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Abstract

Heat transport in a stochastic magnetic field configur'at/on is shown to be nonlocal. Collisional transport

processes, in such a disordered media, cannot always be reduced to a standard diffusion process, and the

. concept of a diffusion coefficient is meaningless for a wide range of typical tokamak parameters. In the

nonlocal regime the relaxation of a gradient is described by an integral equation, involving a nonlocal

propagator. This propagator is calculated, and the relation to previous results is elucidated.
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A three dimensional toroidal magnetic field is a Hamiltonian system, and the existence of

magnetic surfaces in an axisymmetric configuration is a consequence of the Kolmogorov-

Arnold-Moser stability theorem. The occurrence of small resonant magnetic field

perturbations can lead to the onset of chaotic field line diffusion, 1 provided that the

Chirikov criterion is fullfilled. This deconfinement mechanism has been recognized as a

candidate to explain anomalous confinement properties of Tokamak discharges, 2-4and can

be used to control the edge characteristics with ergodic divertor configurations. 5

This letter addresses the problem of heat transport in such random fields (the results

also apply to particle transport in the strong coUisionality regime), and stresses the fact that

models based on local diffusion cannot be used in a wide range of typical tokamak

parameters. Nonlocal responses in plasma physics have already been used to study heat

transport during laser plasma interaction, 6 current transport in Reversed Field Pinch

configurations, 7 and in wave driven Tokamaks. s Nonlocality in a braided magnetic field

was noted by Stix 3 but there was no attempt to calculate the anomalous mean squared -

displacement, and to relate it to a nonlocal propagator.
A

On the basis of a Lagrangian formulation, with Langevin equations, we show that

transport cannot always be reduced to a diffusion. The relevant theoretical framework

needed to describe the collisional regime in a stochastic magnetic field is an integral rather

than a differential equation. The nonlocal propagator of this integral equation is calculated

with the help of a Wiener fanctional integral over the random magnetic field. Finally a

direct numerical simulation is peHo,med to confirm the analytical results.

The most general, (linear, causal) transport theory of a passive scalar, T(r,t) (temperature

or density), in a statistically homogeneous media, is nonlocal and relates T at point r, time

t, to the source, S(r',t'), elsewhere before t, through a propagator P:

T(r,t) =Idt'dr'P(r-r',t-t')S(r',t'). (1)

P is the fundamental quantity arising through first principles, the diffusion coefficient is o

not fundamental and may or may not exist. Let us consider the long distance behavior of
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the Fourier transform, P(k,co), of P(r,t). If its asymptotic form for large r and t, i.e., near

k ---0, and co = 0, is

" Pl(k,co) ~ ico + k.D.k + .... (2)

then the transport becomes local and diffusive on large space and time scales. T obeys

the usual differential equation, and the mean..squared displacement <r(t)r(t)>= 2 D t is

normal. Good analytical properties of I:rl near k ---0 and co_-0 are thus required for local

diffusion to be well defined.

Recently a large number of physical problems such as diffusion in convective cells, 9

diffusion on stochastic webs, 1° diffusion on percollating clusters, 11 convection of a

passive scalar by a turbulent flow, diffusion in disordered media, or on various kinds of

fractal structures, 12have displayed anomalous mean-squared displacement

<r2(t)> ~ ta. (3)

The exponent, or, characterizing the fractional Brownian motion 13 can be larger or

smaller than one, with trapping or long ballistic flights often the cause of this subdiffusiv¢

or hyperdiffusive transport. When ot _: 1, an application of the definition of the diffusion

coefficieni will give 0 or . oo This does nct mean that the diffusion is 0 or + o_, it
I¢

means that the concept of diffusion coefficient is meaningless, and that the expansion

Eq.( 2 ) does not give a simple formula.

