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Figure 6. Plot of the maximum absolute error in 9, as a function of the number of
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BAYESIAN APPROXIMATION OF SOLUTIONS
. _ _ LINEAR ORDINARY DIFFERENTIAL EQUATIONS

lt

Karole Her-zog, Max Morris, and Toby Mitchell

ABSTRACT

An approach to numerically solving linear ordinary differential equations, based on statistical

Bayesian prediction, is described. Preliminary results on the details of choice of correlation

parameters and experimental design are given, using first- and second-order example problems.

Key Words: Bayesian prediction, collocation methods, correlation function, experimental design,

interpolation, spline, stochastic process.
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1. INTRODUCTION

We describe here a general method for approximating the solution of a linear ordinary differential

" equation of form

n . (1)
_j(t)y(J)(t) = f(t),
jffio

for aU t in a specified interval T, where necessary side conditions are supplied. Here we shall

consider only first and second-order equations (n _<2), but the approach is easily generalized to

higher orders. There exists a large collection of methods that are applicable to problems of the

form (1); see lsaacson and Keller (1966, Chapter 8) and Gear (1971) for a review of many of

these. In contrast to previous approaches, the method we present here is based on a Bayesian

statistical formulation, under which uncertainty about the solution function y is expressed by

means of the random function (equivalently, stochastic process) Y. This is a direct generalization

of the Bayesian use of a random variable to represent uncertainty about a scalar quantity. The

data on which we shall base the estimate of y consists of the side conditions and a finite number

of enforcements of the differential equation at selected values of t. 'lhc conditional stochastic

process given these data, or Bayesian posterior process, provides a predictive distribution for y at

. each value of t in T, and we take the mean of this process as the approximation 9 of the function

Y.

lt should be noted that this is a report of preliminary research results. If this methodology is to

eventually become part of the practical body of numerical tools for solving differential equations,

it will need to be made computationally competitive with methods presently used. However, our

work to this point has concentrated simply on the feasibility of the approach, rather than on its

competitiveness. Thus, for example, we have not yet compared the computational effort required

with the requirements of methods currently in use.

This kind of approach was used in a different context by Currin, Mitchell, Morris, and Ylvisaker

(1988) and Sacks, Welch, Mitchell, and Wyrm (1989) for predicting an u_nown function y on

domain T, given y(t) at a set of design sites D= {ti, i=1, ..., n}. (We shall often refer to particular

values of t as sites, following a common practice in geological applications of similar methods.)
,b,

There, prior knowledge of y was represented by a Gaussian stochastic process Y, usually taken to

be stationary to express prior impartiality. Thus E[Y(t)] = Ix and Var[Y(t)] = (_ 2, where _t and 0`2
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are the same for all t in T, and, for s, te T, Con'[Y(O, Y(s)] =R(s-t), a function only of the

distance between s and t. Following observation of the values of y at each site in D, the posterior

process is also Gaussian aid Y(t) has posterior mean and variance:
v

_(t) = E[Y(t)IYD] = lt + _'_, O_) _D -- _D) (2)

(32(0 = Var[Y(t)lYD] O 2 "--) "*= (3)
=-)

Here, aot is the 'vector of prior covariances between Y at the site t and the design sites D, and aDD

is the prior covariance matrix for Y at the design sites. The elements of YD are the observed

values of y on D, and the elements of _o are the prior expected values of Y(t) (all equal to la.) for

each te D. lt can be shown that _ satisfies the given data exactly; it is therefore an interpolating

function.

In order to implement equations (2) and (3), one needs to specify It, c, mid the correlation

function R. Two examples of R used by Currin et al. are the Gaussian correlation function (not to

be confused with a Gaussian stochastic process),

R(d) = e"d2/° (4)

and the nonnegative cubic correlation function,

d 2 Idl 3 0
R(d)= l - 6(g) +6(-_) Idl<_-

R(d) = 2(1-1-_1) 3 --_0< Idl < 0 (5)2

R(d) =0 Idl>0.

where d = s-t, s, t _ T, and 0 < 0 < ,0.

