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ABSTRACT

The relativistic random—phase approximation (RRPA)
is introduced to account for electron-electron
correlation in atoms and ions of high nuclear charge
where non—relativistic many—-body methods are inadequa.e.

To provide =a basis for this study of the RRPA, the
Dirac-Fock (DF) theory is reviewed. Applications of the
DF equations to determine inner-electron binding

energies in heavy atoms are given illustrating the
influence of relativistic effects in situations where
correlations are wunimportant. The RRPA equations are
derived as natural generalizations of the DF equations.
Examples of RRPA calculations of discrete excitations
and of photoionization are given illustrating situations
where both relativistic and correlation effects play
important roles.

I. REVIEW OF THE DIRAC-FOCK THEORY

To set a f{ramework for  our study of <correlation
effects in highly charged atoms we briefly review the
central field DF epproach to atomic structure
calculations. The Dirac-Fock theory is based on an
approximate relativistic Hamiltomian?
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wvhere h=3-$+ﬁm—e22/r "is the wusual ome-electron Dirac
Hamiltonian. Although the application of Ho to atomic
structure problems has been criticized,?¥"% its use in
conneciion with DF «calculations has: been recently
justified from the point of view of quentum

eletrodyanamics.® A DF wave function is constructed as a
Slater determinant of single—electron Dirac orbitals

i (1) in parallel with the usval non-relativistic
Hartree~-Fock (HF) procedure. These orbitals uj(f) are
assumed to be orthonormal positive energy solutions to a
central field Dirsc eguatiorn, The ezpectation valuce of

the Hamiltonian Hg in Eq. (1.1) is then expressed z2< a
functional of the orbitals ui(f) and the variational

"principle is applied to this functiomal to obtaim the DF

equations for the orbitals uj:

(h+V)u, = ¢ u, i=l,...,N . (1.2)
i ii

The quantity V is a self-consistent DF potential

N
3 ’

V u-= E e? %?§¥7] [(uzui)’u - (qu)'ui] . (1.3

i=1
The equations (1.2) and (1.3) are similar to the non-
relativistic HF =equations bui there are two important
differences; the single—-electron Hamiltoniam h is a
Dirac Hamiltonian and the orbitals uj(T) are Dirac
orbitals. The Dirac orbitals uj(r) may be separated

intc radial and spin-angle functions and Eqs. (1.2) and
(1.3 recduced to coupled radial =equations.?’ Positive
energy solutions to the resulting radial self-consistent
field zquations may then be obtained numerically.®

The DF eigenvalue ;i has the physical significance
of being the "frozen-orbital™ approximation to the
binding ¢nergy of an electron im state i.®* To get some
notion of the importance of relativistic effects in
situations where corvelation is expected to be
insignificant we compAatc the non-relativistic HF
eigenvalues and the relativistic DF eigenvaluec with
experimentally measured K-shell binding energies,

In Figure 1 we plot experimental K-shell binding



energies determined by Bearden and Burr!® against Z. It
is interesting to note that the non—rslativistic Coulomb
binding energy of a 1s elesctron (Z- Ry) gives a good

approximation to the data in Figure 1, but this
agreement arises only because of an accidental
cancellation between relativistic and screening
effects.
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Fig. 1. Experimental K-shell binding
¢nergies as Jdetermincd by Bearden and
Burr, Ref. 10. are plotted against nuclear

charge.
In Fig. 2 HF eigenvalues®?® and DF eigenvalues?? are
compared with the data from Figure 1. The error inm the

HF approximation varies from —-3% at Z=10 to 12% at Z=90.
The error at low Z is primarily due to the relaxation
and correlation effects not included in the “frozen-—
orbital” HF approximation while the error at high Z 1is

mainly due to relativiity. To see that this is indeed
the case we note that the DF approximation in Fig. 2
agrees with the {IF approximation at low Z where
electronic velocityes are small and reduces the

discrepancy between the II¥ approximation and measuremcnt



from 12% to —-1% at high Z. It is of interest to examine
the extent to which the =residual difference between the
DF approximation and measurement shown in Fig. 2 can be
accounted for without considering correlation effects.
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Fig. 2. Relative difference between

frozen orbital calculations of K-shell
binding energies and the measurements of
Ref. 10. HF calculations are from Ref. 11
and DF calculations are from Ref., 12.

