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NUMERICAL MODELING OF HF SKYWAVE RADIATION
FROM ANTENNAS IN IRREGULAR TERRAIN

Abstract

The problem of computing the radiation pattern of an HF antenna sited in irregular
terrain was investigated. The primary interest is in antennas for skywave communication,

' however ionospheric models were not considered. Several methods for modeling terrain ef-
fects are briefly reviewed. A geometrical optics model for arbitrary terrain is developed and
results are compared with published results from solution of a Volterra integral equation
for scattering by a Gaussian ridge.

Introduction

The effect of irregular terrain on antenna radiation is one remaining part of the HF
communications link for which no general modeling capability is available. A large amount
of work has been done on terrain modeling, and prediction methods have been demon-
strated for a number of specific cases. The lack of more general models appears to be
the result of the difficulty of the problem and the variety of conditions that may occur.
An antenna might be mounted near hills or a cliff, on the top or side of a hill, or in a
valley. Depending on the angle of radiation the field may involve scattering and diffraction
from single or multiple points and surface wave propagation. Terrain features may vary
in size from less than a wavelength to many wavelengths over the HF band, and surface
roughness may also be an important factor. Hence, analysisof general three dimensional

, terrain models can exceed the capabilities of even modern computers and modeling codes.
In order to develop a general terrain modeling capability it appears necessary to combine
:_everal modeling techniques.

This report covers work on the first phase of a project for the U. S. Navy to develop
and apply models for terrain effects in HF communications involving skywave. Candidate
techniques are briefly reviewed with some references to previous work. As an initial ap-
proach to the problem, a program for modeling terrain was developed using geometrical
optics (GO), since this technique is relatively simple and allows three dimensional terrain
models. A code for applying GO on arbitrary surfaces was developed using the ray launch-
ing method of Mittra and Rushdi [1]. Ray launching is implemented to handle concave
as well as convex surfaces and finite conductivity of the ground. The GO model is not
suitable for computing the fields at low radiation angles or in shadow regions since surface
wave and diffraction are neglected. However, it should give a reasonable estimate of field
in illuminated regions, and will provide a point of comparison with other more complete
models that may be investigated in the future.
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Our primary interest is in antennas for skywave communication. However, models fear
the ionosphere are not considered since such models are already available, and ionospheric
reflection can be treated separately from t,he effects of terrain in the vicinity of the antenna.

The problem of determining the radiation from antennas in in'egular terrain is closely
linked to that of computing the radiation pattern of the antennas. General purpose com-
puter programs, such as the Numerical Electromagnetics Code (NEC) [2, 3] and MININEC
[4] have been developed and widely used for modeling HF antennas. Typically these pro-
grams can include the influence of a flat ground with finite conductivity and will determine
the antenna impedance and efficiency in this enviror, rnent, as well as computing the radi-
ated field, gain and ground wave strength. Except for simple geometrical-optics models for
one or more cliffs in otherwise flat ground, these codes offer no capability for modeling the
effects of terrain features on radiation. However, in most cases antennas used in irregular
terrain will be sited so that interaction with the terrain does not significantly change the
current distribution from when the antenna is on flat ground. When this is true, the cur-
rents determined by codes such as NEC for flat ground can be used as a radiation source
in irregular terrain. All that is needed is to reorient the current elements relative to the
normal to the terrain at the antenna site and compute the radiation in the presence of the
terrain. A transformation for orienting the antenna is given in an appendix to this report.

Several possible techniques for modeling terrain effects are summarized below. The
ray launching method, that has been used in developing a computer code for applying
GO on arbitrary surfaces, is then described in detail. Results of the GO model are shown
for scattering from a Gaussian ridge and compared with results obtained by Berry [5] who
solved a Volterra integral equation. The Volterra integral equation solution, particularly as
later developed by Oft [6, 7], offers a powerful means for modeling terrain with diffraction
and surface wave included, and may be investigated in the future as an alternative model
for situations where GO is not adequate.

Terrain Modeling Techniques

A number of different approaches have been used fox' modeling terraiu effects. Some,
such as reflection and knife edge diffraction have been around since the early days of radio.
Others, such as integral and differential equation models, involve a heavy computational
burden requiring modern computers. Factors affecting the choice of a model include the
terrain type, frequency, whether the radiation angle is to the sky or grazing the ground
and whether the source is highly directional or illuminates a large area of terrain. Some
candidate techniques for modeling terrain effects are summarized below. This is far from
a complete listing of references on the subject, but includes some typical work.

Geometrical Optics

Geometrical optics (GO) provides a conceptually simple model for scattering from
terrain. For a flat grmmd it can be implemented by computing the field of the image
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of the source antenna and a reflection coefficient for the ground, as is now done in the
Numerical Electromagnetics Code NEC. With curved surfaces the GO model becomes more
complicated, since ray tracing is considerably more difficult, and additional factors must
be considered such as the change in ray-tube divergence and possibly multiple reflections.
The GO model can include the effect of finite ground conductivity, and three dimensional
terrain models are practical. GO can be expected to give a reasonable estimate of the
field in illuminated regions which do not involve rays that graze the terrain surface. Lack
of surface wave makes the model invalid for low radiation angles and may result in under
estimating the field scattered by a hill when the source is moderately distant. Without
diffraction or surface wave, the model gives zero field in shadow regions.

t

The principles of GO are described in [8, 9, 10]. An application of GO for propagation
• over earth is discussed in [11], and a model for arbitrary terrain is developed here.

