ANL/TM--484
DE91 002956

THE ADVANCED SOFTWARE DEVELOPMENT
AND COMMERCIALIZATION P'.R,OJ]-DC_‘T1
Progress Report PR-1

T. R. Canfield, M. Minkoff, C. Mueller, E. Plaskacz, D. P. Weber,
D. M. Anderson, I. U. Therios
Computing and Telecommunications Division
Argonne National Laboratory
9700 South Cass Ave., Argonne, IL 60439-4844

S. Aslam, R. Bramley, H.-C. Chen, G. Cybenko,

E. Gallopoulos, H. Gao, A. Malony and A. Sameh
Center for Supercomputing Research and Development
University of lllinois at Urbana-Champaign
Urbana, Illinois 61801-2932

E. Gallopoulos, editor

September 1990

MASTER

1Work supported by the State of Illinois Technology Challenge Grant, Grant No. 90-82144 with additional
support from the National Science Foundation Grant No. CCR900000N for the use of the Cray X-MP/48 at

the National Cencer for Supercomputing Applications, University of Ilinois at Urbana-Champaign. I

Ny [

5

‘Contents

Introduction

1.1 Summary progress for first phase o oo oo
1.2 Acknowledgments

Computational Environment

2.1 Methodology i i e e e e e

2.2 Compiler and restructurer switches
2.2.1 Cray-X/MP48
222 Alllant FX/8[0] . . o . oo o e

2.3 Performance evaluation tools
23.1 Cray X-MP . . oo e e e e e e e e e
2.3.2 Alliant FX/8[0]

............................

COMMIX code
3.1 Datasets . .. v i e e e e e e e e e e e e
3.2 Results from COMMIX 1AR/P
321 Cray X-MPo e e e e e e
3.2.1.1 Summaryof baselineruns

3.2.1.2 Enhanced optimization options and further results

3.2.2 Alliant FX/80 o e e e
3.2.3 Dynamic program execution tracing analysis

3.3 Results from COMMIX-1C

..................

................................

WHAMS-3D description
4.1 Data sets . . i o e
4.2 Results from WHAMS-3D
4.2.1 Cray X-MP/48
4.2.2 Alliant FX/80 e
4.2.3 Additional Results e e
4.2.4 Dynamic program execution tracing analysis

.................................

...................................

Conclusion

Bibliography

A Appendix: Milestones for FY 1991

iii

0N =

N N b s PpwWw

N TP

[

a e

e

List of Tables

2.1 Computational engines. e e e e e e e

3.1 Execution times for SV, SV(Zv) and SVC COMMIX-1AR/P on the Cray X-MP/48
and Alliant FX/80. o i i e e
3.2 Execution times and MFLOPS for COMMIX-1AR/P baseline SV performance on
Cray X-MP/14 (from HPM). oottt i e e e e
3.3 Characteristics of most time-consuming subroutines of COMMIX-1AR/P for data
set P110 running in baseline SV mode on Cray X-MP (from PERFTRACE).
3.4 Characteristics of most time-consuming subroutines of COMMIX-1AR/P for data
set P1rl running in baseline SV mode on Cray X-MP (from PERFTRACE).
3.5 Characteristics of most time-consuming subroutines for data set P1r2 running in
baseline SV mode on Cray X-MP (from PERFTRACE).
3.6 Characteristics of most time-consuming subroutines for data set P2 running in base-
line SV mode on Cray X-MP (from PERFTRACE). ¢ . v v i v v v ..

- 3.7 Characteristics of most time-consuming subroutines for data set P3 running in base-

line SV mode on Cray X-MP (from PERFTRACE).o v v v vt v
3.8 HPM group 0 summary for baseline SV COMMIX- 1AR/P code running on Cray
X-MP/14 with data sets P1,P2and P3.
3.9 HPM group 1 summary for baseline SV COMMIX-1AR/P code running on Cray
X-MP/14 with datasets P1,P2and P3.
3.10 HPM group 2 summary for baseline SV COMMIX-1AR/P code running on Cray
X-MP/14 with data sets P1,P2and P3.,
3.11 HPM group 3 summary for baseline SV COMMIX-1AR/P code running on Cray
X-MP/14 with dataset P1.
3.12 HPM group 3 summary for baseline SV COMMIX-1AR/P code running on Cray
X-MP/14 with datasets P2and P3.
3.13 Execution times and MFLOPS for SV(Zv) COMMIX-1AR/P code runnmg on Cray
X-MP/48 (from HPM). . .« v o vt ittt it e et e
3.14 Timing profile for COMMIX-1AR/P running on Cray X-MP /48, compiled in SV(Zv)
MOAE., .« v v v it e e e e e e e e e e e e e e e e
3.15 Profile of the most time consuming subreutines in SV(Zv) mode for COMMIX-
1AR/P running on Cray X-MP/48 (from FLOWTRACE).
3.16 MFLQPS profile of the most time consuming subroutines in baseline SV, and en-
hanced vectorization SV(Zv) modes for the COMMIX-1AR/P code running on Cray
X-MP using data decks P1r0 and P1r2 (from PERFTRACE).

iv

o by

Rt

3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25
3.26
3.27
3.28
3.29
3.30
3.31

3.32
3.33

3.34
3.35
3.36

3.37

4.1
4.2
4.3
4.4

Execution time profile for the SVC version of COMMIX- 1AR/P running on Cray

X-MP/48 (from HPM). & o v v i e et e e e e e e e e e e e 18
HPM group 0 summary fr SV(Zv) and SVC COMMIX-1AR/P code running on Cray
X-MP/48 with dataset P1. 0 i it e 19
Ratio of scalar and vector floating operations for COMMIX-1AR/P code running on

Cray X-MP/48 with data set P1. . . . oo v vttt oo ettt e 19
HPM group 1 summary for SV(Zv) and SVC COMMIX-1AR/P code running on Cray -
X-MP/48 with dataset P1. i i e 20
HPM group 2 summary for SV(Zv) and SVC COMMIX-lAR/P code running on
4-CPU Cray X-MP/48 with dataset P1..0 i 21
HPM group 3 summary for SV(Zv) COMMIX-1AR/P code running on Cray X-MP /48
withdataset P1. 21
HPM group 3 summary for SVC COMMIX-1AR/P code running on Cray X-MP/48
with dataset Pl. o e e e e e e e 22
Execution times for SV, SC and SVC COMMIX-1AR/P code running on an Alliant
FX/80. 0 o v e e e 23
Effect of number of CEs on execution times for SVC COMMIX-1AR/P code running
onan Alliant FX/80. 0 e e e 23
Execution times of various phases for COMMIX-1AR/P code running on an Alliant
FX/80for PIr0. . . v v vttt it e e s e e e e e e 24
Execution times of CPU intensive routines in COMMIX- 1AR/P code running on an
Alliant FX/80 for P1r0. e e e e 24
Execution times of various phases for COMMIX-1AR/P code running on an Alliant
FX/80 for PIrl. . . o e e e e 24
Execution times of CPU intensive routines in COMMIX-1AR/P code running on an
Alliant FX/80 for PIrl. . o v oo e e e e it e e 25
Execution times of various phases for COMMIX-1AR/P code running on an Alliant
FX/80for PIr2. o . o o e e 25
Execution times of CPU mtensxve routines in COMMIX-1AR/P code running on an
Alliant FX/80 for P1r2. o . . . o o o e e 25

Routine events for COMMIX-1AR/P trace graph obtained from the Cray X-MP/48. 26
Timing results from COMMIX-1C runs on the Sparc, Cray X-MP/14 and Alliant

0 28
HPM group 0 summary for baseline SV COMMIX-1C code running on Cray X- MP/14
with dataset C1r2. i e e e e e 28
HPM group 1 summary for baseline SV COMMIX-1C code running on Cray X-MP/14
with dataset C1r2. e e e 29
HPM group 2 summary for baseline SV COMMIX-1C code running on Cray X-MP/14
withdataset CIr2.o 29
HPM group 3 summary for baseline SV COMMIX-1C code running on Cray X-MP/14
with dataset CIr2. i e e e e e 29
Execution times for WHAMS-3D on the Cray X-MP /48 (from HPM). 33

Execution times for SVC version of WHAMS-3D on the Cray X-MP/48 (from npM). 34
Floating point operations on Cray X-MP /48 for the S version (from group 0 of HPM). 24
MFLOPS for WHAMS-3D on the Cray X-MP/48 (from HPM). 34

o,

[T

¥l

4.5

4.6

4.7

4.8

4.9

4.10

4.11
4.12
4.13
4.14
4.15

Performance data for WHAMS-3D on the Cray X-MP/48 usn?‘ data =7et rylpanel
(from FLOWTRACE). v v v v v v v it vt et et e e e e e o P I
Execution time for WHAMS-3D on the Alliant FX/80 (from GPROF). "\ . v i .
Execution time for the SC version of WHAMS-3D on the Alliant E”X/BO (from
GPROF). o v v vt vt e e it e e e e e e b e e

Execution times for the SVC version of WHAMS-3D on the Alhant I’X/Gﬂ (from
GPROF). v v v vt vt e it e e i e e P

MFLOPS for WHAMS-3D on the Alliant FX/SO W . .‘ S e
Performance data for WHAMS-3D on the Alliant FX/80 usmg data set Lylpanel

(from GPROF). v v v v v v i it e e Lo (IR AN
Characteristics of the data sets used in WHAMS-3D. } (R .
Execution times for WHAMS-3D on the ANL Alliant FX/8.:u

Execution times for WHAMS-3D on the Sparc, Cray X-MP/14, and Alhaﬂt FX/S
HPM performance data summury for WHAMS-3D running on the Orafv X: MP/14 .
Routine events for WHAMS-3D trace graph I

]
1

vi

36

37

37
38
38
39
39

e

T W e

[TPEETETIN

i

Chapter 1

Introduction

This is the first of a series of reports pertaining to progress in the Advanced Software Development
and Comn:.eroialization Project, a joint collaborative effort between the Center for Supercomputing
Research and Development of the University of Illinois and the Computmg and Telecommumcatnons
Division of Argonne National Laboratory.

The purpose of this work is to apply techniques of parallel computing that were pxoneered by
University of Illinois researchers to mature computational fluid dynamics (CFD) and structural
dynamics (SD) computer codes developed at Argonne.

The collaboration in this project will bring this unique combination of expertise to bear, for
the first time, on industrially important problems. By so doing, it will expose the strengths and
weaknesses of existing techniques for parallelizing programs and will identify those problems that
need to be solved in order to enable wide spread production use of parallel computers. Secondly, the
increased efficiency of the CFD and SD codes themselves will enable the simulation of larger, more
accurate engineering models that involve fluid and structural dynamics. Such an enhanced capa-
bility is fundamental to industrial efficiency and competitiveness, and could serve as an exemplary
model for similar future activities. :

In order to realize the above two goals, we are considering two production codes that have been
developed at ANL and are widely used by both industry and Universities. These are COMMIX and
WHAMS-3D. The first is a computational fluid dynamics code that is used for both nuclear reactor
design and safety and as a design tool for the casting industry. The second is a three-dimensional
structural dynamics code used in nuclear reactor safety as well as crashworthiness studies. These
codes are currently available for both sequential and vector computers only. Our main goal is
to port and optimize these two codes on shared memory ;nultiprocessors. In so doing, we shall
establish a process that can be followed in optimizing other sequential or vector engineering (odcs
for parallel processors.

1.1 Summary progress for first phase

We have completed the first phase of tasks and deliverables specified in the work plan shown in

Appendix A, as copied from the Proposal of the Advanced Software Development and Commercial-

ization Project funded by the State of Illinois Technology Challenge Grant, Grant No. 90-82144.
We summarize our accomplishments here.

1. The codes have been ported to the target multiprocessor machines (Cray X-MP /48 at NCSA,

w0

"

N (PR TR

Alliant FX/8(0) at CSRD and ANL).

2. Appropriate data sets have been selected to test the codes’ performance. These fully exercise
all aspects of the codes, in anticipation for the industrial data sets to be obtained in the
context of close cooperation with Illinois industry (see below).

3. It was stated from the beginning that our main objective is to demonstrate the effectiveness
of our techniques for problems of industrial application. We have established collaboration -
with Commonwealth Edison and the Thermal Hydraulics Section of their Nuclear Fuel Ser-
vices Department has given to ANL an important industrial data set for one of our CFD
codes (COMMIX 1AR/P). This problem requires a 12 hour simulation when performed on
one vector processor of Commonwealth Edison’s IBM 3090. Discussions are underway with
General Motors, Inland Steel and other companies to secure inputs and collaboration for the
structural dynamics code. '

4. The codes have been profiled for the first time, their baseline (unoptimized performance on
each of the target machines was recorded, and the most time consuming subroutines have
been identified.

5. We have already started applying automatic restructuring tools on some of the codes.

Overall the first phase has sh. #n that significant improvements in the codes’ performance
result from vectorization. This is partly because of the effectiveness of vectorizing compilers,
and partly because the principles of vectorization have been available to programmers for over 15
years, The first phase also shows that applying existing automatic restructurers for multiprocessing
gives little improvement or even degradation in performance, but provides clues on how to achieve
better results. This emphasizes the need to move the highly successful tools and techniques for
multiprocessing from our research centers to the industrial base.

