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PREFACE

Nuclear data research is conducted for the purpose of producing the
nuclear information which is needed for those technologies that are based
upon fundamental nuclear processes. Examples of these technologies are the
production of energy via fission and fusion reactors. This field of
endeavor has developed because the needs are of a quantitative nature, and
meeting them often requires investigative effort which differs considerably
in style from that expended in the conduct of basic nuclear research.

Since there is a strong emphasis on quantitative matters, it follows
that investigators in this field should be very concerned with the accuracy
of their work. Indeed, workers in this field have been quite aware of the
need for good accuracy from the beginning, but it is rather surprising that
there has been very little disciplined effort directed toward its proper
assessment until recent times. About a decade or so ago, nuclear data
evaluators began to explicitly focus on this issue, and steps were taken to
define and deal with the problems. Evaluators began by addressing the
matter of improving those methods which they use in data evaluation. Soon,
however, it became clear that this effort would be of limited value unless
data measurers improved the methods they employ to analyze their data and
report their results, especially with regard to the matter of errors.
Today, most experimentalists in the field are aware of this concern, and
many appear to be making serious attempts to deal with it.

There has been considerable confusion regarding procedures for
estimating nuclear data errors, and for including them in data analysis
and evaluation manipulations. This had led to disagreements and even to
some obvious mistakes. In fairness to workers in the field, it is not a
trivial issue. Nuclear data studies are very involved, and the results
reported are generally abstract quantities whose derivation from measured
data is complex and indirect. Part of the blame does rest, however, with
the nuclear data researchers themselves. The assessment of accuracy in
research endeavors requires that certain rigorous mathematical methods be
used, and many investigators do not seem to appreciate this to the extent
that they should.

Similar methods have been used in several other fields.. An exanple of
one such field is medical research, especially with regard to the
development and testing of new drugs and medical procedures. The
possibilities for adverse social impact in this area can be very
intimidating. A situation where this was clearly demonstrated is the;
well-known case of the drug Thalidomide which was found several years ago
to be linked to the occurrence of a number of very serious birth defects.
Current standards of medical research effectively dictate that as much
effort be devoted to assessing the reliability and potential side effects
of a treatment or medication as normally is involved in its discovery and
development.
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Ihe accident at the Three-Mile-Island nuclear electric generating
station in the U.S.A. apparently has produced more significant adverse
economic consequences than actual social consequences; nevertheless, the
general public continues to regard this event more from the point of view
of its social impact. The subsequent, more serious accident at the
Chernobyl plant in the Soviet Union has apparently produced significant
consequences for the local populations and it. has solidified world-wide
concern over the matter of nuclear reactor safety. The nuclear industry
will not be permitted to proceed in the development of this energy source
unless it adheres to the highest conceivable standards of quality and
safety, and can convince the public that it is doing so. Nuclear data
researchers must recognize and heed this unmistakable message from society,
and therefore willingly accept direct social responsibility for the quality
of their work. There is an indisputable link between the quality of
nuclear data and the safety and economic viability of nuclear energy
sources.

Nuclear data researchers who are motivated to learn about the
aathematical tools needed to deal with this subject can, in principle,
garner what they need from the literature. Several documents have been
prepared to help busy workers gain some proficiency in this area (e.g., Smi
81 and Nan 81). These pragmatic references are very useful, but since they
were produced as explicit "how-to-do-it" guides, they do not alone offer
potential readers the possibility for acquiring much depth of understanding
of the subject. I do not believe that researchers in this field need to
pursue all the details of mathematical rigor which might be appropriate for
an advanced academic course, but they ought to acquire a better
understanding of the principles which form a basis for the methods which
they will use than can be gained from reading only "cookbook" treatments.
It would certainly be desirable if investigators in the field of nuclear
data could achieve an adequate perspective of this subject through the
study of material which had been prepared with their interests in mind.
Unfortunately, there does not seem to be a great deal of suitable material
available in the literature. It is my intent to address this deficiency by
means of this report, and others to follow in this series.

I believe that the subject of errors (or uncertainties, as many
individuals prefer to call them) cannot be addressed to the exclusion of
related technical topics. The terms "probability," "statistics.," and
"error" appear together in a variety of contexts. The distinctions between
them are apparently not widely understood by nuclear data researchers. A
major objective of this project is to try to clarify these matters for the
benefit of this community of investigators. I think that it is worthwhile
to make a qualitative attempt in this regard at an early stage in the
development of this topic so that the reader will understand the need to
investigate certain topics which he might otherwise believe are irrelevant
to his main interests. It is known that measurements do not lead to unique
outcomes. Repeated attempts at the same experiment tend to produce varying
results. The outcome of any experiment is, in the final analysis, governed
to a large extent by probability. Error is the term which designates the
dispersion or spread of possible results one can expect to observe from
experimentation. Probability cannot be measured directly, so one is forced
to estimate the esstMitial features of srobability distributions from the



analysis of accumulated observable results. This activity constitutes what
is referred to as statistics. There are benefits to be gained from
studying these concepts in a unified fashion. Recipes for performing
certain routine analyses are seen to be related, in terms of the underlying
theory. It is then much easier to remember them. It is suggested,
therefore, that the interested reader should invest some effort and time
learning the foundations of the subject in order to save time and avoid
confusion later on when called upon to apply this knowledge under a variety
of practical circumstances.

I have chosen to proceed in gradual stages toward my objective of
providing a broad exposition of this subject. The present report
constitutes the first step. I begin by discussing various aspects of
probability theory, since it is basic to all other areas. My treatment of
this subject is not intended to be a comprehensive treatise or review. It
covers only what appear to me to be the more important concepts, presented
from a point of view which should be familiar to nuclear data researchers.
I make no claim of originality for the included material, but I have
interpreted the well-known concepts as I see fit, consistent with the
needs and interests of the community to which this work (9 dedicated.
Probability theory draws upon material from a number of other
subdisciplines of mathematics. In many instances, I have tacitly assumed
that the reader will be familiar with certain facts and concepts, so they
go unmentioned. In other instances, I allude to requisite or supportive
material, but I have generally tried to avoid delving explicitly into
sticky details in order to ensure that the reader can more easily follow
the essential ideas of the present topic without becoming distracted along
the way.

The approach utilized in this report is explicitly tutorial, and the
style of presentation is informal and narrative by choice. Consequently,
this material should be of value to students of applied nuclear science.
The treatment is not particularly directed toward individuals who are
already experienced in this area. They are likely to be quite familiar
with most of the fundamentals addressed here and no doubt will have
concerns and specific interests which are generally more advanced and
technical than those which are covered in this series. Experimentally
inclined investigators will likely find this material of greater relevance
to their work than their theoretical colleagues. Nevertheless, there are
potentially important theoretical applications for this material which are
not as well exploited as they might be. Therefore, I believe that nuclear
theorists could profit from a study of this work. Mathematicians are
likely to be skeptical of the generally intuitive approach, the
incompleteness, and the lack of emphasis on rigor in this treatment. To
them I offer my apologies. This work was not conceived to serve that
audience.

It is envisioned that this series will ultimately consist of five
distinct volumes, each of which will be made available to the nuclear data
community as a report in the Argorme National Laboratory ANL/NDM report
series when the work is completed. The five general topic areas which are
to be addressed in these separate reports are: i) probability theory, ii)
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properties of probability functions and the nature of error, iii)
Statistical theory, iv) the least-squares method and related topics, and v)
uncertainty analysis in modern nuclear data applications. Since the intent
of this project is to provide a service to the nuclear data community, I
would appreciate receiving from the readers any constructive comments,
suggestions, criticisms, and corrections of errors which are deemed to be
appropriate, in the interest of improving future revisions or reprints of
this material which night be forthcoming.