Geometrical Theory of Diffraction

The Geometrical Theory of Diffraction (GTD) [12, 13, 14] combines GO with diffrac-
tion terms for edges and curved surfaces. With edge diffraction included, a curved surface
such as a hill might reasonably be modeled, for scattering calculations, as a collection of
flat plates, since the diffracted field will fill the gaps in the reflected field. Diffracted field
would also enter some of the shadow regions, although multiple edge diffraction or creeping
wave terms are needed to completely fill the shadows. The absence of a su_fface wave would
still limit the accuracy for finitely conducting surfaces at HF.

Knife edge diffraction models have often been used for propagation over ridges [15].
Luebbers [16, 17] has applied modern GTD techniques to this problem, using wedge diffrac-
tion formulas modified for finite conductivity and surface roughness and including reflected
rays. These models are generally limited to UHF and higher frequencies due to the lack of
surface wave, but they might be applicable at HF in cases where ray paths do not graze
the surface. Wait [18, 19] derived formulas for diffraction of the ground wave by idealized

' terrain features such as a knife-.edge, step and cylindrical hill.

. One reason for interest in GTD is the availability of general purpose GTD codes.

The Basic Scattering Code (NEC-BSC) [20, 21, 22] can model structures with multiple
flat plates, elliptic cylinders and other curved surfaces. The solution includes second
order reflection, first order diffraction and reflection-diffraction terms. A creeping wave
is included for the elliptic cylinder. NEC-BSC will model a finitely conducting, infinite
ground plane, and has a limited capability for modeling thin dielectric plates. The code
manual states that a source must be at least a wavelength from a dielectric plate, and
the incidence angle from the normal should be less than about 60 degrees since surface
waves are not included. The suitability of dielectric plates for modeling terrain is unclear.
However, NEC-BSC might be considered for modeling terrain with perfectly conducting
plates, particularly at low frequencies where the surface impedance of the ground is low.



Surface Integration

Several techniques for modeling terrain involve the computation of scattered field from
integrals over sources on the terrain surface. Alternatively, the perturbation of the field
caused by terrain features, from that with a flat ground, may be obtained by application
of the compensation theorem [23]. If the sources are taken to be the surface fields deter-
mined by GO, the method resembles physical optics. Physical optics avoids the caustics
encountered in GO and may give a reasonable result for field in shadow regions if the
obstacle is not too large. The problems of finding specular points and computing diver-
gence factors in GO are traded for a possibly large amotmt of integrating. V. Liepa [24]
demonstrated the use of physical optics for computing the field scattered by a perfectly
conducting semicylindrical boss on a surface. This technique can be extended to finitely
conducting surfaces by employing the surface impedance approximation.

Page and Monteath [25] computed the effect of small surface irregularities by inte-
grating over the perturbed surface with the surface current assumed to be the same as for
a fiat site. They compare their results with measurements for an antenna on a plateau a
quarter wavelength high arid one wavelength in extent.

Volterra Inte_ra! Equation

Rather than using the GO incident fields or assuming a surface current, a more accu-
rate evaluation of the surface fields over irregular terrain is possible by solving an integral
equation. Hufl'ord [26] derived a Volterra integral equation for the attenuation of a wave
over inhomogeneous irregular terrain, starting with Green's theorem and using the free
space field as an elementary function. In deriving this equation it is assumed that the ter-
rain varies only with distance from the source and backward scattering is neglected. Ott
and Berry [6, 7] developed an alternative integral equation, using a modified Sommerfeld
attenuation function as an elementary function. This alternative equation is more easily
solved than Hufford's and has been used extensively for computing the surface wave along
communication paths involving inhomogeneous, irregular terrain [7, 27, 28]. Alternative
integral equations have also been derived by Wu, eg al. [29] and Bevensee [30]. Bevensee
extended the analysis from a point source to a finite current distribution.

The computation of the radiated field by integrating the surface fields obtained from
a Volterra integral equation is demonstrated in [5] and [31]. Since the integral equation
solution includes effects of reflection and diffraction at surface irregularities, as well as
surface wave propagation, the result obtained for skywave should be more accurate than
that obtained by physical optics or assumed currents. However, the integral equation
is limited to two dimensional terrain models, constant in the direction transverse to the
direction of propagation, and neglects backward reflection.

An integral equation similar to Hu_ord's was derived by Monteath [32] starting from
the Compensation Theorem. This equation was derived for flat ground with varying elec-
trical parameters. It has been used to compute the signal received at varying distances



from a coast line for gromld wave propagation and skywave. Results in [33, 34] show the
effect of a coast line extending inland over 50 km for a 845 khz skywave signal arriving at
4.3 degrees elevation. The computed results are compared with measurements of Knight
and Thoday [35].

Frequency D.0main Intes;ral Equations

The moment-method solution of an integral equation for surface currents can provide
a model for irregular terrain. Integral equations can be based on electric, magnetic or
combined fields [36] and may involve surface or volume currents. Such models can be very
accurate, but computation time limits the frequency and the extent of terrain modeled. For

" large models, the solution time would increase as the cube of the number of unknowns in
the model, or as the sixth power of surface area in square wavelengths. The magnetic field
integral equation is relatively easy to solve, but is limited to perfectly conducting closed
surfaces. The electric field integral equationrequires more elaborate solution methods [37,
38] but can model finitely conducting and open, thin surfaces.

Interest in integral equation models is prompted by the current availability of computer
codes. Corry and Lane [39] used the magnetic-field integral equation model in NEC to
model mountainous terrain up to 5.5 MHz. Another option with NEC would be to model
the terrain with a finitely conducting wire mesh, using the thin-wire electric field equation.

