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SIMULATION OF ENHANCED TOKAMAK PERFORMANCE ON Dili-D
USING FAST WAVE CURRENT DRIVE*

J.S. bEGRASssSIE, Y.R. LiN-Liu, C.C. PeETTY, R.I. PINSKER, V.S. CHAN,
R. PRATER, H. ST.JouN, F.W. Balty,! R.H. GouLpiNG,! and D.H. HorrmaN?

General Atomics, San Diego, California, U.S.A.

INTRODUCTION

The fast magnetosonic wave is now recognized to be a leading candidate for noninductive
current drive for the tokamak reactor due to the ability of the wave to penetrate to the hot
dense core region. Fast wave current drive (FWCD) experiments on DIII-D have realized up
to 120 kA of rf current drive, with up to 40% of the plasma current driven noninductively [1}.
The success of these experiments at 60 MHz with a 2 MW transmitter source capability has led
to a major upgrade of the FWCD system. Two additional transmitters, 30 to 120 MHz, with a
2 MW source capability each, will be added together with two new four-strap antennas in early
1994.

Another major thrust of the DIII-D program is to develop advanced tokamak modes of
operation, simultaneously demonstrating improvements in confinement and stability in quasi-
steady-state operation. In some of the initial advanced tokamak experiments on DIII-D with
neutral beam heated (NBI) discharges it has been demonstrated that energy confinement time
can be improved by rapidly elongating the plasma to force the current density profile to be
more centrally peaked [2]. However, this high-£; phase of the discharge with the commensurate
improvement in confinement is transient as the current density profile relaxes. By applying
FWCD to the core of such a x-ramped discharge it may be possible to sustain the high internal
inductance and elevated confinement.

Using computational tools validated on the initial DIII-D FWCD experiments we find that
such a high-¢; advanced tokamak discharge should be capable of sustainment at the 1 MA level
with the upgraded capability of the FWCD system.

DIlI-D FWCD UPGRADE TO 6 MW

Figure 1 shows a schematic diagram of the FWCD system as it will be following the
upgrade to a 6 MW generator source capability. That portion indicated as existing now has
been described extensively [3-5]. This existing system consists of one transmitter, 2 MW, 30 to
60 MHz, driving a four-strap antenna with peak k, ~ 8.9 m~! at the antenna in current drive
operation where a m/2 phase shift is set between adjacent straps.

For the upgrade portion, two new modular four-strap antennas [6,7] will be installed in
DIII-D. These antennas will have partial water cooling with a power handling capability of
4 MW (each) for a 10 sec pulse. In current drive phasing the peak spectral component at the
antenna is k, ~ 10 m~!. Two new transmitters will drive the two new antennas, one on each
antenna initially. These transmitters are similar to those used on ASDEX-U [8], operating
over 30 to 120 MHz, with a perfectly matched output power capability of 2.6 MW at the low
frequency end, and 1.5 MW at the high frequency end. The power from one transmitter must
be divided equally among the four straps with proper phasing between the straps. Part of the
solution on DIII-D is to couple pairs of straps on an antenna into resonant loops which force
these coupled straps to either be in or out of phase, depending on the length of the loops.

The transmission system will utilize the same successful techniques developed on DIII-D
[3,4] for tuning and matching under current drive phasing, but with some significant improve-
ments. An antenna decoupler [9] will be incorporated to recirculate the power coupled from one
set of straps to another during operatkon with current drive phasing. This is necessary because

*This is a report of work sponsored by the U.S. Department of Energy under Contract Nos.
DE-AC03-89ER51114 and DE-AC05-840R215400.
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of the mutual inductances between the straps, which otherwise results in a power imbalance in
the main lines feeding the resonant loops. Another improvement will be to use phase shifters
within the resonant loops, allowing the resonance frequency, and thus the operating frequency,
to be changed on a shot to shot basis.

ADVANCED TOKAMAK SIMULATION

The computational tools used in this simulation are the transport code oONETWO[10] and the
rf package FASTWAVE [11]. Recently ONETWO has been upgraded [12] to allow 1-1/2D transport
and magnetohydrodynamic (MHD) coupled simuilation calculations in which the kinetic and
current profiles are evolved according to the choice of transport model; as the pressure profile
evolves, the two dimensional MHD equilibrium is self-consistently calculated. In FASTWAVE the
antenna spectrum is modeled by up to 20 discrete rays, with ray propagation assumed to be
a straight line with a toroidal upshift. The power deposition and current drive profiles are
calculated using a slab model [12], and these profiles are spread in the vertical direction by a
width chosen to simulate the full-wave calculations.

