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Abstract

Heat transport in a stochastic magnetic field configuration is shown to be nonlocal. Collisional transport
processes, in such a disordered media, cannot always be reduced to a standard diffusion process, and the
concept of a diffusion coefficient is meaningless for a wide range of typical tokamak parameters. In the
nonlocal regime the relaxation of a gradient is described by an integral equation, involving a nonlocal

propagator. This propagator is calculated, and the relation to previous results is elucidated.

*Permanen: adress: Association EURATOM-CEA sur la Fusion Corurélée, 13108 Saint-Paul-lez-Durance, France.



A three dimensional toroidal magnetic field is a Hamiltonian system, and the existence of
magnetic surfaces in an axisymmetric configuration is a consequence of the Kolmogorov-
Armold-Moser stability theorem. The occurrence of small resonant magnetic field
perturbations can lead to the onset of chaotic field line diffusion,! provided that the
Chirikov criterion is fullfilled. This deconfinement mechanism has been recognized as a
candidate to explain anomalous confinement properties of Tokamak discharges,?* and can
be used to control the edge characteristics with ergodic divertor configurations.>

This letter addresses the problem of heat transport in such random fields (the results
also apply to particle transport in the strong collisionality regime), and stresses the fact that
models based on local diffusion cannot be used in a wide range of typical tokamak
parameters. Nonlocal responses in plasma physics have already been used to study heat

transport during laser plasma interaction,®

current transport in Reversed Field Pinch
configurations,’ and in wave driven Tokamaks.® Nonlocality in a braided magnetic field
was noted by Stix> but there was no attempt to calculate the anomalous mean squared
displacement, and to relate it to a nonlocal propagator.

On the basis of a Lagrangian formulation, with Langevin equations, we show that
transport cannot always be reduced to a diffusion. The relevant theoretical framework
needed to describe the collisional regime in a stochastic magnetic field is an integral rather
than a differential equation. The nonlocal propagator of this integral equation is calculated
with the help of a Wiener "anctional integral over the random magnetic field. Finally a
direct numerical simulation is perfo,med to confirm the analytical results.

The most general, (linear, causal) transport theory of a passive scalar, T(r,t) (temperature
or density), in a statistically homogeneous media, is nonlocal and relates T at point r, time
t, to the source, S(r',t"), elsewhere before t, through a propagator P:

T(r) =[dt'dr'P(r-r',t-t)S(r',t). (1)

P is the fundamental quantity arising through first principles, the diffusion coefficient is
not fundamental and may or may not exist. Let us consider the long distance behavior of



the Fourier transform, P(k,w), of P(r,t). If its asymptotic form for large r and t, i.e., near
k=0,and w =0, is

P (k,0) ~ i® + kDK +.., )
then the transport becomes local and diffusive on large space and time scales. T obeys
the usual differential equation, and the mean-squared displacement <r(t)r(t)>=2 Dt is
normal. Good analytical properties of P™! near k = 0 and w = 0 are thus required for local
diffusion to be well defined.

Recently a large number of physical problems such as diffusion in convective cells,’
diffusion on stochastic webs,!0 diffusion on percollating clusters,!! convection of a
passive scalar by a turbulent flow, diffusion in disordered media, or on various kinds of
fractal structures,'? have displayed anomalous mean-squared displacement

() ~ %, (3)

The exponent, o, characterizing the fractional Brownian motion!3 can be larger or
smaller than one, with rapping or long ballistic flights often the cause of this subdiffusive
or hyperdiffusive transport. When a # 1, an application of the definition of the diffusion
coefficient will give O or + oo . This does nct mean that the diffusion is 0 or + oo, it
means that the concept of diffusion coefficient is meaningless, and that the expansion
Eq.( 2 ) does not give a simple formula .