Before discussing this problem it should be
mentioned that the DF calcultions used im Fig. 2 include
the effects of finite nuclear size omn the atomic
orbitals. These finite size effects are incorporated in
the single—electron Hamiltonian h by replacing the

Coulomb potential by a potential due to the nuclear
charge density p(r):

elZ T
- N eI plr') gape (1.4)
* l7-7' |
The nuclear charge density is taken to be a Fermi-
distribution with parameters determined from electron-—
nucleus scattering measurements,®? Finite nuclear size
corrections to K-binding energies grow roughly as Z% and

reduce the theoretical K-binding energy in mercury
{Z=80) by sbout 4 Ry.



Even within the DF framework the <comparison of
orbital eigenvalues with inmer electron binding energies

is incorrect since such a comparison ignores the
relaxation of atomic orbitals when an inner electron is
removed from the atom. To account for relaxation one

must carry out separate DF calcunlations for the atom and
ion and subtract the resulting total atomic and ionic
energies. One then obtains

EXatom) - E(iom) = B, - AE ' (1.5)
where ¢35 is the DF eigenvalue of the atomic electron
being removed and AEj is a relaxatiom ccrrection to the
binding energy of that electron. For the K-shell of
mercury the relaxzxation correction reduces the
theoretical binding energy by about 7 Ry.

Table I. Binding Energies of Inner-Shell Electrons (eV)
cf Noble Gas Atoms,

Shell Z Frozen®  Relaxed” Experiment
Argon 18 c

K 3241.6 3209.2 3206.0

Ly 337.7 327.2 d
Lo 262.1 250.5 247.3(3)
L 259.8 218.3 245.2(3)

Krypton 36
K 14413.6 14358.3 14325.6(8)

L 1961.4 1933.6 1921.2(6)
Lo 1765.4 1735.0 1727.2(5]
Linr 1711.1 1681.3 1674.3(5)
Xencn 54

K J34756.3 34690.0 34561.4(11)
L, 5509, 4 5472. 4 5453.8(4)
Lot 51B1.5 5120.4 5103.7(4)
L 4B835.6 4736.0 4782.2(4)

a) Ref. 12, b) Ref. 14, c¢) Ref. 15, d) Ref. 10

The effect of including relaxation on inner
electrops is illustrated in Table I where we 1list
frozen-orbital, 23 relaxed'4 and experimental binding
energies*®,1s5 for the inner K- and L- shells of the
noble gases argon, krypton, and xenon. For the K-shell
of argon the 1% error in the f{rozen orbita}



approximation is reduced to about O0.1% while in krypton
the errer is reduced from 0.6% to 0.2% and in xenon from
0.6% to 0.4%, The situation for L-shells is gnite
similar, inclusion of relaxation effects in inner-shell
binding calcultions improves the agreement between the
DF approximation and experiment substantially.

From Table I we see that the residual difference
bztween theory and experiment is a rapidly increasing
function of nuclear charge. This residue is due in part
to the omission of terms arising from transverse photon
exchange in the Hamiltonian Hg. Such terms lead to a
frequency dependent modification®,*é of the Breit
iateraction, viz:

= —e2 | cosuwR S
trans R 1 2
- T = -1
+q 3,7 eeseRal (1.6)
wheri R=|§1—fé| and WEE =L . Neglecting terms of order
{wR) ~a22 the transverse interaction reduces to the

Breit interaction?.

—_ -+ - ~ > ~
Hp = - 353 (al'a2 + a;r R e, R) (1.7)

The influence of the Breit interaction or the binding
energies of K-, L-, and M-shell electrons in mercury is
illustrated in Table II, In the second column we list
the relaxed DF &energies as determined by luang et
al.,%*7 gaud in the third column we 1list the Breit
correction to these energies as obtained from a relaxed
perturbation theory <calculation. Comparison of the
resulting DF + Breit energies with the <experimental
values shows that the Breit interaction accounts for a
major part of the discrepancy betweenm the relaxed DF
eigenvalues and experiment.



Table II. Breit Interaction and QED Corrections to
Inner Shell Binding Energies {(au) for Mercury.

