (to synchronize.) on semaphores.

2, The figure for "waiting on S-registers/funct, units", i.e., scalar registers and functioned uxlits,

= is also high compared to "w_iting on V-registers" and " wa,lttng on vector functio,u_d u11its",
This shows tha, t thf, code is spending more of its time In scMar mode,

-

2

L

Table 3,20: til'Irl group 1 summary for SV(Zv) and SVC COMMIX-1AR/P code running on Cray

X-MP/48 with data set Pl, i
i

Category SV(Zv) SVC
% of all CPs % of all CPs

Plt0 Plrl Plt2 iPlr3 Plt0 Plrl Plt2 Plt3

Waiting on semaphores -0,00 0.00 0.00 '0,00 55,63 51'6i 58:,98 62,47
Waiting on shared registers 0,00 0,00 0,00 0,00 0,18 0,30 0,15 0,15

Waiting on A-reglsters/funct, units 9,11 9,07 9,76 ! 9,83 3,93 4,14 4,02 3,(19

Waiting on S.regtsters/funct, units 26,46 26,69 29.13 !29,62 11,37 12A9 11,89 11,05

Waiting on V-registers 6,75 6,62 3,87 3,32 2,32 2,30 1,44 1,13

Waiting on vector functional units 6.10 6,56 3,82 i 3,65 1,73 I i,79 1,37 1,19
W'Mting on scalar memory references 0,89 0,99 1,12 0,81 0,16 ' 0,21 0,16 0,13

Waiting on block memory references i 6,40 5,84 4,10 ,J 3,43 2,3i 2,21 1.,47],17

!

The following observations can be drawn re_arding the statiistics reported in Table 3,21,i

1, A figure for "inst. buffer fetches/sec" larger than 1 million per second indicates "spaghetti"
code, The numbers reported by group 2 statistics show this is not the case,

2, The comparison of scalar to vector memory references provides a measure for the extent of
vectorization. The statistics show a ratio of vector to sci_lar references ranging from 0,93 to

2.23, This range is low, !

3, A high "block memory ref,/sec" rate with low scalar and! vector memory reference rate would
indicate that the code is spending too much time in eni;ry and exit code of the subroutines

and functions, This could happen if subroutines were called but did very little work. This is

not the case, The block memory reference rate is comparable to vector and scalar reference
rate,

']:'he toilowing Observations can be drawn regarding the statistics reported in Tables 3,22 and 3,23,

1, The number of scalar instructions is overwhelmingly high, almost 88 percent of all instruc-

tions, But this can be misleading because it includes nofi-fioating point instructions also, The

ratio of the vector to scalar floating point operations reported in Table 3.19 is more indicative
of the level of vectorization,

2, The average length per vector floating-point instructio_L, as reported in Table 3,22_ is about

23, much lower than the length of the vector registers !(64) and even lower than 53 and 45,

the published measurements of nl/2 for dyadic and triadic operations respectively, the vector
length required to achieve half the maximum a_ymptot_iic performance (in this case taken to

be 70 and 103 MFLOPS)[8].

3.2.2 Alliant FX/80

The followlng changes were needed to port the 1AR/P code,

2O

+

Table 3,21: IIPM group 2 summary fo_'SV(Zv) and SVC COMMIX_,IAR/P code running on 4-CPU

Cray X-MP/48 w!th data set Pl, _
Category SC(Zv) , SVC

PlrO Plrl Plr2] Plr3 plrO _ Plrl Plr2 Plr3

Inst. buffer fetChes'/sec 0A"SM: 0,46M _0,48M] 0,48M 0]_1"7"M"- 0,1"__1,'-0,2--o-M '0.22M
Scalarmemotyrefs/sec 6,50M 6,57M 739M 17,52M 2,56M 2,67M 3,05M 3,34M
% having conflicts 47,75 44,69 44,98 ' 43,75 22,5 ' 23,9 27,7 28,5
I/O memory refs/sec 0.18M 0.09M 0,1lM 0.30M ,0,07M 0,18M 0,16M 0,07M

: % ha'ring conflicts 43,49 50,83 40,38 41,18 22,6 12,4 , 29,1 35,2
Block memory refs/sec ' 14,90M 12,91M 9,1lM 7.85M 5,00M 4,20M 3,58M i 3,29M
% having conflicts 33,30 32,63 25,42 24,43 20,8 21,1 '19,6 I 18.8

Vector memory refs/sec._!4,48 M 12.49M 8,73M 7,49M 4,82M 4,02M..,. 3,42M,:.1 3,12M

,|

Table 3,22: rlPM group 3 summary fbr SV(Zv) COMMIX-1AR/P code running on Cray X-MP/48
with data set Pl,

J _.

Plr0 Plrl Plt2 Plr3

type of instruction inst, per % of ali inst, per % of ali inst, per % of ali inst, per % of ali
CPU sec inst. CPU sec inst. CPU sec inst. CPU _ec illst,

g.

jump/special 3.31M 8,77 3.34M 8,86 3,42M 8.69 3,44M 8,71
scalar 33.22M 88,05 33,21M 88,11 34,96M 89,00 35.16M 89,14

vector integer/logical 0,38M 1,01 0,43M 1,14 ' 0,35M 0,88 0,35M 0,89
vector foating point 0,27M 0,73 0,23M 9.60 0,18M 0,45 0,15M 0.38
vector memory 0,56M 1,48 0,48M i,29 0.39M 0,98 0,34M (},87

type of operation ops per avg. op_ per avg, ops per avg, ops per avg,
7 CPUsec VL CPUsec VL CPUsec VL CPUsec VL

Vector integer&logical 8.82M 23,20 11,15M 25,92 5,56M 16.06 5,54M 1r ,,,_,82

Vector floating point 7.27M 26,43 6,44M 28,30 3,72M 21,11 3,08M 20,28
Vector memory 14,54M 26.0I 12,56M 25,92 8,75M 22,70 7,50M 21,81_

=

21

Table 3.23: IlPM group 3 summary for SVC COMMIX-1AR/P code running on Cray X-MP/48
with data set Pl.

Plr0 Plrl Plr2 Plr3
type of instruction inst. per % of all inst. per % of ali inst. per % of ali inst. per %of all

CPU sec inst. CPU sec inst. CPU sec inst. CPU sec inst.

jump/special 2.21M 10.27 2.00M 10.75 1.78M 9.17 1.77M 9.23
scalar 18.75M 87.29 16.20M 87.14 17.24M 88,69 16.98M 88.79

vector integer/logical 0.15M 0.69 0.13M 0.72 0.16M 0.81 0.15M 0.81
vector floating point 0.12M 0.58 0.08M 0.44 0.0SM 0.42 0.07M 0.36
vector memory 0.25M 1.17 0.18M 0.95 0.1SM 0.92 0.16M 0.81

type of operation ops _er avg. ops per avg. ops per avg. ops per avg.
CPUsec VL CPUsec VL CPUsec VL CPUsec VL

Vector integer&logical 2.80M 18.86 2.84M 21.26 2.35M 15,03 2.29M 14.78
Vector floating point 2.93M 23.67 1.96M 23.88 165M 20.26 1.32M 19.25
Vector memory 6.29M 24.99 4.27M 24.32 4.00M 22.39 3.33M 21.43

• Change real data type declarations from single to double precision. For all the compilations
)

we used the -rS option but there were some explicit conversions necessary to handle explicitly

typed double precision reals.