Since

_T = O.2x [ R(t- tl), R(t- tz), "'" , R(t - tn) ] ,

the posterior mean function _ is seen to be a constant (Ix) plus a linear combination of the n basis

functions R i = R(t- ti). Thus, if R is given by (4), _ is analytic (because R is), and if R is given

by (5), 9 is a cubic spline (because R is). We shall use these correlation functions in our

examples below, where the application is to the approximation of the solution of linear

differential equations.



2. APPROXIMATING THE SOLUTION OF A LINEAR DIFFERENTIAL EQUATION

From a statistical point of view, the primary difference between the interpolation problem

described above and the problem of approximating the solution of a differential equation is the

nature of what may be called data. We shall follow essentially the approach outlined above for

interpolation, modified to use the data available in a differential equation.

2.1 The Approximation

In order to admit a unique solution, an nth-order linear ordinary differential equation (1)is
i

generally accompanied by n side conditions that must be satisfied in addition to the differential

equation. In this discussion, we will use conditions of the form:

y(k(i))(t_= Oi, i = 1, 2, '" n, (6)

where the ith condition specifies the value ci of the k(i)th derivative at site ti, k(i) < n. We denote

by B = {ti, i=l, .... n} the list of sites corresponding to the set of side conditions. These are not

• necessarily distinct; for example, an initial value problem specifies ali side cooditions at the same

site.

Other information about y is available in the differential equation (1) itself. Of course, if we

could find a function that satisfied the side conditions as well as the differential equation at ali

sites in T, it would be the exact solution, y. Unfortunately, this is generally not feasible. Instead,

we shall use as data the relationship specified by (1) at only a finite set of m enforcement sites

D = {ti, i = n+l, ... , n+m }'

n

Eaj(ti)Y0)(ti) = f(ti), l# D. (7)
j=o

We regard enforcement sites as design sites, because we are free to select them. Although some

sites in B and D may coincide, it is convenient for notation and bookkeeping to treat B and D as

- distinct lists. We shall call their concatenation C.
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We represent uncertainty about the solution function y by the nth-order differentiable Gaussian

stochastic process Y. Let

Yt_(t))(tl)" (8) .

y(k(a))(t2)

2=
F(t_+,)
F(t,+9

F(tn+m)

where
11

Z °tj(t)Y(J)(t)= F(t) . (9)
po

"i_e elements of _ are all linear functions of Y and its first n derivatives at the sites of side

conditions and enforcement, i.e.,

_=A_*, (I0)

where _* is the [(n+m)(n+l)l-vector:

Y(°)(h) (11) •

YO)(h)
. . ,

Y(n)(h)

_ --. " • .

Y(O)(tn+m)

Y(1)(_+m )

Y(n)(tn+m)

and A is an (n+m)×(n_-m)(n+l) matrix of known constants. (In practice, any columns of A which

contain only zeros could be deleted from the matrix, but for notational simplicity we will not do

so here. We demonstrate the formation of A in examples to be given later.)



Then the knowledge provided by the data is that
.t

_=_ (12)

" where

l (13)
CI I

I

?. I
c. I

I
J '

"_= f(t_+l)I .
I
!

f(t_+2)"

I
I

f(t_) J
.J

Since the process Y is Gaussian and nth-order differentiable, the joint prior distribution of _ and

Y(t) at any sit,e is multinormal. The posterior distribution of Y(t), given (12), is therefore also

" multinormal (see, for example, Mon-ison (1967)), and its mean and variance are given by:

" OT O_,_:("E-_z) (14)9(t) = E[Y(t)IN = I.t+ Oct

T -1
oa(t) Var[Y(t)I_ o 2 -' -'= "- -- OCtGc_2Gct. (15)

Here

o"*ct= Cov[_, Y(tll = Cov[A_*, Y(tl] = ACov[_*, Y(tll, (16/

where Cov[_*, Y(t)] is the vector of covariances between _* and Y(t);

Occ= Cov[-_, _] = Coy[AT*, AT*] = ACov[_ ?*, 7"]_ T, (17)

where Cov[_*, _*] is the matrix whose (i,j)th element is the covariance between the ith and jth

elements of 7";
i

i -
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I_z= E[_] = E[A_*] = AE[_*]. (18)

The posterior process depends, therefore, on certain covariances and expectations involving _*,
r

which are immediate once covariances and expectations involving the derivatives of Y are

available. It can be shown that, for stationary Gaussian processes with R suitably differentiable,

E[Y0)(t)]=0, j >0, (19)

and

Cov[Y0)(t), YCk)(s)]= o2(-1)JR0_)(s-t). (20)

From(l 1), (18), and (19),
-¢

= gAe, (21)

where "8is the [(n+m)(rl+l)]-vector with "1" in positions j(n+l)+l, ]=0, 1, 2, ... , n+m-1, and

"0" everywhere else, i.e.,'ehas "1" in the same positions that Y has the superscript "(0)" in (11).