Shell DF° Breit DF+Breit QED Exp®
K 3070.7  -11.15 30509.6 3053. 9 7054. 2 (3)
Ly 548. 1 -1.23  546.9 546.0  545.5(73)
Ly 524.5 -2.08  522.4 522. 4 522.%(2)
Lo 453.0 -1.32  451.7 451.6 451.6(2)
M, 131.9 -0.22  131.7 131.7 131.1(4)
Mo 121.4 -0.33  121.0 121.0 120.7:5)
Mg 105.3 -0.23 105. 1 105. 1 104.8(2)
My 83. 1 -0.17 §3.0 88.0 87.8(1)
My 84.7 -0. 11 84.6 84.5 84.5(1)

a) Ref. 17, b) Recf. 10

Electron self-energy and vacuum polarization
corrections accounrt for most of the remaining difference
between DF calculations azd experiment. For high Z
atoms the electror self-energy hac been studied

numerically by Desideario and Johnscnl?® for 1s electrons
with Z in the range of 70-90 using the method outlined
by Brown, Langer 2nd Schaefer,*® and by Mohr2°,21 for
1s, 2s, and 2p electrons with Z < 137. The effects of
finite nuclear size omn the 1s Lamb sbift have been
considered by Cheng and Johnson.?2? Vacuum polarization
in bheavy atoms has Dbeen studied by Wichmano and
Kroll1%3,34 and the finite nuclear size corrections to
vactum polarization have been worked out by Gyulassy3 s,

In coluvmn S5 of Table I1 the influence of the
electron self-energy and vacuum polarization corrections
on the binding energies of the inner shells of mercury
are shown,*7?7 The resulting theoretical values are seen
to agree with the experimental measurements to within

one or two times the experimental €TTrors. This
comparison for mercury is typical of other heavy atoms
and leads to a high degree of confidence in DF

calculations for those applications in which correlation
effects are espected to be insignificant.

By correslation we understand those effects arising



from the difference ©between the electrun-electron
Coulomb interaction and the approximate DF <central
potential, In the following paragraphs we describe the
RRPA which is a natural extension of the DF theory
accounting for many of the important effects of
correlation, and we give applications to photoexcitation
and photoionization problims where both relativistic and
correliation effects are significant.
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Fig. 3. Lowest order Feynman diagrams

contributing to the RRPA amplitude.
Electron in a Dirac-Fock

potential;

————— Conlomb part of the photon

propagator;
A~~~ External photon; a and a, electron
and hole labels, respectively.
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I1. RELATIVISTIC RANDOM-PIASE APPROXIMATION

The governing equations of the RRPA may be developed
from quantum electrodynamics using perturbation theory,
or alternatively from time dependent Hartree-Fock (TDHF)

theory. In the perturbation approach, the ground state
is taken to be the Fermi-level of a closed-shell system
with N electrons, and a diagrammatic method may be used
to describe the excitation of the ground state caused by
an external photon, The lowest order terms included in
photoexcitaticn processes are illustrated ic the Feynman
diagrams of Fig. 3. The RRPA transitionr amplitude is

obtesined from these diagrams by iteration at thec photon
vertex,26

In Fig. 3, we consider only the Couloumb part of the
electron—electron interactior andé omit the transverse
part which leads to the Breit interaction, We also omit
radiative <correctiocns whica lecacd to the lLambd shifrt.
Errors due to the omission of the Breit iateraction and
the Lamb shift are insignificant for many practical
applications, and wlen corrections for these effects are
required, they nay be accounted for as perturbations.?7
Errors due to the omitted Coulombt terms in higher order
diagranms, on the other hanmnd, are more difficult to
assess; nrevertheless, experience with a large number of

applications of the aon-relativistic random-phase
approximaticn with exchange (RPAE) shows that such
calculations in geperal agres very well with

experimental measurements, 28 Ir the past few years,
there have been extensive applications of the RRPA to

photoexcitation?7,29-3¢ and photoionization,?7-47 A
brief account cf the RRPA theery will be given in the
next few paragraphs, followed by examnles of these

calcultions,

As mentioned previously, the RRPA eguations can be
obtained by linearizing the TDHF equations4® describing
the response of an atom to a time dependent external
field v(t). The lHamiltonian of the system is given by:

N
H=Ho+§ AR (2.1)
i=1

where Ho is the approximate relativistic Hamiltonian
given in Eq. (1.,1). Sterting from the time dependent
variational principle*?
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we seek a ststionary solution to the above equation with
the trial wavefunction:

D1(Tyst) o iuty (B, t)

->

» T

L e e e , = e .3
A(rl 2 Ty t) N (2.3)

- -

I (Tyat) e Pyl t)

In the absence of the time dependent external field, the
single electrom Dirac wave functions are given by

2(F,t) = u(r)e 18t and the ~variational «calcultion
leads to the usual Dirac-Fock (DF) =equations for the
atcmic ground state given in Egs. (1.2) and (1.3).
Application of _ a2 time dependent external field,
V(t)=V+v-‘=_“’“t+v_e,“”t induces a time dependent

perturbation to the orbitals:

iwt iwt

u(T) > u(T) + w (e + w_ (et + L. 0 (2.4)

Neglecting higher order terms, the RRPA equations for
the first order perturbed orbitals, Yir can be
obtained from the linearized TDHF equations as:

_ et
[n+V-(e,+o)lw, = -V =

, i=1,2,...,N , (2.5)

where the first order perturbed potential Vsl) is given
by: -

vil)u1

I T [(nfw Y'e.-(u',n,)'w
TF-7"1 ivi- i %t je

It NAZ

j

+ (vl a)'u, - (% w)'e.]l . (2.6)
iz i iz it

If we 1leave ont the driving term -V}l)ui , Bgq. (2.5)
reduces to the excited state DF equation for wj;, , with
excitation energy w (there is no mnon-trivial physical
solution to wi_ in the DF approximation for w <({ 2mc“).
Correlation effects are included in the RRPA through the
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perturbed potential V(l) which induces couplings between
excitation channels u; =~ w;. . The eigenvalues w of Egq.

(2.5) provide an approximation to the excitation
spectrum of the atom, including a discrete range and a
continuum, The positive frequency components of the
eigenfunctions, Wiy , describe atomic excited states
including final state correlations illustrated imn Fig.
3(b,c)., while wj. describes ground stute correlations
illustrated in Fig. 3(d,e). More detailed discussions

of the RRPA equations and their physical implications
can be found in Refs. 40 and 50.

In radiative processes, the electron-photon
interaction in the Coulcmb gauge is given by
v, = ea*A and v_ = v_. The transition ampl itude from

the ground state to an excited state is then given by:

N . .
T =) j dirlw, e-A uw *u, a-A w. 1 . (2.7)

L 1+ 1 1 1-

1=1
An important property of the RRPA trarsition amplitude
is that it is gauge invariant, The oscillator strengths
calculated inm the length gauge are the same as those
calculated in the velocity gauge iz contrast to othker
approximate many-body methods (such as DF theory applied
to excited states) which give gauvge dependent tranmsition
amplitudes, In practical applications, we usually
truncate tke RRPA egquations to siaplify numerical
calculations, with the result that the transition

amplitudes are no longer gauge invariant, The degree of
gauge dependence can then be used as a measure of the
truncation error.

The RRPA has been applied to treat discrete
excitations in highly stripped ions where both
relativity and correlation are important, Allowed and
forbidden transitions for ions in the
He,?27,29-31 Be,?2 Mg,33 Zn3*4,35 and Ne?® sequences have
been studied. We present selected examples here to
illustrate the utility of the RRPA iv=zchnicue. A more

detailed summary of these results is given in Ref. 51.

In the Be sequence, the electric dipole interaction
induces four interaction channels:
1s »npléz, npy,, and 2s * DDy 9+ BP3/9 (actually, there
are eig coupled channels in RRPA calculations 1f we
count positive and negative frequcncg channels
separately) . For the transition of the (2s ground
state to the 2s2p)-p° excited state, we f1rst omit

contributions from ls channels and obtzin truncated RRPA
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values, As we <can see from Table III, the agreement
between length and velocity form oscillator stremgths is
poor for these "frozen-core” <calculations. The full
RRPA <calculation including all excitation channels
retains gauge invariance of the transition matrix

elements, as refl--ted in the perfect agreement between
length and velocity form results.