• Change machine depende:!_t constants.

• Substitute calls to system level routines.

: • Link with appropriate libraries. In particular we linked with the CSRD mathematical software
= library to use the functional equivalents of the LINPACK subroutines DGEFA, DGESL. From
-" the CSRD library we used also the functional equivalent of the Cray second timing subroutine,

which was written using the etime Alliant intrinsic.

Executable images were produced for each of the SV, SC, and SVC optimization options with
the -DAS -rS options also in effect. The executable image was then run for each of the Plt0, Plt]
and Plr2 data sets.

In the case of COMMIX-1AR/P running on the Alliant FX/80 we were not able to obtain
GPROF results whenever concurrency was one of the optimization options, as the code failed upon

execution. We are currently investigating this problem. Instead we manually instrumented the

code with calls to e'c±me to accumulate the time spent in each of the most important subroutines.
In a few cases we alsoused the system-level time command.

The vector-only code was executed on 1 CE.

We first show the summarized timing results for each mode of optimization. This is a yardstick
for future performance improvements.

Table 3.24 presents the timing data for the SV, SC, and SVC optimization options. These data

- were obtained by hand instrumenting the code in its entrance and exit points with etime.

We notice immediately that the speedup obtained is very small, obtaining a maximum of 1.23-

- (cf. Table 3,25). Given our data from the Cray runs, this is hardly surprising.
An interesting observation which warrants further study is the slight increase of runtime across

data sets when choosing an enhanced optimization option, namely SV(:', instead of SC. This is most
!

. 22

Table 3.24: Execution times for SV, SC and SVC COMMIX-1AR/P code running on an Allia,lt

FX/S0.

LI
Version Plr0 '2 lri____'. Plr2

' SV 1322.4 122.31 12331.2

SC 1128.7 106.41 10015.0

SVC 1136.7 106.6! 1.0048.6

Table 3.25: Effect of number of CEs on execution times for SVC COMMIX-1AI_/P code runni,lg

on an Alliant FX/80.
Plt0 Plrl Plt2

CEs Time Speedup Time Speedup Time Speedup
1 1''385'9- 1.0 130:9 1.0 12393.0 1.0
2 1230.7 1.12 114.6 1.14 11481.7 1.07

4 1173.5 1.18 110.7 1.18 10380.8 1.19

6 1142.4 1.21 107.0 1.22 10462.5 1.18

8 11.36.7 1.21 106.6 1.22 10048.6 1.23

likely due to the short vector lengths for those loops which VAST transforms to vector-concur,'cnt
form. For a fixed number of CEs, and a loop processed in SVC (vector-concurrent)mode, the

- overhead in"olved in issuing and executing a vector instruction per CE will be greater than the

time required to issue and execute the few required scalar instructions when operating in SC mode.
= One can also say that the "efficiency" of the vector instructions is very low. A witness to the

difficulty is the information from tIPM group 3 (cf. Table 3.23) for the Cray, which shows the

average vector length for SV(Zv) mode to be only about 23 for each data set. Such a vector length

would result in an average length of _ for the vector instructions issued when p CEs are executing.
For p = 8, this means that the vector length is only about 3, which is below the length needed

to achieve parity with scalar performance. One option we are currently investigating is the use
of the -alt option of the Alliant Fortran compiler which produces alternate versions (scalar or

: vector) of DO loops, depending on the expected length of the vector statement to be assigned to
=: each processor.

From Table 3.27 we notice that the SOLVEV routine consumes the maximum percentage of the

runtime for Plr0 data. This is in agreement with the data for the SV baseline runs on the Cray

(cf. Table 3.3) but in contrast to the SV(Zv) Cray runs presented in Table 3.15, and is due to the

inat_ility of the VAST preprocessor to do the necessary concurrent/vector transformations without
the special directive corresponding to Cray's IVDEP. As similar remark can be made tbr LOWFCV.

We note that in Table 3.26 and the ensuing ones, the Time step entry refers to the total time
taken by the subroutine TIMSTP.

- , :z_ o
--22

- __

" ,_)' _'................................ ,..... ' ,', ,_,_,_1.....,,,'r........... ,Ii_,,i,III "'_'"_II_....... 'ir"'"'rI'' 'I'_'"11"r'' "'

Table 3,26: Execution times of various phases for COMMIX-1AR/P code running on an Alliant
FX 180 for Plr0.

Phase SV SC SVC SVC SVC SVC SVC
1ce 8ce 1ce 2ce 4ce 6ce 8ce

Time step 1289.57 1101.10 1352.57 1200.73 1145.35 1115,55].108.89
Momentum constr. 296.03 271.94 291.85 281.32 290.46 284.].3 283.14
Momentum solu. 440.76 331.55 456.68 385.51 344.50 332,94 330,08

Energy constr, 303.03 278.38 302.38 299,97 298.95 296.31 297.49

Energy solu. 209.5] 180.28 261.52 194.75 173.75 165.31 160.88
Thermal Struct. 19.52 19.88 19.61 19.78 19.81 19.66 19.79
TS Radiation 1.71 1.67 1..69 1.70 1.74 1,68 1.73

L

Table 3.27: Execution times of CPU intensive routines in COMMIX-1AR/P code running on an

Alliant FX/80 for Plr0
Routine SV SC SVC SVC SVC SVC SVC

1ce 8ce lce 2ce 4ce 6ce 8ce

SOLVEV 206.58 178.10 258.40 192.30 171.63 163.28 158.91

LOWFCV 135.14 136.76

QSTDItS 76.08 70.68 82.22 76.08 76.12 77.22 79.36
XMOMI 31.96 29.67 26.54 27.97 28.03 28.28 27.98
YMOMI 48.93 33.74 36.22 38.15 38.52 39,80 38.39

. ZMOMI 49.08 48.97 70.18 60.74 65.95 61.31 62.61
- ENERGI 48.94 52.04 50.20 58.29 59.04 57.17 56.54

QSTRUC 32.21 30.01 31.83 30.70 29.54 29.08 29.12

Table 3.28: Execution times of various phases for COMMIX-1AR/P code running on an Alliant
FX/80 for Plrl.