In the problem of fast heat diffusion along a magnetic field line combined with a

Brownian wandering of this line, and a very slow collisional diffusion across the line, the

exact solution of the associated Langevin equation, gives a stochastic transport across the

main field with ct = 1/2, and the additional normal, ot = 1, collisional term is often

negligible compared to the anomalous displacement. This solution will also display the

fact that, as far as the mean-squared displacement is concerned, there are no couplings of

the perpendicular purely collisional dynamics with the other processes. Thus effective

diffusion coefficients Deft involving parallel, perpendicular and magnetic diffusion are not

directly recovered. Moreover the final result of the analysis is that, in many typical

• tokamak conditions, instead of a propagator of the usual local type P ,., exp[-r2/Defft] the



propagator behaves as P ... exp[-r4/3/tl/'3], thus ruling out any attempt to define an

effective diffusion coefficient. ,

Consider an infinite homogeneous magnetic field B directed along the z axis, and a

small random f:Id, b, such that <b>= 0, V.b = 0, and (b2>/B 2 is a small parameter of

the order of 10-6-10 -8 (<) indicates statistical averages), the component B-b, if any, is

completly irrelevant to the problem. The second moments of the b field are characterized

by the longitudinal (z) correlation length, _1' and the transverse (x,y) one, Xi (the x and y
variables describe a local slab frame near the braided magnetic surfaces). The tokamak

geometry consists of nested toroidal surfaces with field lines traversing the poloidal

angle, thus the statistical average is to be completed by a poloidal average. As noted by

Kadomtsev and Pogutse a there exist two regimes of magnetic field line diffusion, the

quasilinear one, when _'11b<_±B, and the nonlinear one. Most studies have been restricted

to the former, the ordering relevant for stochastic field line diffusion induced by resonant

perturb, ations in a tokamak. Thus disregarding the x and y dependence of the moments •

compared to that in z, we consider the following Gaussian random field (bx(Z)bx(z')) =

<by(Z)by(z3>= <b2>exp[-(z-z')2/'2_2] (the influence of transverse correlations is assessed at . "

the end of the paper). This is the standard model of magnetic field line diffusion and the

magnetic diffusion coefficient ZMis:

ZM= "/_-2 _11<b2>/B2" (4)

We call Zu,and Zz the temperature (or density, if particle transport is diffusive rather

than ballistic along one parallel correlation length) diffusion coefficients due to collisions,

along and across the field. The correlation time of b is larger than the toroidal transit time

of a thermal electron_ thus b can be treated as static. This usual assumption is relevant to

ergotic divertor configurations which are static, and to magnetic turbulence with frequency

typically of the order of the electron diamagnetic frequency. The temperature diffusion

equation is equivalent to Langevin equations, Eqs.(5), (6), (7):
dx dzbx
_-"- dt B + til' (5)
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dY- b--z+ (6)dr- dt B
,.. dz

_'= rli_. (7)

The Lagrangian coordinates (x,y,z) describe pseudo-particles whose Eulerian average is

the temperat_'e distribution. The statistical characteristics of the collisional noises r I are

>- ' <_lll(t)>:0, <lltl(t)q_l(t)>=2Z,8(t-t) (8 is the Dirac<zlz(t)>----O,<'q±(t)q±(t') -2)C±_(t-t), ' '

distribution). Thus when b:0, we recover collisional fast diffusion along B, and very

slow diffusion across B. Because of the very small value of the perturbing field we have

neglected the difference between the curvilinear distance along the field line and the z

coordinate (ds = "_dx2+dy2+dz2= dz+O[<b2>/B2]). Let us introduce b(k), the Fourier

transform of b(z), and integrate Eqs. (5), (6), (7) to obtain r2=x2+y2 as follows:

t

dk'<b(k)b*(k')><[eikz(t)-l][eikz(t)l]>+fdudu'<rl±(u)rl-L.(u')>'k'B2 (8)

• Even if there are correlations between rill(t) and rl±(t') the fact that <b> : 0 leads to the

cancellation of cross terms of the type q±b. Using the Gaussian properties of the
k2)ctlt, * ,collisional noise <eikz(t)>=e and <bx(k)bx)(k')> = <by(k)by(k')> = <b2>),.HS(k-k')

exp[-k2;_/2]/2_ we obtain the mean squared displacement"

<r2(t)> =_--Z M Xtlt + 4X±t . (9)

No effective diffusion coefficient Deff(_M,_ll,_±,_ll ) is found with the exact solution of

the Langevin equation. On the basis of Eq.(9) two transport regimes are to be considered.