Table III. Oscillator Strengths of the Resonanqe
Transition (2s2)18-(2s2p)}lP® for Be-1like

Ions.,
a - a b
Truncated RRPA Full RRPA MCDF
actdt length 0.199 0.198 c.208
velocity 0.228 0.198 0.173
mo3 8+ length 0.140 0.140 0.140
velocity 0.151 G.140 0.134

a) Lin and Johnson, Ref. 32
b) Cheng and Johnson, Ref. 52

We include a2lso in Tfable III the multiconfiguration
Dirac-Fcck (MCDF) results of Cheng and Johnsons? for
comparison purposes. As one can see, the length form
results in all three calculations are in agreement with
each other, while the velocity form results are quite
sensitive to approximations involved in the
calculations. This suggests that the length gauge may

be preferred in transition <calculations where gauge
invariance is violated.

In Table IV, we present some results of a truncated
RRPA calculations ‘foE Mg—1like ions im which only
excitatioas of the 3s valence electrons are included

and excitations of the core =electrons are omitted. In
spite of this approximation, the excitation energies of
the resonance transition, (3s2)1s5-(3-3p)1lpo, are in

good agreement with experiment, Furthermore, length and
velocity form oscillator strengths agree to within one
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Table IV, Excitation Energies  (in atomic units) and
Length Form Oscillator Strengths fy of the
Resonance Transition (3s2)18-(3s3p)1lpPo, for
Mg-1ike Ions.

ArS* Feldt  no30%
© : RRPAZ 0.7798 1.605 3.93
MCDEP 0.7928 1.628 3.97

Experiment 0.7779¢ 1.6049 2.g9¢

f1. RRPAZ 1.27 0.83 0.55
MCDF® 1.25 0.82 0.
a) Shorer, Lin and Johrscu, Ref. 33
b) Cherng and Johnson, Ref. 53
c) Mocre, Ref. 34
d) Cowan an? Widing, Ref. 5§55
e) Hinnov, Ref. 56
or two percent, and arce in good agreement with

corresponding MCDF length form results of Cheng and
Johrnson. 53 The success of the frozem-core approxzimation
in this case can be attributed to a tight Ne-like

core.
By contrast, a similar two—channel frozen—-core
calculation for the resonance transition,
(4s2)1g-(4s4prlpo, iy Zn—-1like ions34 no longer
includes dominant correlation effects, as the 3d10 core

is easily polarized, resulting in 10-20% changes in the
oscillator strengths when 3d excitationm channels

are
included in the calculation. s

The RRPA has been applied to studies of low energy

atomic photoionization of rare gas atoms. Subshell
cross sections as well as angular distribution and spin
polarization of photoelectrons are calculated, and
results are in good agreement with cxperiment, A few
examples of these studies are presented here, with
emphasis on the interplay between correlation and
relativity in photoionizatiou processes. Only length

form RRPA results are given, as they agree with velocity

form results to within a few percent in all these
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calculations,

.| RRPA-
\5'\: (5s+5p+4d)
0 ] L ) L I L

1.0 1.5 2.0

w {au)

Fig. 4. Photoionization cross sections for

xenon as functions of photon energy w.

Experiment: West and Morton,

Ref. 57; X Samson, Ref. 58.

Theory : ———— gnd —— — — RRPA, three— and

two-shell correlation results,

respectively, Ref, 41; Kennedy

and Manson, Ref. 59.
i) Total Cross Sections

In Fig. 4, we show totsl photoionization <cross

setions for xenomn atoms. One general observation that
can be msade is that correlation effects as measured by
the difference between HF3? and RRPA41 results are
sizeable, Moreover, the inclusion of excitation

channels of the 4d shell in the RRPA calculation
substantially imp:oves the agreement between theory and
experiment, reflecting the importance of core
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polarization effects in xenon. It should bYe¢ mentioned
here that no relativistic effects show up in total cross
sections and that RRPA results are generally in close
agreement with nonrelativistic RPAE calculatioans??® for
rare gas atoms.

ii) Partial Cross Section Branching Ratios

Non-relativistically, there is n@no distinction
between subtshells of the same fine structure, sO the
partial <c1o0ss section branching ratio for two such
subshells will be the "statisticel ratio’ given by their
relative occupations. Experimezntally, it has been known
for some time that the brarching ratios of outer np
¢Cross sections for rare gases depart from the
statistical ratio of 2.6° In Fig. 5, the RRPA branching
ratios 6(52P3/2): 0(52P1/2) in xenon are compared with
measuresentss® ,¢1 and with DF®: and Dirac—-Slater (Dbs)
results,®?