We shall use _ in (14) as our approximation to the solution of the differential equation (1) subject

to the specified side conditions (6). lt can be shown that :9necessarily satisfies (6) and (7), i.e.,

our approximation satisfies the side conditions and also satisfies the differential equation at the

enforcement sites. Our method is therefore a type of collocation method. (See, e.g., Prenter

1975, Chapter 8.) We shall not be concerned here with the posterior variances given by (15);

effective use of these calculations for design and inference requires a more intensive

investigation.

At present, we automatically choose g by the method of maximum likelihood. The probability

density function of _ is

1 exp[_,A__ _z)Tc_Cz__ _z)] '
_C_ = (2n)(n_)/2det(acc)l/2

The likelihood function is the prior probability density function for Z, evaluated at the value

given, by (13), and regarded as a function of the parameters of the stochastic process, lt is

convenient to work with the natural log of the likelihood:

L = -V2[(n+m) In (2_) + In det (acc) + CZ- _z)TG_C'Z'- _-L)]. (22)
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For fixed 0 and o the maximum with respect to IXoccurs at the unique stationary point, which can

• be easily found by differentiating L with respect to Ix and equating the resulting expression to 0.

One obtains:

WTaff_ (23)

where _¢= AT.

With (23) substituted for IXin (14), 9 depends only on the choice of correlation function R,

including its parameter(s) 0. (The prior variance oa does not affect 9, since it appears only as a

constant factor in Oct and Occ, and effectively "cancels out".) The choice of correlation function

is still very much an open issue. In our examples so far, we have considered only the Gaussian

(4) and nonnegative cubic (5) correlations, and have experimented with various choices of 0 in

each case.

2.2 Example 1

Conside,r the simple differential equation:

y(t) - y'(t) = 0 0 < t < 1 y(0) = 1 . (24)

The solution is y(t) = et, which we shall use to compare with our approximation.

There is one side condition site B ={tl} = {0}. Suppose we choose the m---6 enforcement sites

D= {t2, "'" , t7} = {0, 0.12, 0.35, 0.61, 0.86, 1.00}. Then

1 0 0 0 ' ' 0 )1 (7 3)

0 0 0_0(t2) 0q(t2) 0 0
-" .....

0 0 0 0 O_o(tT)tXlit7

where tXo(t)= 1 and txl(t)=-1, and
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cl 1 (26)
f(tz) o

_= f(t3) = 0
, . lt

f(tT)J 0

To obtain the covariances needed to compute Octand Occ through (16), (17), and (20), we use the

Gaussian correlation function (4) with 0- 1.0. The approximation (14) works very well in this

case: the maximum absolute error, Je(t)l = ly(t)- _(t)l, evaluated at 101 equally spaced sites

covering T, is 0.00021. We shall visit this example again later, using the nonnegative cubic
correlation.

2.3 Selecting Enforcement Sites

In an attempt to develop a formal method for choosing the enforcement sites, we first adopted as

a design criterion the maximization of det (,tc). This was contrived by analogy with the

approach of Currin, et al. (1988) to the construction of designs for prediction of y on T given

knowledge of y at the design sites. There the design criterion for prediction based on (2) and (3)

was maximization of det ('DO). Although the analogy is weak Coccausethe given knowledge

here is of a different type), this criterion is useful for numerical reasons. Since -co is the matrix
,m

of the linear system that must be solved in (14) and (23), the choice of design heavily influences

the extent of numerical difficulty encountered in the prediction. We have found that designs

which maximize the determinant of this matrix often lead to relatively fewer numerical

difficulties. In the few cases we have considered, the "optimal" designs found by our computer

algorithm piace the design sites at roughly equal intervals. Until more rigorous approaches to

design construction are developed, this kind of design seems a reasonable choice.