In the problem of fast heat diffusion along a magnetic field line combined with a
Brownian wandering of this line, and a very slow collisional diffusion across the line, the
exact solution of the associated Langevin equation, gives a stochastic transport across the
main field with @ = 1/2, and the additional normal, o = 1, collisional term is often
negligible compared to the anomalous displacement. This solution will also display the
fact that, as far as the mean-squared displacement is concerned, there are no couplings of
the perpendicular purely collisional dynamics with the other processes. Thus effective
diffusion coefficients D, involving parallel, perpendicular and magnetic diffusion are not
directly recovered. Moreover the final result of the analysis is that, in many typical
tokamak conditons, instead of a propagator of the usual local type P ~ cxp[-rszefft] the



propagator behaves as P ~ exp[-r*3/t'?), thus ruling out any attempt to define an
effective diffusion coefficient.

Consider an infinite homogeneous magnetic field B directed along the z axis, and a
small random f:ld, b, such that <b>=0, V-b = 0, and <b?>/B? is a small parameter of
the order of 1076-10"8 (< > indicates statistical averages), the component B-b, if any, is
completly irrelevant to the problem. The second moments of the b field are characterized
by the longitudinal (z) correlation length, X“, and the transverse (x,y) one, A | (thex and y
variables describe a local slab frame near the braided magnetic surfaces). The tokamak
geometry consists of nested toroidal surfaces with field lines traversing the poloidal
angle, thus the statistical average is to be completed by a poloidal average. As noted by
Kadomtsev and Pogutse* there exist two regimes of magnetic field line diffusion, the
quasilinear one, when l” b<A | B.and the nonlinear one. Most studies have been restricted
to the former, the ordering relevant for stochastic field line diffusion induced by resonant
perturbations in a tokamak. Thus disregarding the x and y dependence of the moments
compared to that in z, we consider the following Gaussian random field <b,(2)b,(z')> =
<by(z)by(z)> = <b2>exp[-(z-z')2f2)\“2] (the influence of transverse correlations is assessed at
the end of the paper). This is the standard model of magnetic field line diffusion and the
magnetc diffusion coefficient X 180

Am= V2 Ay <b?>/B2, (4)

We call x, and | the temperature (or density, if particle transport is diffusive rather
than ballistic along one parallel correlation length) diffusion coefficients due to collisions,
along and across the field. The correlation time of b is larger than the toroidal transit time
of a thermal electron; thus b can be treated as static. This usual assumption is relevant to
ergotic divertor configurations which are static, and to magnetic turbulence with frequency
typically of the order of the electron diamagnetic frequency. The temperature diffusion

equation is equivalent to Langevin equations, Egs.(5), (6), (7):
ad~aB T



dy dzb

@ aB Q
dz
-a_‘.= n"' (7)

The Lagrangian coordinates (x,y,z) describe pseudo-particles whose Eulerian average is
the temperature distribution. The statistical characteristics of the collisional noises 1 are
M, (1>=0, < ()N ()>=2x 8(t-t), <M (1)>=0, <m ()N, (t)>=2%,d(t-t) (3 is the Dirac
distribution). Thus when b=0, we recover collisional fast diffusion along B, and very
slow diffusion across B. Because of the very small value of the perturbing field we have
neglected the difference between the curvilinear distance along the field line and the z
coordinate (ds = V dx2+dy?+dz?= dz+O[<b%>/B?]). Let us introduce b(k), the Fourier
transform of b(z), and integrate Egs. (5), (6), (7) to obtain r=x?+y? as follows:

dk dk (b(k) b*(k)><

<r2(1)>= =3

t
(0 1eR0-11+ faudu'n i, @) @)

Even if there are correlations between n,(® and n_L(t') the fact that <b> = 0 leads to the
cancellation of cross terms of the type n,b. Using the Gaussian properties of the
collisional noise <eK20>=e" KL% ang <b L(0b)(K)> = <b (k)b k)> = b, 3(k-k)
exp|- kzx,, ]/N2n we obtain the mean squared displacement :

8
<21y =\/—FXM‘\/x”l + 4yt 9)

No effective diffusion coefficient DtlXpg XX ‘L.)»”) is found with the exact solution of
the Langevin equation. On the basis of Eq.(9) two transport regimes are to be considered.
For a given length r, if the first term on the right hand side dominates, we must accept the
scaling <r2(1)> = SXMW and not try to define an effective local diffusivity, but
explain the transport in term of a nonlocal propagator. When the anomalous V't is smaller
than the normal term an effective diffusion coefficient D 4 can be constructed, following
the analysis proposed by Rechester and Rosenbluth,? provided that an additional
mechanism like the exponental stretching of a stochastic instability is present, but such a

mechanism does not exist for a pure random field.