_ Phase SV SC SVC SVC SVC SVC SVC
lce 8ce lee 2ce 4ce 6ce 8ce

. Time step 118.26 102.93 126.18 110.30 106.53 102.91 102,49
Momentum constr. 28.73 27.03 27,50 28.40 28,44 27.36 27.61
Momentum solu. 29.15 21.05 30.58 24.12 22,11 21.11 20.66

Energy constr. 29.76 27.63 30.22 30.37 29,17 29.99 30.32
Energy solu. 26.63 23.37 33.86 23.54 23,01 20,77 20.15
Thermal Struct. 1.95 1.97 1.97 1.98 1.98 1.96 1.98
TS Radiation 0.17 0.17 0.17 0.17 0.17 0.16 0.18

Table 3.29: Execution times of CPU intensive routines in COMMIX-1AR/P code running on ali

Alliant FX/80 for Plrl
Routine sV I-SC SVC SVC SVC 'SVC SVC

I 8ce __!ce 2ce 4ce ace Bcc
SOLVZV 26,27 123.09 33.50 23,24 22.74 20.52 19,8i)
LOWFCV 6.33 6,13

QSTDRS 7,291 6.70 7,86 8.61 7.35 7.55 8,12
'_ XMOMI 3.1'0 I 3.20 2.51 2.60 2,65 2.88 2.48

YMOMI 4.5913.57 3.34 3.57 3,634.01 3,39
I •

ZMOMI 4,581 5.31 5.81 6:89 6.38 I 5.31 5,90
ENV,RC_I 4,761 5.71 5,32 5.37 5.32 i 6.38 5.61

QSTRUC 3,201 2.99 3,19 3.05 2.94[2.90 2.89, , . ,, , ..

Table 3,30: Execution times of various p!lases for COMMIX-1AR/P code running oil ali A lli_i,t
FX/80 ibr Plt2.

Phase SV SC SVC SVC SVC I SVC SVC'
lce 8ce 1ce 2ce 4ce 11 6ce 8cc

Time step 1.2297.20 9986.37 12358,54 11450.86 10351.53] 10433.30 10019,23
- Momentum constr. 3733,70 3110.72 3579.02 3554.11 321.2.87 [3299.41 3133,59

Momentum solu. 4071.72 2904,95 4233,12 3471,16 3074.20 I 3007.06 2967,60
I ,t4o8.13Energy constr. 3888,48 3461,,57 3831.89 3881.43 3578.85 3656.77 ' _'

Energy solu, 497.44 406.23 609,70 440.80 383.85 367.56 358,70
Thermal Struct, 21,59 21.79 21,79 21.98 22.02 ' 22.00 22.02

I
= ':FS Radiation 1.90 1.93 L83 1.84 1.82 1.91 1.77

-

Table 3.31" Execution times oi' CPU intensive routines in COMMIX-1AR/P code running oll ali
Alliant FX/80 for Plt2,

Routine SV SC SVC SVC SVC SVC SVC
1ce 8ce 1ce 2ce 4ce 6ce 8ce

_

- 4 • ,SOLVEr 58.38 375.29 570,36 410.00 357,43 341.73 334 15

LOWVCV 907.13 934.60
_ .QQSTDRS 999.55 8,_6.96 95, .58 982.58 952,28 960.68 906.94
- XMOMI 435.81 359,01 393.95 373.60 31.5.14 328.59 311.66

YMOM[587.24 399.98 51.9,84 503.95 432,57 442,40 428.66

-- ZMOMI 679.56 556.98 682.26 705.87 666,21 700.76 641.23
I,;N_RGI 685.20 586.70 734.43 771,56 663.17 694.49 659.76

I--

: QSTRUC 421.05 386.95 419.25 L'95.88 382.98 379,64 377.24

-

25

J
_

Table 3.32: Routine events for COMMIX-1AK/P trace graph obtained from the Cray X-MP '48.

Event Routine _Event Routinel Event Routine II Event Routine
0 COMMIX 1 LOCF 2 CLEAR 3 TSCAN

4 MXPLNS 5 ALTER 6 AMAIN 7 GEOM3D

8 BOXES 9 FILLM 10 SHOME 11 TLEFTS
12 INITIAL 13 INITA3 14 INITA2 15 FITIT

16 SMOOTH 17 GETF 18 INHTX 19 INPUMP

20 INFORC 21 INPSTR 22 ICTEMP 23 BARIN ,
24 RSET2 25 DSET2 26 REDEF 27 BCTEMT
28 BCTEM0 29 BCTEMP 30 BCrt,OW 31 BCPRES

32 GETMTS 33 GETI,IK * 34 LODODD 35 HSTRUC

36 HEATCF * 37 TSTRUC 38 QSTRUC 39 OUTPUT

40 PSTRU1 41 RARRAY 42 PSTRUC 43 GDCONV

44 WATSTP 45 GETEKL 46 TIMSTP 47 MOLOOP

48 XMOMI 49 YMOMI 50 ZMOMI 51 FORCES *

52 PUMPQ 53 PEQN 54 CGLOOP 55 STORE

56 UPDATE 57 COMMAT 58 BOUND 59 ELIM

60 VOLCEL 61 WRPTST 62 SORTC 63 RESORT

64 CNGRIC 65 FACNCV 66 COFSRT 67 OPERXDF *

68 LOWFCV * 69 DDOTC * 70 DAXPYC * 71 DAXPXC *

72 MOMENI 73 ENLOOP 74 ESORCE 75 ENERGI

76 SOLVEV 77 QSRAD 78 WATTIM 79 RESTAR

80 P LTA P E

3.2.3 Dynamic program execution tracing analysis
.

As mentioned in Section 2.3 we have started using tools developedat CSRD to capture the detailed

= histories of routine invocation together with machine perforraance statistics, In Figure 3.1, we show

the routine trace graph for a COMMIX-1AR/P execution in vector mode on the Cray X-MP. Only
fifty iterations were performed in this execution. Each routine has been given an event number as

listed in Table 3.32.1 The trace graph visually depicts where time is being spent in routines during

the execution and the routine calling dynamics as the application proceeds. We hope to further

apply this type of analysis in Phase 2 to identify performance limiting behavior.

3.3 Results from COMMIX-1C

We next; list some results from the performance evaluation of COMMIX-1C on the ANL Cray X.

MP/14 and the Alliant FX/8. For this particular code we also include performance results from
running the code in its original environment, namely a Sun Spare workstation. We note that

although to be consistent with our previous runs we used the SV version of the code as baseline,

COMMIX-1C wa.s not written to profit from vector processing.

ISome of the routine events have been elided due to their high frequency; these events are identified by an "*" in
the Table 3,32.