Donald L. Smith
Argonne, Illinois
December 1988
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NUCLEAR DATA UNCERTAINTIES - I*

BASIC~CgKC|pf|~OF~PROBABILlfY

by

Donald L. Smith
Engineering Physics Division
Argonne National Laboratory
9700 South Cass Avenue
Argonne, Illinois 60439
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ABSTRACT

Some basic concepts of probability theory are presented from a
nuclear-data perspective, In order to provide a foundation for thorough
understanding of the role of uncertainties in nuclear data research. Topics
included in this report are: events, event spaces, calculus of events,
randomness, random variables, random-variable distributions, intuitive and
axiomatic probability, calculus of probability, conditional probability and
independence, probability distributions, binomial and multinomial
probability, Poisson and interval probability, normal probability, the
relationships existing between these probability laws, and Bayes1 theorem.
This treatment emphasizes the practical application of basic mathematical
concepts to nuclear data research, and it includes numerous simple examples.

•This work supported by the U.S. Department of Energy, Energy Research
Programs, under contract W-31-109-Eng-38.



1. INTRODUCTION

The Motivation for undertaking the preparation of this report, and my
approach toward this task, are discussed in the Preface and will not be
repeated again. The basic intent of this work is provision of an exposition
on certain mathematical concepts which I believe are essential to the
understanding of nuclear data errors. This introduction is limited to a
uiscussion of the resource Material used to prepare this report, the
procedure I have followed in writing the report, and the general content of
the report.

I, X Resource,

First, I would like to indicate which published sources of information
have influenced this work. Since there are so many works available on
probability and statistics, my particular selections were, for the most part,
arbitrary. I used two particular sources (Bee 58, Par 60) in undergraduate
courses I had taken as a student a number of years ago. Four other sources
which are available in my personal library (Eva 55, Fis 63, Bev 69, Hil 52)
were also found to be useful for this project. The technical library at
Argonne National Laboratory provided an additional assortment of sources
which have proven to be convenient references (Bur 68, Fel 50, Bas 66, Ash
70, Tuc 67. Zeh 70. Bro 60, Bra 70. Coo 25. Cra 70, Mar 71, Ney 50, Fre 62,
Men 67). The reader is referred to the Bibliography for a complete list of
these sources. I had no particular reasons for limiting the number of
sources considered, other than a shortage of the time required to study them.
Since I found a great deal of redundancy in the content of these sources, it
seemed that this particular sample of documents amply addressed most of the
elementary concepts. This report in no way purports to review the subject.
As a rule, the indicated sources contain little, if any, original material.
In practice, I have resorted to using them only for background information
and not as explicit reservoirs of material for this report. The manner of
presentation, and the examples included here, are of my own choosing.
Consequently, there are but a few explicit references to these published
works in the pages of the present report. It is intended that this report,
and later members of this series, serve as reasonably adequate and
self-contained treatments of the subject rather than merely as guides to the
literature. For the convenience of the reader who wishes to pursue this
topic in greater depth, I have suggested a few sources for further study in
Appendix III.

1.2 Procedure

I am well aware of the fact that most readers for whom this work is
intended das ire to iearn how to estimate and propagate experimental errors
and how to further incorporate error information in evaluations, curve
fitting and other operations involving nuclear data. The many useful
analytical methods which this mathematical discipline provides are strongly
interrelated and, in fact, can be derived from a few rather basic concepts.



The reader who focuses on the methods and fails to recognize and appreciate
the unity and simplicity which the underlying theory provides, will do
himself a disservice. For this reason, there is a strong emphasis in this
work on unifying concepts. However, in recognition of the probable needs of
the readers of this work, uueful procedures are clearly indicated and
illustrated by examples along the way. Important formulas are summarized in
Appendix II, and they are cross referenced to the appropriate sections in the
text where they are introduced and discussed. To save space, I have avoided
numbering many of those expressions or equations to which there are no
references elsewhere in the text. As mentioned above, a guide to additional
reading on selected topics is provided in Appendix H I for the convenience of
the reader. Finally, a topical index is provided at the end of the report.

Selection of adequate notation, and its consistent use, is always
challenging for any work of a mathematical nature. I have attempted to be
reasonably consistent in the use of notation, but there is no expectation
that every reader will be satisfied. The notation employed in this report is
summarized in Appendix I for easy reference. Important terms are underlined
at the point in the text where thei are either first used or are formally
defined. Elsewhere, they appear without underlining. Numbered equations,
figures, tables, and examples are labeled in accordance with the section in
which they are introduced and in the order of their appearance therein.

Treatments of this subject which have been prepared by mathematicians-
and, surprisingly enough, many of those written by and for physicists—tend
to illustrate various statistical concepts by means of examples involving
dice, balls and urns, playing cards, and ether, similar paraphernalia
associated with games of chance. The origins of probability theory derive
from attempts by mathematicians to deal, with games of chance, and traditions
die slowly. Here, I choose to break with this tradition/and use examples
which, in one way or another, pertain to nuclear research." The examples are
generally over-simplified to better illustrate the concepts at hand, but they
will hopefully stimulate the reader to extrapolate to more realistic
situations of particular interest or concern to his own work.

Assimilation of the material in this report generally requires prior
exposure to a number of mathematical procedures which ought to be familiar to
students at the undergraduate level. These include algebra, analytical
geometry, trigonometry, the calculus, and elementary theory of matrices. In
addition, it is assumed that the reader possesses a basic understanding of
physics and of nuclear phenomena, including aspects which are commonly
encountered in the nuclear data field. Most graduate students and
professionals in the nuclear science and nuclear engineering fields will find
that they are sufficiently familiar with these topics for present purposes.

1.3 Content

We begin this report by examining events and event spaces. Elementary
events and compound events are considered. Event algebra, usually referred
to as Boolean algebra, is introduced. Some basic combinatorial theorems and
their roles in the calculus of events are discussed. Next, the concept of
randomness is introduced, and random variables and their functions are



considered. Probability is defined and interpreted in terns of functional
operations on event spaces. Probability theory is approached from both an
intuitive and an axiomatic viewpoint, but little attempt is made to trace the
history of these ideas or to discuss the various controversies which rage to
this day within the community -f mathematicians. Some basic combinatorial
properties of probability are introduced, and the calculation of probability
is considered. Following this is a discussion of other important notions
from probability theory, including the concepts of conditional probability
and independence. Some features of probability distributions are introduced,
including that of multivariate distributions and marginal probability
distributions. Next, several important probrjUility distributions that are
encountered in the field of nuclear data are considered. These are laws
which govern the frequency of occurrence of random events. Emphasis is on
binomial and multinomial probability, Poisson and interval probability, and
normal probability. Relationships between these individual probability laws
are also discussed. Finally, considerable attention is devoted to Bayes'
theorem, its interpretation, and related topics, since this theorem, and the
methods which it has spawned, are very important in the area of nuclear data
evaluation.

This first report does not attempt to address all the important aspects
of probability theory that apply to the field of nuclear data. Discussions
on many of these, e.g.. on the various fundamental properties of probability
distribution functions and how they relate to errors and error propagation,
are deferred to future reports. It is generally believed that certain
matters related to nuclear data uncertainties cannot be addressed entirely
within the framework of statistical theory. An example is the difficult
question of how to deal with systematic error in a consistent fashion. The
reader is encouraged to peruse the very readable and thoughtful essay on this
subject by Youdin (You 61). Some advanced methods for dealing with these
problems have been proposed (e.g., Per 82), but these ideas are at the
frontier of applied mathematical science, and they are difficult to
comprehend without a strong foundation in group-theoretical methods.
Furthermore, they are somewhat controversial and largely untested. For this
reason, I have chosen to embed the present treatment solidly within the
familiar, traditional framework of conventional statistics. However, the
readei should remain fully cognizant of the fact there are nuclear-data
uncertainty problems which appear to fall beyond the scope of elementary
random variable theory and, therefore, will not be addressed to any great
extent in this report series.



