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COMPARISON OF EQUATIONS FOR THE FDTD SOLUTION
IN ANISOTROPIC AND DISPERSIVE MEDIA *

G. J. Burke and D. J. Steich
Lawrence Liverrnore National Laboratory

P.O. Box 5504, L-156, Liverrnore, CA 94550

I. Introduction

The finite-difference time-domain (FDTD) solution procedure developed by Yee [1], has in
recent years been extended to dispersive and anisotropic media to handle materials such as mag-
netized ferrites and plasmas. The solution for dispersive media has been accomplished through
a recursive update of a convolution integml in the constitutive relations for the fields [2], [3], [4],
[5], by numerical solution of the differential equation form of the constitutive relations [6], [7] and
using Z transforms [8]. The extension of the recursive convolution (RC) method to gyrotropic
materials, which are both dispersive and anisotropic, was developed in [9] and [10] where it was
applied to ID problems. The anisotropic media results in coupling of field components and the
need for averaging to obtain field components at locations where they are not directly available
in the Yee formulation. The RC solution for pyotropic media is reviewed in [4], imd results vali-
dating the method are also given. The solution was developed for 3D Gyrotropic materials in [11]
for a ferrite with biasing field in an arbitrary direction, and the issue of minimizing the storage
added by the recursive convolution evaluation was also considered there. A piecewise linear RC
method has also been developed that is more accurate than the pulse approximation considered
here [12].

In published work on dispersive material there are some differences in the equations resulting
from application of the RC method. The time derivative of the convolution integral can involve the
derivative of the field, or integrating by parts can put the derivative on the susceptibility function.
Reduction of these two results to discrete form leads to slightly different update equations. Also,
the choice of the evaluation time and integration limit of the convolution integral can lead to
differences in the discrete update equation. These different forms of the solution are compared
here for accuracy and stability for time increments approaching the Courant limit. It is found that
slightly greater accuracy and greater stability are obtained with the convolution evaluated at the
time of the equation, a half step before the field being evaluated, using a pulse approximation of
the integral ending in a half pulse. Modifications of this result lead to somewhat simpler but less
stable equations. In the case that the susceptibility function starts at zero for time equal to zero
the equations for tisotropic and dispersive material simplify greatly, requiring only the addition
of the RC term to the normal FDTD equations, without further coupling of the field components.
While 3D solutions are considered here, the accuracy and stability are demonstrated for the ID
problem of normal incidence on a slab of ferrite or plasma with biasing field in the direction of
propagation, since simple analytic solutions are available for this problem.
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II. Equations for Gyrotropic Media

Themlution fortisotropic md&spemive mWeticmaterid till becomidered here. The
magnetic field update equation for such material is obtained by combining the Maxwell’s equation
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and the equation relating B and H in convolution form

[/ 1B(t) = PO H(t) + t ~m(t – T) “H(7) dr (2)
o

where ~m(t) is the susceptibility tensor representing the impulse response of the material. In the
usual convention, equation (1) is solved together with the equation a3E/& = V x H with E
evaluated at integral time steps nAt, and H and B evaluated at half time steps (n+ l/2) At. The
time derivatives in Maxwell’s equations are approximated with central differences so that E and
H can be computed in a leap-frog scheme in time.

Equation (2) can be reduced to discrete form by assuming that H(t) is constant with value
H“+1J2 for nAt < t < (n+ l)At with the result
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If the integrals over ~m(T’) are also approximated by sums of pulses the result for B“+1J2 is

With a similar representation for B ~-lt2 the central difference approximation of OB (t)/& in
equation (1) leads to the update equation

where

W’= ‘~ [~m[(n – i)At] – ~m[(n– i – l)At]] “@+l/2. (4)
i=o

In the recursive convolution solution the elements of the susceptibility tensor are sums of ex-
ponential, Xij = ~~ Uijtc?bft, in which case W in (4) can be updated by a simple recursion
relation

q+l = ~~At– 1) =f oHn+l/2,ebCAt*? + (e V:=() (5)



A result differing somewhat from equation (3) can be obtained by evaluating the derivative
of equation (2) as

or, integrating by parts, as

[

‘d=;JW)=PO +W)+i(o) “W)+ ~ ~x(t -T) “ H(T) dT] .