1.2 Acknowledgments

The authors would like to thank R. N. Blomquist, H. M. Domanus, E. M. Gelbard and J. M.
Kennedy from Argonne National Laboratory, T. Belytschko from Northwestern Uriv., and M.
Berry from CSRD for their help during this project.

ook

I

Chapter 2

Computational Environment

As described earlier, our work is oriented towards standard and mini supercomputers with mul-

tiprocessing capabilities. By all accounts these are the machines which are able to sustain the:

performance requirements for production runs with the complex codes we are dealing with.

For this phase of the experiments we have used the Cray and Alliant machines shown in Table
2.1. In some cases we also report results from runs performed on Sun Sparcs at ANL, due to the
natural interest in understanding the performance on what is very hkely to be on a scientist’s desk,

~ namely a fast workstation used for code development.

A planned addition to the machines of Table 2.1 is the CSRD Alliant FX/2800, whose 28
processors based upon the i860 RISC chip will be an interesting case study of parallelism and
software emulated vector processing.

2.1 Methodology

Our overall strategy in these experiments has been the following: We first compile and link on the
target machine. If baseline performance is needed we run the code to obtain baseline timing and
validate runs. We then compile under different options described 1n Section 2.2 to test the effect of
automatic parallelization and vectorization. The performance for each run was analyzed with the
tools described in Section 2.3.

Table 2.1: Computational engines.

Machine o/S Memory | Location
Cray X-MP/14 | Unicos 4 MW ANL
CrAay X-MP/48 | Unicos 8 MW NCSA
ALLIANT FX/80 | Concentrix/Xylem { 80 MB CSRD
ALuianT FX /8 | Concentrix 64 MB ANL

(AR L T R L L T Ty O L T R A T TR

IXYIN

2.2 Compiler and restructurer switches

In this section we provide a summary of some of the compilation options used when performing
the experiments. We note that since most of these options at some stage invoke source-to-source
restructuring compilers, thus attempting automatic vectorization and parallelization, their use and
our comments also belong to Phase 2 of this work.

No hand optimizations were performed.

2.2.1 Cray-X/MP48
The following optimization modes were used for our benchmarks.

Symbol Command options Optimizations

S cft77 -0 novector scalar optimization
Sv cf77 -c -Zc " scalar and vector OR
cft77 -o : ' ,
SV(Zv) ct77 -c -2v enhanced scalar and vector
SvC cf77 -2p scalar, vector, concurrent (autotasking)

With no options specified, the compiler attempts vectorization of the innermost loop. The
-Zv option causes the compiler to invoke the dependency analyzer rpp, which attempts more
compiicated data dependence analyses and inserts directives for vectorization. Although it also
inserts directives for microtasking, it does not interpret them (see below).

Both the cft77 and c£77 commands invoke the CFT77 compiler; c£77 also includes the load
step for creating an executable file. Otherwise, c£77 uses most of the options available with the
cft77 command. The -0 is an optimization option which, by default, implies both scalar optimiza-
tion and vectorization. When -o is followed by the word novector, vectorization is suppressed and
only scalar optimization is performed. The option -Zp causes the compiler to invoke Fpp, which
inserts directives for vectorization and microtasking. This automatic detection of and instrumen-
tation for microtasking is called autotasking. ‘

Although no hand optimizations were attempted, there were a few cases, documented in Section
3.2, where the code contained inline optimization directives for the Cray compiler.

2.2.2 Alliant FX/8(0]

The code was compiled with Alliant’s Fortran compiler and VAST restructurer, with switches se-
lected from the following:

Symbol Command options Optimizations

S fortran [-[D]AS] [-r8] -Og global scalar

SV fortran [-[D]AS] [-r8] -Ogv global scalar, vector
'SC fortran [-[D]AS] [~r8] -Ogc global scalar, concurrent

SvC fortran [-[D]JAS) [-r8] -0[gvc]l global scalar, vector, concurrent

The option -[D]JAS means that transformations for optimizing recurrences (based on the cur-
rently available number of processors, if the D option is also in effect) can use the associative law
of addition. Unless stated otherwise, the use of this option will Le assumed,

The option -8 forces the transformation of all REAL variables and intrinsics into REAL*8,

Mk

i i

thow

We note that Cray’s FPP preprocessor is very similar to Alliant’s vAsT, as they are both products
of Pacific Sierra, purchased by the respective computer companies to restructure code specifically
for the corresponding machines. Although options and defaults differ, restructuring Is done based
oh essentially the same data depeundence information.

2.3 Performance evaluation tools

Unless mentioned otherwise, all times are in seconds,

2.3.1 Cray X-MP

Performance utilities such as FLOWTRACE, HPM, PERFTRACE on the subroutine level, and PErr-
TRACE on the loopnest level are available on the Cray X-MP [6]. FLOWTRACE, HPM, and PERF-
TRACE on the subroutine level were developed by Cray Research, Inc.; PERFTRACE on the loopnest
level for the Cray X-MP/48 was developed by John Larson at N(JSA

FLOWTRACE generates printed mformatlon about all procedure calls in a program its summary
contains the followmg information:

e The time spent in each routines: amount, percentage of the total execution time, and average
time per call.

¢ Number of calls to each procedure.
o Lists of routines that call and are called by each routine.

» A dynamic call tree of the main program and all called subprograms.

HPM reports performance of the entire prog - m. It can issue any of four kinds of reports, named
groups 0, 1, 2 and 3. '

Grouys 0 Scalar activity: number of instructions, memory references, floating-point additions,
multiplications, reciprocals, MFLOP.

Group 1 Conditions that delay instruction issue: Percent of time (in clock periods) waiting on
resources such as semaphores, shared registers, scalar, vector and address reglsterb functional
units, scalar and block memory references.

Group 2 Information on central memory references and conflicts.

Group 3 Instruction types and vector operations,

PERFTRACE gives the same type of statistics about computer performance as those generated
by the HpM, but with details for individual program units.

For the Cray X-MP we ran the codes through all four groups of the Hardware Performance
Monitor (HPM). We also compiled and linked with each of FLOWTRACE, PERFTRACE and the
profiler PROF for routine-by-routine performance monitoring.

As a start of Phase 2 advanced performance analysis, we have generaced some preliminary traces
of COMMIX-1AR/P and WHAMS-3D. The goal is to study performance behavior at a more refined
level using trace data of routine entry and exit actions. We used tracing tools developed for the
Cray X-MP and Cray 2 which are described in [9). In summary these tools can capture detailed
histories of rovtine invocation together with machine performance statistics.

IR pom o) o TR W IR KT "y

B AT TR U RO LN [‘HJI'LIN LT N TR TN W]Mm uva.Hm‘vw R IH”"

1

PR TRIT A

W

2.3.2 Alliant FX/8[0] |
The tools for performing performance analysis of the codes running on the Alliant FX/8[0] were
the standard Alliant facility GPROF and calls to the etime() facilities.

The utility GPROF is used to obtain execution profiles of FX/Fortran codes. For each routine,
GPROF counts the number of times it was called and determines the time elapsed in its execution.

wowo

Chapter 3

COMMIX code

COMMIX is one of the world’s premier thermal-hydraulics codes, used at scores of government
and industrial sites in support of a vast range of research and development projects. Argonne’s
development and refinement of COMMIX, which has continued for more than ten years, was orig-
inally supported by the U.S. Nuclear Regulatory Commission for application to a wide variety of
reactor safety problems. COMMIX has been developed using a unique porous media approach to
the solution of the Navier-Stokes equations in an arbitrary three-dimension:1 region. In its various
versions, COMMIX can model separate single-phase fluids, multiphase flows, and free surface flows.
The code uses differenced momentum/mass conservation equations which are combined to form a
pressure equation. Once the pressures are known, the fluid velocities are updated to provide input
to the energy simulation and the next iteration or time step. The hydraulic driving force may
be flow or pressure boundary conditions at inlets and outlets, one of several pump models, or a
fluid temperature/density distribution. The energy equations are differenced using the updated
velocities, and the source terms are accumulated from the treatments of convection boundaries,
conduction boundaries, thermal structures, or heat generation in the fluid itself.

One-dimensional shell structures superimposed on the fluid geometry model various fluid sys-
tem thermal components such as vessels, pipes, baffles, tube-shell heat exchangers, and reactor
fuel. Once the fluid temperature distribution is updated, the submerged thermal structures’ inter-
nal temperature distributions are recomputed, assuming one-dimensional conduction through each
thermal structure segment.

The momentum and fluid energy equation time differencing is implicit, which requires that the’
difference equation coefficients be constructed from end-of-timestep temperatures and velocities.
Since these are not known when the coefficients are computed, a set of “outer” iterations is com-
pleted in which the momentum and energy equations’ coefficients are computed from ever-better
estimates of end-of-step values, a process repeated until the “outers” converge to the end-of-step
solution. Each outer iteration consists of pressure matrix equation construction, pressure equation
solution, velocity update, energy matrix equation constructios., energy equation solution, and, fi-
nally, a structure- fluid heat flux update. Only when the time step converges are the radiation heat
fluxes between thermal structures updated.

The COMMIX code exists in two versions, COMMIX-1C and COMMIX 1AR/P. The COMMIX
family of codes were developed to analyze steady-state/transient, single-phase, three-dimensional
compressible/incompressible flow with heat transfer in a reactor system. These codes are also ap-
plicable to a broad range of applications. Due to the wide range of applications fundamentally
different codes have evolved out of a common software ancestor. We are using COMMIX-1AR/P

ih

1T

Ty

I [T

o1}

IR 1] i

il

¥

and COMMIX-1C, both of which are the latest derivatives of the COMMIX-1A code and its prede-
cessors, The COMMIX-1A code was designed for thermal-hydraulic analysis of reactor components.
It solves the conservation equations of mass, momentum, and energy as a boundary-value differen-
tial equation in space and an initial-value problem in time. Spatial discretization is accomplished by
a staggered grid system to describe field variables at cell centers and flow variables at cell surfaces.
The codes described below represent totally different extensions in both modeling capabilities and

‘targeted computer architectures.

COMMIX-1AR/P is based on COMMIX-1A and contains new models and formulations which
were added to the code over a period of about 5 years [5]. These include a pump model, radiation
heat transfer, boundary conditions for inlet flow as a function of radiation surface temperature
and to simulate expansion ceils for constant mass calculations, multiple fluid capability, conjugate
gradient sclution technique for momentum /mass equations, implicit coupling of thermal structures
to fluid, and change-based automatic time step control. It is run primarily on the Cray X-MP/14,
and is substantially vectorized.

COMMIX-1C is based on COMMIX-1B [1, 2] (and ultimately on COMMIX-1A). It applies
three new models to treat turbulence effects including the two-equation iz — ¢ model which has been
discretized to simulate subsonic compressible flow. A new porous-medium formation was developed
which can be used to model anisotropic flow with stationary structures. The flow-modulated
skew-upwind differencing scheme has been iraplemented to reduce numerically-induced diffusion of
scalar transport. Other distinctive options incluce transient mass flow boundary conditions and
application of direct solution of sparse matrix equations. It is run primarily on Sparc workstations
at ANL.

3.1 Data sets

The data sets used for these experiments are routinely applied by ANL for testing the validity of
any modifications to the code. For that reason they are designed to fully exercise the code and are
very suitable for the goals of the first phase. We here summarize the results obtained from one

data set for COMMIX 1C and COMMIX 1AR/P.
1AR/P data sets

Data set P1 Simulates two-fluid (sodium, air) flow and heat transfer in the 90 degree sector
of a generic modular pool-type liquid metal (sodium) reactor. This transient simulates
the reactor system’s response to a postulate pumping failure in which the pump ramps
to zero power linearly over five seconds, and the reactor power ramps to 7% (initial
decay heat) during the first ten seconds. Cylindrical coordinates (r,6,2) are used. The
computational domain consists of 22 unique surface types, 330 (regular) surface elements
and 205 computational cells for a maximum of 8, 3, and 12 cells in the », 6 and 2
directions respectively. The data set consists of four input decks corresponding to the
following phases:

P1r0 Cold Start to Steady State (1000 time steps);

P1rl Restart of Steady S:ate (100 time steps);

P1r2 Transient Problem from Steady State (1100 time steps);
P1r3 Restart of Transient Problem (400 time steps).

o

Al ol W e

W

Cenonondoa Ha e "

LT

Data th P2 This data set simulates the steady-state behavior of an experiment performed
at Karlsruhe, Germany, to study the transient behavior of a seven-pin assembly during
a flow transient. There are 48 axial meshes, and each pin and its adjacent coolant is
represented by four x-y cells. The sodium flows vertically through the pin bundle, which
is enclosed in a hexagon steel can. The sodium is heated by the pins as it flows upwards.
The transient analyzed (not in this data set) is a linear flowrate decrease, and the event
of interest is the time of odium boiling onset. Rectangular geom stry is used for 6 unique
surface types, 594 surface elements (some of which are irregular), 432 computational
cells, for a maximum of 3, 3, and 48 cells in each coordinate direction. There are 4 force
structures, '

Data set P3 The object of the simulation is to determine in steady-state the degree of ther-
mal relaxation in the Clinch river breeder reactor outlet plenum above the core. The
sodium exits reactor subassemblies of three types (driver, blanket, or control), each with
a specific design, power, and flow rate. The mitigation of thermal stress and shock (dur-
ing transients) depends on the mixing of relatively hotter sodium with the cooler sodium
flowing out of the neighboring subassemblies. This issue is also being addressed in the
case of state-of-the-art liquid metal cooled reactor designs. The geometry is cylindrical,
with 11 unique surfaces, 446 (regular) surface elements, and 346 computational cells, for
a maximum of 6, 3, and 23 cells along each coordinate direction.