2. EVENTS AND EVENT SPACES

Probability theory is that branch of mathematical science which deals
with the properties of a certain class of functions that operate on spaces
whose elements are denoted as events. He cannot advance further in our
investigation o. probability without first having a close look at the meaning
of events and event spaces. Some exposure to the rules governing event
manipulation is also needed. The reader should realize that these concepts
are fundamental to achieving an understanding of probability theory and that
they should be understood early on. Visualization of event spaces and
execution of the related computational analyses can be difficult.
Proficiency comes with experience, and obviously the reader cannot be
expected to become a virtuoso in the manipulation of event spaces through the
reading of this volume.

This chapter is divided into three sections. The first section presents
the important ideas from an intuitive viewpoint, complete with illustrative
examples. The second section treats the reader to a more rigorous
presentation of similar material. There is some redundancy in the content of
these two sections, though the correspondence is not one-to-one. However,
since the approaches are quite different, the reader will find that most of
the material in the second section appears to be new. The final section is
an introduction to the topic of event counting, and it deals principally with
permutations and combinations.

2.1 Intuitive Approach

The essential ingredients to be considered are: i) a well-defined
action or operation, ii) a closed system or space of all possible outcomes of
this action, iii) the elements or components which comprise this space, and
iv) the rules or laws which govern manipulation of these elements. The
reader may well recollect that these are the essential ingredients of set
theory. The similarities are not coincidental.

The action or operation must be so defined that its execution always
yields a result whose description entitles it to belong to the space of
possible outcomes under consideration. Usually, it is assumed that this
action does not perceptibly alter the content of the space (with replacement
assumption). but in some models it may (without replacement assumption). The
statistical laws will depend strongly oi which assumption is in effect if the
space is discrete and has a limited content. More will be said about this
point in Sec. 2.3. Actions or operations on well-defined spaces of outcomes
are usually referred to as sampling.

The space containing all possible outcomes of a particular sampling
procedure is called a sampling space or event space. In the parlance of set
theory, it is a universal set whose elements are called events. Plural
execution of a particular sampling procedure produces a sequence of specific
outcomes. A relatively small collection of these outcomes is usually
designated as a sample. Samples which are so large that they essentially
resemble or even deplete the entire event space are sometimes referred to as
populations. The terms population and event space are sometimes used
interchangeably, but the reader should realize that there is a distinction.



Probability theory does not dictate how event spaces are to be
conatriscted. but rather it establishes rules pertaining to operations upon a
space once it is defined. Ti'ere are generally many ways to structure and
model a given physical problem. Often the diverse possibilities are
equivalent, but judicious definition of an event space can lead to important
practical simplifications. This aspect of probability theory practice is
more of an art than it is a science, and the true worth of a statistician can
be measured by his skills in this area. A well-developed talent for
visualization of event spaces is essential.

As a general rule, event spaces should be developed, first and foremost,
in terms of elementary (or simple) events. By definition, these are events
which cannot be further decomposed into nore basic entities,

Example 2.\

Consider the sampling procedure consisting of selecting and
observing atoms from a spent reactor fuel rod. We could choose to
define the possibilities (events) as: fissionable material,
fertile material, fission products, cladding and other structural
materials, and miscellaneous impurities. A sample would then be a
sequence of outcomes corresponding to these five possibilities.
However, this choice might not be very useful and could even be

238
ambiguous (e.g., fertile materials such as U are also
fissionable for fast neutrons). Clearly, a better choice in this
example would be to characterize a simple event by the pair (Z.N),
since this uniquely identifies which element and isotope is
observed (the outcome) in any particular sampling action. In some
applications it might also be important to keep track of whether
an atom was in its ground state or resided as an excited isomer.
Then, our model would have to include a third parameter E to

X

indicate excitation energy of the nucleus. Consequently, a
simple event would be identified uniquely by the triplet (Z.N.E ).

Example 2.1 offers the opportunity to introduce the concept of an
augmented event space. We know that all atomic numbers Z from 1 to 108 are
possible (confirmed elements). Also, neutron numbers N from 1 to 159 have
been observed. Finally, nucleon binding energies up to E < 10 MeV are

A

possible. However, only certain combinations (Z.N.E ) for 1 < Z < 108, 0 < N

< 159 and 0 < E < 10 MeV actually correspond to atomic species which can
A

exist and which might be found in the spent fuel rod. The true event space
is comprised only of these realistic possible outcomes. When the nonphysical
triplets are included, however, we have what is called an augmented space.
Later in our treatment of probability it will be seen that it is sometimes
useful to contemplate such augmented spaces in order to simplify certain
mathematical operations.



A Venn diagram is a graphical representation of an ensemble of
elementary events which form an event space. These pictorial diagrams can be
very useful aids in visualizing event spaces and manipulations involving
them.

Example 2.2

Figure 2.1 is a Venn diagram of (Z,N) pairs for an event
space consisting of a few light nuclei. Shaded squares represent
nuclei which have been observed, and the totality of these forms
our event space. Blank squares represent nonphysical on cities.
The collection of all squares (shaded or blank) fcrm an augmented
event space.

The specific parameters which define an elementary event can be either
discrete or continuous. It is evident in Example 2.1 that Z and N are
discrete parameters, while E should be treated as continuous. In this

chapter we generally focus on discrete quantities, but more is said about
continuous ones in Chap. 3 and beyond.

Individual elementary events, or arbitrary collections of simple events
within the space, can be interpreted as subspaces of the event space.
Subspaces with well-defined attributes can also be considered as events.
These are called compound events. In Example 2.1 we alluded to five possible
compound events (e.g., fission products was one of these). Once a set of
elementary events has been defined to form an event space, there is generally
a variety of ways to partition it into subspaces. We will examine this in a
quantitative way later in this report. First, we consider an example in
which some compound events are explicitly illustrated.

Example 2.3

One day a nuclear researcher walks into his laboratory and
discovers that a certain piece of electronic apparatus is
malfunctioning. He traces the malfunction to a particular circuit
board. Being a statistically inclined individual, he decides to
analyze the possibilities for failure from this point of view
before proceeding with the repairs. He therefore generates a
failure-node event space based on the status of the board's four
integrated-circuit (IC) components. In this space an elementary
event corresponds to a declaration of the condition of each of the
four IC components as good (G) or bad (B). The sixteen elements
which form this space are listed in Table 2.1. Based on this
model, there are two obvious possibilities for forming compound
events. Possibility A involves specification of the number of IC
components involved, i.e., none, one, two, three or all four.
Five compound events of this type span the space. Possibility B
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Figure 2.1: Venn diagram for an event space consisting of
observable light nuclei (shaded). This space
is augmented by the blank squares. See Ex. 2.2,



Table 2.1 Failure Modes for an Electronic Circuit Board
with Four Integrated-Circuit (IC) Components.
See Ex. 2.3.

Elementary I

Events3 f

Compound Events

Possibility A Possibility B

(G.G.G.G) No bad IC components (1) Non-IC failure (1)

(B.G.G.G)

(G.B.G.G)

(G.G.B.G)

(G.G.G.B)

(B.B.G.G)

(B.G.B.G)

(B.G.G.B)

(G.B.B.G)

(G.B.G.B)

(G.G.B.B)

(B.B.B.G)

(B.B.G.B)

(B.G.B.B)

(G.B.B.B)

(B.B.B.B)

a.

| One bad IC component (4) | IC failure (15)

Two bad IC components (6)

Three bad IC components (4)

All bad IC components (1)

Position in array (1,2,3,4) designated a particular IC component which
is either good (G) or bad (B).

Value in parentheses (...) designates the number of elementary events
in the subspace forming the compound event.



categorizes all failures into non-IC failures or IC failures, and
thus involves two compound events. It is interesting to examine
how many elementary events are required to forn each of the
compound events. For Possibility A, the reader may recognize that
the number of elementary events corresponding to a failure of k IC
components (k = 0,4) equals the well-known binomial coefficient
C . for n » 4. namely

C4k = 4'/[k!(4-k)!],

This point will be discussed further in Sec. 2.3. The total
number of elementary events in the space representing the present

A

problem is 2 . An important task in probability theory is that of
determining the sizes of event spaces and of t>_ aubspaces which
represent particular compound events in is issue will be
addressed in more detail in other -scions of this report.