26
-_ , ,

4

t
60

Routine 40 l",ig_lili
Events 20

0 I " _ r'_ "*........ t l

60 2n(I
Routine 40 I!',ightllEvents 20

0 _ I 1

Routine 40 .-_ 3td
Events l",igl_til

20
0 ,1 l , "

60
Routine 40 _ ,1tll
Events 20 Eiglltll

: 0 i 1 i 1

60
= Routine 5til

Events 40 -- !!;iglltll
: 20

0 i 1 i

; 80

Routine 40 l';igllt IiEvents 20
" 0 i
=

: 60- Routine 7til
: Events 40 - Eiglltl_
_- 20

= Routine 40 ,,
- Events l',_gl_tl_20

= 0 i 1 _ --

Figure 3.1' Routine graph for fifty iterations of COMMIX-1AR/P execution on tile Cray X-MP/48.

27

Table 3.33: Timing results from COMMIX- 1C runs oil the Spare, Cray X-MP / 14and Alliant FX/8.

FClr0-[Clrl Clr2
Spare 9,233,4 3,512.5

Cray (SV) 1,463,6 554.8

Alliant(SVC) I 48.4] 12,625.9 5,124.1, : .

Table 3,34: ttPM group 0 summary for baseline SV COMMIX-1C code running on Cray X-MP/14
with data set Clr2,

Clr2
CPU seconds 554,86

Million inst/sec (MIPS) 36.28
Avg. clock periods/inst 3.24
% CP holding issue 45.67
Inst,buffer fetches/see 0.61M
Floating adds/see 2.30M
Floating multiplies/see 2,93M '
Floating reciprocal/see 0.38M
I/O mere. references/see 0,49M
CPU mere. references/see 12.18M
Floating ops/CPU second 5.60M

To port the code from the Sparc to the Cray X..MP, we first had to change data type declarations
to Cray single precision (64 bits), IEEt)', arithmetic traps specific to the Sun were removed, machine

specific constants were changed, and dynamic memory allocation calls were converted to Cra.y

specific. Several difficulties associated with a "Namelist" like input processor 'were also resolved, For

the Alliant the above mentioned IEEE arithmetric traps were converted to Alliant traps, tlowever,

the principal problem was the lack of compatible dynamic memory allocation system routines

(calls to the Alliant Fortran a].:l.ocate() were not enough.) The problem was dealt with (for
the present) by explicit allocation of large sections of memory, coded so as to check that the

allocation is sufficiently large. In addition the use of a parallel/vector architecture led to concerns
about the correctness of the computed results. This led us to perform additional experiments

with various compiler options and run on a single processor. These experiments revealed that our

transformations did not change the nature of the output data,

The results from Table a.aa imply that the MFLOPS rates achieved for phase 2 of the compu-

tation were 0.88 on the Spare, 5,6 on the Cray X-MP/14 and 0,61 on the Alliant FX/8.

: We also list the HPM results from running the code in SV mode on the ANL (:ray X-MP/14
and using data set Clr2. Tables 3.34-3.37 summarize the obtained results.

We see that the current version of the code performs very badly on the Alliant: Despite the

automatic r,ptlmizations, the times are lower for the Alliant compared to the Spare. The inability

to automat;,_ :!!)"extract higlt performance for this code was also observed from the speedup values:

_: Input deck Clr2 ran only 1.03 t,imes faster on 8 than on a single CE of the FX/8.
.

28

i

F

Table 3,35: HeM group 1 summ_ry for baseline SV COMMIX-]C code running on Cra,y X-MI'/I,I
with data set Clr2,

Clr2

% of all CPs

Waiting on A-registers/ftinct_ units 13,28
, Waiting on S-registers/funct, units 29,63

Waiting on V-registers 0 ')'
Waiting oil vector functional units 0,36
Waiting on scalar memory references 0,i8
Waiting on block memory references 1,37

Table 3.36: ItPM group 2 summary for baseline SV COMMIX-1C code running on Cr_ty X-MP/14
with data set Clr2.

-" Cir2

Inst, buffer fetches/sec 0:6'lM
Scalar memory refs/sec 7,77M
% having _-.nflicts 36,14
I/O memory refs/sec 0.64M
% having conflicts 51.72

Block memory refs/sec 4.41M
% having conflicts 72.96
Vector memory ref,_/sec 0,72M

Table 3,37: ttPM group 3 summary for baseline SV COMMIX-1C code running on Cray X-MP/14
- with data set Clr2,

Clr2

type of instruction instr./CPU sec % of ali instr,
,juri-+p/S'i)eci al 3,30 U 9.11

: scalar 32,85M 90,54

= ,,_cLor integer/logical O,05M O,15
vector floating point O,02M 0.04

ve,tor memory O,06M O,16
type of,operation ops/CPU see avg, VL

Vector integer&logical 0.57M 10,60
Vector floating point 0.25M 16.45
Vector memory 0,72M 12,19

_

i

29

,li
_

Looking at the HPM group 3 results in Table 3,37, we notice that the vector fio_tlng-point

operations accounted for only (},04% of all Instructions, This compares wtth a typical {},5% for th¢_

corresponding baseline SV runs of 1AR/P and 0.6% for tile SV(Zr) runs, This low perform_mce Is
not surprising: COMMIX-IC uses YSMP to solve tile linear systems by direct methods which do
not take advantage of vector or parallel processing capabilities, Finally, a comment similar to tlmt

made in the end of Section 3.2.2 regarding vector lengths and inefficiency of SVC processing could
'also be made here.

3O

II, , Ildl i,i

Chapter 4

C @WHAMS-3D des rlption

The WtIAMS-3D computer program employs explicit time itltegration to de nonline_tr, tr_nslent

analysis of frames, shells_ plates and continua In three dimensions [4], Both material nonlineari-
ties due to elasto-plasttc behavi _rand geometric nonlinearltles due to l_rge displacements can be
treated, This program has been developed jointly at Northwestern University and Argonne Na-

tion_l L_bor_tory and is lnternatlonaaly recognized as a state-of-the-art program for performing
nonlinear transient analysis, WHAMS-3D has maintaaned its role as a leading edge progr_m by

pertbrmtng extensive research in innovative methods (e,g,, subcycltng) for enhancing computational

efficiency, Argonne has employed a,nd developed this program to perform analysis of various re-
: actor components and structures in a computattonMly efficient manner. Other organizations have

employed the program to perform _nalysis of ice forces on Arctic structures_ analysis of hurled
o structures, military weapon analysis, aircraft engine structural analysis, analysis of electronic com,-

P0nents, reactor safety tiuld-structural analysis, impact and penetration _nMysis, and _utomobile
crashworthlnr'_s simulations. The program has been extensively validated by comparisons with a

wide range of experlment,,_ associated with large deformations, buckling, lmpa.ct-penetration, etc.
The program employs a finite element format, so that it possesses considerable vers_tttllty iii

modeling complex shapes and boundary conditions. The element library consists of the following:
quadrilateral and triangular plate-shell elements, a beam element, a spring element and _thexa,hedr_t]

continuum element. In addition, a rigid linkage is included which permits the efficient modeling oi'

very stiff portions of a structure, such as the bottom ring of a core barrel, In a rigid link_ge, the
motion of a master node defines the motion of ali slave nodes linked to the master node. '.l:hls optloll
tS also useful lo'" eccentrically connected elements where the mtdlines of tim connected elements do

not coincide, as for example, in stiffeners.
All of the elements in the progr_tm are three dimensional. The beara element is based on Euler

Bernoulli theory, which assumes that planes normal to the midline rem,_ln phLnar and norm_l. The

: element has stiffness in torsion, bending about two axes_ and in the axial dir(_ction.
: If the material response is elasto-plastic, the cross.section of the beam is restricted to |)e thin..

walled, and the cross-section is completely arbitrary and defined tlu'ough input, l_ch elemezlt is

ass'umed to be prismatic. For ela.sttc beams, the cross-section may be defined directly through the
section moduli and transverse she_rs m_ty be included.