T T T T i | [ T
22 r— Xe -
Statistical ru?io——\
~n 20 l —t -
>
a
D
b 1.8 ~
o~ ~DS(a =)
‘ -~
» T
& 1.6 -y
5 4_:—///'
1.4 1 _ " RRPA -
. ___{/ (55 +5p)
———— ~DS(a=2/3)
12 L1 1 L 1 1 | [ |
1.0 1.2 1.9 1.6 1.8 20 22 2.4
w(Qu)

Fig. 5. The 2P3/2: 2P1/2 branching ratios
for xenon as functioms of photor energy

w. Experiment: --------«+ Samson et al.,
Ref. 60; 3 Wuilleumier et al., Ref. 61.
Theory ————— RRPA, Ref. 41; ——-——~ Ong
and Manson, Ref. 62; . and

Wuillemier et al., Ref. 61,
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The three-shell (5s+5p+4d) RRPA calculation is seen to
represent experimental values better than the
sncorreiated calculation. Similar RRPA calculations
have been reported for the 0(42D5/2): c(4“D /2)brancLing
ratio in xenorn,?? Because of the sensitivity of
branching ratios to both <correlation and relativity,
such mzasurements provide interesting tests of

relativistic many~-body theories.

rhotoelectron energy (eV)
15 25 35 45

——— e

N
RRPA(55,5p,4d)

/RRPA(55,5p)

[
\\ ——RPAE (55,5p,4d)
-0.51 \ [[ .
' \

-1.0F 1 &_l 1 1 : ! L

30 40 50 60 70
Photon energy (eV)

Fig. 6. The asymmetry parameters § for
the 5s shell of =xenonm as functions of

photon energy w. Experiment: ¥ Dehmer
and Dill, Ref. 63; ¢ White et al.,
Ref. 64. Theory: ————RRPA, Refs. 38,
41; ————— Cherepkov, Ref. 65;
------ Huang and Starace, Ref .
66; ——. Ong and Manson, Ref. 67;

—

Walker and Waber, Ref. 68.
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iii) Angular Distributions

Ir the dipole approximation, the photoionization
differential cross section is given by:

=9

g

1
3 —2—;[1"-2'[3 Pz(COSG)] . (2.8)

€

-

Here, © is the angle between the photon momentum k and
the electron momentun p, ¢ is the photoionization cross
secticn and B is the anguiar distribution asymmetry
paranecer,

Yor the 5s - ¢p photoionization in xenon,
nonrelativistic calculation shows that p =2,
independent of photon energy, whereas relativistically,
f can depart from 2 becausc of the interfercnce between
S5s ~ePy;a and 55'*ep3/2 chacnels. Zxiperimentally,
deviations from the value of 2 for 45s have been
observed near the Cocper minimum of ¢the £s partial cross
section.

As shown in Fig. 6, successful explanations of these
data again come from relativistisc mary—body calulations
which account for dominant correlation cffets - in this

case, the RRPA three-shell (5s, 5p, 4d) correlation
calculations.

iv) Spin Polarizaticn

Even with unpolearized incident radiation, the
photoelectron is in gemneral polarized ir the directior
. perpendicular to the =reaction plane defined by the
incident radiation and th= outgoicrg clectron. In the
dipgle ippgoximation, the degree of polarization
Py(y [/ X~ p)is given by:69-712

sinBcosh
P = 1 T (2.9)
1 - EB Pz(cose)
In Fig. 7, the measured spin polarization parameters
n of the Sp shell are given, along with various
theuretical results. Once again, we find good agreement
between experiment?? and the RRPA three-shell

calculation.*? Similar RRPA studies of the nq-parameter
for ns ~¢p photoionization in rare gases have been
reported,4? Sizeable polarization 1is found near the

Cooper minima in spite of the non-relativistic
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prediction that there shoul!d be no spin polarization for
the ns photoelectrons.