(6)
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Converting equation (6) to discrete form with a pulse approximation of the integral leads to a
result close to that of equation (3). Starting with equation (7) and representing 8H(t)/& with a
central difference and %(O)”H(nAt) with an average of H from times (n – I/2)At and (n+ l/2) A-t
leads to an equation similar to (3), but with Wn replaced by At il?m where the prime indicates a
derivative and

Q’n = s%[(n-~- #A~l .~+l/2.
i=o

Somewhat different results can also be obtained for equation (3) from different interpretations
of the pulse approximation of the integral, or in the equation derived from equation (7) by using
the value at the forward or back time step rather than the average for H(nAt). In fact, adding
the same small quantity to both square-bracketed terms in (3) results in a second-order change
in the product multiplying H ~-112 and relatively small changes in the solution. Hence equation
(3) can be reduced to

H~+l/2 = ~+ At~m(0)]-l . (Hn-1/2 - AtI!?n - & X E“) (8)

by adding (At/2)~(0) to both coefficients, or by subtracting the same quantity

H~+l/2 = [i – At~m(0)] . H“-1/2 – AtI&”– $&x En. (9)

These modifications of equation (3) result in small errors when the elements of At~(0) have
magnitudes much less than one, as demonstrated in the next section, but the solutions show
increased late-time instability when At is near the Courant limit. Equation (9) seems to be a

‘1/2 in averaging for field components in thenicer form for solving, but it still mixes values of H~
product with the tensor. The evzduation of a single vector component of the product of a tensor
and V x E involves 36 field components in the Yee cell, but this can be reduced to 20 components
by combining and canceling terms.

When ~(0) = O,which occurs in materials such as Lorentz dielectrics, equations (3), (8) and
(9) all reduce to the simpler and easier to use form

(lo)



The above discussion has assumed total fields. The generali~tion of equation (3) for separate

incident and scattered fields is

[
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where Hi is the incident field, which satisfies Maxwell’s equations for free space everywhere in
the problem space, and

Wg = ‘f [Zml(n – OAtl – %l(n – i – I)At]] “H;+l’2.

i=o

The convolution integral with Hi can be evaluated analytically for some special incident field
functiom [5], or otherwise is evaluated numerically along with the scattered field.

III. Results

The FDTD solutionfor gyrotropic media was validatedfor a plane wave norrmdly incident
on a ferrite slab with the biasing magnetic fieldin the dhectionof propagation, along the z axis.
This problemwas also solvedin [4] and [9], and is chosen because the reflection and transmission

..

coefficients for the slab are available in simple analytic form. In this c~e a 3D code W* wrltten~
using the equations from the preceding section.

Codes solving equations (3), (8) and (9) were

compared for accuracy and stability with time increments approaching the Courant limit. Since
a plane wave propagating through the ferrite in the direction of the bksing field splits into right-
hand and left-hand circularly polarized waves with different propagation constants, the problem

space was terminated in even-symmetry boundmy conditions in both z and y boundq planes.
In the direction of propagation z the problem space was made large enough to gate out reflections,
thus eliminating the boundary conditions as a source of error.

The components of the susceptibility tensor ~(t) for the ferrite are

{--#&expl~!}U(t)
Xll(t) = x22(0= R.e

x12(t) = –X21(O=Re{*exp~~~} U(t).

where U(t) is the unit step function.
The parameters of the ferrite modeled here were

wo =(27r) “20 x 109 rad/s

Um 427r). 10 x 109 rad/s

Q =0.1

Results from solving equation (3) for thk ferrite with Ax = 75(10-6) m and At
= Ax/(2cfi)

with 6000 time steps are shown in Figure 1.
The source was a Gaussim-pdse plane wave with



full-width-half-max equal to 0.001 m. Since the solutions uniform in the z andy directions
the problem was solved with 3 cells in x and y and 4000 cells i~ z to eliminate the radiating
boundaries, and the ferrite filled 50 cells (k = 2000 through 2049) for a thickness of 0.00375
m. The reflection and transmission coefficients were obtained by numerical deconvolution of the
reflected fields, with right and left-hand circular polarizations obtained as

R,.*(U) = R@)+ ~%1(~)

andI
I-&(u)= R&(w)– jlij(u).