Finite Difference Time Domain Solution

Finite-difference time domain (FDTD) codes solve Maxwell's curl equations over a spa-
tial grid, with central differencing for the derivatives of E and H, using the Yee algorithm
[40]. This technique is capable of accurate modeling of terrain, including inhomogeneous

. ground. Like the integral equation solution, FDTD is limited by computation time and
storage requirements. Generally these codes are run on large, fas_ computers. FDTD has
an advantage over integral equations for electrically large models, since it does not require

• solution of a matrix equation. The Size of a FDTD model for terrain would depend on
the size of terrain features relative to wavelength and also on where the outer boundary
terminating the grid could be placed. Models covering several km of terrain at HF appear
practical, although it may be necessary to use a two dimensional model to reduce the
grid size. Also, the effects of dispersion in the solution grid may become significant over
long distances. The time domain solution can provide a wide-band response, although the
usefulness of such data may be limited if the ground parameters change substantially over
the band.

A FDTD code, TSAR [41], has been developed at Lawrence Livermore National Lab-
oratory. This code includes a CAD program for model generation, display and post-
processing. TSAR appears to have considerable potential in terrain modeling applications,
either as a primary model or for validation of other techniques.
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Development of a Geometrical Optics Model for Terrain

A computer code was developed on this project to apply GO on arbitrary surfaces
with finite conductivity. The development of this model is described below and results,
showing some uses and limitations of GO for modeling terrain are included in the next
section.

In the conventional application of GO to reflection from a surface the surface is

searched for specular points contributing to the field at the evaluation point. When a
specular point QR is found for the evaluation point )5, the field that the ray produces at
the evaluation point is computed as [9]

(i)

Field at Reflection Divergence Phase
reflection coefficient factor factor
point

where Ei(QR) is the incident field at {_R, s is distance along the reflected ray from the

surface to P, p_ and p_ are the principal radii of curvature of the reflected wave front at
QR, /_ is a dyadic reflection coefficient and k is the wave number in the medium.

While (1) appears relatively simple, the computations involved in its application can
become very time consuming. To locate the specular points the surface must be searched
for points that result in relative minima or maxima of ray length from source to evaluation
point. If the surface is known only at discrete points, a continuous function such as a
bicubic spline is fit over each region before searching for a specular point. The radii of
curvature of the reflected wave front at specular points is then computed from a formula
involving the principal radii of curvature of the surface at (_R and of the incident wave
front•

Rather than using this approach on terrain surfaces, we have used a method of ray
launching proposed by Mittra and Rushdi [1]. This approach was developed for surfaces
specified numerically over a grid of points, and traces rays from the known grid points to
form triangular ray tubes. Interpolation formulas are developed to determine the factors
in (1) from the rays surrounding the evaluation point. The method as described in [1]
is limited to convex, perfectly conducting surfaces but is extended here to treat finitely
conducting surfaces combimng concave and convex regions as occur in hills on a flat ground
plane.

The Triangular Ray Tube and Mean Ray

The ray launching method developed in [1] begins with a surface defined on a grid
of points at which the surface elevations and derivatives, or equivalently the unit normal
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Fig.1.AtriangularraytubereflectingfrompointsL_,E a_dG onasurface,showingtheequiphasetriangle
(DI,El,GI)andthetrianglenormaltothemeanray(,4,B,(_).

vectors,areknown. Ifthesurfaceelevationisgivenby z = f(x,y)theunitnormal vector
is

_(x,y) = IV[z- f(x,y)]l"

Rays are launched from the source to groups of three adjacent points on the surface,
forming triangular ray tubes as illustrated in Fig. 1. The field evaluation point is then
tested to determine whether it is within the particular ray tube and that the ray path is
unobstructed. If the ray tube includes the evaluation point then the reflected field, diver-
gence factor and phase facter in (1) are evaluv, ted at the receiver location by interpolation
of the surrounding rays.

Rafts from the source ,_t C_ to the points/),/_ and (_ will be denoted SD = /) -(_,
= E - O and _G - G - {_. The reflected r:_ys axe then

_E =gE- 2(gE.'_E)'_E, RE= _E/I_EI
=ga -2(_a. _a),_a, /_ = _ /I_I

where tlD, nE and na axe unit normal vectors at £_, 1_ and _.

A mean ray is associated with the reflected ray tube for use in developing the interpo-
lation fbrmulas. This mean ray is taken to reflect from a surface intersecting the reflected
rays at points adjusted to have equal phase from the source. This equiphase triangle then
represents an approximation of the reflected wave front. Mittra and Rushdi sort the rays
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sothatI_GI_ _EI _<l_OIand locatetheequiphasetriangleso thatthecorneron rayE

lieson thereflectingsurfaceatE. We found betteraccuracyinthephase interpolation,
describedlater,when theequiphasetrianglewas adjustedby the mean distancefrom the
sourceratherthan themedian.Hence,usingthemean distance

SM--(l_oI + IS'El + Igcl)/3

the equiphase triangle shown in Fig. 1 is defined as

_ - O- (15'ol-SM).Ro (Ca)
g_ = g- (IgEI- s'M)/_._: ('2b)
O_= 0-(Igal- sM)_. (2_)

The mean ray is then taken to reflect from the centroid of this equiphase triangle at the
surface

M1 = O1 + E1 + G1)/3 (3)

with incident mean ra_,yS_ = M1 -O. The reflected mean ray passes through the centroid
of the triangle (D_., _F_._,G2) where

52 =/)1 + LflD (4a)

-4 ^
_2 ---_1 + L/_ (4c)

and L is an arbitrary distance, ttence the direction of the reflected mean ray is

L. = (._o+/_E +/_)/I/_o +/_E +/Cal.

The plane normal to this mean ray is also an approximation to the reflected wave front.
lt is nearly parallel to the equiphase triangle (/)2, E2, d_), although they do not coincide.

