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1. INTRODUCTION

The title covers a very broad area of both experimental and theoretical studies. The

common characteristic of heavy-ion collisions at these energies, compared to what is

usually se¢n at higher energies, is the important interplay between different reaction

channels or internal degrees of freeAiom. The couplings between the various channels can

result in important multistep contributions to a given channel. These often have to be

i_ treated explicitly, for example by solving the appropriate set of coupled equations. In

contrast, at higher energies the effects of these couplings frequently can be represented in

a simple, average way, as is done when one introduces an imaginary part to the optical

!)!!i!: potential for elastic scattering.

At first, it might be thought that the possible importance of multistep transitions

would be a strong disadvantage of working at these energies. However, although the

analysis of the data becomes more complicated, the study of these terms and their

interferences can be a rich source of information. In particular, it can tell us, indirectly,

something about transit_ionsbetween two excited states.

Overviews of some of these phenomena have been presented elsewhere 1,2); here I

have selected two topics as representative. Even then I cannot go into much detail, so

perhaps this paper is best regarded as providing some references as the starting point for
a literature search!
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2. MULTISTEP EFFECTS IN SOME NUCLEAR REAUI'IONS

At high energies, when there is a good overlap between the entrance and exit

channels, a reaction such as inelastic scattering or nucleon transfer can be described as a

one-step process; i.e. it is a direct reaction 3). The other open channels primarily result

in some absorption of the flux, which can be described in an average way by allowing

optical and transition potentials to have imaginary parts.

However, these interchannel couplings may become very important as the

bombarding energy approaches the top of the Coulomb barrier and the scattering

becomes more adiabatic. One aspect of this to which much attention has been paid

recently is the so-called "threshold anomaly ''2) observed for elastic scattering and also,

in at least one case, for inelastic scattering. (The enhancement of sub.barrier fusionl, 2)

,!.!_. is another aspect of the same phenomenon.) Here we can think of the two ions

polarizing each other as they approach, and we have been able to make considerable

progress with a simple description in terms of the optical model, provided one allows a

strong energy dependence for the parameters. An important constraint can be imposed

on this energy dependence by invoking a dispersion relation between the real and

imaginary parts of the interaction2,5). Even here, however, a deeper (or, at least,

different!) understanding may be obtained by a coupled-channels analysis 6) which treats

the various channels explicitly.

i_ The 170 + 208pb provides an interesting example, in which the 0.87 MeV, 1/2+;

excited state of the valence neutron in 170 plays an important role 7) (Figs. 1 and 2):

Transfer of this neutron to the 208pb target is greatly facilitated by first exciting it from

!t._,. the 0d5/2 orbit it occupies in the ground state into the weakly bound lsl/2 orbit, which

, may then provide a better overlap with the final 209pb orbitals. The strong effects seen

(Fig. 1) at the barrier top persist in weakened form at higher energies (Fig. 2), where

they are mainly characterized by a shift to smaller angles of the angular Ctistribution

peaks for the neutron transfer. Similar shifts have been observed in a number of heavy-

ion transfer reactions, both neutron and proton.

Another "anomaly" that has been observed recently in some experiments at S_o

Paulo, 8) occurs in the excitation of the 2_' state of 92Zr by 160. Figure 3 shows the

angular distribution at 56 MeV, with a pronounced Coulomb-nuclear interference pattern

that could not be reproduced by using the standard collective model interaction3). Even

large deviations from the standard model did not provide a satisfactory fit, until a two-

step amplitude was introduced by giving the 2+ state a quadrupole moment and thus

allowing it totbe reoriented after it had been excited. While the direct (one-step) nuclear
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It is hoped thata particle-7 angular correlation measurement on this reaction,

planned at Oak Ridge, will throw more light on file reaction mechanism by telling us the

populations of the various magnetic substates9). In addition, some preliminary coupled-

channels calculations 10) indicate that the couplings to various nucleon transfer channels

do have the same kinds of effects as the introduction of reorientation, but much work

remains to be done. It is also noteworthy that, although neutron transfer data could not

be extracted from these 160 + 92Zr measurements, they were obtained from similar

studies of 180 + 92Zr at 54.7 MeV, and the angular distributions ali show marked shifts

in angle, compared to the one-step theory, analogous to those shown in Fig. 2. There is

also a long history of "anomalous" angular distributions being observed for the inelastic

excitation of the 2_"state of 180 (see 11) for a recent example and other references).

•,. Although it was suggested long ago 12) that these anomalies were due to couplings to

neutron transfer channels, a fully satisfactory account of these data has not yet been

given.

3. LOW-ENERGY SHAPE RESONANCES AND AMBIGUITIES IN THE
ION-ION POTENTIAL

What kind of optical potential is appropriate for the interaction o¢ two nuclei?