Events are mut'isl'v exclusive if occurrence of one precludes occurrence
of the other. I:: Example 2.3, the event involving two bad IC components is
mutually exclusive from that involving one bad IC component. From Table 2.1,
it is clear that the subsets representing these compound events would not
overlap. Each simple event is mutually exclusive with respect to every other
simple event by definition.

In some applications, order is important in the generation of an event
space, while in others it is not. In Example 2.3, order is unimportant. If
the failure of the circuit board is due to the first and third IC components
being defective, the outcome is not affected by the order in which these two
IC components are tested during the trouble-shooting process. The following
example illustrates how order can be important in defining an event space
that models physical reality.

Example 2.4

Consider an experiment designed to measure the energies of
charged particles (CP) traveling In a particular direction. The
CP energy is deduced from a determination of the times at which a
particle passes through two separated, very-thin scintillation
detectors 0 and D spaced by a distance L, as shown in Fig. 2.2.

We define a simple event by the recorded values of a pair of
signals (one from each detector) at times t.. and t , respectively.

The choice of zero for the time scale is not important. However,
causality is violated if tg < tj, since it is assumed that the

particles we are interested in pass through D. first. Actually

(t - t ) > L/c is required, since the particle velocity can never

quite reach the speed of light, c, and the detectors D and D

10



C.P.

Figure 2.2: Venn diagram for an event space consisting of measured
times for the passage of charged particles (CP) incident
from the left through two detectors D, and D_ separated
by distance L. Points such as A (shaded region) are
physically allowed, while those such as B are not.
See Ex. 2.4.
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have finite separation, L- Thus, the event space of physical
possibilities can be represented by the Venn diagram shown in Fig.
2.2. A point, A. with (t - t ) > L/c (shaded region) represents

a valid physical event, while point B, with (t - t ) < L/c is

non-physical. The space of all pairs (t ,t ) is an augmented

event space for which there is no condition on the relative
magnitudes of t and t-.

2.2 Theoretical Approach

This section deals with what is commonly referred to as set theory. The
present treatment is abbreviated by necessity. The importance of
understanding the definitions and concepts presented in this section will
become evident to the reader as he proceeds through later sections of this
report, and other reports in this series.

Basic to the discussion is the notion of a universal set. E, which we
henceforth consider to be an event space, in accordance with the connotations
in Sec. 2.1. The fundamental elements of E are simple events, designated by
e, and interpreted as discussed in Sec. 2.1. From the point of view of
dimensionality, E can be finite, consisting of a limited number of elements
(e ,e , ...,e ), or denunerable. in which case the number of elements is

infinite but countable, i.e., (e.e , . . . ) , or nondenumerab?e. in which cas^
1 C

we cannot explicitly list the individual elements. Host of the discussion
here will pertain \o finite or denumerable event spaces, since nondenurdrable
spaces require special treatment with regard to certain mathematical
operations. We will consider how to deal with nondenumerable spaces of
interest later in this report. An event space, E, must be complete in the
sense that the ensemble of all elements e which form E must exhaust the
possibilities for outcomes of a well-defined sampling activity, as discussed
in Sec. 2.1.

Next, we discuss some fundamental terms of set theory.

Compound event or subspace:

A is a compound event or subspace of E if all simple events in A also
belong to E. The notation is A e E. Figure 2.3 is a Venn diagram which
illustrates the notion of a subspe.ce. By definition, a simple event is also
a compound event. Henceforth, the terms event and subspace will be used
interchangeably. Simple and compound events may not be distinguished, except
possibly by context.

12



Containment:

If A and A are two events in E, and every simple event of A 2 is also

in Aj, then

A t E. A 2 t E. and A2 e A^.

However, it need not follow that A- fe A . Figure 2.4 is a Venn Uiagram which

illustrates the case where A- t k., but Aj is not contained by A^. This we

designate by A. < An.

pr certain eyent:

By definKior., E is a subspace of E (E t E), and E, since it includes
all possible outcomes from sampling, is designated the sure event or certain
event.

Impossible or null event:

In set theory, one is required to define the empty space, designated <J>.
for completeness. $ is a space with no simple elements e of E, yet (j> e £ by
definition. Also, <j> e A, where A is any subspace of E.

Eoualitv:

Events A. and A2 are equal if they contain the same simple events.

Then, Ax A A and A2 t A .

Nested sequence of events:

A nested sequence of events is a finite or denumerable collection of
events, e.g., (Aj.Ag A ) or (B..B.,...) of E for which a distinct

containment hierarchy exists. We say, e.g., that the sequence (A.,A2 A )

is nonincreasine if and only if we have

A n e V l * ••* A 2 f c Al •

On the other hand, the sequence (B ,B ,...) is nondecreasing if and only if

we have

13



Figure 2.3: A is a subspace of E (A e E),

Figure 2.A: A and A are subspaces of
E (Ax E E . A , e E). A2 is a
subspace of A, (A_ e A.), but
the converse is not true
CAX 4 A 2 ) .
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Figure i.5 exhibits two nested sequences of events in E which are
nonincreasing and nondecreasing, respectively.

The ajgebra of sets, or Boolean algebra as it is often called, governs
the combination and Manipulation of events. This algebra is based upon the
operations discussed below.

Sua or union:

A is the sum or union of events A and A, of E provided it contains

those and only those elementary ever-ts of E which belong to at least one of
the events A and Ag. The notation is

A = Aj + A 2

If there are several events (Aj.Ag .A^...) which form a union to yield A.

the definition is similar but the notation

A = r A.
i

is usually used. The union of events is illustrated via a Venn diagram in
Fig. 2.6.

Difference or --olative complement:

The difference A (occasionally called the relative complement) of events
A. and A of E. designated

A = Ai " A2

consists of all elementary events of A , but excludes those which are also in

A.. Note that A - A and A - A are conceptually different events and are

never equal unless both happen to be the null event <j>. Figure 2.7 is a Venn
diagram which illustrates the notion of the difference of two events.

Product or intersection:

Consider two events A. and A in E. The product or intersection of A.

and A . denoted A1 x A , is that event A of E which consists only of those

simple events which simultaneously are contained in both A and h . Clearly,

A £ E, A 6 A . and A £ A .

15



Figure 2.5: Nested sequences of events in E. (A.,A-,...A ) is

nonincreasing, while (B ,B ,...) is nondecreasing.
1 £

Figure 2.6: Union of events Aj. Ag. and Ag of E is the shaded area A

designated by A = A + A + A_.
X 2 3
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If several events A.. ,A ,... are involved in forming the product A, the

notation

A = n A.
i

is usually used. Figure 2.8 illustrates the notion of an event product.

Having defined the basic algebraic operations of event space, we are now
in a position to offer a few more useful definitions.

Complement:

If A. is an event in E, then the component A of A is the subspace which
contains all the remaining elementary events of E that are not in A. It is
thus true, e.g., that

A + A = E. A x A = <J>, A = E - A. and A = E A.

based on the preceding definitions. Furthermore, it is possible to express
the difference of two events using the notation of complementarity. If A

and A2 belong to E, then

A! - A2
 = Al X V

Figure 2.9 illustrates the notion of a complement.

Mutually exclusive or disjoint events:

Events A and A are said to be mutually exclusive or disjoint if both

belong to E but have no simple events in common. Clearly, this condition is
represented by the expression

Al x A2 = f

as illustrated in Fig. 2.10. Whenever we have a collection of events
(A ,Ag,...) belonging to E which have the property that

A. x A. = <j>

for any pair (i.j), we say that the collection is pairwise disjoint. For any

event A in E, it is obvious that A and its complement A are a disjoint pair.