Before going any further in the field evaluation we need to determine whether the
evaluation point is contained in a particular triangular ray tube. Mittra and Rushdi make
this determination by searching for the mean ray that comes closest to the evaluation
point /_. However, when concave surfaces are allowed there can be multiple rays to a
given evaluation point, so a search for a minimum distance would have to consider relative
minima. A more direct test is whether the evaluation point is contained in a triangle
formed by the ray tube.

One possible triangle for testing is that in the plane normal to the mean ray and
containing P. The vertices of this triangle are

_: = 15+ A=/%O (5a)

. . /_ (B=E+Ab E 5b)

= d + x0_ (_)

8
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where

:_b= #,,,' (S_-_)/(D_. _E) (6b)
_ = ._. (s_- d)/(sL,._). (6_)

The point /_ is contained in this triangle if it is included in two angles such as CAB
and ABC. Hence a suitable test for inclusion is

• [(Zi-A) x(.P A)I.[(C-A)x(S _-A)]<_0 (7)

• [(d- _) x (s_- _)1. [(X- _) × (,_- _)1 < o (s)

and

[(z_-X)+ (d- Z)]. (P- X)> o. (9)
An alternate test based on areas is used in [1].

A problem with testing with thetriangle normal to the mean ray is that the triangles
for adjacent ray tubes lie in different planes and do not meet at the edges. Since the
reflected rays do not in general converge to a point there may be a small overlap or gap
between these triangles as viewed along the mean rays. To avoid the possibility of gaps in
the surface, our present code performs an initial test on triangles formed on a horizontal
plane containing point P. Vertices of the horizontal triangle in a ray tube are

Et_ =E + hERE

_M-d- + hGRa

where

hz_=(P- 5). _/(/_o' _)
hE=(P- _). _I(i_E._)
ha =(P-0). Sl(ka. _).

The test for/_ included in this triangle can use (7) through (9) with the z components
eliminated. Any other continuous surface, such as a hemisphere, could be used for testing,
but the horizontal plane is easy to use. When the test on a horizontal plane fails because
the reflected rays are nearly horizontal, the triangle normal to the mean ray was used.

Evaluation of the Divergence Factor

The ray divergence factor in (1) depends on the principal radii of curvature of the
reflected wave front at the surface. To determine the radii of curvature from the triangular
ray tube would require a difficult interpolation procedure. An easier method is to derive
the divergence factor from the square root of the ratio of the cross sectional areas of the
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ray tube at the surface and at the evaluation point/6. This was done in [1] by evaluating
the area of the equiphase triangle, defined in (4), for three discrete values of L to obtain
a quadratic equation for the area as a function of L.

In order to handle concave reflecting surfaces, the caustics along the ray tube must
be located to determine whether they fall between the surface and the evaluation point. A
problem with using the equiphase triangle for this purpose is that, in the neighborhood of
a caustic, the equiphase triangle does not go through zero area. Instead, it gets small and
then rotates to ge in the plane of the mean ray. The triangle normal to the mean ray cannot
do this, and in general has two points of zero area that can be used as approximations for
the location of caustics. Hence the divergence factor was determined from the area of the
triangle normal to the mean ray.

The triangle normal to the mean ray at point ifr= 2t_rl+ g/_ has vertices

D. =D+gDRD (I00)
EL=E+ gE/_E (10b)

where

ep= _. (#- 3)I(_. kD) (lla)

gE=/_' (ifr-E)/(P,_'/_E) (11b)
_0=/_' ($7-(_)/(_./_). (11c)

Substituting (11) and the expression for ]into (10) yields

The area of the triangle is

I0



where

_._ _.ko

_2=d - r" + [_ "(_ - c )_ - [t,, .(._ - 5 )_v',%.i_ _ .Yto
Thus the _rea is a quadratic function of the distance g

• A(g) -[qg 2 + rg + sl

where

q= P2.(R,, × -_) (:2)
,.=O:.([_ ×P,)+P:.(R,,,×O_) (13)

, = _2.(_ ×_,). (:4)

In (12) through (14) the triple products have beenrearranged so that only two cross
products need to be evaluated.

Roots of the equation
qg_ + rgc -t- s --. 0 (15)

represent caustics in the ray tube, where one vertex of the triangle crosses the line through
the other two, so that the area goes to zero. The GO model is not valid at the caustics,
but these points are usually apparent due to large, anomalous field values whenthe caustic
coincides with the evaluation point. The phase of the field advances by lr/2 as the observer
passes through a caustic, as is evident from th, n__egative argument of the square root in
(1). Hence the field must be multiplied by j = _-- for each root of (15) for ,vhich

0 < gc < kv (',6)

where

Thus if Are is the number of roots of (15) satisfying (16) the divergence factor, including
phase shifts due to c_ustics, is

DI(P ) = jN, _/A(O)/A(A_). (I7)

Pha_e Interpolation

To evaluate the phase, of the field at the evaluation point P a quadratic interpolation
formula was applied as done in [1]. The phase is interpolated in the plane normal to the
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mean ray, defined in (5), with the quadratic function ric to the phase at .-l, /_, C and F.

F is the intersection of the mean ray with the normal triangle containing P

= _,_+ _9_
where

_p= ._. (._- _,).