In Figure 1 the magnitudes of the numerically determined reflection md transmission coefficients
for left-hand polarization are compared with the exact results, and the relative errors in the
complex quantities are also shown. The error increases with frequency due mainly to dispersion
in the FDTD mesh. Although these results were obtained with a 3D code for which the Courant
limit is At < Az/cfi the problem is actually lD. As a rewdt At can be extended to the lD
Gourant limit of Ax/c, and the resulting dispersion errors in solving equation (3) are reduced by
one to two orders of magnitude above about 200 GHz.

The errors horn solving the simpler equations (8) and (9) are compared with the errors from
equation (3) in Figure 2 for At = Ax/2cn. Below about 100 GHz equations (8) and (9) yield
slightly higher error than (3). Above 100 GHz the results of equation (8) have slightly lower
error than (3) for reflected field while all errors become the same for transmitted field. Solving
equations (8) or (9) at the Courant limit of At = Ax/c resulted in a rapid blowup in the ferrite,
as shown in Figure 3. Equation (3) also became unstable at late time with At = Ax/c, but the
instability did not become significant until after about 4000 time steps, which was late enough
to get useful results. The fields plotted in Figure 3 were at 60 cells in front of the ferrite slab.
When the solution of equation (8) was stopped at t = 0.15 ns the field in the ferrite was over
1013. With At = Az/cfi equation (8) still showed an instability at a reduced rate, as shown in
Figure 4. No significant instability was seen in equation (3) at this At. Equation (9) showed a
stability klose to that of equation (8). The equation derived with using equation (7), which was
used in [13], yielded about a factor of two lower error than equation (3) below 50 GHz and the
errors were identical at higher frequencies. Stability of this equation was also similar to (3).

IV. Conclusion

The recursive-convolution solution for anisotropic and dispersive media was seen to yield
accurate results for reflection from ferrite slabs up to a frequency limit set by the sampling
interval. Depending on the application, the results shown might be considered usable up to about
300 GHz, which corresponds to about 13 cells per wavelength. Results at still higher frequencies
might be usable when a time delay or frequency shift due to dispersion can be tolerated.

Several different forms of the update equations were considered which can result from different
approximations in reducing the continuous equations to discrete form. Equation (3) and the
alternate form derived with equation (7), and used in [13], result from direct application of
the pulse approximations of the fields and susceptibilities, and differ only in the way that the
time derivative of the convolution integral is approximated. Equations (8) and (9) are siinilar
to equation (3) with the limit of the convolution interval shifted by a half time step. These

1



equations correspond to the different forms for a conductive medhun when the field multiplying
the conductivity is taken as the forward or back value in time or the average. Equation (3) was
found to be more stable than (8) or (9), and slightly more accurate at low frequencies. Since
equation (9) does not involve a tensor multiplying the curl operation it could be considerably
faster to evaluate.
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Fig. 1. Magnitud= of the left-hind polarized reflection snd transmission coefficients for
normal incidence of a plsne wave on a ferrite slab from the FDTD solution are compared
with the exact solutions. The relative errors in the complex quantities are also shown.

-1

I Eq. (3)

------ Eq. (8)
——— Eq. (9) I

1

lE-4
I

I I I

❑ lBB 200 300 400

frequency (GHz)

1 I t

.1 I t t

G.-
.01 : /

~

$.-
3!.001

.

lE-4 I
I

0 20 40 60

Fig. 2. Relative errors in the complex reflection and transmission coefficients from solving
equatiom (3), (8) and (8) for normal incidence on a ferrite slab with At = Ax/2c@



2.0 ‘ I I I I

1.5

1.01
0.5-

.1

Q“ 0

w
-e.5-

\
-i, a-

I-1.5
Equation 3

-z.n~
0 0.5 1.0 1.5 2.0

Time (na)

25 1 I I I I t

20-

ls -

10-

5-

mn~
-5-

-10-

-20 I I I I
0.10 0.11 0.12 0.13 0.14 0.15

Time (ns)
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