For a given length r, if the first term on the right hand side dominates, we must accept the
......

scaling <r2(t)> = 8;_M_Z_it/r_ and not try to define an effective local diffusivity, but

explain the transport in term of a nonlocal propagator. When the anomalous _is smaller

than the normal term an effective diffusion coefficient Deft can be constructed, following

the analysis proposed by Rechester and Rosenbluth, 2 provided that an additional

- mechanism like the exponential stretching of a stochastic instability is present, but such a

mechanism does not exist for a pure random field.
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The collisional diffusion coefficients scale differently with respect to density n, and

temperature T: X,...Ts/2n -1, X±....T-1/2n, so that in tokamaks we obtain a wide range of

values: X,...109-1010m2/s, X±~10"l-10"2m2/s. The typical width of braided magnetic

domain is r- 10"1.1.m, and XM~ 10"5-10"8m. Thus nonlocal transport is dominant in

many situations, including the case of an ergodic divertor in a low density edge plasma,

and that of localized braiding near resonant magnetic sufaces leading to a small stochastic

layer. The cases of large scale stochasticity or of very small perturbations in a dense

plasma fall in the second regime.

In the following we consider the first regime and neglect the ineffective slow transverse

purely collisional transport due to X±. To describe heat diffusion along the random field

lines, and to calculate the propagator associated with the dominant qT scaling we shall use

a functional Wiener integration. TMThe probability to go from the point (0, 0, 0), to the

point (x, y, z), in a time t, averaged over ali the realizations of the stochastic field lines, is

given by the functional integral: ,,
(x,y,z)

P

P(x,y,z,t) = JD[x(u)] D[y(u)] Pl[X(u),y(u)] P2[x(u),y(u),t]. (10) ,,
(0,0.0)

P1 is the probability of a particular realization of a given line, x(u), y(u), linking (0,0,0)

and (x,y,z), and P2 is the probability to diffuse from (0,0,0) to (x,y,z) in a time t, along

this particular realization. D[x(u)], D[y(u)] stand for the functional integration over ali the

realizations of the random field. Within the quasilinear approximation, the field lines are

described by a diffusion equation so that P 1 is given by the usual Gaussian formula: 14

ID u Iv '_M z z
-1 [du([dx/du]2+[dy/dul2) -__1[ f_du2+dx2+dy 2 ]2

P(x,y,z,t)=O(t) [x(.)]D _' (u)]e 6 e,_,, t 0

(II)

®(t) is the Heaviside step function ensuring causality. This formula exactly describes

collisional diffusion along stochastic magnetic field lines, the field average being achieved



by tt_,ef'u'st exponential P1 and the collisional diffusion being described by the second one

P2" If we expand the exponent of this second integrand, "_dx2.dy2+du2= du (1+

° ([dx/du]2+[dy/du]2)/2) + O[(<b2)/B2)2], the functional integration can be performed

analytically up to this O[(<b2)/B2) 2] order. Then P(x,y,z,t) is to be summed over all the

final values of z, in order to obtain the nonlocal propagator P(x,y,t). Because of the very

small value of (b2)fB 2, it is in fact s_?ficient to work to O[<b2)/B2]. With very good

accuracy the final z sum can be evaluated by saddle point integration, and the result is:

.3(x2+y2)2/3 ]
2/3 2/3 1/3 1/3J

®(t)e 2 4ZM )CII tt'

P(x,y,t) = JP(x,y,z,t)dz =-,2/3.-_r_, 2- 2,1/'3 2/3 1/3 l/3" (12)
,_ ,l_'v.9_x _y ) ZM ZII t

Equation (11) is an exact representation of P, but the normalization SPdxdy --'-1, has been

lost during the saddle point z integration. To restore it, we have to multiply P in F_xt. (12)

by -_3/2. Performing the poloidal average and reintroducing the proper normalization we

obtain the final result :

w

o(t)e [" 3r4/3,,2/3- 2/3 I/3tl/3]z aXM Xll

P(r,t) = 2_22/3r2/3X_3Zlll/3tl/3 (13)

Equation (13) is the main result of this letter, with Eq.(1) it solves the problem of nonlocal

heat transport in a stochastic magnetic field. With this propagator the evaluation of <r2(t)>

gives a value which is zrd2-_/3times the one obtained with the Langevin equation. In fact,

without the saddle point approximation we obtain exactly the Langevin equation result.