The code results have been benchmarked against the experimental data on DIII-D. Fig-
ure 2 shows data from fast wave current drive experiments [1] along with the results of a code
computation. The code simulations also agree with the basic scalings seen experimentally;
cwirent drive efficiency increases with electron temperature and the driven current increases
with the deposited power per plasma particle, P/n.

DII-D k-ramp experiments have resulted in an improvement in energy confinement of
1.5 to 1.8 relative to the JET/DIII-D H~mode thermal confinement scaling [2). In these NBI
heated experiments the elongation & is rapidly increased (200 msec) from 1.3 to 2.2 while the
input power (7.5 MW) and plasma current (1 MA) are held constant. Internal inductance
values of 1.8 have been obtained transiently in this manner. It is of interest to maintain this
centrally peaked current profile using FWCD and test whether the enhanced confinement can
be maintained noninductively.

For this FWCD-maintained high ¢ study we take the target plasma from the actual
experimental parameters of a DIII-D x-ramped discharge. The discharge is in the H-mode,
with ne(0) = 5.3 x 10'® m~3, T.(0) = 3.9 keV, T}(0) = 3.8 keV, Zeg = 1.3, £ = 2.2, and £ = 1.8.
The applied fast wave power is taken from the parameters of the 6 MW upgraded capability:
1.6 MW at 60 MHz on the original antenna (n, peak ~ 7) and 1.5 MW at 120 MHz on each of the
two new antennas (n, peak ~ 4). Moderate NBI at 2.5 MW is also applied to provide ion heating
and some additional noninductive current drive. The profiles of Z.g, n., and x; are taken as
those of the target plasma and held constant throughout the simulation. The electron thermal
conductivity ny, is selected to give 7 consistent with the enhanced confinement observed in the
experiment; nx, = 5 X 10'®/m-sec. The Hirshman-Sigmar neoclassical formulation [14] is used
along with a sawtooth mixing model [15]. The transport code evolves the T,, T}, and J profiles
consistent with the calculated FW and NBI deposition profiles. As the pressure profile evolves,
the 2D free boundary MHD equilibrium is self-consistently calculated.

At the end of a 2 sec FW and NBI pulse, 7.(0) = 7.5 keV, T;(0) = 4.0 keV, and the loop
voltage is nearly zero, less than 10 mV. Figure 3 shows the current profile at this time, together
with the various elements making up the noninductive current drive. Table I gives a summary
of the results of this simulation; FWCD is 0.37 MA (Ypwop = 0.063), NBCD is 0.09 MA, and
the bootstrap current is 0.5 MA, with the remaining 0.08 MA driven Ohmically. The internal
inductance has dropped to 1.4 due to current profile broadening arising from the bootstrap
current at the edge.

This simulation is not an optimization of what might be obtained with the new FWCD
capability. We have found similar levels of current drive for other FWCD operating scenarios,
for example, for lower frequency on the new antennas. Systematic simulation parametric studies
will be performed. The important result is that noninductive current drive approaching the
1 MA level, including bootstrap current, could be within reach on DIII-D next year, when the
upgraded operating mode is combined with enhanced confinement resulting from an elongation
ramp. The kink stability analysis for the final equilibrium is yet to be done, but from past
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experience it should be stable to the n = 1 external kink with the DIII-D wall geometry, and
unstable to a benign internal kink [18].
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TABLE I
SiMULATION OF FWCD SusTaINED HiGH-£ H-MoDE IN DIII-D

Power Current
FW 4.6 MW FWCD 0.37 MA
NB 2.5 MW NBCD 0.09 MA
BS 0.50 MA
Ohmic 0.08 MA
Parameters 1.04 MA
a =060m By = 21T B(0) = 6.7%
R =170m Te = 4.6 x 1019 m~3 B) =2.0%
K =22 (Zeg) = 1.8 Bn =23
L =14 g(0) = 1.0 B =21
I, =1.0MA Qs = 0.1 H =25
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