The value of including F seems uncertain. The phase is known ex,_.ctly at A_,/_ and
since the surface is known at the points where those rays reflect. However, the phase at
depends on the somewhat arbitrary location of the equiphase triangle defined in (2), The
use of the mean distance from the source in locating the equiphasc triangle gave oetter
results than the median as used in [1], particularly when the incident ray arrived normal
to the side of the triangle so that the median became an extreme value. A more accurate
result might be obtained by fitting a continuous function to the surface and finding the
intersection of the mea_: ray with this surface. This interpolated reflection point could
then be used in computing an accurate phase along the mean ray. However, this more
complex procedure was not tried.

Using the coordinates xi and x2 defined along the orthogonal vectors _ and _:2, the
quadratic interpolation fits the function

to the phase at ,4,/_ and C relative to that at T_,

_A =k[_.+ IgDI-(_p+ I#MI)]
'}B=k[_b+ Igsl- (_p+ I,_MI)]

_'c=k[,_o+ IS'al-(_,+ I#MI)]

where A,, _b and Ac are from (6). The interpolation constants are determined by solving
the equations

@A =_ [QI,z_. + (Q,2 + Q2,)x,,,x2,. + Q2: - a] (1Sn)

_B --_ [QllX21b+ (Q12 + Q21)XlbX2b + Q22x]b ] (lSb)

where

xib =( B - F). _,i

•_ =(d- _). _,
for i = 1,2, As done in [1], the solution is simplified by choosing

:_I ----(P- r)/IP- El

12
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and

Then the interpolated phase at P is given by

¢(IP :1,0)= k _- _Q_ : :12

so that only Qll must be evaluated. The solution of the equations (18) yields

_atl .+. _BA2 + _cA3

kQll --" (XlaX2b -- XlbX2a)(XlbX2v -- XlcX2b)(XlcX2a -- XlaX2c)

where

• _'1 = XlbXlcX2c- XlcXlbX'2b

A2= x_z1.z2. - x_.z1_z2_

A 3 = X_aXlbX,2b- X_bXlaX2a.

The phase at /_ is then approximated as

¢($) = k(_p+ I_MI+ ½Q_lP- El2). (19)

Interpolation of the Reflected Field

The reflected field for a ray that would reach point ff is approximated by linear inter-
polation of the reflected fields for rays to points D, E and G. For a perfectly conducting

surface only the change in vector direction from incident to reflected field must be deter-

mined. For finitely conducting ground the reflected field is obtained from the plane wave

reflection coefficients, since the wave front can be treated as essentially plane at the surface
if the source is distant. If the source is near the terrain surface but the receiver is distant

the plane-wave reflection coefficient can still be used by applying reciprocity.

The incident wave is decomposed into TE and TM components relative to the plane
of incidence, defined by the incident ray g and the normal to the surface h. The unit vector

normal to the plane of incidence is

: - (_x ,_)/1_x ,_1

and the incidence angle is

Oi= cos-1(-_•_).

From Snell's law, the angle Otof a wave transmitted into the medium is

eo(cosOt= 1-_ 1-cos 20i)

where e0 and el are the permittivities of free space and ground, respectively.
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The reflection coefficients for TE and TM polarizations can be computed in terms of
surface impedance and admittance as

R'rE= yor_,+ y;rE

z0TM - z,_RTM = ......
z[ M+ zlM

where

YorE=_o'_o_o_, Y'Y = ,,i-'_oso,
Z0TM = qO COSOi, Z TM = til cos Ot

with r/0 = _ and r/1 = V/'_7_. For a perfectly conducting ground, R TE = R TM '

Decomposing the incident electric field/_i as

_ =(f_. >)>
_M =li _ (gi >)_

the reflected field is obtained as

E'_:E =ff_E RTE

"r = • h)fi] R TM_._ [_ - 2(g'
The _total reflected electric field at the surface for an incident field E _ is then

E' = _[gil [._i - 2(._' a)a] RTM + t$(._i' i_)(/i'i'E - RTM) . (20)

Linear interpolation waz used to obtain the magnitude and vector direction of the
reflected field at the surface on the ray to/5 from the rays to points/), /_ and G. The
interpolation function

is matched to the reflected field at/), E and (_ to determi nefi, q'_and _. The result_, can
be simplified by defining the coordinates in the plane of A, B and C with origin at ,4 and

& =(15_ i)/I# - XI
&=k_x&.

The equations to be solved for _, q'_ and q'_ are then

q3 =ED (21a)

ai_l,:+ _2_2c+ _ = Ev (21c)
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fori= 1,2and

2_ =_[,_i (/_)] / e-.)kl,..,eEI

• Ei(t_) is the incident field at /_ and _ is defined in (20). The phase lag from the origin
has been removed since it is included in the phase interpolation in (19). The solution of
(21) yields

"iT"

_1b_20-- _1c_2b _1b_2c-- _1c_2b

_lb( G -mm) _lc(mrE - SD)

q2 -- _lb_2c -- _lc_2b -- _lb_2c -- _1c_2b'

Since _2 = O at 15the reflected field at the surface on the ray to t5 can be approximated as

- -  2b(b -

6p= (:- 2).