The quadrilateral plate elemel_t is based oa Mindlin-Retssner theory, This is the recomme11(led

element for most simulatiol_s, It uses one-point quadrature In the surface of the shell to _chieve

comt)utattonal efficiency, Spurious modes are suppre.,_sed through a consistent ga,mm;t-l)rO,joctio_l,

A Mindlia-,Reissner type triangul_tr plate element is a,lso available, The tr}a,ngular elem(.,nt I)rovid(',s

: 31

H fl '_ ' I_lnF1 III *'l

versatilitY In modelhlg.
A three dimensional Lagr_agt_n hex_hedr_L1 element with eight _Lod¢-_JIs lllcluded whtch cali

be used to model tluld _nd send continua, Tile e!ement uses only one qu(_dt't|,ttlrc polzlt with a,

consistent control of hourgla_,,_ modes movery larg_ meshes c_n l)e h_ndled effectively,
In _1 of the elements, a corot_tlon_l element tbrmuh_tlon Is .used, In this formul(_tloll a, cool,.,

d.ln_te system is embedded In each element _nd t_ll element comput_ttlot)s _u'e perflJrmed rel_tlve
to this element coordtm_te system which rot_tes with the element, This introduces considel'a, ble

simplifications Into the formulation _nd _dds substtmttally to the efficiency of tlm progra, nl,
Time integration is performed by the explicit, central difference method, St_ble time steps ¢:,)ul

be automatically computed or input by tht_ user or a driving progr_m, Mixed time lntegra,tton, a,

procedure which allows fbr different time steps in dlfferetlt par(',s of the mesh, ma,y be employed, To

provtde ,z check on the st_blllty of a c_lcuh_tton after lt is cc_npleted, energy b_l)tnces are computed,
A lumped m_s m_trtx is employed so tl_t no m_trlx laverston Is needed ta the computations _u_d

core s orage requirements are minimized,

E1 _sto-plastic m_terl_l l_ws using Mises or llyushtn crlterlox_ with lsotroplc str_tn)_a,rdentng _u'e

included, Hardening ts defined by _ plecewise linear function, 1,31_stlc_nd hydrodyna, mlc materta,l
laws are also available, The mater l.._ll_ws are completely modularized, so other m_tertal i)tws c_tn
easily be added by the user,

An interaction algorithm for tre_ttng tInp_ct-penetratlo n simulations with _rbll, rnry erosion
is included, This _lgorlthm Is based on Interaction between slave nodes (projectile) _nd m_ster

elements (t_rget) a,nd no tracking oi' the sliding lnterf)tces Is needed, lt employs _n _ssembly
of normals to ldelt),lfy the lnterf,_ce surface _da,ptlvely so that lt can ha,x_dle eroding eleme_ts l)_

both the t_rget and penetrator, In the inter_ctlon algorithm, momentum Is exch_t)ged between

interacting nodes so that the total momentum is conserved,

The a.lgorithm for expltctt time integration primarily involves computing the Internal t'orce_,)of
the elements which describe the simulation, Nodal accelerations, velocities and displacements _u'e

then made by central difference equations,

: 4.1 Data sets

Four d_ta sets are used for the performance testtng, These data sets a,ll use quadrilateral plate

elements, They, however, represent four different physical problems,

Cylindrical Panel (cylpane[), Since closed form solutions _re not available for nonllne_r tran-

. sient programs, solution,,_ obtained by finite elements are typically compared to expertment_l
results, The cylindrical panel problem has been used as a benchmark for many nonllnea.r

Experimental results h_ve been obtained for this shell by B_lmer a,ndtransient programs, '_ ' '
1 'Wltner [3], A 120 degree cylindrical panel subjected to an impulsive o_(hng is modeled to

; test tlm elastlc-pl_._stic, large dei'orm_ttion c_pability and the _billty to treat curved surf_(:es,

The analytlc_l model t_kes advant_ge of symmetry, so only h_lf the panel is modeled; 1089

nodes _nd 1024 elements were used for the half panel, The impulsive loading ls _ccompltshed
numerically by prescribing an tnitl_l velocity.

- Column Buckling (buckle). In the Clinch 1blver breeder reactor design, four columns were used

- to support the above core struct't_res, The dynamic buckling an_.tlysts qu_ntifies tt_e energy

;, absorptlox| c_pability of these columtts dt_rtng core disruptive ,._ccldents, Symmetry conditions_

32

T_.tble 4,1,: Execution times for WHAMS-3D on the Cray X-MI'/d8 (from Ill'M),

vorsi Exo(:ution Time
"s --I aoKW 4048,60I SS,02

: S'V [9,73 64,11 65,0,07 I 14,72

allow a half column model of 287 nodes and 240 elements, The column Is loaded layl_l'escrlblllg

an upward velocity ot' 500 ln,/sec, to the bot't,om nodes of the mesh with the top nodes l'txod.

Spherical Cap (spcap), The pressure loaded spherlc',d cap problem Is _ common benchmark rot'

nonlinear flnlte element codes, Linear elastic and elastic-plastic tnaterla,ls are typlc_flly con-
sidered, A total of 332 nodes _md 30(I elements were used for the one.quarter model, A
uniform pressure loading Is N)plied over the cap,

Structural Frame (ft'sine), The frame mesh Is a common front-end automobile structural compo.
i nent subjected to crashworttflness testing, t[allqutst, Benson, and Goudreau have documented

_= the geometry definitions of this d_ta set which was obtained from Suzuki Motor Company
of Japan and used to benchmark the perfornmnc, e of other finite element formulations for

shell analysis [7], A total of 1122 nodes and 1100 elements were used tbr the mesh tn .mir

benchmark analyses, Impact was modeled by prescribing a uniform velocity of 800 tn,/sec,
across the rnesh with a clamped row oi' nodes at one end,

: 4.2 Results from WHAMS-3D

A detailed analysis of our timing results and porting activities can be found In the first progress