1C data set This data set was used as input for the 1C version of COMMIX. The TMLB’

is one of the postulated reactor accidents that is currently being investigated by the U.S.
Nuclear Regulatory Commission. In this accident, several different significant events and
physical phenomena occur. During the progression of the TMLB’ accident scenario, there
is a time when the hot leg dries out and the core becomes uncovered. From that time on,
multidimensional natural-circulation phenomena play an important role in heat transport and
the heat-up of the various components in a reactor system. The multidimensional capabilities
of the code make possible the simulation of the natural convection phenomena which are
probable in the TMLB’ scenario. The generated flow patterns, temperature distributions, and
steam generator heat transfer rates provide useful guidance for simulation of one-dimensional
systems. This data is needed to support the system analyses being performed at Los Alamos,
Sandia and Idaho National Laboratories. In the transient that is simulated, the entire system
at time t = 0 is isothermal, i.e., it contains saturated steam at p = 1.61 x 107Pa. For time
t > 0, decay heat was added to the core. While natural convection flow pattern was being
established, the system was being perturbed by the opening and closing of the PORV value.
The analysis was performed using a PORV model that is at the end of the surge line that is
connected to the pressurizer. The geometry is a Cartesian box, with 1606 surface elements
and 947 computational cells. The pressure equation is solved by means of the Yale Sparse
Matrix Package (YSMP). For this test case, a constant turbulent viscosity model is used.
There are three decks of interest:

C1r0 Run to steady state;
Clrl 137 time steps;
C1r2 45 time steps.

Consistent with the goals of this project, to demonstrate the benefits from using multiprocessor
architectures on Jarge important codes used by Illinois industry, a data set for a real world problem

Y

yyyyy

W

Voo

has been obtained from the Thermal Hydraulics Section of Commonwealth Edison’s Nuclear Fuel
Services Department. This data set, which uses COMMIX to verify the conservatism in RETRAN
licensing calculations which simulate the reactor’s response to a steamline break accident, and
takes up to twelve hours of simulation when performed on Commonwealth Edison’s IBM 3090
vector processor, will be described in the context of our efforts in future phases of this work.

3.2 Results from COMMIX 1AR/P

As a reference point for the 1AR/P code we obtained the baseline performance for this data set,
meaning that the code was compiled and ran without any automatic optimization options applied
to it. The code was originally written so that it runs best on architectures with vector processing.
The pressure equations of the mass-momentum loop are solved using a preconditioned conjugate
gradient technique, which converges at an acceptable rate without requiring any sensitive iteration
parameters from the user. Incomplete Cholesky factorization approximates the matrix inverse, and
is mostly vectorized, but with vector lengths frequently far from optimum. No attempt has been
made to exploit parallelization here. A large amount of the computing time is spent construct-
ing matrix equations, a process which would require massive recoding to vectorize because of its
large, logic-loaded loops. Such loops, however, are expected to lend themselves very well to the
parallelization efforts which we plan to pursue in the context of this work.

From the 1AR/P data sets we described, we observed that the results obtained when using the
decks P1r0 and P1r2 (begin steady state and begin transient) were very similar to those obtained
from the restart decks 1 and 3. Moreover, although data sets P2 and P3 are useful for code
development purposes, they exercised the code less than P1. Since we did not want to clutter the
report with tables, we decided to provide only data from the most interesting and representative
experiments. This means that, except for the baseline runs, we usually omit any information from
Pirl, P1r3 and P2, P3.

Overall the code consists of six major groups of computations:

1. Momentum-related equations construction.
Momentum-related equations solution.
Energy-related equations construction.
Energy-related equations solution.

Thermal structure temﬁeratures computation.

S o s W N

Thermal structure radiative heat flux computation.

We next list the function of the most important routines in the set:
ENERGI Construct coefficients in the energy equation.

LOWFCV Solve the upper triangular system as part of the conjugate gradient solution of the pressure
equation.

PEQN Construct the coefficients in the pressure equation.

10

bl

A

QsTRrDS Calculates finite differences of solid/fluid heat transfer rate over the thermal structures.
QSTRUC Set solid-to-fluid source term for the fluid energy equation.

SOLVEV Solver of linear system for the energy equation usmg Gauss-Seidel relaxation on red-black
ordering.

XMOMI, YMOMI, ZMOMI Sweep over all fluid cells to set-up the z, y and 2 direction momentum
equations.

The original code is instrumented with calls to the Cray intrinsic function gecond to summarize
run times for each of its major steps. Indeed, whenever presenting timing results for the above
stages, these results were derived from the original code instrumentation.

As the code was written to take advantage of vector processing in some of its solver routines and
in anticipation of the great costs involved otherwise, we decided not to ezplicitly disable vectorization
for the baseline runs.

We note that the only subroutines of the original code containing inline Cray compiler directive
lines CDIR$ were DAXPXC, DAXPYC and LOWFCV. In those routines vectorization was helped using
the IVDEP directive, which causes the compiler to ignore vector dependencies in its attempts to
vectorize the corresponding DO loops. The eflect of this is clearly seen in the performance results
presented in Section 3.2.1. ‘

For future reference, we first show Table 3.1, which summarizes the runtimes for cach of the
machines and compilation options for data sets P1r0 and P1r2.

Table 3.1: Execution times for SV, SV(Zv) and SVC COMMIX-1AR/P or the Cray X-MP /48 and
Alliant FX/80.

Routine Pir0 | P1r2
Cray SV 93.96 | 920.94
Cray SV(Zv) 81.48 | 872.90
Cray SVC 225.25 | 2025.48

1 CPU 22.35 297.28

2 CPU 31.76 | 405.18

3 CPU 47.19 461.88

4 CPU 123.95 1 861.20
Alliant FX/80
SV (1 CE) 1,322.4 | 12,331.2
SC (8 CE) 1,128.7 1 10,015.0
SVC (8 CE) 1,136.7 | 10,048.6

3.2.1 Cray X-MP

First we summarize the baseline performance obtained for each of the data sets. As mentioned
carlier, the code was written to take take advantage of the vector processing capabilities of a single
processor of the Cray X-MP. Ior the purpose of 1AR/P we thus consider as baseline the performance
obtained from the code in SV compilation mode (cf. Section 2.2). When appropriate, in the tohles

11

of this section, we mention the performance tool used to obtain the results (e.g. PERFTRACE,
FLOWTRACE, etc.)

3.2.1.1 Summary of baseline runs

We first report results from the baseline runs (mode SV), as needed to satisfy our milestones for
the first phase (cf. Appendix A). ‘
The runtimes for each of the data sets are summarized in Table 3.2.

Table 3.2: Execution times and MFLOPS for COMMIX-1AR/P baseline SV performance on Cray
X-MP/14 (from HPM).

Data set P1r0 | P1rl P1r2 P1r3 P2 P3
Time 93.96 | 9.44 | 920.94 | 665.10 | 17.84 | 42.24
MFLOPS | 9.12 | 7.93 | 7.68 7.14 | 11.43 | 10.02

We next order the most time-consuming subroutines for each of the data sets except P1r3, and
report their MFLOPS, the number of times they were called, and the percentage of time (clock
periods) spent on each. This data is obtained from PERFTRACE and shown in Tables 3.3-3.7.

3.2.1.2 Enhanced optimization options and further results

As mentioned earlier, by using special (automatic) restructuring options, the results in this section
could also be considered as Phase 2 results. Since they were available however, we thought that it
is appropriate to report them here.

Table 3.13 summarizes the execution times and MFLOPS for the code under SV(Zv) mode of
compilation. We notice an improvement over the baseline times of Table 3.2, implying that the
FPP optimizations were effective in certain cases. As will be seen, the greatest effect is seen in the
SOLVEV routine,

-We show in Table 3.14 the breakdown of times for each phase of the computation, when compiled
with the SV(Zv) option.

COMMIX 1AR/P consists of approximately 150 subroutines. Table 3.15 shows that for those
data sets examined, the nine listed subroutines consume over 60% of the time in all cases. Compar-
ing with the baseline runs presented in Tables 3.3-3.5, we notice that the percentage of time spent
in SOLVEV is almost halved by the additional vectorization that is achieved after preprocessing
with the dependency analyzer FPp. This gives an indication of the advantages one can sometimes
achieve when using more advanced automatic vectorization techniques.

Comparing Table 3.15 with Tables 3.3-3.5, we note that the small differences in the number of
calls shown for some subroutines is due to the different methods of accounting used by PERFTRACE
and FLOWTRACE.

Table 3.16 shows how the best MFLOPS rate is achieved for the SOLVEV subroutine. With the
exception of LOWFCV ~ whose relative weight in the total runtime of the code is much smaller than
SOLVEV’s — the achieved rate is far superior than all other listed subroutines.

Regarding LowFcVv, we note that its superior performance for the simple SV compilation option,
is due to the use of the IVDEP inline Cray compiler directives CDIRS.

Table 3.3: Characteristics of most time-consuming subroutines of COMMIX- lAR/P for data set
P1r0 running in baseline SV mode on Cray X-MP (from PERFTRACE).

Rank | Program Unit { Times Called | % Execute | MFLOPS
1 SOLVEV 1000 14.76 10.29
2 | QSTRDS 1001 11.52 6.20
3 ENERGI 1000 10.97 6.06
4 ZMOMI 1000 9.43 6.42
5 YMOMI 1000 6.18 6.97
6 QSTRUC 1001 4.68 6.67
7 PEQN 1000 4.53 3.05
8 XMOMI 1000 4.31 6.93
9 LOWFCV 26303 3.78 30.98
10 HSTRUC 1001 3.44 2.13

Table 3.4: Characteristics of most time-consuming subroutines of COMMIX-1AR/P for data set

P1rl running in baseline SV mode on Cray X-MP (from PERFTRACE).

Rank | Program Unit | Times Called | % Execute | MFLOPS
1 SOLVEV 100 18.31 10.26
2 QSTRDS 100 11.48 6.20
3 ENERGI 100 10.94 6.06
4 ZMOMI 100 9.40 6.42
5 YMOMI 100 6.16 6.97
6 QSTRUC 100 4.66 6.67
7 PEQN 100 4,52 3.05
8 XMOMI 100 4.30 6.93

5: Characteristics of most time-consuming subroutines for data set P1r2 running in baseline

Table 3.
S5V mode on Cray X-MP (from PERFTRACE).
Rank | Program Unit | Times Called | % Execute | MFLOPS
1 QSTRDS 12998 15.18 6.19
2 ENERGI 12998 14.45 6.06
3 ZMOMI 12998 12.41 6.42
4 YMOMI 12998 8.13 6.97
5 QSTRUC 12998 6.17 6.66
6 PEQN 12998 5.96 3.06
7 XMOMI 12998 5.67 6.93
8 HSTRUC 12998 4.53 2.15
13

Rank | Program Unit | Times Called | % Execute | MFLOPS
1 QSTRDS 65 10.32 7.71
2 ENERGI 64 8.27 2.84
3 HSTRUC 65 7.17 1.12
4 ZMOMI 64 7.15 5.33
) DUCTWA 130 6.97 1.70
6 TLIQ 51321 6.85 1.73
7 QSTRUC 65 5.31 7.46
8 LOWFCV 3961 5.02 22.563

Rank | Program Unit | Times Called | % Execute | MFLOPS
1 ZMOMI 459 16.12 6.69
2 ENERGI 459 15.18 3.92
3 XMOMI 459 12.37 7.31
4 YMOMI 459 10.56 7.25
e PEQN 459 7.38 3.25
6 SOLVEV 459 4,94 35.87
7 SORTC 459 4.60 0.00
8 LOWFCV 9090 4.15 30.15

Table 3.6: Characteristics of most time-consuming subroutines for data set P2 running in baseline
SV mode on Cray X-MP (from PERFTRACE).

Table 3.7: Characteristics of most time-consuming subroutines for data set P3 running in baseline
SV mode on Cray X-MP (from PERFTRACE).

Table 3.8: KPM group 0 summary for baseline SV COMMIX-1AR/P code running on Cray X-
MP/14 with data sets P1, P2 and P3.