17



2.7: Differences of events A- and Ao in E:
1 £

A.. - A_ is the
1 £

dashed region, while A - A is the dotted region.
4* 1

Figure 2.8: The shaded region A i s the intersection A x A of two

events A and A in E.
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Figure 2.9: The complement A consists of all simple events in E which
do not belong to A.

£JgHI*e 2,1Q: Aj and k^ are two mutually exclusive events belonging to E.
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Partition:

Consider a pairwise disjoint collection of nonempty (not <f>) events (A ,

A2>...) belonging to E with the additional property that

Z Ax = E
i

We then say that the collection forms a particular partition of E.
Obviously, there are many different ways to partition E, as is evident from
the examples in Fig. 2.11. It is also clear that, for any nonempty event A

in E. the pair (A,A) forms a partition of E, as is illustrated in Fig. 2.9.
The concept of a partition is extremely important in the context of Bayes'
theorem, which we will investigate in considerable detail in Chapter 8 of
this report.

For a denuaerable sequence of nested events (A ,A O,...), it is

reasonable to define a limit. The manner of defining the limit depends upon
whether the sequence is nonincreasing or nondecreasing. If (A.,A-,...) is

nonincreasing, then the limit, A, is defined as

A = n A.
X

However, notice that for this type of sequence (with finite n), we have

n
ir A. = A
1-1 X n

Thus, the limit. A, can also be written

A = «im A
n

•f {A ,k ....) is nondecreasing, then the limit, A, is defined by

A = Z A.
i>l l

However, notice that, for this type of sequence (with finite n), we have

n
Z A. = A
1-1 i "

20



Ai

A3

A2

A 4 A5 A6

E

Figure 2.11; and (B^ B4) represent two different partitions of E.



Thus, the limit A can be written as

A = tin A ,n

just as it was for a nonincreasing sequence of events.

Given the preceding definitions, we are now in a position to state the
basic postulates of Boolean algebra, as applied to event sets.

Postulate No. 1: Laws of closure

For every pair of event sets A and A in E, there exist unique sets

A. • A and A x A which also belong in E.

Postulate No. 2: Commutative laws

For every pair of event sets Aj and A2> it holds that

Al * A2 " A2 + Al

and

Al * A2 = A2
 X Al

Postulate No. 3: Associative laws

For any triplet of event sets A., Ao. and A_ it holds that

and

(A1 * V * A3 " Al * (A2 + A3>

X V X A3 = Al X ( A 2 X

Postulate No. 4: Distributive laws

For any triplet of event sets Aj. Ag, and Ag, it holds that

Al X (A2 * A 3 } = (A1 X V * (A1 X A3 J

and

Al * (A2 X V = (A1 + A 2 } X (A1 + A3>

22



Postulate No. 5: Identity laws

There exist unique events, $ (the impossible or null event), and E (the
sure or certain event), such that for any event A it holds that

A x E = A

and

A + <f ~ A

Postulate No. 6: Complementation law

Corresponding to each event A there exists a unique event A called the
complement, such that

A x A = f

and

A + A = E

Many useful theorems and formulas that are employed in event-space
analysis can be derived from these postulates. Before we examine some of
these, it is worthwhile to digress to some extent in order to introduce the
notion of a Borel fje^d. or Sigma algebra as it is sometimes called. A Borel
field Z based on the event space E is the set of all subsets of E. Since a
subset of E is an event, it follows that Z is the exhaustive set of events
based on E. By restricting our attention here to sets E that are finite or
denumerable, we conveniently avoid difficulties with respect to defining the
associated Borel field Z and subsequently considering its properties.
Technically, the set Z based on E must possess the following five properties
to be a true Borel field.

Property 1:

The event E (sure event) must be in Z.

Property 2:

The event <J> (impossible event) must be in Z.

Property 3:

If a finite or ienumerable collection of events A ,A . . . belong to Z,

then their sum £ A. aLSO belongs to Z.
i
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Property 4:

If events A and A belong to Z, then their difference A^ - Ao also

belongs to Z.

Property 5:

If a finite or denumerable collection of events A.,An,... belongs to Z,

then their product n A. also belongs to Z.
i

It. is shown in Section 2.3 that if E is finite and possesses n elements

e. then the associated Borel field Z has 2 n elements %.

The notion of a Borel field has practical connotations. Given a space E
of elementary events, then the corresponding Borel field represents the
ensemble of all possible outcomes for an exhaustive collection of sampling
procedures involving the elementary events of E.

Another feature of Borel fields is worthy of mention at this point. Let
A be an event of E. Of course, it also belongs to the associated Borel field
Z. Furthermore, we assume A is nontrivial (A is not <{>). Thus. A consists of
one or more simple events of E. One can now consider A as a distinct sample
space of simple events, although we are aware that it is emt ided in the
larger space E. Then, one can define a new Borel field Z1 bast entirely on
A. If B represents any arbitrary event of E, then the elements of Z' can be
looked upon as being generated from products of the form B x A. We shall see
in Chapter 5 that this notion is the basis for dealing with conditional
probability.

We now return to a consideration of the Boolean algebra of events.
Given the preceding definitions, properties, and postulates, one can develop
a rich area of mathematical theory which can only be touched on very briefly
here. The careful reader will have already noticed that event manipulations
differ in many respects from those with real numbers. Essentially this comes
about because every real number is distinct, or elementary in our current
parlance, while events can be compound and, thus, somehow "overlap" with
other events. The fact that events need not be totally unique and distinct
from other events leads to complications in set (or event) manipulations that
force the uninitiated practitioner to develop a new arsenal of intuitive
skills. Actually, the fundamental concepts of probability are generally
rather simple. The difficulties one encounters in probability analysis, or
in the consideration of uncertainties, are often traceable to the associated
Boolean operations, not to the concepts themselves.

The following simple theorems can be readily demonstrated by means of
Venn diagrams, though this '-ill not be done here. If E is an event space, A
and B are subspaces, and <{> is the impossible or null event, then:
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A • E - E. (2.1)

A x <|> = f (2.2)

A + A = A, (2.3)

A x A - .'.. (2.4)

E = f (2.5)

$ = E. (2.6)

A = A. (2.7)

A + (A x B) = A, (2.8)

A X (A + B) = A. (2.9)

where <j> denotes the conplenent of the impossible event, while the double bar

over A denotes the complement of A.

For interest, a rigorous proof of the theorem represented by Eq. (2.1)
is provided, in terms of the previously aent'-^ed postulates:

Step I: A + E = (A + E) x E, by Postulate 5.

Step 2: (A • E) x E = (A + E) x (A + A), by Postulate 6 and substitution.

Step 3: (A + E) x (A + A) = A + (Ex A), by Postulate 4 and substitution.

Step 4: A + (E x A) = A + A, by Postulate 5 and substitution.

Step 5: A + A = E. by Postulate 6.

Step 6: A + E = E, by substitution.

The following two equations are collectively known as the de Morgan
laws:

(A + B) = A x B , (2.10)

(A x B) = A * B . (2.11)

Given a collection of n events A ,A2,...A in E, one can express the de

Morgan laws in the more general fors
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( Z A ) = n A
i l i»l

(2.12)

( n A.)
i l

A (2.13)

Given events A and B ,B , . . .B in E. one obtains the following two

equations, known as the generalized distributive laws:

A x ( Z B.) - S (A x B )
i=l * 1=1 *

(2.14)

• n
A + ( ii B ) = n (A + B ) .

i = l X 1 = 1 *
(2.15)

Two examples of rather complicated equations from Boolean algebra that
can be derived from the definitions and postulates are:

A. = A
i=l

n
f Z
i-2

A - X ( A x A )
X j=l J

for n > 2, (2.16)

(2 A ) x ( S B ) = Z
m
Z (2.17)

The interested reader can pursue this topic further by referring to
texts which deal explicitly with set theory and Boolean algebra (e.g., Hau
57. Mali 68, Abb 69 and KM 76).

We will now close this section by considering two examples which
illustrate some of the material presented up to this point.