The GO Field Evaluation

In implementing this ray-latmehing method in a Computer code, the surface is defined
on a rectangular grid of points at which elevations and unit normal vectors are specified.
The surface is scamaed for each field evaluation point. When a triangular ray tube is found
that captures the evaluation point/3, the incident and reflected rays are tested for blockage
by other parts of the terrain. If the ray is unobstructed, the divergence factor, phase and
reflected field are evaluated from equations (17), (19) and (22). The field associated with
the ray is then evaluated as

._g(ff),_:g'(:)O/(P)e-J*(:). (23)

The contributions of ali rays that reach t3 are added to the direct ray from the source
and any rays that reflect from flat ground outside of the grid region, if these rays are
unobstI_tcted. The computation time for multiple evaluation points could be reduced by
storing data for the reflected rays or evaluating contributions to ali field points in a single
scan of the terrain. This was not done to keep the code simple.

15
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Fig. 2. Triangular ray tubes reflected from a Gaussian Hill.

The triangular ray tubes reflecting from a single Gaussian hill are illustrated in Fig. 2.
A caustic, due to focusing of the ray in the vertical plane, can be seen in the ray tube
reflecting from the concave surface near the base of the hill. As the evaluation point is
moved in a horizontal plane toward the source the two rays reflected from the hill approach
each other as they reflect from regions with greater slope. When they converge a caustic
occurs at the evaluation point, and the GO field evaluation becomes invalid. As the
evaluation point is moved horizontally away from the source another caustic occurs when
the lower two rays merge, if they are not first blocked by the peak.

In the present code, only singly reflected rays are considered. However, when the
source is located near the surface of a flat ground the direct ray and ray reflected under
the source are traced as a single ray through the terrain grid and to the evaluation point.
The code should be extended to trace at least doubly reflected rays so that the source
could be located at any height.

Results from the GO Model for Terrain

The GO model was tested for scattering from a two dimensional Gaussian ridge to
compare with results published by Berry [5] who solved a Volterra integral equation. The
solution of this integral equation satisfies a scalar wave equation, so depolarization is
neglected. The equation is limited to two dimensional terrain with features constant in
the direction transverse to the propagation path. The equation solved by Berry was derived
by Hufford [26] using the free-space field as an elementary function. The numerical solution
of this equation is less stable than with the equation derived later by Ott [6, 7] using a
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modified Sommerfeld attenuation function. However, an accurate solution of Hu.fford's
equation will show the effects of surface wave and diffraction that are: neglected in the GO
model.

Berry presented results for a Gaussian ridge defined by

so that the ridge has height H, is centered at b and w is the width at about H/IO. A
vertically polarized source was located at the origin with H = 1 km, b = 5 km and w = 3
km. The ground constants were er = 10 and a = 0.01 S/ro. Berry's results for the

• vertical component of radiated electric field normalized by the field for a flat, perfectly
conducting ground are shown in Fig. 3. An interference pattern is formed above the ridge,
with contours approaching a radial direction from the source• Berry shows that the field
on the ground behind the ridge, out to 10 km, is dominated by the surface wave at 1 MHz,
while diffracted field from the ridge top prevails at 10 MHz.

Results from the GO model, in Fig. 4, are in general agreement with Berry's solution
in the illuminated region but demonstrate some of the limitations of GO. The standing
wave pattern above the ridge in Fig. 4 ends abruptly at a caustic surface, while Berry's
solution shows the pattern extending to the left of this line: The caustic occurs when the
two reflected rays from the ridge, shown in Fig. 2, merge into one. The ideal GO model
would predict an infinite field at the caustic, although the numerical solution produces a
large, random result. In either case the result is not valid. To the left of the caustic, GO
shows no effect of the ridge. Als0, the perturbation of the field predicted by GO appears
to be somewhat smaller than that shown by Berry. There are only small peaks along the
caustic exceeding 1.4, while Berry shows significant contours at this level. The weaker
scattered field may be the result of a smaller incident field on the ridge in the GO model,
as a result of neglecting the surface wave. The lack of surface wave would be less significant

. at higher frequencies or if the source were moved closer to the ridge. The GO result shows
zero field in the shadow of the ridge, while Berry's solution gives a valid prediction in this
region.

At 10 MHz the GO model generates a very complex interference pattern, as would be
expected with the 30 m wavelength. It appears possible that Berry did not fully resolve
this pattern. The GO pattern also is not accurately resolved, since an increment of 25 m
was used in distance and height. However, the results from Berry and GO are in reasonable
agreement in amplitude. The maximum values in the GO result are about 0.88 near the
caustic• The smaller amplitudes at 10 MHz are the result of the greater surface impedance
of the ground.

Contour plots of the normalized vertical electric field for a perfectly conducting ridge
are shown in Fig. 5. Perfectly conducting ground is of interest due to the possibility of
treating real ground as perfectly conducting so that it can be modeled with standard GTD
techniques. A surface wave is not generated over perfectly conducting ground, so the main
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Fig. 3. Contours of normalized vertical electric field over a Gaussian ridge computed by solution of a
Volterra integral equation (Source: L. A. Berry, [5], IEEE (_) 1967. Keproduced with permission of IEEE.)
Ground parameters are % = 10 and _ = 0.01 S/ro.

shortcoming of the GO model is the lack of diffraction or creeping wave at the ridge. For

this case the use of perfect conductivity is seen to about double the effect of the ridge, due
to the reflection coefficient of 1.0 and a larger field reaching the ridge.

Radiation patterns for the source and Gaussian ridge from Fig. 4 are shown in Fig. 6.
The angle 8 is zero overhead and increases toward the ridge. The total 8 component of

radiated field was computed and normalized by the same field component for a flat perfectly

conducting ground. The pattern was computed at a range of 100 km. The 8 component

of field shows a larger perturbation than the vertical component used in the contour plots.

Also, the greater resolution with 0.1 degree increments in 8 maC:es the caustic more evident.