P1r0 Pirl Plir2 P1rd P2 P3

Million inst/sec (MIPS) 37.23 37.91 36.45 36.62 356.70 35.98

Avg. clock periods/inst 3.16 3.10 3.23 3.21 +3.30 3.27

% CP holding issue 49.16 48.0 48.756 48.3(50.67 49.45

Inst.buffer fetches/sec 040M | 040M | 047TM | 04"™M | 047TM | 047M

Floating adds/sec 3.1T™M 3.14 | 3.20M | 2.94M || 4.46M | 4.04M

i} Floating multiplies/sec 484M | 4.28M | 4.02M 374 | 6.31M | 5.45M
Floating reciprocal/sec 0.51 0.51 046 { 045M (| 0.656M | 0.53M

B I/O mem. references/sec 0.67M | '0.56M | 0.55M | 0.70M 0.11M | 0.37T™
CPU mem. references/sec | 16.32M | 13.93M | 13.30M | 12.15M || 18.70M | 19.04M

Floating ops/CPU second | 9.12M | 7.9¢M | 7.68M | 7.14M | 11.43M 10.02

\Ih' v

14

Table 3.9: HPM group 1 summary for baseline SV COMMIX-1AR/P code running on Cray X-
MP/14 with data sets P1, P2 and P3. |

% of all CPs

P10 | Plrl | P1r2 | PIr3 P2 P3
Waiting on A-registers/funct. units: 9.64 | 9.61 | 10.16 | 1026 | 9.42 | 10.29
Waiting on S-registers/funct. units | 27.91 | 28.35 | 3.40 | 31.15 || 28.74 | 26.55
Waiting on V-registers 6539 | 4.66{ 271 281 6.26 1 {03
Waiting on vector functional units 3637 324 013] 2456) 3.691 3.81
Waiting on scalar memory references | 0.10 | 0.10 | 0.13 | 0.13 0197 0.16
Waiting on block memory references 436 | 370 | 222 | 1.77 482 | 5.04

Table 3.10: HPM group 2 summary for haseline SV COMMIX-1AR/P code running on Cray X-
MP /14 with data sets P1, P2 and P3.

% of all CPs

P1:0 | Plrl | Plr2 | Plr3 P2 P3
Inst, buffer fetches/sec 0.40M | 0.40M | 0.47TM | 0.47TM || 0.47TM | 0.47M
Scalar memory refs/sec | 5.79M | 5.81M | 6.82M | 6.95M | 5.68M | 7.08M
% having conflicts 28.38 | 28.65 | 30.61 | 30.53 42.60 41.06
1/0 memory refs/sec 0.48M | 0.69M | 0.64M | 0.57TM 0.16M [0.33M
% having conflicts 56.74 | 49.84 | 51.37 | 48.76 71.50 66.61
Block memory refs/sec | 10.53M | 8.12M | 6.47TM | 5.21M | 13.02M | 11.96M
% having conflicts 62,43 | 68.61 | 75.01 [84.24 60.63 73.37
Vector memory refs/sec | 10.19M | 7.79M | 6.16M | 4.90M || 11.71M | 11.70M

Table 3.11: upM group 3 summary for baseline SV COMMIX-1AR/P code running on Cray X-
MP/14 with data set P1. '

P1r(Plrl Plr2 Plr3

type of instruction inst. per | % of all | inst, per | % of all | inst. per | % of all | inst, per | % of al |
CPU sec inst, | CPU sec inst, | CPU sec inst, | CPU sec inst,

Jump/special 3.47TM 9.32 3.64M 9.59 3.16M 8.64 3.18M B.67
scalar 32.94M 88.50 | 33.59M 88.57 | 32.67TM 89.64 | 32.89M 89.80
vector integer/logical 0.19M 0.51 0.21M 0.65 0.20M 0.55 0.20 0.55
vector floating point 0.20M 0.55 0.15M 0.4 0.13M 0.36 0.11M 0,29
vector memory 0.42M 1.12 0.33M 0.8 0.29M 0.81 0.26M 0,69
type of operation ops per avg. | ops per avg. | ops per avg. | ops per avg,
CPUsec VL | CPUsec VL | CPUsec VL | CPUsec \%9

Vector integerdclogical 3.22M 16.91 | 4.23M 20.30 2.12M 10.61 2.04M 10,13
Vector floating point 5.11M 24.99 3.92M 25.67 2.94M 22.32 2.31M 21.53
Vector memory 10.19M 24.41 7.79M 2341 6.16M 20.87 4.90M 10,35

[
ey

i

L

all

~ Table 3.12: HPM group 3 summary for baseline SV COMMIX-1AR/P code running on Cray X-
MP/14 with data sets P2 and P3.

P2 . P3

type of instruction inst, per | % of all | inst. per | % of all
CPU sec inst. | CPU sec inst.

jump/special ‘ 3.256M 9.10 25™ 7.13
scalar 31.54M 88.37 | 32.60M = 90.57
vector integer/logical 0.16M 0.46 0.21M 0.568
vector floating point 0.26M 0.70 0.20M 0.56
vector memory 0.49M 1.36 0.42M 1.17
type of operation ops per avg. | ops per avg,
CPUsec VL | CPUsec VL

Vector integer&logical | 3.73M 22.62 3.66M 17.62
Vector floating point 5.711M 22.93 5.88M 29.26
Vector memory 11.70M 24.03 11.70M 27.88

Table 3.13: Execution times and MFLOPS for SV(Zv) COMMIX-1AR/P code running on Cray
X-MP/48 (from HpPM).

Pir0 | Plrl Pir2 Pir3
Time 82.35 | B.17 | 880.64 | 628.17
MFLOPS | 11.76 | 10,96 { 8.76

Table 3.14: Timing profile for COMMIX-1AR/P running on Cray X-MP /48, compiled in SV(Zv)
mode.

Data: P1r0 | P1rl1 | Plr2 P1r3

Total Erecution Time 77.71 7.64 | 869.04 | 622.37
Momentum Eqns. Construction | 21.93 | 2.12 | 297.70 | 204.49
Momentum Eqns. Solution 20.39 | 1.72 | 220.46 | 149.68
Energy Eqns. Construction 25.58 | 2.66 | 338.06 | 247.22
Energy Eqns. Solution 6.48 | 836 | 18,12 | 13.13
Thermal Struct 2.81 | .281 | 3.10 1.13

Thermal Struct Radiation 0.065 | .0065 | .072 0.026

16

" 3 o i ' . DV g Rt ' [T LI L T T T

vl ikl

Table 3.15: Profile of the most time consuming subroutines in SV(Zv) mode for COMMIX-1AR/P
running on Cray X-MP /48 (from FLOWTRACE).

Routine P1r0 Pirl P1r2 P1r3

Calls | (percent) | Calls | (percent) | Calls | (percent) | Calls | (percent)
Q@sTRDS | 1001 11.49 100 11.63 13156 13.99 Y629 14.32
ZMOMI 1000 | 9.69 100 9.69 13156 11.77 9629 12,056
ENERGI 1000 9.52 100 9.64 | 13156 11,73 9629 12.00
SOLVEV | 1000 7.45 100 9.95 13156 1.69 9629 1.72
YMOMI 1060 6.52 100 6.59 13156 8.0 9629 8.19.
QSTRUC | 1001 5.10 100 5,12 13156 6,22 9629 6.26
PEQN 1000 4.69 100 4,72 13156 573 9629 | 5.87
XMOMI 1000 | - 4.55 100 4.59 13156 5.58 9629 5.71
LOWFCV | 26373 4.28 | 1238 2,10 178939 2.86 80659 2.01

The linear system solver soLVEV, although expensive in number of computations, has been
written to take advantage of vectorization and thus performs at 35 MFLOPS on one CPU of the
Cray X-MP. This is in contrast to a meager average of 6.5 MFLOPS for those sections of the code
working on the task of matrix construction. This of course causes the overall performance to drop
to almost 11 MFLOPS, even for the full vector optimization, It is thus clear that a first step in
improving the perfcrmance of the code is going to be the restructuring of the matrix construction
phase. ‘

‘ We remark here that Table 8.16 reveals a great deal about the nature of work to be done during
this project:

e The difference in performance for sOLVEV under the different compilation options tells one
about the ability of restructuring compilers to take advantage of the machine capabllities, if
the code is written properly. It also shows that the use of more sophisticated restructurers
can be very beneficial. We should keep in mind however that SOLVEV was coded for vector
processing.

o The high performance of Lowrcv for both SV and SV(Zv) shows that even a less sophisticated
restructurer can do well if it has some help from the user (in the form of inline directives),

¢ The low performance for both SV and SV(Zv) optlons for all other routines, shows that there
is work to be done until these commercial compilers can handle satisfactorily dusty-decks
(“dusty-decks” as the matrix assembly routines were not coded to take advantage of the
architecture.) We will thus investigate the use of novel restructurers as part of Phase 2 of our
work,

e The overall low performance for both compilation options, and the small difference amongst
the two, shows that it is dangerous to concentrate only on those stages of the code which are
related to well defined algebraic computations in need of new algorithms (e.g. linear system
solvers), at least until the automatic transformation tools become more powerful.

Finally, Tables 3.1 and 3.17 show the performance of the code when run in the multiprocessing
environments of the Alliant FX/80 and the Cray X-MP/48, with restructuring performed auto-

17

[}

Table 3.16: MFLOPS profile of the most time consuming subroutines in baseline SV, and enhanced
vectorization SV(Zv) modes for the COMMIX-1AR/P code running on Cray X-MP using data
decks P1r0 and P1r2 (from PERFTRACE).

Data set P1r0 P1r2
Routine | SV | SV(Zv) || SV | SV(Zv)
QSTRDS | 6.20 6.68 6.19 6.69
ZMOMI 6.42 7.19 6.42 | 7.15
ENERGI | 6.06 6.61 6.06 6.64
soLvEv | 10.29 | 3628 | 1037 | 33.51
YMOMI 6.97 7.78 | 6.97 7.81
QSTRUC | 6.67 7.28 6.66 7.29
PEQN. 3.06 349 3.06 3.50
XKMOMI 6.93 7.82 6.93 7.84
Lowrcv | 3098 | 34.12 | 30.99 | 34.57
Overall 9.12 11.76 7.68 8.76

Table 3.17: Execution time profile for the SVC version of COMMIX-1AR/P running on Cray
X-MP/48 (from HPM).

Concurrency | P1r0 P1r2 | Connect seconds | Connect XCPUs
1CPU : 22.25 | 297.28 412.6 412.6
2 CPU 31.76 | 405.18 303.3 606.5
3 CPU 47.19 | 461.88 231.9 695.9
4 CPU 123.95 | 861.20 364.5 1458.1
Totals 225,25 | 2025.48 13124 3173.2

matically by the respective compilers. It is clear that multiprocessing is of little benefit without
manual intervention. ‘

Table 3.17 gives the job accounting Information for the vector-concurrent version. This infor-
mation provides the connect time in each active CPU and the number of active CPUs, Let T},
¢t =1, ..., 4, be the connect time in each active CPU when i CPUs are active, The total execution
time and total CPU time, as shown in the last two rows of this table, are defined as :

total execution time = T\ + Ty + T3+ T4,‘ and
total CPU time Ty + 215 + 3T5 + 4Ty. (3.])

The average number of concurrent CPUs is thus the ratio of the total number of connect-seconds

and the Connectx CPUs product. Thus 3173.2720/1312.4346 = 2.42,
The following observations can be drawn regarding the statistics reported in Table 3,18.

1. For the performance to be considered acceptable, the MI'LOPS (last row in Table 3.18) should
be between 20 and 200 MFLOPS; the average MFLOPS for vector SV(Zv) code is about 9

18

[

[T

(13

Lol

Table 3,18: upM group 0 summary for SV(Zv) and SVC COMMIX-1AR/P code running on Cray
X-MP/48 with data set P1.

Category SV(Zv) sve

P10 Pirl Plr2 | P1td Plr0 | Plrl Plr2 | Pled
Million inst/sec (MIPS) 37.11 36.92 | 388.62 1879 | 19.08 | 17.88 | 16.31
Avg, clock perlods/inst A7y 399 3.00 701{ 618 660} 722
% CP holding {ssue 52.61 52.49 | 50,09 78.88 | 76.26 | 77.11 | 79.07
Inst.buffer fetches/sec 0:44M | 046M | 047TM 017M | 0.19M | 0.21M | 0.20M
Floating adds/sec 476M | 417TM | 3.84M 1.71M | 1.63M | 1.66M | 1.41M
Floating multiplies/sec 6.34M { 6.08M | 4.41M 2.03M | 2,02M | 1.86M | 1.67TM
Floating reciprocal /sec 0.67M | 0.70M | 0.60M 0.21M | 0.24M | 0.21M | 0.19M
I/0 mem. references/sec 0.18M | 0.33M | 0.49M 0.14M | 0.22M | 0.23M | 0.11M
CPU mem. references/sec | 21.12M | 19.14M | 16.26M 7.62M | 749M | 7.09M | b.98M
Floating ops/CPU second | 11,76M | 10.96M | 8.76M 3.96M | 3.88M | 3.73M | 3.1TM

Table 3.19: Ratio of scalar and vector floating operations for COMMIX—].AR/P gode running on

Cray X-MP/48 with data set P1.

SV(Zv) SVO T
P1:0 | Pirl | P12 | P1r3 || P10 | P1rl | P1r2 | P1r3
Ratlo | 1.62 | 1.42 | 0.74 585 | 1.11| 0.79 | 0.71

MFLOPS which is very low, The reported MFLOPS for vector-concurrent (~2Zp) code (SVC
in our notation) is even lower, an average 3.6. But one has to keep in mind that the code was
running on up to four CPUs in multiuser mode. An average of 2.42 CPUs was used for the
runs that produced the statistics in the table. The average MFLOPS is thus 8.9 (3.6 x 2.42)
for the SVC version of the code.

The MIPS rate for the Cray X-MP should be between 20 and 80. For vector code the average
MIPS s about 37. A low value accompanied with high MFLOPS indicates long vector
instructions, This is not the case here indicating that code should be vectorized further.