Altematively, we tried an adaptive approach, which starts with an equispaced design and then

adds new enforcement sites one at a time, each one at the value of t where the absolute value of

the function

ll

x(t) = i_(t)- f(t) = E _(t)_(i)(t) - f(t). (27) .
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| is currently largest. (We typically restrict this search to the finite set 'I'lo_, which consists of 101

• equally s_aced sites covering T.) This strategy is based on the hope that enforcement of the

differential equation at the value of t where it currently fails most badly will improve the

" approximation to y. After the addition of each new site, _ and % are updated and the process

continues; as already noted, %becomes 0 at each new enforcement site. Ideally, we want x to be

0 everywhe_'e in T, for then _ would satisfy (1). However, we have not developed any

convergence theory. Our "stopping rules" are quite vague: we stop when Ix I seems satisfactorily

small. We are sometimes forced to stop sooner (or to pause and alter 0), because Occ becomes

increasingly ill-conditioned for fixed 0 as we add entbrcement sites. Nevertheless, we have had

good results with this adaptive method so far, and we shall use it in the remaining examples of

this report.

2.4 Example 1 Revisited

We consider again the first-order differential equation (24), this lame with the five equally spaced

enforcement sites D = {0, 0.25, 0.50, 0.75, 1.00}, and the nonnegative cubic correlation (5) with

0=20. The maximum !x(t)l on Tlol is 0.02675; this is attained at t=0.12, so the sixth

. enforcement site is placed there. After updatiiag 9 and x, we find the maximum Ix(t) l to be

0.01863 at t =0.37, and the seventh enforcement site is added there. This process is continued,

• ancI three further eru0rc.ement sites are added at 0.62, 0.06, and 0.18, in that order. The functions

1:m(t)and era(t) = y(t) - 9ro(t) are shown in Figure 1 for m=5, 6, and 10, where the subscript m

refers to the number of enforcement sites used in the approximation. Figure 2 shows the

maximum value of the absolute error IE,,(t) l on Tlol as a function of m. The final maximum

absolute error of approximation is 0.00385, which we think is respectable, although it is still not

4 as low as that obtained above using the Gaussian correlation function with six enforcement sites.

2.3 Choice of Correlation Function; Estimating 0

" As in the prediction context (Section 1), the nonnegative cubic correlation function leads

-- automatically to approximations that are cubic splines and the Gaussian correlation function leads

to approximations that are analytic. This can be seen by noting that $, in (14) depends on t

through the elements of oct; examination of (20) shows that these elements have the same form

as the c-rrelation function R and its derivatives.

I

_' 'qm n
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Figure 2. Plot of the maximumabsoluteerrorin y, as a functionof thenumberof enforcement sites m, for
ExampleI (revisited), wher_ y is basedon thenonnegative cubic correlationwith 0 - 20.
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Our limited experience suggests that the Gaussian corre_lation can work very well indeed, as in

Example 1, but its performance seems quite sensitive to the design D and to 0. The nonnegative

cubic correlation seems more forgiving, and is better suited to the sequential addition of

enforcement sites for fixed 0. A disadvantage is that it can only be used for first-order equations;

this can be seen by noting that R must be differentiable through order 2n in order to define ali the

covariances required (see (20)).

We have tried two approaches to the choice of 0 for a given correlation function, one based on

maximizing the likelihood (22) and the other based on minimizing the size of the function %(27).

For fixed 0 it is easy to obtain maximum likelihood estimates for I,t and a, but after substituting

these values into (22), maximization with respect to 0 is not so direct. Although the likelihood

function seemed well behaved in ali the cases we considered, the search needs to be handled

" d_:licately. As 0 increases, the determinant of Occ tends to become very small, so the

computation of (22) becomes unreliable. Unfortunately, maximization of L frequently forces the

search _.nthis direction. After making some superficial efforts to overcome this difficulty, we

abandoned the attempt to choose 0 via maximum likelihood in favor of an alternative criterion

based on x. We observed that the absolute value of this function tended to be relatively small

when the approxim._tion was good and relatively large when the approximation was bad. As a

result, we tentatively adopted a criterion which chooses 0 to minimize the sum of squared values

of x(t) on "i'101. Although we have not investigated the theoretical properties of this or similar

criteria, it has not so far presented the numerical difficulties we encountered with maximum

likelihood, largely because it does not seem to favor such high values of 0, We used this criterion

for choosing the initial values of 0 in the Examples 3 and 4 below, where it worked weil, and we

Mink it might prove helpful in automating parameter estimation after further development.