= report. We outline here the performance measurements we h_ve obtained during the first phase of
this project. In this initial benchmark we tried to get _tll the performance results based on original

code. In particular, we did not attempt any hat,el optimizatlons,

As mentioned in prevtous sections, the ori_;tnal code WI[AMS3D has been ported, compiled,

and tested on both the Cray X-MP/48 of NCSA and the hlliant FX/80 of CSRD. On the Cr;_y
X-MP/48, we obtain three different (scalar, sc'dar-vector, and scalar-vector-concurrent optimized)

• versions of the object (:odes. On the Alliant FX/80, we have four different (scale, r, scale, r-vector,

__ scMar-concurrent, _nd sca,l_r-vector-concurrent optimized) versions, In this section, we l)resent

some of the performance results of these versions of the originM code on both mach.ines for MI four
data sets,

---' 4.2.1 Cray X-MP/48i

:- The performance results of the original code WIIAMS3D on the Cray X-MP/48 tu'e presented
irt Tables 4.1 through 4.5. Table 4.1 shows the execution time for ali four d_t_ sets. As cart be

obt_flned from this table, the vector speedup of the SV version over the S version ranges from 5.98
for the data set spcap to 6.23 for frame. It is als() observed that the SVC version does not yield good

"2.

_

33

i

J i

I

!1t

Table 4,2: Execution times for SVC version of WttAMS-3D_on __ X-_ [P/48 (from li M)
No, of Connect '_,t_e (.Ii) ---

Concurrent in each (_IPU

1 3,15 19,66 :162,35 5,99
2 0,59 9,92 i 131,N 1.88

i

3 2,45 12,30 I 147.89 4,34
4 3,47 19,74 /211,34 3,08

Total exec, time 9,66 61,63 -'_653,12 -:i5'30:

Total CPU time 25,54 155,37 I[714,46 35,!0r

Table 4,3: Floating point operations on Cray X-MPf48 for t'he S version (from group 0 of IIPM),
F,P, type No, of F,P, ope_'atlons

buckle :!- Cyipanel _"_?rame spcap

adds J 290,8M 2,021,7M 19:654.2M 430.8M
multiplies 345.6M 2,254,0M 23,588,5M 504,3M
reciprocals 36,0M 203,9M 2,473,2M 55,0M

Tot--'-'-M....... 672.4M 4,479,6M _15'9M 990,1M

==

Table 4,4: MFLOPS for WHAMS-3D on tlmCray X-MP/48 (from IIPM).

Version MFLOPS

SV 71,0(} 71,65[72,65[6).05
svc 71,38 74,49 i, 5 _LIj

34

Table 4,5: Performance d_ta for WHAMS-3D on the Cray X-MP/48 using data set cylpanel (frm,i
r bOWTltAClil ,

Compiler options S SV SVC
name calls :%i_lme " t]i'ne %time time "%'time time

qPbAT_ 25600 33,16 129,00-28:52 18,30 28,69 17,62
QMISI,_S 12800 20,97 81,56 17,56 i1,27 17,55 10,78

QltlGiD 25600 9,08 35,33 7,04 4,52 7,00 4,30
Q_ORCZ 25600 6.13 23,83 16,29 10,46 16,68 10,25
UPDATE 1600 5,48 21,33 3.69 2,37 3,69 2.27
soLvz 1 5,33 20,73 6,36 4.08 6.29 3,87

BYI_,V 63568 5,28 20,55 3.94 2,53 3,97 2.44
N_WSDV 63568 4.35 16,93 4,53 2,91 4,56 2.80

- QVBCTV 25600 3,53 13,75 2.24 1,44 2,29 1,41
PMODV 63568 2.83 11,01 2.58 1,66 2,58 1,59
CO NSTR 1600 1,87 7,26 1,86 1,20 1,88 1,16

Total 98,01 381,28 94.61 I 60,74 95,18 58,49

performance Mthough four CPUs are available, Table 4,3 shows the MFLOPS for the S version of

the code on the Cray X-MP/48, as obtained from group 0 of HPM,
Table 4,2 gives the job accounting information for the SVC version, This information providc, s

the conI_ect time in each active CPU and the number of active CPUs (cf, the discussion Eq, 3,1).
The performance of the scalar-vector version of this code reaches about 70 MFLOPS, 1/3 of the

peak performance of this machine,

: To better understand the behavior of this code, we also used the performance utility FLow'r_t^cI,:
• to gather information at the subroutine level. Ali the four data sets have been examined, In 1,lie

following, we present only the performance data for the data set, cylpanel since the behavior of
this code on the other three data sets does not vary very much, The results are shown in Table

= 4,5 In which only heavily used subroutines are presented, A brief description of these most time-
consuming subroutines is given below,

_ QPLATI_Compute the internal forces for a quadrilateral plate element using one point integratioll
= by a velocity strain formulation.

QMIs_s Compute the stress given the strain for a plane stress biaxial elastic-pl_tstic m_terial,
_

_

QRIGID Compute deformed v.-_dal coordinates for a quadrilateral plate element, calculate the values

_ of the shape functions at integration point (0,0), and calculate the area of the element,
=

QFO[tCE Compute hourglass forces, transfer forces from element to global coordinate system, and

update the global internal force vector.

0 PDA'rE Update the nodal coordinate system,

SOLVBIntegrate the equations of motion - F = ma.

2 BYIELDV'Bring back stress to yield surface,

: t_O

Table 4.6: Execution time for WHAMS-3D on the Alliant FX/80 (from aPROr).
Optimization No. of Execution Time 1]

CEs buckle | cylpanel frame sp cap 1LS 1 541.63 i 3802.19 379,51.01 820.16SV 1 231.62 1595.33 15811.41 328.20

Table 4.7: Execution time for the SC version of WHAMS-3D oll the Alliant FX/80 (from aPrtOr).

No. oi Execution Time

CEs buckle Cyl'panel frame spcap
1 568,63 3997.18 40759.i6....815.39
2 339.89 2368.7o 23685.83 478.8o
4 215.77 1508.11 14643.84 302.38
8 155.82 1060.39 10346.51 228.20

NEWSDV Compute new stress by elastic-plastic material law.

QVECTV Compute the quadrilateral plate element coordinate system.

PMODV Look up the plastic modulus and yield stress.

CONSTR Enforce boundary conditions in tile local coordinate system.

4.2.2 Alliant FX/80

We next present results from use of the Alliant FX/80. It should be noted that we did not use

the compiler option -r8 to compile the source code. In other words, ali versions on the Alliant are
in single precision.

Table 4.6 shows the execution time using only one CE for the S and SV options. Tile vector

speedup of the SV version over the S version ranges from 2.34 to 2.50, which is reasonably good.
It should be noted that the timings for the S and SV versions presented were obtained without

z

Table 4.8: Execution times for the SVC version of WHAMS-3D on the Alliant FX/80 (from GPROF).