The MFLOPS rate reported at the bottom of the table includes scalar and vector floating point
operations. An important measure of extent of vectorization is the vector to scalar floating
operations ratio. The HPM group 3 statistics report the vector floating point operations. Such
data, reported later in Tables 3.22 and 3.23, can be used in conjunction with Table 3.18 to
compute the vector/scalar ratlo, Such ratios were computed and are presented in Table 3.19,
These ratios are very low indicating that the code is spending most of its time in scalar operations.

The following observations can be drawn regarding the statlstics reported in Table 3.20.

1,

For multitasked (concurrent) code, a very large (55) percentage of the execution time was
spent waiting (to synchronize) on semaphores.

. The figure for “waiting on S-registers/funct. units”, i.e., scalar registers and functional units,

Is also high compared to “waiting on V-registers” and “ waiting on vector functional units”.
This shows that the code is spending more of its time In scalar mode,

19

|
|

Table 3.20: urM group 1 summary for SV(ZV) and SVC COMMIX 1AR/P code running on Cray

X-MP/48 with data set P1,

|

Category SV(Zv) ; SvC
% of all CPs | % of all CPs

P1r0 | Pirl | P1r2 | P1r3 | P1r0 | Pirl | P1r2 | P1r3
Walting on semaphores 0.00 | 0.00 [0.00 | 0.00 {| 55.63 | 51.61 | 58,98 | 62.47
Waiting on shared registers 0.00 | 0.00| 0.00| 000| 0.18| 030| 0.156| 0.15
Walting on A-registers/funct. units 911 | 9.07| 976 | 9.83 | 3.93 | 4.14| 4.02] 3.09
Waiting on S-registers/funct. units | 26.46 | 26.60 | 29.13 | 20.62 || 11.37 | 1249 | 11.89 | 11.05
Waiting on V-registers 6.76 | 6.62 | 3.87 (/332 | 232| 230| 144 1.13
Waiting on vector functional units 6.10 | 6.56 | 3.82 | 3.656) 1.73| 1.79| 1.37| 1.19
Walting on scalar memory references | 0.89 | 0.99 | 1.12 : 0811 016 021} 0.16]| 0.13
Waiting on block memory references | 6.40 | 5.84 | 4,10 | 3.43 | 231 | 221 | 147 117

The following observations can be drawn regarding the stat‘latics reported in Table 3.21.

1. A figure for “inst. buffer fetches/sec” larger than 1 mxlliém per second indicates “spaghctti”
code. The numbers reported by group 2 statistics show this is not the case.

. The comparison of scalar to vector memory references provides a measure for the extent of

vectorization. The statistics show a ratio of vector to scalar references ranging from 0.93 to

2.23. This range is low.

. A high “block memory ref./sec” rate with low scalar and' vector memory reference rate would
indicate that the code is spending too much time in entry and exit code of the subroutines
and functions. This could happen if subroutines were called but did very little work. This is
not the case. The block memory reference rate is comparable to vector and scalar reference
rate, '

i
i

The tollowing observations can be drawn regarding the statistics reported in Tables 3.22 and 3.23.

1. The number of scalar instructions is overwhelmingly high, almost 88 percent of all instruc-
tions, But this can be misleading because it includes non-floating point instructions also, The
ratio of the vector to scalar floating point operations reported in Table 3.19 is more indicative
of the level of vectorization,

. The average length per vector floating-point instructiofil, as reported in Table 3.22, is about
23, much lower than the length of the vector registers (64) and even lower than 53 and 45,
the published measurements of n;/, for dyadic and triadic operations respectively, the vector

length required to achieve half the maximurm asymptotlc performance (in this case taken to
be 70 and 103 MFLOPS) [8]. !

3.2.2 Alliant FX/80 !
The following changes were needed to port the 1AR/P code.

20

oo COTE NI e gy

Table 3.21: #PM group 2 summary for SV(Zv) and SVC (JOMMIX JAR/P code running on 4-CPPU
Cray X-MP /48 with data set P1. ' , .

Qategory , SC(2v) ; N SVC ,
‘ ‘ P1r0 Plrl P1r2 P1r3 Pir0 | Plrl P1r2 P1rd
Inst. buffer fetches/sec 046M | 0.46M | 0.48M | 0.48M | 0.17TM | 0.17TM .| 0.20M | 0.22M
Scalar memoty refs/sec 6.60M | 6.57M | 7.39M | 7.52M || 2.66M | 2.6TM | 3.06M | 3.34M

% having conflicts 47.75 44,069 | 44.98 | 43.72 22.6 23.9 20,7 28.5
I/O memory refs/sec 0.18M | 0.09M | 0.11M | 0.30M ||.0.07M | 0.18M | 0.16M | 0.07M
% having conflicts 43.49 50.83 | 40.38 | 41.18 22.6 124 {201 32.2
Block memory refs/sec ' 14.90M | 12.01M | 9.11M | 7.86M || 5.00M | 4.20M | 3.68M | 3.29M
% having conflicts 33.30 32,63 | 2542 | 24.43 20.8 211 119.6 18.8

Vector rmemory refs/sec | 14.48M | 12.49M | 8.73M | 7.49M || 4.82M | 4.02M | 3.42M | §.12M

Table 3.22: HPM group 3 summary for SV(ZV) COMMIX-1AR/P code running on Cray X- MP/48
with data set P1,

Plr0 Plrl Plr2 Piry
type of instruction inst. per | % of all | inst. per | % of all | inst. per | % of all | inst. per | % of all
CPU sec inst. | CPU sec inst. | CPU sec inst. | CPU sec inst.,
Jump/special 3.31M 8.77 3.34M 8.86 3.42M 8.69 3.44M 8.71
scalar 33.22M 88.02 | 33.21M 88.11 | 34.96M 89.00 | 35.16M 89.14
vector integer/logical 0.38M 1.01 0.43M 1.14 | ' 0.35M 0.88 0.36M .89
vector floating point 0.2TM 0.73 0.23M 0.60 0.18M 0.45 0.16M 0.38
vector memory 0.66M 1.48 0.48M 1.29 0.39M 0.98 0.34M (.87
type of operation ops per avg. | ops per avg, | ops per avg. | ops per ave.
| CPUsec VL { CPUsec VL | CPUsec VL | CPUsec VL
Vector integer&logical 8.82M 23.20 | 11.15M 25.92 5.66M 16.06 h.54M 15.82
Vector floating point 7.2TM 26.43 6.4aM 28.30 3.72M 21.11 3.08M 20.28
Vector remory 14.54M 26.01 12.66 M 26.92 8.75M 22.70 7.50M 21.81

2]

Table 3.23: upM group 3 summary for SVC COMMIX-1AR/P code running.on Cray X-MP /48

with data set P1.

P1:0

Pirl Plr2 | P1r3
type of instruction inst. per | % of all | inst. per | % of all | inst. per | % of all | inst. per | % of all
CPU sec inst. { CPU sec inst. | CPU sec inst. | CPU sec inst.
jump /special 2.21M 10.27 2.00M 10.75 1.78M 9.17 1.77TM 9.23
scalar 18.75M 87.29 16.20M 87.14 17.24M 88.69 16.98M 88.79
vector integer/logical 0.15M 0.69 0.13M 0.72 0.16M 0.81 0.15M 0.81
vector floating point 0.12M 0.58 0.08M 0.44 0.08M 0.42 0.07TM 0.36
vector memory 0.28M 1.17 0.18M 0.95 0.18M 0.92 0.16M 0.81
type of operation ops per avg. | ops per avg. | ops per avg. | ops per avg.
: CPUsec VL | CPUsec VL | CPUsec VL | CPUsec VL
Vector integer&logical 2.80M 18.86 2.84M 21.26 2.35M | 15.03 2.29M 14.78
Vector floating point 2.93M 23.67 1.96M 23.88 1.66M 20.26 1.32M 19.25
Vector memory 6.29M 24.99 42T 24.32 4.00M 22,39 3.33M 21.43

o Change real data type declarations from single to double precision. For all the compilations
we used the -r8 option but there were some explicit conversions necessary to handle explicitly

typed double precision reals.

e Change machine dependent constants.

o Substitute calls to sysiem level routines.

e Link with appropriate libraries. In particular we linked with the CSRD mathematical software
library to use the functional equivalents of the LINPACK subroutines DGEFA, DGESL. From
the CSRD library we used also the functional equivalent of the Cray second timing subroutine,
which was written using the etime Alliant intrinsic.

Executable images were produced for each of the SV, SC, and SVC optimization options with
the -DAS -8 options also in effect. The executable image was then run for each of the P1r0, P1rl

and P1r2 data sets.

In the case of COMMIX-1AR/P running on the Alliant FX/80 we were not able to obtain

GPROF results whenever concurrency was one of the optimization options, as the code failed upon
execution, We are currently investigating this problem. Instead we manually instrumented the
code with calls to etime to accumulate the time spent in each of the most important subroutines.
In a few cases we also'used the system-level time command.

The vector-only code was executed on 1 CE.

We first show the summarized timing results for each mode of optimization. This is a yardstick
for future performance improvements.

Table 3.24 presents the timing data for the SV, SC, and SVC optimization options. These data
were obtained by hand instrumenting the code in its entrance and exit points with etime.

We notice immediately that the speedup obtained is very small, obtaining a maximum of 1.23
(cf. Table 3.25). Given our data from the Cray runs, this is hardly surprising.

An interesting observation which warrants further study is the slight increase of runtime across
data sets whea choosing an enhanced optimization option, namely SVC instead of SC. This is most

22

1.

Table 3.24: Execution times for SV, SC and SVC COMMIX-1AR/P code running on an Alliant
FX/80.

Version Pir0 | Pirl Plr2
SV 1322.4 | 122.3 | 12331.2
5C 1128.7 | 106.4 | 10015.0
SvC 1136.7 | 106.6 | 10048.6

Table 3.25: Effect of number of CEs on execution times for SVC COMMIX-1AR/P code running
on an Alliant FX/80.

P1r0 Plrl Plr2
CEs | Time | Speedup | Time | Speedup Time | Speedup
1 1385.9 1.0 | 130.9 1.0 | 12393.0 1.0
2 1230.7 1.12 | 114.6 1.14 | 11481.7 1.07
4 1173.5 1.18 1 110.7 1.18 | 10380.8 1.19
6 1142.4 . 1.21] 107.0 1.22 | 10462.5 1.18
8 1136.7 1.21 | 106.6 1.22 | 10048.6 1.23

likely due to the short vector lengths for those loops which VAST transforms to vector-concurrent
form. For a fixed number of CEs, and a loop processed in SVC (vector-concurrent) mode, the
overhead involved in issuing and executing a vector instruction per CE will be greater than the
time required to issue and execute the few required scalar instructions when operating in SC mode.
One can also say that the “efficiency” of the vector instructions is very low. A witness to the
difficulty is the information from HPM group 3 (cf. Table 3.23) for the Cray, which shows the
average vector length for SV(Zv) mode to be only about 23 for each data set. Such a vector length
would result in an average iength of 2,% for the vector instructions issued when p CEs are executing.
For p = 8, this means that the vector length is only about 3, which is below the length needed
to achieve parity with scalar performance. One option we are currently investigating is the use
of the -alt option of the Alliant Fortran compiler which produces alternate versions (scalar or
vector) of DO loops, depending on the expected length of the vector statement to be assigned to
each processor,

From Table 3.27 we notice that the SOLVEV routine consumes the maximum percentage of the
runtime for P1r0 data. This is in agreement with the data for the SV baseline runs on the Cray
(cf. Table 3.3) but in contrast to the SV(Zv) Cray runs presented in Table 3.15, and is due to the
inability of the VAST preprocessor to do the necessary concurrent/vector transformations without
the special directive corresponding to Cray’s IVDEP. As similar remark can be made for Lowrcv.

We note that in Table 3.26 and the ensuing ones, the Time step entry refers to the total time
taken by the subroutine TIMSTP.

23

F o4 w [TRT I il Pn w e e g [A TR R IR ”[H”‘U" ,,“-1””.“

R

ny

Table 3.26: Execution times of various phases for COMMI}(IAR/P code running on an Alliant
FX /80 for P1r0.

{{ Phase - SV SC SVC SVC SvC 5VC SVC
lce - 8ce | 1ce 2ce 4ce 6ce 8ce
Time step 1289.57 | 1101.10 | 1352.57 | 1200.73.1 1145.35 | 1115.565 | 1108.89

Momentum constr, | 296.03 | 271.94 | 291.85 | 281.32| 290.46 | 284.13 | 283.14
Momentum solu. 440.76 | 331.55 | 456.68 | 385.51 | 344.50 | 332.94 | 330.08

Energy constr, 303.03 | 278.38 | .302.38 | 299.97 | 298.95 | 296.31 | 297.49
Energy solu. 209.51 | 180.28 { 261.52 | 194.75| 173.756| 16531 | 160.88
Thermal Struct. 19.52 19.88 | 19.61 19.78 19.81 19.66 19.79

TS Radiation 1.71 1.67 1.69 1.70 1.74 1.68 1.73

Table 3.27: Execution times of CPU intensive routines in COMMIX-1AR/P code runnmg on an
Alliant FX/80 for P1r0. ‘
Routine Sv SC| SvC| 8SvC| SvC| SvVC| SVC

lce 8ce lce 2ce 4ce 6ce 8ce
SOLVEV | 206.58 | 178.10 | 258.40 | 192.30 | 171.63 | 163.28 | 158.91
LOWFCV 135.14 136.76

QSTDRS 76.08 | 70.68 | 8222 76.08| 76.12| T77.22| 79.36
XMOMI 31.96 | 29.67 | 26.54 | 2797 | 28.03 | 28.28 | 27.98
YMOMI 48.93 | 33.74 | 36.22 | 38.15| 38.52| 39.80 | 38.39
ZMOMI 49.08 | 48.97 1 70.18 | 60.74 | 65.95| 61.31 | 62.61
ENERGI 48.94 | 52.04 | 50.20 | 58.29 | 59.04 | 57.17 | 56.54
QSTRUC | 32.21 | 30.011 31.83| 30.70 | 29.54 | 29.08 | 29.12

Table 3.28: Execution times of various phases for COMMIX-1AR/P code running on an Alliant
FX/80 for P1rl.