Computation of x for many values of 0 should be avoided if possible, however, because of

computational expense (Section 4).

3. EXAMPLES

We applied the method described above to three additional examples where the solution is

known. The problems are of the textbook variety: but serve as generic examples of several kinds

of differential equations that are of much interest. The first is a first-order equation that is

considered stiff because its solution conte._e_ a rapi:lly decaying component. The second and
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third examples are based on a second-order differential equation. They differ from each other

" only by the nature of their side conditions, the first of them being an initial value problem and the

second being a two-point boundary value problem.

3.1 Example 2

Problem:

1 (28)
50y(t) + y'(t) = 50tz + 2t 0 ___t __.1 y(0) = _.

The solution is

e-50t
_ _ + t2. (29)

y(t)- 3

Our initial design consists of the 10 enforcement sites D = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,

0.9, 1.0}. The form of A and of _ are similar to (25) and (26), but A has 11 rows, Oto(t)= 50,

oq(t) = 1, cl = 1/3, and f(t) = 50tz + 2t. Our initial approximation, which is shown in Figure 3a, is

based on the Gaussian correlation function with 0 = 0.42. (This and other values of 0 were

chosen by trial and error so as tc give reasonably low values of I1;I without encountering

- numerical difficulties.) We find the maximum I'_(t)l to be 8.96, at t =0, and add a new

enforcement site there. The resulting approximation is shown in Figure 3b. We then find the

• maximum Ix(t) I to be 3.17, at t = 0.03. After adding a new enforcement site there, we encounter

numerical problems, which are alleviated by decreasing 0 to 0.25. The maximum I_(t)l

surprisingly shoots up to 20.6, at t = 0.97. The approximation, although good for t < 0.75,

becomes much worse near the right end of the interval. (See Figure 3c.) The addition of a

thirteenth enforcement site, at t = 0.97, improves matters greatly. Figure 3d shows _ tbr the

resulting 13-point design; the maximum absolute error in _ on Tlol is 0.010, and the root mean

squared error is 0.0045. The maximum Ix(t) l is 0.66 at t = 0.06, but when we try to add an

enforcement site there, we encounter more numerical problems. We go no further, although we

presumably could relax 0 zsain and continue• The functions Xmand e__are shown in Figure 4, for

m=10, 11, and 13.

We now repeat this example using the nonnegative cubic correlation function witaa0-- 13. We
e

find that tiffs correlation function allows us to use more enforcement sites in our design without

, encountering numerical problems• Also the x and e. functions become smaller (as measured by
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curvesbydots.
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the maximum and sum of squared absolute values on "i'1ol)with the addition of each new site•

After starting with the same initial 10-point design (from 0.1 to 1.0 in steps of 0.1), we add the 7

new points: 0, 0.04, 0.02, 0.01, 0.07, 0.03, 0.05, in that order, again using the strategy of adding

the new point where. Ixl is currently largest. For this 17-point design, the maximum absolute

error in _ on "i',ol is 0.00131 and the root mean squared error is 0.130032. The plot of _ (not

shown) is visually in0.istinguishable from the true solution y. The functions Xmand em are shown

in Figure 5, form=10, 11, and 17. Figure 6 shows the maximum absolute, er _orin _?on "i'101as a

function of the number of enforcement sites. We could continue to add c_nrc:,;ernent sites without

numerical difficulties, but this does not seem warranted given the accuracy of the approximation

obtained at this stage.

3.2 Example 3

In order to approximate the solution of second-order linear differential equations, we require a

correlation function that is at least four times differentiable. The nonnegative cubic correlation

function does not have this property; therefore, we use only tl-.e Gaussian correlation function,

which can be differentiated as many times as needed, for the second-order examples.

Problem:

2y(t)' 2ty'(t)+t2y"(t)=t31n(t) 1 <_2, y(1)= 1, y'(1)=0. (30) .