Radiation patterns for a perfectly conducting ridge are shown in Fig. 7. The conductivity
is seen to have a substantial effect on the field.
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Another effect that can be examir, ed with the GO model is that of curvature of

the terrain surface normal to the plane of propagation. The two dimensional Gaussian
ridge was modeled in the GO code as a long strip, one cell wide and many cells long,
to take advantage of the two dimensional geometry. This model is easily modified to
introduce curvature in the transverse direction, while the code still scans an essentially
two dimensional model. The effect of transverse curvature is to increase the divergence
of the reflected ray and hence reduce the strength of the scattered field. In Fig. 8 the
field scattered by the two dimensional Gaussian ridge is compared with that scattered by

• a round Gaussian hill having the same cross section. The added ray divergence is seen
to reduce the scattered field by a factor of about two for high angles of incidence. The
difference disappears toward grazing incidence. This result indicates that a coLTection may
be needed for models that can only treat two-dimensional terrain.

Radiation patterns of E0 for a short vertical dipole on the surface of the ground,
500 ni from a round Gaussian hill of height 150 m and width w = 500 m ,are shown in
Fig. 9. Similar patterns for E_ due to a horizontal dipole are shown in F!g. !0. The
ground parameters were eg = 10, a = 0.01 S/m and the dipoles had a current moment of 1
Amp-m. Although the reflection coefficient is generally larger for horizontal polarization,
the scattering from the hill, at low fiequencies, is larger for vertical polarization. This is
because the out of phase image of the horizontal source results in a smaller incident field
on the hill than for the vertical source. With the source on the ground, the source and its
image in the ground coincide. The direct and image contributions were traced as a single
ray to the hill. As/9 increases beyond about 58 degrees the middle ray, as shown in Fig. 2,
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becomes blocked, and only the ray from the source and that reflected near the top of the
hill reach the receiver• The latter is weakened by a large divergence near grazing incidence.
Hence just before total shadowing the field is that for the source on a flat ground plane.

Thestair-step effect near grazing incidence on tho hill is a result of the calculation of
the divergence factor for the triangular ray tubes• As the specular point moves toward the
top of the hill it crosses triangles with the base alternately toward or away from the source.
As the ray tube divergence transverse to the plane Of propagation decreases toward t_ ,-
point of grazing incidence the triangles with the base away from the source have smai;:,,"
arenas than those with base toward the source. This effect would be less noticeable if t,h:
ray was not incident normal to the edges of the triangles.

Radiation patterns are shown in Figures 11 and 12 for the vertical and horizontal
dipole sources of Figures 9 and :L0 elevated 100 m above the ground. The effect for
either polarization is to greatly increase the field scattered from the hill. With this source
elevation the ray reflecting closest to the source does not undergo a second reflection from
the hill. Also, the middle ray shown in Fig. 2 does not be,'ome blocked by the hill top as
it did with the source on the ground. Instead it merges with the lower ray in a second
caustic around 0 = 53 degrees. Beyond this angl e only the direct ray from the source and
the ray reflected near the top of the hill reach the source. Since the latter is weakenedby
divergence, the field just before total shadowing is that of the source in free space.

,

The patterns for the source and hill configurations of Figures 9 through 12 are plotted
in Figures 13 through 16 normalized to the field of the same source over flat ground.

Conclusion

The problem of modeling the radiation from HF antennas sited in irregular terrain has
been investigated. This study was part of an ongoing project to characterize terrain effects
at HF. The primary interest is in skywave communication involving an.*.exmas near hills,
valleys and cliffs. Methods considered for modeling include geometrical optics, Geometrical

Theory of Diffraction, surface integration (physical optics), Volterra integral equations for
field propagation, integral equations for surface currents and finite-difference time domain
solutions.

A computer code was developed to apply GO for modeling arbitrary terrain surfaces.
The method of ray launching, developed by Mittra and Rushdi [1], was extended to treat
concave and convex surfaces with finite conductivity. This cede is capable of modeling three
dimensional terrain and is expected to provide useable predictions for field in illuminated
regions. The lack of surface wave a_.d diffraction limits the accuracy of GO for radiation
angles grazing the ground. The code yields zero field in shadow regions. At present, only
singly reflected rays are traced, although for a source on the grotmd surface, outside of the
arbitrary terrain grid, the ray from the source and its image can be traced as a single ray.
Extension of this code to trace at least doubly reflected rays should be considered in the
future.
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A source cannot be located on the arbitrary terrain surface in the GO model, since
the interpolation formulas would fail. For the results shown here with a source on the
surface, the source was located over flat ground, outside of the region of irregular terrain.
The arbitrary terrain model can be used with a source on the surface and a distant receiver
by invoking reciprocity and tracing the ray from the receiver to the source at the surface.
This would require some simple changes in the present code. If the point on the surface is
on a curve, such as the side or top of a hill, the radius of curvature must be much larger
than the wavelength for GO to be valid. The model would still have limited usefulness in
this case, since there would be total shadowing beyond 90 degrees from the surface normal.

The GO code was tested for an antenna near a Gaussian hill or ridge. Results were
generally in agreement with those of Berry [5] obtained by integrating the surface fields

• from the solution of a Volterra integral equation. However, the GO result for the interfer-
ence pattern produced by the ridge ends abruptly at a caustic surface, while Bevy sho_vs
the pattern extending somewhat in front of the ridge. The integral equation solution gives
a valid result in the shadow of the ridge, where the GO field is zero. A significant difference
was seen between the scattering by a ridge with the conductivity of moderately good earth
and a perfectly conducting surface. Also, the transverse compm_.ent of curvature on a hill,
as compared to a two dimensional ridge, was shown to be important at high angles of
incidence.