Phase SV SC SVC SvC SvC SVC SvC

lce 8ce 1ce 2ce 4ce bce 8ce
‘Time step 118.26 | 102.93 | 126.18 | 110.30 | 106.53 | 102.91 } 102.49
Momentum constr. | 28.73 | 27.03 | 2750 | 28.40| 28.44 | 27.36 | 27.61
Momentum solu. 29.15 | 21.05| 3068 | 24.12 | 22.11| 21.11 | 20.66
Energy constr. 29.76 | 27.63 | 30.22 | 30.37| 29.17| 29.99 | 30.32
Energy solu. 26.63 | 23.37| 33.86 | 23.54 | 23.01| 20.77(20.15
Thermal Struct. 1.95 1.97 1.97 1.98 1.98 1.96 1.98
TS Radiation 0.17 0.17 0.17 0.17 0.17 0.16 0.18

mE et

POV e g " o [T TR TR (I [T RERE RRTRT

sl

e i o

TR I

A” i

Table 3.29: Execution times of CPU intensive routines in COMMIX-1AR/P code running on an

Alliant FX/80 for P1rl

Table 3.30: Execution times of various phases for COMMIX-1AR/P code

Routine SV SC| SvVC | SvC | SVC | SVC | SVC
lce 8ce lce 2ce 4ce Oce 8ce
SOLVEV | 26.27 | 23.09 [33.50 | 23.24 | 22.74 | 20.52 | 19.89
LOWFCV 6.33 ' 6.13
QSTDRS 729 6.70| 7.86| 861 7.35| 7.55 | 8.12 |
XMOMI 310 3.20| 2.51 | 260 | 265(288 | 248
YMOMI 4,59 | 3.7 334 3.57| 3.63| 4.01| 3.39
ZMOMI 458 | 531 | 581 | 6.89| 638 531 590
ENERGI 4,76 | 571 5321 537 532 6.38| 5.61
QSTRUC 3.20 | 2,99 3.19] 3.06| 294 290 2.89

FX/80 for P1r2.

running on

an Alliant

Phase A% SC SVC SvC SvC SvC SvVC

lce 8ce 1ce 2ce 4ce 6ce 8ce
Time step 12297.20 | 9986.37 | 12358.54 | 11450.86 | 10351.563 | 10433.30 { 10019,23
Momentum constr. | 3733.70 | 3110.72 | 3579.02 | 3554.11 3212.87 | 3299.41 | 3133.59
Momentum solu. 4071.72 | 2904.95 | 4233.12 | 3471.16 | 3074.20 | 3007.06 | 2967.60
Energy constr. 3888.48 | 3461.57 | 3831.89 | 3881.43 | 3578.85 | 3656.77 | 4458.13
Energy solu. 497.44 1 406.23 609.70 440.80 383.85 367.56 358.76
Thermal Struct. 21.59 21.79 21.79 21.98 22.02 22.00 22.02
TS Radiation 1.90 1.93 1.83 1.84 | 1.82 1.91 1.77

Table 3.31: Execution times of CPU intensive routines in COMMIX-1AR/P code running on an
Alliant FX /80 for P1r2,

Routine SV sC SvC SvC SVC | SVC SvVC

lce Bce 1ce 2ce 4ce 6ce 8ce
SOLVEV | 458.38 | 375.29 | 570.36 | 410.00 | 357.43 | 341.73 | 334.15
LOWFCV 007.13 934.60
QSTDRS | 999.55 | 886.96 | 959.58 | 982.58 | 952.28 | 960.68 | 906.94
XMOMI 435.81 | 359.01 { 393.95 | 373.60 | 315.14 | 328.59 | 311.66
YMOMI 587.24 | 399.98 | 519.84 | 503.95 | 432.57 | 442.40 | 428.66
ZMOMI 679.56 | 556.98 | 682.26 | 705.87 | 666.21 | 700.76 | 641.23
ENERGI | 685.20 | 586.70 | 734.43 | 771.56 | 663.17 | 694.49 | 659.76
QSTRUC | 421.05 | 38G.95 | 419.25 | 295.88 | 382.98 | 379.64 | 377.24

o

A

Table 3.32: Routine events for COMMIX-1AR/P trace graph obtained from the Cray X-MP /48,

Event | Routine | Event | Routine || Event | Routine | Event | Routine |
0 COMMIX 1 LOCF 2 CLEAR 3 TSCAN

4 MXPLNS || 5 ALTER 6 AMAIN 7 | cEoM3D
8 'BOXES 9 FILLM 10 SHOME 11 TLEFTS
12 INITIAL 13 INITA3 14 INITA2 15 FITIT

16 SMOOTH 17 GETF 18 INHTX 19 INPUMP
20 INFORC 21 INPSTR 22 ICTEMP 23 BARIN |
24 RSET2 25 DSET2 26 REDEF 27 BCTEMT
28 BCTEMO 29 BCTEMP | 30 BCFLOW 31 BCPRES
32 | GETMTS 33 GETHK * || 34 LODODD 35 HSTRUC
36 . HEATCF * || 37 TSTRUC g QSTRUC 39 OUTPUT
40 PSTRU1 41 RARRAY 42 PSTRUC 43 GDCONV
44 WATSTP 45 GETEKL 46 TIMSTP 47 MoLoop
48 XMOMI 49 YMOMI 50 ZMOMI 51 FORCES *
52 | PUMPQ 53 PEQN 54 CGLOOP 55 STORE

56 | UPDATE 57 COMMAT | 58 BOUND 59 ELIM

60 VOLCEL 61 WRPTST 62 SORTC 63 RESORT
64 CNGRIC 65 FACNCV 66 COFSRT 67 OPERXDF *
68 LOWFCV * || 69 pbpoTc * || 70 DAXPYC * || 71 DAXPXC *
72 MOMENI 73 ENLOOP 74 ESORCE 75 ENERGI
76 SOLVEV 77 QSRAD 78 WATTIM 79 RESTAR
80 PLTAPE

3.2.8 Dynamic program execution tracing analysis

As mentioned in Section 2.3 we have started using tools developed at CSRD to capture the detailed
histories of routine invocation together with machine performance statistics. In Figure 3.1, we show
the routine trace graph for a COMMIX-1AR/P execution in vector mode on the Cray X-MP. Only
fifty iterations were performed in this execution. Each routine has been given an event number as
listed in Table 3.32.) The trace graph visually depicts where time is being spent in routines during
the execution and the routine calling dynamics as the application proceeds. We hope to further
apply this type of analysis in Phase 2 to identify performance limiting behavior.

3.3 Results from COMMIX-1C

- We next list some results from the performance evaluation of COMMIX-1C on the ANL Cray X-

MP/14 and the Alliant FX/8. For this particular code we also include performance results from
running the code in its original environment, namely a Sun Sparc workstation. We note that
although to be consistent with our previous runs we used the SV version of the code as baseline,
COMMIX-1C was not written to profit from vector processing.

'Some of the routine events have been elided due 1o their high frequency; these events are identified by an “*" in
the Table 3.32.

26

NI

alihe o

ol I

!

IR

A

Routine
Events

Routine
Events

Routine
Events

Routine
Events

Routine
Events

Routine
Fvents

Routine
Lvents

Routine
Events

p—;] I]

|
|

ﬂ!

ail

U]

T

i

I

e

T

]

il

20 -

il

il

0

27

P

Figure 3.1: Routine graph for fifty iterations of COMMIX-1AR/P exccution on the Cray X-MP /48,

st
Fighth

2ud
Fighth

3rd
ightl

Ath
Fighth

Sth
lighth

Gth
Fighth

Tl
Iighth

AT
Fighth

Table 3.33: Timing results from COMMIX-1C runs on the Sparc, Cray X-MP /14 and Alliant I'X/8.

Cir0 | Cirl | ClIr2
Sparc 40.3 | 9,2334 | 3,5612.5
Cray (SV) 6.6 | 1,463.6 | 554.8
Allient (SVC) | 48.4 | 12,625.9 | 5,124.1

Table 3.34: HPM group 0 summary for baseline SV COMMIX-1C code funning on Cray X-MP/14
with data set Clr2.

Clr2
CPU seconds .| 554.86
Million inst/sec (MIPS) 36.28
Avg. clock periods/inst 3.24
% CP holding issue 45.67
Inst.buffer fetches/sec - 0.61M
Floating adds/sec 2.30M
Floating multiplies/sec 2.93M
Floating reciprocal/sec 0.38M
I/O mem. references/sec 0.49M
CPU mem, references/sec | 12.18M
Floating ops/CPU second | 5.60M

To port the code from the Sparc to the Cray X-MP, we first had to change data type declarations
to Cray single precision (64 bits), IEEE arithmetic traps specific to the Sun were removed, machine
specific constants were changed, and dynamic memory allocation calls were converted to Cray
specific. Several difficulties associated with a “Namelist” like input processor were also resolved. For
the Alliant the above mentioned IEEE arithmetric traps were converted to Alliant traps. However,
the principal problem was the lack of compatible dynamic memory allocation system routines
(calls to the Alliant Fortran allocate() were not enough.) The problem was dealt with (for
the preseut) by explicit allocation of large sections of memory, coded so as to check that the
allocation is sufficiently large. In addition the use of a parallel/vector architecture led to concerns
about the correctness of the computed results. This led us to perform additional experiments
with various compiler options and run on a single processor. These experiments revealed that our
transformations did not change the nature of the output data.

The results from Table 3.33 imply that the MFLOPS rates achieved for phase 2 of the compu-
tation were 0.88 on the Sparc, 5.6 on the Cray X-MP/14 and 0.61 on the Alliant FX/8.

We also list the HPM results from running the code in SV mode on the ANL Cray X-MP/14
and using data set C1r2. Tables 3.34-3.37 summarize the obtained results.

We see that the current version of the code performs very badly on the Alliant: Despite the
automatic nntimizations, the times are lower for the Alliant compared to the Sparc. The inability
to automat: 1y extract high performance for this code was also observed from the speedup values:
Input deck C1r2 ran only 1.03 times faster on 8 than en a single CE of the FX/8.

28

[l

ol

Lol

L Il

Table 3.35: HPM group 1 summary for baseline §V COMMIX-1C code running on Cray X-MP /14

with data set C1r2,

Table 3.36: upM group 2 summary for baseline SV COMMIX-1C code running on Cray X-MP/14

with data set C1r2,

Table 3.37: HPM group 3 summary for baseline SV COMMIX-1C code running on Cray X-MP/14

with data set Clr2,

Clr2
% of all CPs

Waiting on A-registers/funct, units
Waiting on S-registers/funct. units
Waiting on V-registers ‘
Waiting on vector functional units
Waiting on scaler memory references
Waiting on block memory references

13.28
29.63
0.23
0.36
0.18
1.37

Clr2
Inst. buffer fetches/sec | 0.61M
Scalar memory refs/sec | 7.7TM
% having c~nflicts | 36.14
/0O memory refs/sec 0.64M
% having conflicts 51.72
Block memory refs/sec | 4.41M
% having conflicts 72.96
Vector memory refs/sec | 0.72M

Clr2

type of instruction instr./CPU sec | % of all instr.
Jump/special 3.30M 9.11
scalar 32.86M 90.64
vuetor integer/logical 0.05M 0.15
vector floating point 0.02M 0.04
vestor memory 0.06M 0.16

type of operation ops/CPU sec avg, VL
Vector integer&logical 0.57M 10.60
Vector floating point 0.26M 16.45
Vector memory 0.72M 12.19

29

IR RUTIRRY T LRRIE

Looking at the HpM group 3 results in Table 3.37, we notice tliat the vector floating-polnt
operations accounted for only 0.04% of all instructions. This compares with a typlcal 0.6% for the
corresponding baseline SV runs of 1AR/P and 0.6% for the SV(Zv) runs. This low performance ls
not surprisingt COMMIX-1C uses YSMP to solve the linear systems by direct methods which do
not take advantage of vector or parallel processing capabilities, Finally, a comment similar to that

made in the end of Section 3.2.2 regarding vector lengths and inefficlency of SVC processing could
also be made here.