Crudely, is the real potential "deep" or "shallow"? Strong absorption usually obscures

i_ (or renders irrelevant) the answer to this question for heavy systems, when the

scattering is sensitive only to the potential at large distances in the vicinity of some

strong absorption radius (typically - 1.5(AI/3+A_13) fm). However, optical model

:I!'i! analysis of the scattering of lighter systems, such as 12C + 160, has implied some

sensitivity to the real potential at small radii 13) Residual rainbow phenome_la are

observed in their elastic scattering angular distributions at higher energies (e.g. 160 +

160 at 350 MeV 14): see Fig. 5). These data require deep real potentials (e.g. of order

200 MeV deep t_ar12C + 12C, 300 MeV for 160 + 160, at small radii). In favourable

circumstances, these observations can determine the potential unambiguously, just as

was found much earlier for alphas scattering from nucle_.15). The deep real potentials

that are needed are similar to those obtained by simply folding some reasonable effective

nucleon-nucleon interaction over the density distributions of the two nucleil 6).

lt becomes much more difficult to obtain this kind of information unambiguously

as the bombarding energy is reduced 17), but another source becomes available as the

Coulomb barrier is approached. Here one observes individual partial-wave
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resonances 18,19) which may be interpreted as shape (or quasi..molecular) resonances in

the real potential. (In practice, such resonances are often fragmented into fine structure,

sothat shape resonances only provide the average behaviour.) This interpretation is an

extension to the continuum of the cluster model that has often been applied successfully

to describe the bound states of the combined system 18-20).

A critical constraint is that these quasi-molecular states, bound or resonant, should

i_r'_ satisfy the Pauli principle under exchange of nucleons between the two constituent

clusters. This requires that the wavefunction of relative motion of the two clusters

should have more than a certain number n of radial nodes20), sometimes called the

:_!!" Wildermuth condition21). The simple harmonic-oscillator shell model provides a first

guess; for example, we must have N = 2n + L > 20 for those states in 32S with spin L

which are interpreted as having an 160 + 160 cluster structure, in order for them to be

properly antisyrnmetrized. (More realistic models 22) indicate that we should require N

> 24 for this system.) In turn, if these (n,L) relative motion states are to be generated by

a potential weil, the well must be deep enough to sustain this number of nodes (see Fig.

6). Indeed, the potential depths required do turn out to be "deep", and similar to those

needed to explain the rainbow effects observed in the scattering of the same two cluster

nuclei at much higher energies 23) (see Fig. 7).

The 160 + 160 system is a favourable one because of the relatively closed-shell

nature of 160, and the results obtained so far22,23) have established some general

properties that a local, ion-ion potential must have in order to explain the scattering at

both low and high energies. However, much work remains to be done, both for this
l!:,:
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system and bthers, such as 12C + 12C for which high-energy scattering establishes 13) a

residual "rainbow" phenomenon and for which extensive studies of the bound-state

cluster structure have been made 24). There is also much data for non-identical

systems, such as 160 + 12C, awaiting analysis in this way.

Description of the bound states in cluster terms often requires allowing one or both

of the clusters also to be in excited states24). It is the coupling to these channels that can

provide the fine structure of the quasi-molecular resonances seen in the elastic scattering,

;'.,_; another example of the importance of channel couplings at low energies. (Of course,

there is not a unique cluster structure for a given nucleus, and different states may

require the assumption of different cluster pairs. These may also be coupled to each

!t!'! other, providing further fine structure, although I am not aware of any calculations
• ,

taking this into account. At high energies, ali these channels mainly contribute to

absorption from the elastic channel which can be represented by an imaginary

potential.)
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Another interesting question is, how heavy a system can these ideas be applied to?

For example, resonant-like behaviour has been observed 25) for systems like 24Mg +

24Mg and 28Si + 28Si..ks the nuclei become heavier, the number of important internal

degrees of freedom (and hence available channels) becomes larger. Then the many

couplings between them tend to fragment the simple cluster states or resonances more

and more, so that they become unrecognizable. (At the higher energies, this results in

the scattering be,coming more absorptive so that phenomena izke residual rainbows are

completely damped.) Even the addition of one or two neutrons, e.g. as in 30Si + 28Si,

can "loosen up" the system sufficiently for these features to go away 25) (see Fig. 8).

......, _ Fig. 8. Comparison of elastic data
I I for similar identical and nonidentical

\ t' ' - systems. (From Ref. 25.)
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4. FINAL REMARKS

Clearly the study of heavy-ion interactions at low energies requires more than a

one-shot measurement of, say, an angular distribution and the use of the DWBA 3) to

immediately extract a deformation parameter or a spectroscopic factor. The variation of

experimental results with bombarding energy is a critical feature (for example, in

establishing a "threshold anomaly" 1,2), or in seeing continuity between low and higher



energy results 17,23)).

Furthermore, we need to correlate different kinds of data for a given system, for

example, to reproduce simultaneously data for elastic scattering and sub-barrier

fusion26). Explicit data for nonelastic channels (transfer, inelastic) are also needed in

order to judge the relative imlxJlxance of different processes27).

Ali of this implies much more intensive work, both experimentally and

theoretically, but this is a rich field, and I think the possible rewards make it

, worthwhile.
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