There are a number of further developments that should be considered for the GO
code to make it a more generally useful modeling tool. The need for multiple reflections
and the capability of locating a source on the terrain surface were mentioned above. Also,
the reflection coefficients could be modified to take account of surface roughness, using
results from [42]. Diffracted fields at either single or multiple edges would be a valuable
addition to predict fields in regions where the source is shadowed by the terrain. Diffraction
would greatly increase the complexity of the code, however.

Practical applications of this code will require actual HF antennas as a source, rather
than the infinitesimal dipole that was used here. The source field is supplied by a single
subroutine that could easily be replaced by a routine to compute radiated field of a current
distribution supplied by an antenna modeling code such as NEC. A procedure to transform
currents computed on a flat ground plane to an inclined surface of irregular terrain is given
as an appendix to this report. Also, a convenient means of entering the terrain profile is
needed. In the present code the elevations and normal vectors describing the terrain
are generated in a subroutine from a mathematical function. A number of these terrain
subroutines can be included in the code and selected by an input parameter. For practical
use, a means is needed for entering real terrain data, possibly using a CAD program.

Due to the complexity of the terrain modeling problem and the variety of conditions
that may occur, neither the GO code nor other techniques discussed appear capable of
treating ali cases of interest. Other models, based on the Volterra integral equation,
GTD and the finite-difference time domain solution should be developed and validated for
a variety of antenna siting problems• In addition to determining appropriate modeling
techniques, the acceptable levels of error must be established, taking into account such
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factors as magnitude of the terrain effect, the uncertainty in terrain profile measurements
and the requirements for modeling the communication link.

An important step in developing and validating such models is comparison with mea-
sured data. Little experimental data is now available on radiation from antennes in irreg-
ular terrain. A measurement program is being undertaken on another part of this project
_'or the U. S. Navy. The results of the GO code and other ava:lable models will be com-
pared with this data when it is available. More measured data appears to be available for
ground wave propagation than for skywave. Bach Andersen [43] measured ground wave
and low-angle skywave for varying distances from a coastline at 14 and 25 MHz. Ott, et
al. [27, 44] published a comparison of measurements with results from the Volterra inte-
gral equation solution for ground wave propagation at 6(} and 0.74 MHz over a mixed land
and sea path. Knight and Thoday [35] measured low angle skywave at 0.845 MHz near a
coastline. Also, Barker_ Taylor and Hagn [45] measured the radiation patterns of several
field-expedient HF antennas over various types of terrain, including hills.

Validation of models for terrain effects is probably at least as difficult as the mode J,
development, due to the di_cult_es and uncertainties in characterizing the terrain and ma£'-
ing measurements. A lot more work will be needed to develop an adequate set of modeling
tools and to validate them and gain experience in terrain modeling and measurement.
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APPENDIX

Transformation of an Antenna from
Horizontal Ground to the Terrain Surt'ace

While irregular terrain may have important effects on antenna radiation, the current
distribution of the antenna on a locally smooth surface may be close to that for the same
antenna on flat ground. With this assumption, the antenna currents can be determined
with a code such as NEC that will model antennas on a flat ground plane. Since the
ground plane in NEC is the x-y plane, the antenna currents must be transformed to
the terrain surface and reoriented with respect to the local terrain normal. One way
to accomplish this transformation might be with a CAD program under user control.
However, a predetermined transformation could give a more accurate orientation, and
wou]d be essential without a CAD system.

For the transfo:mation given here it is assumed that the antenna is modeled in the
NEC coordinate system on a ground surface in the x-y plane and is located with respect
to the origin of that coordinate system. The antenna is transformed to a specified point
(xr, yt) in the terrain coordinate system with the z direction in the NEC coordinates being
aligned with the local normal on the terrain. In addition, a line specified by the angle Ct
in the x-y plane of the NEC coordinates will lie on a level contour of the terrain surface,
pointing to the right when an observer faces down hill.

If the terrain surface is defined as z = h(z, y) the unit normal vector is

Oh(z,y). Oh(z,y)
_(x, t/) = O= z Oy ') + _"
_(x, y) = _i1,_1= n_(x, y)_ + ny(z, y)_ + n,(z,y)_

= sin 8. cos ¢. _ + sin 8. sin ¢. t) + cos en i.

Then to transform the NEC origin to the point (zt, yt, zt) on the terrain surface, where
zt = h( zt , yt ), define

Ct = cosCt
& = sin Ct

Ce= cose. = n,(zt,yt)
lr

5'e= sinen = %/1- na,(=t,yt)
C_ = cos ¢,, = n.(x,, yt)/sin 0.

S_ = sin ¢. = ny(zt, Vr) sin O,.

The NEC coordinates are first rotated so that the line defined by Ct lies along the
negative y axis. Thus the point (x0, Y0, z0) is transformed as

Zl z0
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Next the z axis is rotated toward x by 0.

y2 = 0 1 0 yl
z2 -So 0 Co zl

aad then the new x axis is rotated toward y by ¢.

v3 = S, C_ 0 v2 •
za 0 0 i z2

P

Combining these rotations with a translation to the point (zt, y,, zt) on the terrain surface,
the point (x0, y0, z0) in the NEC coordinates transforms to the point (xa, Va, za) in the
terrain coordinates where

() ( , )() ()x_ -c_co& + s,c_ c, coc_+ s_& c, so =o =,
va -S_Co&- C,Ct S,CoC,-C_& S_So vo + v,_. So& -SoCt Co zo z,
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