: No. of Execution Time

CEs buckle cylpanel frame spcap
1 289.50 1896.92 19916.66 407.77
2 257.04 1763.51 17301.31 357.67

= 4 196.99 1347.01 12812.99 289.34

8 166.45 1094.76 11054.41 236.21

36

Table 4.9: MFLOPS for WItAMS-3D on the Alliant FX/80.
Optimization No. of MFLOPS

CEs buckle cylpanel

S 1 1,24 1.21] 1.21 I !.24
sv 1 2.90 2ss 12.9113.10
SC 8 4.32 4.33 I 4.45] 4.45
SVC 8 4.04 4.19 [4.16] 4.30

Table 4.10: Performance data for WHAMS-3D on the Alliant FX/80 using data set cyllntnel (from

GPROF).

Version S SV SVC

No. of CE's used " I 1 8
' ,,,

name calls %time tiine _time time °_time time

QPLATE 25600 38.2 1452:63 L25.2 401.33 15:7 171.75

QMISES 12890 14.3 544.90 19.8 316.36 26.2 287.13
QRIGID 25600 10.6 404.41 7.5 119.16 4.3 46.16

QFORCE 25600 6.6 251.00 9.1 145.91 10.2 112.18
UPDATE 1600 4.6 173.54 4.2 67.21 6.0 65.60
SOLVE 1 8.0 304.90 14.6 232.82 20.5 224.67

BYIELV 63568 3.2 123.40 2.7 43.54 2.2 24.21

NEWSDV 63568 5.2 197.44 4.7 75.31 2.5 27.67

QVECTV 25600 2.1 80.21 1.8 29.09 1.3 14.10
: PMODV 63568 2.1 79.86 1.7 27.40 1.7 18.40

CONSTR 1600 2.6 98.80 3.5 55.52 3.3 35.59
=

Total --- 97.5' 3711.29 94.8 1513.65 93.9 i027.9i.. .

explicitly specifying to use only one CE. The effect of the explicit specification of using one CE on
performance is currently under investigation. Tables 4.7 and 4.8 show the execution time using 1,

2, 4, and 8 CEs for the SC and SVC versions, respectively. As can be seen from these two tables,
the parallelism obtained through the use of compiler options results in speedups across processors
for the SVC version that are rather poor.

I Table 4.9 compares the performances in terms of MFLOPS for different versions of the object

- code, where we have used the floating point operation counts of the S version obtained from the=

Cray X-MP/48 because the Alliant does not have utility to gather this information.-o.

Table 4.10 shows the performance data at the subroutine level using the Alliant FX/80 for data
- set cylpanel for the S, SV, and SVC versions of the object code. Note that the time is reduced by

a factor of 2.45 in going from the S to the SV version on one processor. However, going to SVC
- decreases the time only by a factor of 1.47, giving a multiprocessor efficiency of only 18%. It should

also be observed from 4.7 and 4.8 that the SVC version did not yield better performance than the

z SC version when all eight CE's were used. This is due to the fact that the vector length is not long

37

Table 4.11; Characteristics of the data sets used in WtI, _MS-3D.
Data Set Problem Size

No. of nodes No. of time steps
buckle 287 800

cylpanel 1089 1600
frame 1122 16000

spcap 332 1000
stcn 407 1136

Table 4,12: Execution times for WttAMS-3D on the ANL Alliant FX[8.
........ Scalar Mode Vector Mode Vector-Cone. Mocle

Data Set (fortran -.0g) !fortran -0gv) (fortran -0gvc)
user system user system user system

buckle 691.1 1.1 336.4 1.1 181.1 1.1

cylpanel 4419.2 1.1 2286.4 1.7 1212.1 1.5
frame 44654.6 1.3 23030.0 1.6 12343.5 1.5

spcap 940.8 1.0! 492.0 1.1 277.3 1.0
stcn 604.4 0.9 324,0 1.1 173.9 1.1

enough to take advantage of both vectorization and parallelization, as explained for the COMMIX
code.

4.2.3 Additional Results

In addition to the Cray X-MP/48 of NCSA and the Alliant FX/80 of CSRD, we have also run
the baseline code on the Argonne ARCF Alliant FX/8, Cray X-MP/14, and Sparcstation. Data
sets employed in the test on these three machines include tile four data sets mentioned previously

and an additional one: a steel containment (stcn) subjected to a pressure loading. The problem
sizes of these data sets are listed in Table 4.11. The performance data are presented in Tables

4.12 through 4.14. Table 4.12 shows the timings on the Alliant FX/8 using scalar optimization,
vectorization, and parallelization. Table 4.13 presents the execution time for the Sparcstation and

the Cray X-MP/14. A summary of the findings of this assessment on the Cray is provided in Table
4.14.

As indicated by the very high ratio of vector floating point operations to total floating point
operations in Table 4.14, it is clear that this code has been vectorized to a large degree. The average

vector lengths are close to the optimal vector length (64). A further indicator of good vectorizatiorl
= is the relatively low hold-issue condition percentage for the scalar registers and functional units

as opposed to the vector registers and functional units. For maximum performance, the highest

percentage of hold-issues should be on the vector registers and vector functional units as these are

the fastest. The columns for hold issue conditions indicate the number of clock pe,'iods during which

- the issuance of an instruction was (held) delayed. Note that more than one hold issue condition

__ 38

i

Table 4.13: Execution times for WHAMS-3D on the Sparc, Cray X-MP/14, and Alliant FX/8.

Machine Execution Time
buckle cylpanel frame spcap stcn

ScaJarSparcstation 896.9 6173.1 61647.9 13'22.1 857.4

Cray X-MP/14 (vector) 10.3 67.1 689.7 8.4 11,5

Table 4.14: HPM performance data summary for WHAMS-3D running on the Cray X-MP/14.

Data [Floating Point Hold Issue MFLOPS

_. Set] Operations Conditions (%)

% Vectorized Average VL Scalar Vector Block Total Vector
A-rg. S-rg. rg. f.u.

buckle l 99 58.78 7.1 8.3 27.3 25.4 27.5 67.2 66.7

cylpanel 99 63.19 6.0 9.0 27.1 25.7 31.8 68.4 67.7
: frame 99 60.63 6.2 8.9 28.2 26.1 31.6 68.5 67.7

spcap 96 58.76 6.9 18.1 24.7 15'8 25.3 47.3 45.42

stcn lO0 59.75 7.,5 11.6 24.4 21.6 27.7 56.0 55,0
i

can occur during a given clock period so that the individua,1 percentages cannot be added to get

the overall percentage, Removing hold issue conditions promises to offer code speedups however
the compiler attempts to catch bottlenecks and even the most optimized codes may ha,ve l_rge

percentages for hold issues. Only after further experimentation can it be determined whether tlm
number of hold issues conditions can be reduced.