Example 2.5

Consider an arrangement whereby collimated neutrons, emitted
from a reactor or accelerator source, impinge normally upon two
separate, axially aligned, thin organic scintillation detectors A
and B (see Fig. 2.12). The sampling process we consider is the
emission of a single neutron from the source. There are four
elementary events which form the sample space E which we will
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Figure 2.12; Simple j.nd compound events based on neutron

detecticn by two organic scintillation detec-
tors. See Example 2.5.
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consider: i) (1.1): both A and B detect the neutron; ii) (1,0):
A detects the neutron but B does not; lii) (01): B detects the
neutron but A does not; and iv) (0,0): neither A nor B detects
the neutron. Clearly, these labeled outcomes exhaust the
possibilities. Our sample space E also contains the impossible
event <£. as must all such spaces. Fig. 2.12 exhibits these
possibilities, and it also indicates, by means of tables and Venn
diagrams, several compound events that can be formed based on E.
In Fig. 2.12, A represents the compound event in which detector A
detects the neutron, while B represents the analogous compound
event involving detector B. The validity of the de Morgan laws,
given in Eqs. (2.10) and (2.11), is also demonstrated for this
example in Fig. 2.12.

Example 2.6

In this example we consider a simple event space E and
explicitly ennumerate the subspaces which form its associated
Borel field Z. Suppose that we possess a small quantity of
ultrapure monolsotopic, elemental material which has been
irradiated with neutrons in a reactor. This material consists of
atoKs in the ground state (G), or in one of two possible
long-lived isomeric states (II or 12). The sampling procedure
consists of selecting an individual atom and then determining
which state it is in. The event space E has three simple events:
e (G). e (II) and e (12). It was previously indicated that the
X G O

Borel field Z must have 2 (namely 8) elements. These are
explicitly:

z = <J> z = e + e

C 1 O 1 O

Z3 = e2 Z7 ' e2 + e3

Z4 " e3 Z8 = el + e2 + e3 •

Any event we can form by combining the elementary events of E must
be equal to one of these z. (i = 1,8). Foi. example, suppose we

consider (e2 + e^) x (ej + e 3). By Postulate 4 (distribution

law), this event equals e + (eo x e o). However, e_ x e_ is the
I C O C o

impossible event <j) because the e. are el ^entary events and, as

such, are nonintersecting. Thus, the event in question is e + <J>,

which equals e and, therefore, z , by Postulate 5.

28



A nontrivial subspace A of E is the space of all simple
events corresponding to detection of an atom in an excited state.
A consists of the two elements e and e~. Furthermore, we can

2
define a new Borel field Z' based on A alone. There are 2

4) elements in Z1.

These are explicitly:

S5 ' = $

z«' = ert

tie can. e.g., demonstrate Property 3 (closure) for the Borel field
Z1 by considering zn' + zo' + zA '. This is equivalent to

"2 "3 4 •
which, in turn, equals (e (e2 e 3 )

by Postulate 3 (associative law).
2 ~3' '"2

Finally, this event equals
e? + e3, or z ' by the theorem represented in Eq. (2.3).

2.3 Event Counting

It should be apparent to the reader, from the discussions in the two
preceding sections, that counting the nunber of ways in which various types
of compound events can be formed from simple events is an essential task for
applications. This point was demonstrated in Example 2.3. So far in this
report no general rules have been provided to indicate how such counting
exercises are to be carried out. However, this matter will be addressed in
the present section. There are a variety of counting algorithms that arc-
used in practice, depending upon the problem at hand. Here, only a few of
the more important ones will be reviewed. We have seen in the previous
section that counting the number of subsets of a set is important. This by
no means exhausts the applications for counting. In statistical physics, and
in many other areas of basic and applied science, one is required to examine
other counting procedures as well.

A few elementary definitions and concepts must be introduced first. A
k-tuple is a collection of k quantities generated from elementary events
belonging to an event space E. For present purposes we assume E to be
finite, thus consisting of n elements. A k-tuple need not be a compound
event in the sense discussed in Section 2.2, since a specific elementary
event may be represented more than once in a particular k-tuple. However,
every compound event corresponds to a certain k-tuple. Furthermore, k-tuples
can be either ordered or not. For ordered k-tuples, or arrangements as they
are sometime called, the position of every event in the array is important.
Two k-tuples consisting of identical collections of one or more elementary
events ar=; distinguishable if ordering (or arrangement) is taken into
consideration. Otherwise, they are indistinguishable. If each of the
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available elementary events of E can only be represented once in forming
k-tuples, then it is said that the k-tuples are formed without replacement.
Such k-tuples have a one-to-one correspondence wi th k-fold subsets of E.
Those k-tuples formed without regard to the multiplicity of the appearances
of elementary events are said to be fomed with replacement. Given an
unordered k-tuple of events, there are a number of distinguishable ways that
ordered k-tuples can be formed from it. Each of these arrangements is said
to be a permutation of the unordered k-tuple. in counting exercises it is
sometimes useful to visualize k-tuples in terms of occupancy. We then
envision a collection of unique cells which may or may not be occupied. A
k-tuple is equivalent to a k-fold specification of the occupancy status of
these cells. The k entities which occupy these cells in some pattern may or
msy not be distinct, and multiple occupancy of cells may or may not be
allowed, depending upon the statistical problem which is under consideration.

Rxamnle 2.7

Consider a space E consisting of the events e ,e ,e , and e .
1 M V *k

Then (e ,e_,e^), (e_,e1,e_), (e ,e ,e ) and (e..,e ,e1) are typical

3-tuples formed from E. Both (e ,e ,e ) and (e_,e ,e,,) represent
1 £ O tZ 1 J

the same subspace of E, though they are distinct permutations of
the three events e,,e_.eo, if ordering is considered. Neither
(e ,e ,e.) nor (e^e^.e.) can be considered a subspace of E. Each
of these can be viewed as representing double occupancy of Cell
No. 1 and single occupancy of Cell No. 4.

The basic principle of combinatorial analysis can be stated as follows:
The number of ways W of forming ordered k-tuples is given by the formula

k
W = II N. . (2.18)

i=l

«ihere H is the number of ways available to form the 1 component of the

k-tuple.

The simplest application of this principle is that of calculating the
number of ordered k-tuples which can be formed from a set of n elementary
events, with replacement. Since events can be "reused" according to the
replacement assumption, there are n possibilities for selecting each of the
components of the k-tuple. Therefore, each N. equals n and
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W - nk , (2.19)

according to Eq. (2.18). It is interesting to note that even though it is
hard to conceive of molecules in a classical gas as being "distinguishable",
the HflXMgU-Bqjtzaann Law of statistical physics is derived from this
particular rule of counting, and it does seem to adequately describe the
behavior of such an ensemble of particles under certain conditions of low
particle density and high temperature (Mor 64).

The second application of Eq. (2.18) to be considered here is a
determination of the number of ordered k-tuples which can be formed from a
set of n events if no replacement is allowed. Under this restriction, N =n,

N. = n-l,...N. = n-k+1. So, an application of Eq. (2.18) leads to the

expression

w = n(n-l)(n-2)...(n-k+l) . (2.20)

This formula does not form the basis for any known law of statistical
physics, yet under the conditions for which the Maxwell-Boltzmann Law
applies, this present counting rule leads to nearly the same result. Low
particle density and high temperature imply that k « n, since, from an
occupancy point of view, k represents the number of particles involved while
n represents the number of states available for occupancy (which is large for
high temperature).

Example 2.8

The predictions of Eqs. (2.19) and (2.20) for k=5 and n=1000

can be compared by examining the ratio (1000 )/[1000 x 999 x 998 x
997 x 996]. The value of this ratio, to eight significant
figures, is 1.0100654. The difference of 1% is negligible for
most purposes.