The collisional diffusion coefficients scale differently with respect to density n, and
temperature T: X, ~T>2n-1, X ~T-1/2n, so that in tokamaks we obtain a wide range of
values: x||~-109-1010m2/s, X l~10'1-10'2m2/s. The typical width of braided magnetic
domain is r~101-1.m, and ¥,,~10"3-10"8m. Thus nonlocal transport is dominant in
many situations, including the case of an ergodic divertor in a low density edge plasma,
and that of localized braiding near resonant magnetic sufaces leading to a small stochastic
layer. The cases of large scale stochasticity or of very small perturbations in a dense
plasma fall in the second regime.

In the following we consider the first regime and neglect the ineffective slow transverse
purely collisional transport due to %, . To describe heat diffusion along the random field
lines, and to calculate the propagator associated with the dominant V't scaling we shall use
a functional Wiener integration.!4 The probability to go from the point (0, 0, 0), to the
point (x, y, z), in a time t, avéragcd over all the realizations of the stochastic field lines, is

given by the functional integral:
(x,y.z)
P(x,y,z,t) = '[D[x(u)] D[y(w)] P;[x(u),y(w)] Py[x(u),y(u),t]. (10)
(0,0,0)

P, is the probability of a particular realization of a given line, x(u), y(u), linking (0,0,0)
and (x,y,z), and P, is the probability to diffuse from (0,0,0) to (x,y,z) in a time t, along
this particular realization. D[x(u)], D[y(u)] stand for the functional integration over all the
realizations of the random field. Within the quasilinear approximation, the field lines are
described by a diffusion equation so that Py is given by the usual Gaussian formula:4

D[x(w)1D[y(u)] Jdu([dx/du]2+[dy/du]2)e;%"[[ OfVau2+¢x2+dy2 ]2‘

-\/41r.x”t
(11)

©(t) is the Heaviside step function ensuring causality. This formula exactly describes

-1
e YAy

P(x,y,z,t)=6()

collisional diffusion along stochastic magnetic field lines, the field average heing achieved



by the first exponential P, and the collisional diffusion being described by the second one
P,. If we expand the exponent of this second integrand, Vdx2+dy2+du?= du (1+
([dx/du]?+[dy/du]?)/2) + O[(<b2?>/B2)2], the functional integration can be performed
analytically up to this O[(<b?>/B2)?] order. Then P(x,y,z,t) is to be summed over all the
final values of z, in order to obtain the nonlocal propagator P(x,y,t). Because of the very
small value of <b2>/B2, it is in fact sufficient to work to O[<b?>/B?]. With very good
accuracy the final z sum can be evaluated by saddle point integration, and the result is:

3(x24y2)23 ]
| 73
OmE 22Payi !
P(x,y,t) = JP(x,y,z,t)dz = . (12)

. 2/3_1/3.1/3
22/3“‘]3(7‘2"')’2)”31}\4 X" t

Equation (11) is an exact representation of P, but the normalization [Pdxdy =1, has been
lost during the saddle point z integration. To restore it, we have to multiply P in Eq. (12)
by V3/2. Performing the poloidal average and reintroducing the proper normalization we
obtain the final resuit : '

) 3,33 ]
ot 2234xﬂ3x,1,/3t”3

1/3
27!22/3r2/3x§4/3x,1,/3t /

P(rt) =

(13)

Equation (13) is the main result of this letter, with Eq.(1) it solves the problem of nonlocal
heat transport in a stochastic magnetic field. With this propagator the evaluation of <r2(t)>
gives a value which is 7/2v/3 times the one obtained with the Langevin equation. In fact,
without the saddle point approximation we obtain exactly the Langevin equation result.