The solution to this problem is

t3

y(t) = 7t + _ln(t)_ 3t_, (31)

which is plotted in Figure 7. Our design consists of the 5 equally spaced sites from t = 1.2

through t = 2°0. The 7:<21 matrix A has the form:

m

1 0 0 0 0 0 0 0 0 ' 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 oto(t3) {Xl(t3) ot2(t3) 0 0 0

0 0 0 0 0 0 0 0 0 Ot0(t7) ff.l(t7) 0t2(t7)
mm

where Oto(t)= 2, otl(t) = -2t, and c_2(t)= t2. The vector_ is given by (13), with cl = 1, c2 =0, and

f(t) = t31n(t).

m
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Figure5.Hot of_,,,(t)= h',,(t)-h (t)and_,(t)= y(t)- )t,,,(t),m = I0,II,17,forExample2,
wheretheapproximation);isbasedonthenonnogativecubiccorrelationwith0 = 13.Pointsthal
correspondtothem enforcementsitesaremarkedonthecurvesbydots.
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Figure6.Plotofthemaximumabsoluteerrorin:,asa functionofthenumberofenforcementsitesm, for
Example 2, where)_is based on the nonncgativecubiccorrelationwith O= 13.
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.o
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! ! !

Y

Figure 7. Plot of the solution function y for the second order differen_d equaaon of Example 3 (initial
value problem) and Example4 (two point boundaryvalue problem). Points thatconespond to the 5 en-
forcementsites aremarkedby dots. The approximationy, based on the Gaussiancorrelationwith 0 - 9 is
vinuaUythesame as y in both examples.
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Our approximation, based on the Gaussian correlation function with Et= 9, turns out to be

exceptionally good in this example; the maximum absolute error in _ on "i_101is 7.84×10'6.

3.3 Example 4

We conclude the examples using the differential equation of Example 3 (30), but stated as a two-

point boundary value problem rather than as an initial value problem. The boundary conditions

are:

y(1)= 1, y(2)=41n(2)- 5/2 =0.27258872 (32)

and the solution is the same as given in (31).

Using the same 5-point design and value of 0 as in Example 3, the largest absolute difference

between our approximation and the true solution on 'i_101is 2.17x10-7. Although such accuracy

cannot be expected in general, this example raises our hopes that the method will prove

competitive.

4. COMPUTATION
6

We have written two programs for producing the approximation p. They are similar in most

respects, but one was written specifically for first-order equations and the other for second-order

equations. By means of an input file, the user provides the number of side condition sites n, and

for each of these, the location ti, the order of derivative k(i), and the value ci of y(k(i))(ti),

i= 1,'" ,n. The number of enforcement sites m and their locations t,+_, ... ,t_ are

provided in the same input file. The differential equation (1) is specified through the user-defined

functions tXo,• ' • , _, and f. For first-order equations, the user is given a choice of the Gaussian

or nonnegative cubic correlation functions; this information is supplied interactively by the user

in response to a prompt. For second-order equations, the Gaussian correlation is assumed. In

both cases, the value of 0 is also supplied interactively.

The method of computing the posterior expectation and variance of Y follows the matrix

formulation described in Section 2. The program constructs the matrix A and the vector 8 and

uses (17) and (20) to construct t_cc. lt computes _ in (14) as
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_T
9(t) = I_+ Oc't_ (33)

where g in (23) is computed as

q

_-rr'x (34)

--.)

and the vectors ot and _ are computed as solutions to the linear systems:

acc_ =A_ (.,5)

acc]_ ='g- IIA'_, (36)

respectively. The program also computes %(0 in (27) for all t in T101. The derivatives Of 9

needed for this are computed from

'"*T

9(i)(t) = _i_.ct_, . (37)
OtJ-

The main computational work is in the solution of the two (n+m)-dimensional linear systems (35)

and (36), both of which have the same coefficient matrix acc. In the examples we have

considered here,m+n ranged from 6 to 17. When new enforcement sites are added to an existing

• design, for fixed 0, computational savings can be achieved by updating, for example, the

Cholesky factorization of Occ used in the solution of the linear systems. We have not yet

incorporated this into the program.

5. DISCUSSION

This report has demonstrated the application of Bayesian statistical inference to the solution of

linear differential equations. By viewing the differential equation and its side conditions as

sources of data about the unknown solution function y, we have used simple Bayesian techniques

to produce the posterior mean function 9, which serves as our approximation to y.