Early in the present century it was discovered that certain microscopic
physical phenomena could only be explained if the energy states available to
atomic particles and their radiations were assumed to be quantized rather
than continuous. Classical counting laws, which hava in common the fact that
individual particles are treated as distinguishable, also had to be abandoned
in order to explain microscopic phenomena in the limit of low temperature and
high part W e density. It was learned that a particle of one certain class
can never occupy the same quantum state as another similar particle (Paul!
Exclusion Principle!. Particles of this type are now known as fermions.
Atomic particles from another class seem not to mind sharing quantum states
with others of their kind. These particles are classified as bosons. For
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nuclear scientists, the most important application of these fundamental
principles of quantum statistics is in the consideration of nuclear
structure, i.e., investigation of the manner in which nucleons (or clusters
of then) occupy the various available states in their collective nuclear
potential. We will now examine the two counting rules which form the basis
of quantum statistics. Common to these two laws is the assumption that the
individual particles which occupy the available quantum states are
indistinguishable from each other. Thus, counting involves only unordered
k-tuples from a space of n elementary events (or k-fold occupancy of n
available cells or quantum states).

First, we consider the number of ways unordered k-tuples can be formed
from n elementary events, without replacement. We recall that Eq. (2.20)
provides an answer so long as ordering is preserved. If ordering becomes
unimportant, the number of distinct possibilities must in general decrease.
If we consider a particular ordered k-tuple, we should note that for k > 2
there are others which differ from the one we are considering only in the
sense that they are permutations. Thus, when ordering is unimportant, we
must divide the r- alt of Eq. (2.20) by the number of ways that a collection
of k quantities can be permuted. This number can be deduced by another

k
application of Eq. (2.20), for n=k. The result is TT i, conventionally

i=l
designated k! (k factorial), with 0! =- 1. Making use of the factorial
notation, the counting law we seek is given by

W = CnR = u!/[kl(n-k)!] , (2.21)

as first indicated in Example 2.3 of Sec. 2.1. The coefficient C , is called

the binomial coefficient, for reasons to be discussed shortly. Example 2.3
demonstrates this counting rule. From the occupation viewpoint, we are
considering the number of ways k objects can occupy n available cells, when
the objects are indistinguishable and no two objects may occupy the same
cell. Fermions behave this way, and the law of statistical physics that is
based on this mode of counting is designated as Fermi-Pi rac. The value W
given by Eq. (2.21) is often referred to as the number of possible
combinations of n quantities taken k at a time.

Before proceeding to the consideration of another distinct counting
concept, we will address several topics that are convenient to consider at
this point of the present development.

First, for large k the computation of k! can be awkward. Ar
approximation for k!, known as Stirling's approximation, is quite accurate as
long as k is sufficiently large. The formula is

kl « (2nk)1/2kke~k . (2.22)

The worth of this formula becomes most evident when various factorial
expressions appear in combination, e.g., as in Eq. (2.21). Since these
combinations usually involve products and quotients, the logarithmic version
of Eq. (2.22), i.e..
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« U/2)en(2irk) + k«n(k) - k . (2.23)

is often more useful in practice than Eq. (2.22). Table 2.2 provides a
comparison of the directly calculated values kl and «n(k!), for k = 1 to 10.
with corresponding results obtained from Stirling's approximation, according
to Eqs. (2.22) and (2.23). For k > 10, the agreement for €n(k!) is better
than 0.1*. while that for k! is better than 1*.

The counting rule corresponding to Eq. (2.21) is the one applicable to
the determination of the number of subsets of size k which can be formed from
the n-fold event space E. The size W(Z) of the Borel field Z associated with
E, including the impossible event >̂. is thus

n
W(Z) = I C . . (2.24)

k=0 n k

We shall digress for a raument and note that the binomial coefficient Cflk

is thus named because of the role it plays in the well-known binomial
theorem, attributed to Sir Isaac Newton. This theorem states that for two
numbers a and a ,

(&1 + a 2 ) 0 = j Q
 Cnk ai a2 n" K • (2-25)

If we set a1 = 1 and a2 = 1, we deduce from Eqs. (2.24) and (2.25) that W(Z)

equals 2 . This proves that the number of elements of the Borel field Z is

2 , a fact which has been expressed previously.

The binomial coefficient is readily seen to be symmetric, from its
definition, Eq. (2.21), so

Cnk = Cn,n-k • < 2 2 6>

Likewise, for all n it is clear that

Cnl " Cnn = 1 • < 2 2 7 >

Furthermore, it can be proved rather easily that binomial coefficients
satisfy the following useful recursion relation:

Cn,k-1+ Cnk = Cnvi. k < 2 2 8>

This expression is the basis for the famous geometrical arrangement of
integers known as Pascal's Triangle, which is shown in Fig. 2.13. Pascal's
triangle provides an easily remembered algorithm for deriving binomial
coefficients.
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Table 2.2:

k

1

2

3

4

5

6

7

8

9

10

Predictions

£n(l
Actual

0

0.693147

1.791759

3.1780538

4.787492

6.579251

8.5251614

10.6046029

12.80182748

15.10441257

of Stirling's Approximations

O)
Eq. (2.23)

- 0.081061

0.6518065

1.7640815

3.1572632

4.77084705

6.56537508

8.51326465

10.5941916

12.79257202

15.0960821

Actual

1

2

6

24

120

720

5040

40320

362880

3628800

for ln(k!) and ki

k!
Eq. (2.22)

0.922137

1.919004

5.8362096

23.506175

113.019168

710.07818

4980.3958

39902.395

359536.873

3598695.619
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C20 C21 C22

C3O S i C32 C33

C41 C42 C43 C44

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

Figure 2 .13: P a s c a l ' s t r iang le for- the binomial c o e f f i c i e n t s . The
pat tern i s based on Eqs. ( 2 . 2 6 ) - ( 2 . 2 8 ) . The c o e f f i c i e n t s on
any g iven row are obtained by summing adjacent c o e f f i c i e n t s
from the preceding row.
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A generalization of the problem of determining how many subsets of size
k can be formed from a set of n events is that of determining how many ways
one can partition a set of n events into r ordered subsets so that the first

has size k , the second has size k_,..., and the r subset has size k . The

constraint is

r
2 k. = n.
j-l J

To approach this problem, one repeatedly applies the reasoning leading up to
Eq. (2.21). The result is the following product of binomial coefficients:

This coefficient can be written in the more compact form

W = Cn-k k k = n!/(k !k !...k !) . (2.30)
1 2'" r

It is called the multinomial coefficient owing to the role it plays in the
multinomial theorem. This theorem states that for r numbers a ,a ,...a

(Z a ) n = Z Z...Z C a k l a k 2 . . . a k r
j=l J kj k2 kr

 n- ki k
2- r 1 z r

(kt + k2 • ...+ kr = n) (2.31)

The special case of binary partitioning, which we have already discussed in
detail, lollows readily from Eqs. (2.30) and (2.31), for r = 2.

Finally, we turn our attention to yet another counting scheme. For this
case, we consider forming unordered k-tuples with replacement allowed. From
the occupancy point of view, multiple occupancy of the available cells is
permitted and the occupants are indistinguishable. In statistical physics,
this scheme is labeled Bose-Einstein. Ensembles of bosons at extremely low
temperatures tend to accumulate in the available lowest-energy states
(condensation). giving rise to nonclassical phenomena such as superfluidity.
We state here, without proof, that the number of k-tuples that can be formed,
subject to these conditions, is the particular binomial coefficient

.k • ( 2 3 2 )

This result can be proved by the induction method (e.g., Par 60), but, in
general, the process is not as intuitively simple to visualize as the
preceding counting rules. For small n and k it can be readily demonstrated
that Eq. (2.32) gives the correct result, as the following example indicates.
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ExafflDle 2.9

Consider fotming pairs (k = 2) from a set of three (n = 3)
elements, e, , e_, and eo. If the pairs are ordered and formed

1 4 4
with replacement, Eq. (2.19) tells us that there are 32 = 9 of
them. They are explicitly:

_.«,)

,e 3)

*e3'el'
(e3>e2)

(e-.e )

If we arrange these differently and drop the ordering condition,
we have:

(e2'"

<Ve3J

The pairs in the boxes are no longer distinct if ordering is
dropped. Thus, for the Bose-Einstein condition we have only 6
distinct pairs, in agreement with Eq. (2.32).