In addition to the Langevin equation and to the Wiener integral solutions, we have

performed a direct numerical simulation of neat diffusion in a stochastic magnetic field.

We have studied- the even moments of the radial temperature distribution when a Dirac

distribution heat pulse is released on a given magnetic surface at time t equal to zero. The



average was performed over 102 stochastic field lines (because of tile smoothing effect of

parallel collisional diffusion the convergence, as a function of the number of lines, is very
I,

fast). The anomalous scaling <r2P(t)>,- tpl2 , with p=l, 2, 3... was observed in

quantitative agreement with the previous theory, and is displayed on Fig. 1. The curves

have been normalized to permit their display on a single plot.

Up to now we have considered random fields of the type b(z). Within the Hamiltonian

picture of field line stochastic instability, z is the "time", and this model is relevant.

However, random magnetic fields of the type, b(x,y,z) are to be considered, in order to

assess the influence of transverse finite correlations. 4 Consider the nonlinear Langevin

equations:

ctx dz bx(x,Y,Z) dy dz by(x,y,z) dz
dt - dt B ' dt - dt B ' &- = rill(t), (14)

with <by(x,y,z)by(x',y',z')>: <bx(x,y,z)bx(x',y',z')>:<b2>expt-(z.z')2/2_2.,x.x')2/2_.2.(y.y.,2/2x2].
There are no general methods to solve this kind of nonlinear stochastic differential

equations. This equation has some similarity with the problems of diffusion in turbulent

flows, these problems have been widely studied and the observed intermittency 15can be "

studied with the help of multifractal measures.

In this letter we shall not carry out such a program, we shall simply apply a Gaussian

approximation, of the resonant broadening type. Thus, what is expected is not only an

anomalous scaling of the mean squared displacement with respect to the time, but also

with respect to the perturbating magnetic field:4

<r2(t)> --- [<b2>/B2]_ tct. (15)

The usual _=1 quasilinear scaling is no longer valid because of the nonlinearity. To

calculate ot and 13,associated with the stochastic differential equation F_.q.(14), we Fourier

analyze the b field, and perform an approximate evaluation of the resulting integral

representation of <dx/dt.dMdt'> and <dy/dt.dy/dt'>, with a Gaussian assumption.

P



After some calculations we obtain the following differential equation in the long time

limit:

" d2<r2(t)> i_b2> 2 1/2 -1 -3/2
... - t.2 klI_..LXll ] <_(t)> t (16)dt 2 B

Bohm scaling, 13=1/2, is thus recovered but with an highly anomalous diffusion exponent

a = 1/4: <rZ(t)> - 40.5, 0.25,-2,0.s,_.1,,0._51 h±Xll t_ t_ t . This additional slowing down is due the

additional x, y disorder. In this regime, the calculation of the associated propagator P

remain an open question.

Modulation experiments and heat pulse propagation studies have been used to measure the

dynamical transport responses of a tokamak plasma, i.e, the propagator P. These kinds of

experiments seem to be the ideal tool to distinguish local and nonlocal propagators. In

addition to the dynamical response we can consider also the global one, but to address the

problem of the scaling of the energy lifetime, we must know the extent of the ergodic

regions and the scaling of the saturated value of the turbulent field arising through the self

sustainment constraint.

We have demonstrated, discussed, and checked numerically, the fact that for a wide range

of tokamak parameters heat transport in a stochastic magnetic field is described by Eq. (1),

where the propagator P given by Eq. (13) must be used. An effective local diffusion can

not be defined in this regime. The propagator behaves as exp[-r4t3/tl/3] rather than as exp[-

r2/t], and is independant of the very small cross field collisional diffusion.
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Figure caption

qf

Fig. 1" The first even moments <x2(t)>, <x4(t)>, <x6(t)> of the temperature distribution

averaged over 100 stochastic field lines, Xll=109mX/s, _,H= 10 m, <b2>/B2= 10-6, in
logarithmic scale.
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