Our main concern here has been to show that this approach can work weil, in the sense of

producing good approximations easily. We have shown that for either the Gaussian or

" nonnegative cubic correlation function, with selected values of 0, it is possible to obtain a very

good approximation of the solution to both first-order and second-order linear differential

equations by this method. However, we have treated lightly many of the following important

issues, which will need to be resolved before the ultimate utility of the method can be

determined.
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5.1 Design
!,

One of the adv_'.ages of a Bayesian approach is that there exist accepted ways to quantify such

concepts as "amount of information". However, we have not really exploited this in formulating "

design criteria. That is, we have not formally addressed the question of where to piace additional

sites in order to maximize the gain in information about y. Our current design method is to start

with an equispaced design and then add new sites where the value of I_1 is largest. This is

intuitively appealing and seems to work weil, but lacks a rigorous foundation.

5.2 Choice of prior process

Although we restrictedour attentionto 3aussian priorprocesses, stochastic processesother than

the Gaussian could have been considered. However, such processes would, in general, greatly

complicate computationof _. Furthermore,given freedomto choose the form of an appropriate

correlationfunction, use of Gaussianprocessesmay not pose a seriouslimitation in practice.

Within the framework of Gaussian processes, there is much room for the investigation of

correlation functions other than the two we have used here. A nonnegativequintic correlation

would be useful for second-order problems, since the cubic can be used only for first-order

equations. The Gaussian correlation function, which is infinitely differentiable, can be used for

differential equations of any order, but requires considerable care to avoid numerical problems.

Both the correlation functions we considered here depend on a single parameter 0. In practice,

we have found it useful to select a value of 0 which approximately minimizes the sum of squares

of x over a representative finite subset of T, but this minimization can be computationally

expensive.

5.3 Computation

The main computational disadvantage of our method is that it requires the solution of an

(n+m)×(n+m) system of linear algebraic equations, and the coefficient matrix of the system may

not be weil-conditioned. This is offset somewhat by the fact that (n+m) does not need to be very

large to obtain a good approximation. One possible way of speeding up the computation is to

choose the correlation function and the design so that Occ is sparse. For example, if one uses an

equispaced design in which the distance between two neighboring sites is _5,and a nonnegative °

cubic correlation function with _5< 0 < 2_i,Occ will be tridiagonal.
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5.4 Extensions.

q

An appealing feature of the Bayesian approach is that it extends naturally to systems of linear

" ordinarydifferential equations (o.d.e.'s) and to linear partial differential equations (p.d.e.'s). For

the former, prior uncertainty about the unknown functions is represented by independent

stochastic processes, each of which can be of the same form considered in this report. Each o.d.e.

is then considered a source of data for the Bayesian method. The mechanics of the

approximation are the same as for single o.d.e.'s but the system of linear algebraic equations to

be solved is likely to be much larger. The design issues are likely :9 be more interesting, also. lt

is not clear whether one should enforce the whole system at all design sites, or take a more

selective approach.

The Bayesian approach to linear p.d.e.'s is the same as it is to linear o.d.e.'s. The only obvious

complication is that T is multidimensional, and suitable correlation functions need to be defined.

This can be done using the product correlation rule, as is done for the prediction problem (Currin

et al. 1988, Sacks et al. 1989). Once the intersite correlations are defined, the mechanics are

again the same as for linear o.d.e.'s. Our experience with the prediction problem leads us to

believe that we may be able to achieve good approximations to the solution of lincar p.d.e.'s with4,

fairly simple and economical designs, i.e., without having to impose a dense, well-structured

, mesh on T. Further extension to systems of linear p.d.e.'s leads to problems that are larger in

scale, but require no fundamental change of approach.

Ultimately, of course, we would like to extend our approach to nonlinear differential equations,

but the way is not so clear. Our approach for linear differential equations benefits greatly from

the fact that, for Gaussian prior processes, the data provided by the differeJitial equation(s) are

normally distributed, a priori, with easily derivable means and covariances. For nonlinear

equations, this is not the case. Our inclination is to attempt to develop an iterative method, based

on the solution of appropriately linearized equations at each stage.

These extensions will require much more work than we have so far undertaken. Although we can

only speculate about their eventual success, we are encouraged by the results we have obtained in

• the few simple examples described in this report.

L
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