30

P (Y o T \ o . i [i PO

Chapter 4

WHAMS-3D description

The WHAMS-38D computer program employs explicit time integration to do nonlinear, transient
analysis of frames, shells, plates and continua in three dimensions [4]. Both material nonlincari-

‘ties due to elasto-plastic behavi v and geometric nonlinearities due to large dlsplacements can be

treated. This program has been developed jolntly at Northwestern University and Argonne Na-
tlonal Laboratory and is Internationally recognized as a state-of-the-art program for performing
nonllnear transient analysls, WHAMS-3D has maintained its role as a leading edge program by
performing extensive research in innovative methods (e.g., subcycling) for enhancing computational
efficlency. Argonne has employed and developed this program to perform analysis of various re-
actor components and structures in a computationally efficient manner. Other organizations have
employed the program to perform analysis of ice forces on Arctic structures, analysis of buried
structures, military weapon analysis, aircraft engine structural analysis, analysis of electronic com-
ponents, reactor safety fluld-structural analysis, impact and penetration analysis, and automobile
crashworthiness simulations, The program has been extensively validated by comparisons with a
wide range of experiments associated with large deformations, buckling, impact-penetration, etc.

The program employs a finite clement format, so that it possesses considerable versatility in
modeling complex shapes and boundary conditions. The element library consists of the following;
quadrilateral and triangular plate-shell elements, a beam element, a spring element and a hexahedral
continuum element. In addition, a rigld linkage is included which permits the sfficient modeling of
very stiff portions of a structure, such as the bottom ring of a core barrel. In a rigid linkage, the
motion of a master node defines the motion of all slave nodes linked to the master node, ‘I'hls option
is also useful fo- eccentrically connected elements where the midlines of the connected elements do
not coincide, as for example, in stiffeners.

All of the elements in the program are three dimensional. The beam element is based on Euler
Bernoulli theory, which assumes that planes normal to the midline remain planar and normal, The
element has stiffness in torsion, bending about two axes, and in the axial direction.

If the material response is elasto-plastic, the cross-section of the beam is restricted to be thin-
walled, and the cross-section ls completely arbitrary and defined through input. Each element is
assumed to be prismatic, For elastic beams, the cross-section may be defined directly through the
sectlon moduli and transverse shears may be included,

The quadrilateral plate clement is based on Mindlin-Reissner theory. This is the recommended
element for most simulations, It uses one-point quadrature in the surface of the shell to achieve
computational efficiency. Spurious modes are suppressed through a consistent gamma-projoction,
A Mindlin-Reissner type triangular plate element is also available, The triangular element provides

31

oo

I

Vi

versatility in modellng,.

A three dimenslonal Lagranglan hexahedral olemont with elght nodes 1s Included which can
be used to model fluld and solid continua. The eloment uses only one quadrature point with a
consistent control of hourglass modes so very large meshes can be handled offectively.

In all of the elements, a corotational element formulation {8 used, In this formulation a coor-
dinate system ls embedded In each element and all element computations are performod relative
to this element coordinate system which rotates with the element. This Introduces considerable
simplifications into the formulation and adds substantlally to the efficlency of the progrant.

Time integration {s performed by the expuclt, central difference method, Stable time ateps can
be automatically computed or input by the user or a driving program. Mixed tlime Integration, a
procedure which allows for different time steps in different parts of the mesh, may be employed. To
provide a check on the stabillty of a calculation after It 1s completed, energy balances are computed.
A lumped mass matrix is employed so that no matrix Inversion s needed in the computations and
core § orage requirements are minimized.

El wto-plastic materlal laws using Mises or llyushin criterlon with lsotropic straln hardening are
Included. Hardening is defined by a plecewise linear function. Blastic and hydrodynamlc material
laws are also available. The material laws are completely modularized, so other matorial laws can
easily be added by the user.

An interaction algorithm for treating lmpact-penetration simulations with arbitrary eroslon
is included, This algorithm is based on interaction between slave nodes (projectile) and mastor
elements (target) and no tracking of the sliding interfaces s needed. It employs an assembly
of normals to identify the interface surface adaptively so that it can handle eroding elements n
both the target and penetrator. In the interactlon algorithm, momentum is exchanged between
interacting nodes so that the total momentum ls conserved.

The algorithm for expliclt time integration primarily involves computing the internal forces of
the elements which describe the simulation. Nodal accelerations, velocities and displacements are
then made by central difference equations,

4.1 Data sets

Four data sets are used for the performance testing, These data sets all use quadrilateral plate
elements. They, however, represent four different physical problems,

Cylindrical Panel (cylpanel). Since clogsed form solutions are not available for nonlinear tran-
sient programs, solutions obtained by finite elements are typically compared to experimental
results, The cylindrical panel problem has been used as a benchmark for many nonlinear
transient programs, Experimental results have been obtained for this shell by Balmer and
Witner [3]. A 120 degree cylindrical panel subjected to an impulsive loading is modeled to
test the elastic-plastic, large deformation capability and the ability to treat curved surfaces.
The analytical model takes advantage of symmetry, so only half the panel is modeled; 1089
nodes and 1024 elements were used for the half panel, The impulsive loading is accomplished
numerically by prescribing an initial velocity.

Column Buckling (buckle). In the Clinch River breeder reactor design, four columns were used
to support the above core structures, The dynamic buckling analysis quantifies the energy
absorption capability of these columuns during core disruptive accidents., Symmetry conditions

42

o M

]

ot

Table 4.1: Execution times for WHAMS-3D on the Cray X-MP/48 (from pm).

Verslon Exocution Tima

buckle | eylpanel | frame | spcap
S 59,19 391,19 | 4048.66 | 88,02
sV 9,78 64.11 | 660,07 | 14.72
sve 9.66 61.63 | 633.92 | 156.30

allow a half column model of 287 nodes and 240 elements, The column is loaded by prescriblng
an upward velocity of 500 In./sec. to the bottom nodes of the mesh with the top nodes fixed.

Spherical Cap (speap). The pressure loaded spherical cap problem is a common benchmark for
nonlinear finite element codes, Linear elastic and elastic-plastic materlals are typically con-
sldered, A total of 332 nodes and 300 elements were used for the one-quarter model, A
uniform pressure loading is applied over the cap.

Structural Frame (frame). The frame mesh 18 & common front-end automoblle structural compo-
nent subjected to crashworthiness testing., Hallquist, Benson, and Goudreau have documented
the geometry definitlons of this data set which was obtained from Suzuki Motor Company
of Japan and used to benchmark the performance of other finite clement formulations for
shell analysis [7]. A total of 1122 nodes and 1100 elements were used for the mesh In wur
benchmark analyses, Impact was modeled by prescribing a uniform velocity of 800 in./sac,
across the mesh with a clamped row of nodes at one end.

4.2 Results from WHAMS-3D

A detailed analysis of our timing results and porting activities can be found in the first progress
report. We outline here the performance measurements we have obtained during the first phase of
this project. In this initial benchmark we tried to get all the performance results based on original
code, In particular, we did not attempt any hand optimizations.

As mentloned in previous sections, the original code WHHAMS3D has been ported, compiled,
and tested on both the Cray X-MP/48 of NCSA and the Alliant FX/80 of CSRD. On the Cray
X-MP /48, we obtain three different (scalar, scalar-vector, and scalar-vector-concurrent optimized)
versions of the object codes. On the Alllant I'X/80, we have four different (scalar, scalar-vector,
scalar-concurrent, and scalar-vector-concurrent optimized) versions, In this section, we present
some of the performance results of these versions of the original code on both machines for all four
data sets,

4.2,1 Cray X-MP /48

The performance results of the original code WHAMS3D on the Cray X-MP/48 are presented
in Tables 4.1 through 4.56. Table 4.1 shows the executlon time for all four data sets, As can be
obtained from this table, the vector speedup of the SV version over the S version ranges from 5.98
for the data set speap to 6.23 for frarne. It is also observed that the SVC version does not yield good

33

Table 4.2; Execution times for SVC verslon of WHAMS-3D

|

on the Cray X-MP/48 (from upm).

No. of Connect time (T})
Concurrent in each ({PU
CPUs (1) buckle | cylpanel T | frame | spcap
1 3.15 19.66 | ; 162.35 5.99
2 0.50 | 9.92| 13154 | 1.88
3 2.45 12.30 | | 147.89 4,34
4 3.47| 1974 211,34 | 3.08
Total exec. time | 9.66 61,63 | [653.12 | 15.30
Total CPU time | 25.54 155.37 §l714.46 35.10

|

|
J
1

|
{

Table 4.3: Floating point operations on Cray X-MP /48 for the S version (from group 0 of HpM),

F.P. type No. of F.P. operations

buckle | cylpanel frame | spcap
adds 290.8M | 2,021.7M | 19,954.2M | 430.8M
multiplies | 345.6M | 2,254.0M | 23,588,6M | 504.3M
reciprocals | 36.0M | 203.9M | 2,473.2M | 55.0M
Total 672.4M | 4,479.6M | 46,015.9M | 990.1M

Table 4.4: MFLOPS for WHAMS-3D on the Cray X-MP/48 (from nrm).

Verslon MFLOPS

buckle | cylpanel | frame | spcap
S 11,36 11,50 | 11.37 | 11.25
sV 71.00 71.65 | 72.65 | 69.05
sve 71.38 7449 | 76.97 | 66.56

34

N T

i
13T

Table 4.5: Performance data for WHAMS-3D on the Cray X-MP/48 using data set eylpanel (from
FLOWTRACE),

Compiler options S SV svC

name calls | % time | time | % time [time | % time | time
QPLATE | 25600 33.16 | 129.00 28.62 | 18.30 28.69 | 17.62
QMISES 12800 20,97 | 81.66 17.66 | 11.27 17.65 | 10,78
QRIGID 25600 908 35.33 7.04 | 452 7.00 1 4.30
QFORCE | 25600 6.13{ 23.83 16.29 | 10.46 16.68 | 10.2b
UPDATE 1600 548 | 21.33 3.69 | 2.37 3.69 | 2.27
BOLVE 1 543 | 20.73 6.36 | 4.08 6.29 | 3.87
BYIELV 63568 528 | 20.55 3.94 1 2,53 3.97 1 2.44
NEWSDV | 63568 4,361 16.93 4,53 | 291 4,56 | 2.80
QVECTV | 25600 3.53 | 13.75 2.24 | 1.44 220 | 1.41
PMODYV 63568 283 11.01 2.68 | 1.66 258 | 1.69
CONSTR. 1600 1.87 7.26 1.86 | 1.20 1.88 | 1.16
Total ——— 08.01 | 381.28 94.61 | 60.74 95,18 | 58.49

performance although four CPUs are available, Table 4.3 shows the MFLOPS for the S version of
the code on the Cray X-MP /48, as obtained from group 0 of HpMm.

Table 4.2 gives the job accounting information for the SVC version, This information provides
the connect time in each active CPU and the number of active CPUs (cf. the discussion Eq. 3.1).
The performance of the scalar-vector version of this code reaches about 70 MFLOPS, 1/3 of the
peak performance of this machine, ‘

To better understand the behavior of this code, we also used the performance utility FLOWTRACE
to gather information at the subroutine level. All the four data sets have been examined. In the
following, we present only the performance data for the data set cylpanel since the behavior of
this code on the other three data sets does not vary very much. The results are shown in Table
4.5 in which only heavily used subroutines are presented. A brief description of these most time-
consuming subroutines is given below,

QPLATE Compute the internal forces for a quadrilateral plate element using one point integration
by a velocity strain formulation.

QMisks Compute the stress given the strain for a plane stress biaxial elastic-plastic material,

QRr1G1D Compute deformed nndal coordinates for a quadrilateral plate element, calculate the values
of the shape functions at integration point (0,0), and calculate the area of the element,

QFORCE Compute hourglass forces, transfer forces from element to global coordinate system, and
update the global internal force vector.

UPDATE Update the nodal coordinate system.
SOLVE Integrate the equations of motion - F = ma.

BYIELDV Bring back stress to yield surface.

Table 4.6: Execution time for WHAMS-3D on the Alliant FX/80 (from GPROF).

Optimization | No. of Execution Time

CEs | buckle | cylpanel | frame | spcap
S 1 | 541.63 | 3802.19 | 37951.01 | 820.16
SV ‘ 1 231.62 | 1595.33 | 15811.41 | 328.20

Table 4.7: Execution time for the SC version of WHAMS-3D on the Alliant FX/80 (from GPROF).

No. of Execution Time
CEs | buckle | cylpanel | frame spcap
1 568.63 | 3997.18 | 40759.16 | 815.39
2 339.89 | 2368.70 | 23685.83 | 478.80
4 215.77 | 1508.11 | 14643.84 | 302.38
8 155.82 | 1060.39 | 10346.51 | 228.20

NEWSDV Compute new stress by elastic-plastic material law.
QVECTV Compute the quadrilateral plate element coordinate system.
PMODV Look up the plastic modulus and yield stress.

CONSTR Enforce boundary conditions in the local coordinate system.

4.2.2 Alliant FX/80

We next present results from use of the Alliant FX/80. It should be noted that we did not use
the compiler option -r8 to compile the source code. In other words, all versions on the Alliant are
in single precision. ‘

- Table 4.6 shows the execution time using only one CE for the S and SV options. The vector
speedup of the SV version over the S version ranges from 2.34 to 2.50, which is reasonably good.
It should be noted that the timings for the S and SV versions presented were obtained without

Table 4.8: Execution times for the SVC version of WHAMS-3D on the Alliant FX /80 (from GPROF).