4,2.4 Dynamic program execution tracing analysis

In Figure 4.1, we show the routine trace graph ibr the first 2.954625 seconds of the WHAMS-3D
execution in vector mode on the Cray X-MP; eight consecutive sub-sections of this interva,l are

shown. Each routine has been given an event number as listed in Table 4.15.1 The trace graph

visually depicts where time is being spent in routines dui'ing the execution and the routine calling
dynamics as the application proceeds. We hope to further apply this type of anMysis in Phase 2

to identify performance limiting behavior,

i Some of the routine events have been elided due to their high frequency; these events are identified by an "*" iii
the Table 4.15.

Event Routine 1]Event Routine ii Event Routine _H Event Routine
0 MAIN 1 DRIVE 2 ILEADKO 3 CORgE

4 ItEADMA 5 READNE 6 DECOD 7 CROSS

8 BLOCKS 9 ASSBLE 10 QASME 1] QVECTR

12 QDELT 13 READLD 14 ItEADOU 15 SOt,Vn

16 OUTPUT 17 LOADPR * 18 FRCIN 19 QFRCIN *

20 QNODE * 21 QVECTV * 22 QRIGID * 23 QPLATE *
24 QMISES * 25 Q_ORCE * 26 PMODV * 27 BYIEIN *
28 NgWSDV * 29 CONSTR 30 UPDATE 31 ETIME2
32 BTIME 33 ItOUTPT 34 PLOTEIt

Table 4,15: Routine events for WHAMS-3D trace graph

4O

32I, 24Routine 1s t

Events 16 F_igiltIi
O -- i i_ i , '

32124= Routine 211d

Events 1_ Eigllth
° 0 _1

32L.RoutineEvents 1_ C !] ! ! ! _-__'[-'_-l-! ! ! ! ! __ Eighth0

Routine 16 !!!!!! H-!!!!!! !._l-1, !! _<,,Events Eighth

0 i

24 _

,_ou_,_o,_ l_l!il!L!!ill Ji_iii II 1-!-!t !!!! ,_,,Events , , i i I i i i i _l i i i Eighth

0

321 I24 ,_o_i,,o_o,,_s,_!!t!!! !! !! H!! ! ! !14_4-14_4-_! ! _,,Eighth

2 o
==

-= 24 I 7th

- Routirie 1_ II i1111 .Events , u ' _ ' ' ' _ F,igllth,

24

Routine 1_ I !!!H4-H-H-H_Iii i lll_l!!l,.::!__!! _<,,Evellts ' :. . _ _ w lL_ighth

- 0

7 Figure 4.1: Routine graph for 0,0 to 2,954625 seconds of the WHAMS-3D execution

=

_ 41

Chapter 5

Conclusion

We have completed tile work prescribed for Phase 1 of our project. We have performed a, large nunl-
ber of experiments without any hand tuning of the COMMIX- 1AR,/P, COMMIX-1C and WHAMS-

3D codes. Our purpose was to have yardsticks by means of which future improvements to the code
could be measured. Nevertheless, we were also able to obtain a lot of data for different compila, tion

options, as part of our Phase 2 efforts.

Although, a, full appreciation of the results requires time, even at this stage, several interesting
observations can be made, which were not apparent before our experiments had t_)_kenpl,_ce. These

observations can be ibund in the commenta,ry for the tables in the previous Sections.
We found that the performance of the COMMIX codes on the Cray and Allia.nt is much below

the acceptable range, meaning that the codes have to be modified, to take advantage of the p_ra,llel

and vector processing aspects of these architectures. We noticed that even tbr COMMIX-IAR/P,
whose parts dealing with the linear system solvers had been veqtorized, the performance is very
low and will remain such, until the parts of the code de_ling with the matrix a,ssembly _re also

modified. In that spirit we strutted testing the standard automatic vectorization/p_._rMleliz_tion

tools available on the target machines. Our experiments indicate the following: Without any

help from the user, the tools only provide slight performance gains. Some help in the form of
inline directives to the compiler can introduce very significant improvements in the performauce

of some subroutines. These experiences point to the next phase of our work, na,mely ex,'tmining

the individual subroutines to provide help to the automatic restructurilig tools, and using more
advanced data dependence tests to recover compute, tions which can be processed in pttra,llel.

: For WHAMS-3D we have seen that the performance of the Cray under vector processing was

quite reasonable. Nevertheless, the performance under the multiprocessing options was not s_tisfa.c-

tory. In the next phase of this project we intend to investigate further the automatic transformtttioll
tools coupled with user directives to produce better optimized code.

42

Bibliography

[1] ANALYTICAL THERMAL AND HYDttAULIC RESEAItCIt PROGRAM, COMPONENTS TECIINOL-
OGY DIVISION, ARGONNE NATIONAL LABORATORY_Commix.lB: A three,dimensional tran.

sleet single-phase computer pTvgram for thermal hydraulic analysis of single and multicomponent
systems. Volume I: Equations and Numerics, Sep; 1985,

[2] --, Commix-iB: A three.dimensional transient single-phase computer program]or thermal
hydraulic analysis of single and multicomponent systems, Volume II: User's Manual, Sep, 1985,

[3] H. A, BAI, MEIt AND E, A. WlTMER, Theoretical.experimental corTvlation of large dynamic and
permanent deformation of impulsively loaded simple structures, Tech. l_ep. FDP-TDIt-64-108,

Wright Patterson AFB, Ohio, 1964.

[4] T, BELYTSCtlKO AND C, S, TSAY, WHAMSE: A pmgram for three.dimensional nonlin.

: ear structu_,al dynamics, Tech. Rep, NP-2250, Dept. Civil Engin., Northwestern University,
: Eva,nston, Illinois, Feb. 1982. Research Project 1065-3.

[5] R. N. BLOMQUIST, P, GARNER, AND E. M, GELBAKD, Code abstract for COMMIX-IAR/P,
July 1989.

_- , [6] CrtA'V RESEARCH, INC., UNICOS Performance Utilities Refe_nce Manual, May 1989.

! [7] J. O, HALLQUIST, D. J. BENSON, AND G. L. GOUDttEAU, Implementation of a modified
Hughes.Liu shell into a fully veetorized explicit finite element code, in Finite Elements For

Nonlinea,r Problems, P. G. Bergen, K. J. Bathe, and W. Wunderlich, eds., Springer-Verlug,
Berlin, 1986_ pp. 465-479.

_

[8] R. HOCKNEY, (roo,nl/2,sl/2) measurements on the 2-CPU Cray X-MP, Parallel Computing,
2 (108),pp,1-14.

[9] A. MALONY, J. LARSON, ANL)D. I'¢EED, Tracing application program execution on the Cray

X-MP and Cray 2, Tech. Rep. 985, Center for Supercomputing Research and Development,
- Nov. 1990.

- 43
_

Appendix A

qj • •

Appendix. Milestones for FY 1991

Copies of this Appendix can be obtained from the authors.

44

i

i _ _ ,!;

i