0.8

0.4

0.0

0.2

0.0

1.2

Fig. 7. Spin polarization parameter 7 of

xenon 5p shell photoionization.
Experiment: Heinzmanz, Schonhense and
Kessler, Ref. 72. Theory: ——RRPA,
Ref. 42; ----- «ve+« Cherepkov, Ref. 73 (note
that there is a sign error in this
reference): ———-~—~ . -

’ I

multichannel quantum defect results of
Ref. 72 obtained with different sets of
parametets from Refs. 74, 75 and 76
respectively.

v) Autoionization

To analyze autoionization resonances, it is not
convenient to solve the RRPA equations directly, since
the computer time required to scan through a family of
resonances would be prohibitive. As an alternmative, we
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use the method of multichannel quantum defect theory

(MQDT) pioneered by Seaton?’? and Fano’?® to impose
boundary conditions on the RRPA equations. Sets of
eigen-channel quantum defect parameters are then
obtained at several emergies in the autoionizing region
of the spectrum. In spite of rapid wvariations of
physical observables such as <cross sections, angular

distributions, ... etc. in the resomance region, these
gquantum defect parameters are smooth functio:-s of energy

whichh can be interpolated or extrapolated. - At any
energy point, we can reconstruct tramsition a.,litudes
and hence a, f, n,... etc. from these parameters. A
detailed description of this procedure is given in Ref.
46, Ab initio studies of the inner shell resonances
s - np in Be-like ions4é and the Ceutler-Fano
resonances in rare gases4’,47 have vbeenm reported. We

shall give an example here to show the validity of this
methbod.

The low lying spectra of the rare geses consists of
five interacting Rydberg series, three of which arise
from excitations of outer P3/2 electrons to nsy /9 o
nd3/2 and nds/2 states, and two of which arise from
excitations of outer P1/2 electrons to mns and nd 2
states (termed ns' aznd nd’, respectivelyg. The first
three series converge to the P?/z threshold, while
the remaining two <convegrge to the Pg thresheld,
Between the P§/2 and ‘Pglz thresholds, we thus have
two series of autionizing rescnances - the Beutler—~Fano
resonznces?’®,®% - arising from the ns' and nd’' states,
In Fig. 8, we compare our calculatcd rescnance profiles
in xenon with —recent experimental measurements by
Eland.®® As one can see, the general features of the
autoionization profiles consist of sharp ns' resonances
superimposed on broad and'’ resonances, The observed
spectrum is well represented by the theory, except for
the rapid decrease in the size of the ns' peaks which is
due to finite instrumental resolution.

In Fig. 9, we compare the RRPA prediction of the
angular distribution B-parameters for xenon near the
(6d',8s') resonances with the measurements of Samson and
Gardner,®? and with two MQDT <calculations by Dill?74 and
by Geiger7¢ based on empirical quantum~defect
parameters. The overall agreement is gooud, except for
detailed features near the 8s’ resonances.



Xe

99570001005 _ 1010 1055 1020)

960 965 970 975 980 985

s ' ,
HdITI id' 9d' 'OSI 8d
/

"—4&““4///// / \/ /

920 925 930 935 940 945 930 955

995 1000 1005 1010 1015 1020 |

| |

I il

N\

PEY

960 96' 7 N 975 980
920 925 935940 945 955
X(K)
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between the 2 and Pi’/2 thresholds.
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resolution width of 0.07 A and the lower
graph shows RRPA results of Ref. 47.
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Fig. 9. Apgular distribution asymmetry
parameters B plotted against pheton
wavelengtk A in the euntoionization region
of =xenon. Experiment: 4 Samson and
Gardner, Ref. 82, Theory:- RRPA, Ref.
47; Dill, Ref. 74; —-—-——Geiger,
Ref. 76,

III. CONCLUSION

In the previous sections, we gave a brief review of
atomic structure calculations using the RRPA. There arc
otLer possible applications of RRPA in addition to those

mentioned here. Ope important applicetion is the study
of elastic scattering of photons, together with
associated analysis of atomic susceptibilities and

shielding factors, especially for high Z atonms and
ions.®3> Another important application of the RRPA is to
the study of parity nom-conmserving (PNC) neutral weak
currents in atoms;?3* relativistic RPA studies of core
shielding corrections to PNC interaction have ©been
reported by Harris et al.?®s$

The RRPA is foumd to include dominant
effects in atomic processes and is very
dealing with closed shell systems. It is
develop similar relativistic many body
open shell systems.

correction
successful in
desirable to
techniques for
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