No. of Execution Time
CEs | buckle | cylpanel | frame spcap
1 289.50 | 1896.92 | 19916.66 | 407.77
2 257.04 | 1763.51 | 17301.31 | 357.67
4 196.99 | 1347.01 | 12812.99 | 289.34
8 166.45 | 1094.76 | 11054.41 | 236.21

i ik

T IS TS

o

Ve

i ol

Wl

Al W b

Table 4.9: MFLOPS for WHAMS-3D on the Alliant FX/80.

Optimization | No. of MFLOPS

CFEs | buckle | cylpanel | frame | spcap
S 1 1.24 1.21 1.21 1.24
Sv 1 2.90 2.88 291 | 3.10
SC 8 4.32 4.33 445 | 4.45
SVC 8 4.04 4.19 4.16 | 4.30 |

Table 4.10: Performance data for WHAMS-3D on the Alliant FX/80 using data set cylpanel (from
GPROF).

Version S T SV SVC
No. of CE’s used 1 , 1 8
name calls | %time time | %time time | %time | © time

QPLATE | 25600 38.2 | 1452.83 25.2 | 401.33 15.7 | 171.75
QMISES 12800 14.3 | 544.90 19.8 | 316.36 26.2 | 287.13
QRIGID 25600 10.6 | 404.41 7.5 119.16 4.3 46.16
QFORCE | 25600 6.6 | 251.00 9.1] 145.91 10.2 | 112.18
UPDATE 1600 46| 173.54 4.2 67.21] - 6.0 65.60
SOLVE 1 8.0 304.90 14.6 | 232.82 20.5 | 224.67
BYIELV 63568 3.2 123.40 2.7 43.54 2.2 24.21
NEWSDV | 63568 5.2 | 197.44 4.7 75.31 2.5 27.67
QVECTV | 25600 | ~ 2.1 | 80.21 | 1.8 29.09 1.3 14.10
PMODV 63568 2.1 79.86 1.7 27.40 1.7 18.40
CONSTR 1600 2.6 98.80 3.5 55.52 3.3 35.59
Total - 97.5 } 3711.29 94.8 | 1513.65 93.9 | 1027.91

explicitly specifying to use only one CE. The effect of the explicit specification of using one CE on
performance is currently under investigation. Tables 4.7 and 4.8 show the execution time using 1,
2,4, and 8 CEs for the SC and SVC versions, respectively. As can be seen from these two tables,
the parallelism obtained through the use of compiler options results in speedups across processors
for the SVC version that are rather poor.

Table 4.9 compares the performances in terms of MFLOPS for different versions of the object
code, where we have used the floating point operation counts of the § version obtained from the
Cray X-MP/48 because the Alliant does not have utility to gather this information. :

Table 4.10 shows the performance data at the subroutine level using the Alliant FX /80 for data
set cylpanel for the S, SV, and SVC versions of the object code. Note that the time is reduced by
a factor of 2.45 in going from the S to the SV version on one processor. However, going to SVC
decreases the time only by a factor of 1.47, giving a multiprocessor efficiency of only 18%. It should
also be observed from 4.7 and 4.8 that the SVC version did not yield better performance than the
SC version when all eight CE’s were used. This is due to the fact that the vector length is not long

37

Al il ot

Table 4.11; Characteristics of the data sets used in WHAMS-3D.
Data Set Problem Size
No. of nodes No. of time steps
buckle 287 800
cylpanel | 1089 1600
frame 1122 16000
spcap 332 1000
stcn 407 ‘ 1136

Table 4.12: Execution times for WHAMS-3D on the ANL Alliant FX/8.

Scalar Mode Vector Mode Vector-Conc. Mode
Data Set | (fortran -0g) | (fortran -Ogv) | (fortran -Dgvc)

user system user system user system
buckle 691.1 1.1 336.4 1.1 181.1 1.1
cylpanel 44192 1.1 | 2286.4 1.7 12121 1.5
frame 44654.6 1.3 | 23030.0 1.6 | 12343.5 1.5
spcap 940.8 1.0 | 492.0 11| 2773 1.0
stcn 604.4 0.9 324.0 1.1 173.9 1.1

enough to take advantage of both vectorization and parallelization, as explained for the COMMIX
code.

4.2.3 Additional Results

In addition to the Cray X-MP/48 of NCSA and the Alliant FX/80 of CSRD, we have also run
the baseline code on the Argonne ARCF Alliant FX/8, Cray X-MP/14, and Sparcstation. Dala
sets employed in the test on these three machines include the four data sets mentioned previously
and an additional one: a steel containment (stcn) subjected to a pressure loading. The problem
sizes of these data sets are listed in Table 4.11. The performance data are presented in Tables
4.12 through 4.14. Table 4.12 shows the timings on the Alliant FX/8 using scalar optimization,
vectorization, and parallelization. Table 4.13 presents the execution time for the Sparcstation and
the Cray X-MP/14. A summary of the findings of this assessment on the Cray is provided in Table
4.14,

As indicated by the very high ratio of vector floating point operations to total floating point
operations in Table 4.14, it is clear that this code has been vectorized to a large degree. The average
vector lengths are close to the optimal vector length (64). A further indicator of good vectorization
is the relatively low hold-issue condition percentage for the scalar registers and functional units
as opposed to the vector registers and functional units. For maximum performance, the highest
percentage of hold-issues should be on the vector registers and vector functional units as these are
the fastest. The columns for hold issne conditions indicate the number of clock periods during which
the issuance of an instruction was (held) delayed. Note that more than one hold issue condition

38

il

0w i\ ol 1

¥ m.h“!iu Dl

Table 4.13: Execution times for WHAMS-3D on the Sparc, Cray X-MP/14, and Alliant FX/8.

Machine Execution Time
buckle | cylpanel frame | spcap | sten
scalar Sparcstation 896.9 6173.1 | 61647.9 | 1322.1 | 857.4
|l Cray X-MP/14 (vector) 103 | 67.1 689.7 84| 115

Table 4.14: HPM performance data summary for WHAMS-3D running on the Cray X-MP/14,

Data Floating Point Hold Issue MFLOPS
Set Operations Conditions (%)

: % Vectorized Average VL Scalar Vector Block | Total Vector

A-rg. S-rg. rg. fu

buckle 99 58.78 7.1 83 273 254 275 | 67.2 66.7
cylpanel 99 63.19 6.0 9.0 27.1 257 31.8| 68.4 67.7
frame 99 60.63 6.2 8.9 28.2 26.1 31.6 | 68.5 67.7
spcap 96 58.76 6.9 181 24.7 158 253 473 45.4
sten 100 59.75 | 7.5 116 244 216 27.7| 56.0 55.0

an
QY

il

can occur during a given clock period so that the individual percentages cannot be added to get
the overall percentage. Removing hold issue conditions promises to offer code speedups however
the compiler attempts to catch bottlenecks and even the most optimized codes may have large
percentages for hold issues. Only after further experimentation can it be determincd whether the
number of hold issues conditions can be reduced.

4.2.4 Dynamic program execution tracing analysis

In Figure 4.1, we show the routine trace graph for the first 2.954625 seconds of the WHAMS-3D
execution in vector mode on the Cray X-MP; eight consecutive sub-sections of this interval are
shown. Each routine has been given an event number as listed in Table 4.15.) The trace graph
visually depicts where time is being spent in routines dusing the execution and the routine calling
dynamics as the application proceeds. We hope to further apply this type of analysis in Phase 2
to identify performance limiting behavior.

!Some of the routine events have been elided due to their high frequency; these events are identificd by an “*” in
the Table 4.15.

| Event | Routine | Event | Routine || Event | Routine | Event | Routine J

0 MAIN 1 DRIVE 2 READKO 3 CORER

4 READMA 5 READNE 6 DECOD 7 CROSS

8 BLOCKS 9 ASSBLE 10 QASME 11 QVECTR
12 QDELT 13 READLD 14 READOU 15 SOLVE

16 OUTPUT 17 LOADPR * || 18 FRCIN 19 QFRCIN *
20 QNODE * 21 QVECTV * || 22 QRIGID ¥ || 23 QPLATE *
24 QMISES * 25 QFORCE * || 26 PMODV * || 27 BYIELV *
28 NEWSDV * || 29 CONSTR 30 UPDATE || 31 ETIME2
32 BTIME 33 ROUTPT 34 PLOTER

Table 4.15: Routine events for WHAMS-3D trace graph

40

Mo oW il

[I O P Y}

vl bl

vl Wty

T

Routine
Events

Routine
Events

Routine
Events

Routine
Events

Routine
Events

Routine
Events

Routine
Events

Routine
Events

32 -
24 -
16 -
8 -
0

32 -
24 -
16 -
8

0 Al

32

R T I

32

24 P

8
0

RN NIRRT N VRN RN EARUAIT]

32

s -

8 -
0

32 -

o - A]

8
0

32 -

ASEEEEEEEEERES AN NN U SRR

8

0

Figure 4.1: Routine graph for 0.0 to 2.954625 seconds of the WHAMS-3D execution

41

1st
Elghth

2nd
Fighth

3rd
ighth

4th
Eighth

Hth
Eighth

Gth
Eighth

Tth
Eighth

8Lh
Eighth

Chapter 5

Conclusion

We have completed the work prescribed for Phase 1 of our project. We have performed a large num-
ber of experiments without any hand tuning of the COMMIX-1AR/P, COMMIX-1C and WHAMS-
3D codes. Our purpose was to have yardsticks by means of which future improvements to the code
could be measured. Nevertheless, we were also able to obtain a lot of data for different compilation
options, as part of our Phase 2 efforts.

Although, a full appreciation of the results requires time, even at this stage, several interesting
observations can be made, which were not apparent before our experiments had taken place. These
observations can be found in the commentary for the tables in the previous Sections.

We found that the performance of the COMMIX codes on the Cray and Alliant is much below
the acceptable range, meaning that the codes have to be modified to take advantage of the parallel
and vector processing aspects of these architectures. We noticed that even for COMMIX-1AR/P,
whose parts dealing with the linear system solvers had been vectorized, the performance is very
low and will remain such, until the parts of the code dealing with the matrix assembly are also
modified. In that spirit we started testing the standard automatic vectorization/parallelization
tools available on the target machines. Our experiments indicate the following: Without any
help from the user, the tools only provide slight performance gains. Some help in the forin of
inline directives to the compiler can introduce very significant improvements in the performance
of some subroutines. These experiences point to the next phase of our work, namely examining
the individual subroutines to provide help to the automatic restructuring tools, and using more
advanced data dependence tests to recover computations which can be processed in parallel.

For WHAMS-3D we have seen that the performance of the Cray under vector processing was
quite reasonable. Nevertheless, the performance under the multiprocessing options was not satisfac-
tory. In the next phase of this project we intend to investigate further the automatic transformation
tools coupled with user directives to produce better optimized code.

42

b

RN T A T

il

il

'Bibliography

(1] ANALYTICAL THERMAL AND HYDRAULIC REsEARCH PROGRAM, COMPONENTS TECHNOL-
0GY DIvIsiON, ARGONNE NATIONAL LABORATORY, Commiz-1B: A three-dimensional tran-
sient single-phase computer program for thermal hydraulic analysis of single and multzcomponcnl
systems. Volume I: Equations and Numerics, Sep. 1985,

[2]

, Commiz-1B: A three-dimensional transient single-phase computer program for thermal
hydraulic analysis of single and multicomponent systems. Volume II: User’s Manual, Sep. 1985,

[3] H. A. BALMER AND E. A. WITMER, Theoretical-experimental correlation of large dynamic and
permanent deformation of impulsively loaded simple structures, Tech., Rep. FDP-TDR-64-108,
Wright Patterson AFB, Ohio, 1964,

[4] T. BeELyTscuko AND C. S, TsAy, WHAMSE: A program for three-dimensional nonlin-
ear structural dynamics, Tech. Rep. NP-2250, Dept. Civil Engin., Northwestern University,
Evanston, Illinols, Feb, 1982. Research Project 1065-3.

[5] R. N. BLomQuisT, P. GARNER, AND E. M. GELBARD, Code abstract for COMMIX-1AR/P,
July 1989,

[6] Cray RESEARCH, INC., UNICOS Performance Utilities Reference Manual, May 1989.

(7] J. O. HarrqQuisT, D. J. BENsoN, AND G. L. GOUDREAU, Implementation of « modified
Hughes-Liu shell into a fully vectorized explicit finite element code, in Finite Elements For
Nonlinear Problems, P. (i. Bergan, K. J, Bathe, and W. Wunderlich, eds., Springer-Verlag,
Berlin, 1986, pp. 465-479.

[8] R. HOCKNEY, (TeoyT1/981/2) measurements on the 2-CPU Cray X-MP, Parallel Computing,
2 (1985), pp. 1-14.

[9) A. MALONY, J. LARSON, AND D. REED, Tracing application program execution on the Cray

X-MP and Cray 2, Tech. Rep. 985, Center for Supercomputing Research and Development,
Nov. 1990.

43

Appendix A
Appendix: Milestones for FY 1991

Copies of this Appendix can be obtained from the authors,

44

" "
i [[IRYRTl | i

"

i

ik,

L PR

'

, —— e e e .
) b - ‘
: !
.)
=) ,) P
\ - \ “ . - - . j

" ' L W NI R T — "

w

I

W

ST

T

o

A L

I