In addition to the Langevin equation and to the Wiener integral solutions, we have
performed a direct numerical simulation of heat diffusion in a stochastic magnetic field.
We have studied the even moments of the radial temperature distribution when a Dirac

distribution heat pulse is released on a given magnetic surface at time t equal to zero. The



average was performed over 10? stochastic field lines (because of the smoothing effect of
parallel collisional diffusion the convergence, as a function of the number of lines, is very
fast). The anomalous scaling <r?'p(t)>~ tP/2 , with p=1, 2, 3... was observed in
quantitative agreement with the previous theory, and is displayed on Fig. 1. The curves
have been normalized to permit their display on a single plot.

Up to now we have considered random fields of the type b(z). Within the Hamiltonian
picture of field line stochastic instability, z is the "time", and this model is relevant.
However, random magnetic fields of the typs b(x,y,z) are to be considered, in order to
assess the influence of transverse finite correlations.* Consider the nonlinear Langevin

equations:
dx dz by(x.y,2) dy _dzb,(xy.2) . dz
a=d_t B , dt =a B ’ EI—= n”(t)) (14)

with <by(x,y.z)by(x'.y‘.z’)> = <b,(x,y.2)b, (x"y',z)>= <b2>exp[<z-z')2m,f-(x-x')Zmi-w-y')z/zxi].

There are no general methods to solve this kind of nonlinear stochastic differential
equations. This equation has some similarity with the problems of diffusion in turbulent
flows, these problems have been widely studied and the observed intermittency!? can be
studied with the help of multfractal measures.

In this letter we shall not carry out such a program, we shall simply apply a Gaussian
approximation, of the resonant broadening type. Thus, what is expected is not only an
anomalcus scaling of the mean squared displacement with respect to the time, but also
with respect to the perturbating magnetic field:*

<(t)> ~ [<b2>/B2B . (15)
The usual B=1 quasilinear scaling is no longer valid because of the nonlinearity. To
calculate a and B, associated with the stochastc differential equation Eq. (14), we Fourier
analyze the b field, and perform an approximate evaluation of the resulting integral
representation of <dx/dt-dx/dt'> and <dy/dt-dy/dt'>, with a Gaussian assumption.



After some calculations we obtain the following differential equation in the long time
limit:

dz(rz(t)) %> 2.1 R
a2 - [ AMA L, ](rz(‘)> 132, (16)

Bohm scaling, B=1/2, is thus recovered but with an highly anomalous diffusion exponent
o = 1/4: <r2(t)> ~ A)A 3P 2,05B-1t0-25, This additional slowing down is due the
additional x, y disorder. In this regime, the calculation of the associated propagator P
remain an open question.

Modulation experiments and heat pulse propagation studies have been used to measure the
dynamical transport responses of a tokamak plasma, i.e, the propagator P. These kinds of
experiments seem to be the ideal tool to distinguish local and nonlocal propagators. In
addition to the dynamical response we can consider also the global one, but to address the
problem of the scaling of the energy lifetime, we must know the extent of the ergodic
regions and the scaling of the saturated value of the turbulent field arising through the self
sustainment constraint.

We have demonstrated, discussed, and checked numerically, the fact that for a wide range
of tokamak parameters heat transport in a stochastic magnetic field is described by Eq. (1),
where the propagator P given by Eq. (13) must be used. An effective local diffusion can
not be defined in this regime. The propagator behaves as exp[-rm/tm] rather than as exp(-
?/t], and is independant of the very small cross field collisional diffusion.
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Figure caption

Fig. 1: The first even moments <x2(t)>, <x*(t)>, <x5(t)> of the temperature distribution
averaged over 100 stochastic field lines, x,=10°m2/s, A, = 10 m, <b?>/B2=10,in
logarithmic scale.
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