For the convenience of the reader, the four basic counting laws we have
considered In this section are summarized in Fig. 2.14. We close this
section by considering an example which further illustrates some of the
material discussed in this section.

Example 2.10

Consider four distinct energy levels as follows: 0,

e. e_ = 2e. and e 3e. Furthermore, assume that there are
O *i

three particles to be distributed among these available energy
levels. Let E be the total energy of the system corresponding to
an arbitrary allowed-occupancy configuration for the particles.
The objective is to determine the number of distinct states that
can be formed for each possible total energy E of the system of
particles, considering the four statistical counting rules
summarized in Fig. 2.14. The results of this investigation are
indicated in Figs. 2.15 and 2.16 and Table 2.3. Clearly, the
choice of statistical counting law has a dramatic impact on the
outcome for this simple example. We note that the distributions
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With

replacement

Without

replacement

Forming
k-tuples

Distinguishable

W = nk

(Maxwell-Boltsuiann)

W =

n(n-l)...(n-k+l)

Ordered

Indistinguishable

W = C n + k - l . k
(Bose-Einstein)

W = Cnk
(Fermi-Dirac)

Unordered

Occupancy
picture

Without

exclusion

With

exclusion

Figure 2.14: Summary of several important counting laws dealing with k
items from a collection of n. The indicated C-coefficients
are binomial coefficients as defined by Eq. (2.21). Both
the k-tuple and occupany viewpoints are indicated.
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(ej.a.b): (e2>a,b): (e^a.b): (e2,a.b):

e. 3e 4e 5e 6e e 4e 5e 6e 7e e, * 4e 5e * e. 4e * 6e *
4 4 4 4

eo 2e 3e 4e 5e e_ 3e 4e 5e 6e e_ * 3e * 5e eo 3e * * 6e
O O O *5

b b b b
e e 2e 3e 4e e 2e 3e 4e 5e e * * 3e 4e e * • * *
C, 2 & "I

e 0 e 2e 3e e e 2e 3e 4e e * • • • B * * 3e 4e

ei e2 e3 64 61 B2 C3 C4 61 E2 C3 G4 61 82 B3 64

e4

e3

e2

el

5e

4e

3e

2e

e

(e3.a

6e

5e

4e

3e

e2

.b):

7e

6e

5e

4e

e3

8e

7e

6e

5e

e4

e4

e3
b

61

(e

5e

4e

3e

4'a

7e

6e

5e

4e

e2

,b):

8e

7e

6e

5e

e3

9e

8e

7e

6e

e4

e4

e3
b

e2

ei

(e.

5e

*

3e

*

ei

j.a.b):

6e *

* *

* «

3e *

e2 e3

*

*

6e

5e

e4

e4

b
e2

ei

(e

*

5e

4e

*

• , a

*

6e

*

4e

e2

.b):

*

*

fie

5e

e3

*

*

*

e4

(A) No exclusion (Haxwell-Boltzmann). Eq. (2.19). (B) With exclusion. Eq. (2.20).

Figure 2.15: Distinct ways of distributing three distinguishable particles among four energy
states. Allowed total energies E appear in the square arrays. Asterisks nark the
excluded configurations. See Ex. 2.10.



.E-
O

-=0 E=e E=2e E=3e E=2e 3=3e

E=3e E=4e E=4e E=5e E=6e E=4e

E=3e E=4e E=5e E=5e E=6e E=5e

E=7e E=6e E=7e E=8e E=9e E=6e

(A) No-exclusion (Bose-Einstein), Eq. (2.32) (B) With exclusion (Fermi-Dirac)
Eg. (2.21)

Figure 2.16: Distinct ways of distributing three indistinguishable particles among four energy
states. Ensemble total energies ar indicated under each diagram. See Ex. 2.10.



Table 2.
Energies for

See Example 2

Ensemble
Total
Energy (E)

0

e

9e

3e

4e

5e

6e

7e

8e

9e

.3: Available Configurations with Indicated
Three Particles Distributed Among Four Available

.ioa.

Maxwell-
Boltzmann

1

3

6

10

12

12

10

6

3

1

Possible-
Configurations 64

Distinguishable
with
Exclusion

-

-

-

6

6

6

6

-

-

-

24

Bose-
Einstein

1

1

2

3

3

3

3

2

1

1

20

Ensemble Total
Energy States.

Fermi-
Dirac

-

-

-

1

1

1

1

-

-

-

4

Refer also to Figs. 2.14-2.16. Hyphens indicate excluded total energies.
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of numbers of available states of a given total energy are
symmetric, regardless of the statistics. Application of the
exclusion principle for individual particles results in
inaccessibility for configurations corresponding to many of the
total energies which would otherwise be represented.

The link between nuclear data uncertainties and the material presented
in this chapter has not yet been established, but it will be made clearly
evident in due course in this series. In the next chapter we investigate
so*e additional concepts which are needed in order to be able to make this
connection. The reader should depart from the present chapter with a respect
for the complexities associated with event definition and event counting.
The reader should also reflect upon the number of interesting symmetries
which have been observed. Skill in visualizing such symmetries is essential
to the mastery of event-space analysis.
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3. RANDOM VARIABLES AND THEIR FUNCTIONS

At this stage we are not yet ready to directly undertake a study of
probability theory. First, it is necessary to explore three additional
related aspects of the theory, namely, the notions of randomness, random
variables, and functions of random variables. The relationship between
random events and random variables must be established. The differences
between discrete and continuous random variables also need to be understood.
Irtis chapter is divided into three sections. The first deals with the
concept of randomness. The second discusses random variables, both discrete
and continuous, and how they relate to observable events. Finally, the last
section addresses three classes of random-variable functions which play
important roles in the theory.

3.I Concept of Randomness

He can easily conjure mental images, based on our personal experiences,
that illustrate the concept of randomness. Terms such as "unpredictable,"
"unbiased." "indeterminate," etc., are often used to describe our
interpretations of this notion. Generally, these preconceived concepts of
randomness serve us well, since random phenomena are common in the
experiences of life. Nevertheless, it is necessary at this point to refine
this concept somewhat in order to be sure that we agree on the meaning of
certain terms before proceeding to develop the topic further.

The following intuitive definition, quoted from Parzen (Par 60), serves
well for present purposes: "A random (or chance or stochastic) phenomenon is
an empirical phenomenon characterized by the property that its observation
under a given set of circumstances does not always lead to the same observed
outcome (so that there is no deterministic regularity), but rather to
different outcomes in such a way that there is "statistical regularity."

This can be restated using terms from Chapter 2. When a process
operates on an event space but there is no way to control individual outcomes
of the procedure involved, then the process itself is random and the events
which constitute the event space in question are random events. Although the
exact outcome of any single random trial is unpredictable, a pattern is
expected to emerge based on the accumulated experience of many trials (i.e.,
a sample of reasonable size). In fact, in the spirit of Parzen (Par 60), we
will treat as random only thoss situations in which we anticipate a priori
that such a pattern exists. It is essential to understand the distinction
between randomness, with attendant statistical regularity, and chaos.
Chaotic phenomena exhibit no discernible pattern, even for substantially
large samples. However, one cannot learn whether a particular process is
chaotic or statistically "well-behaved" by considering only a single trial.
This must either be postulated on the basis of related experience or "common
sense," or must be deduced from protracted sampling experiments. Suffice to
say. statisticians earn their livings by dealing with these issues in
practical applications, but experimenters are required to have a reasonable
understanding for their own purposes.
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Fortunately, natural processes are rarely found to be chaotic when they
become well understood. On the other hand, results of individual trials
generally do fluctuate in a random way, so that the outcomes are not
deterministicaUy predictable. The mathematical theory of probability has
been developed to treat such random processes in a rigorous way. It is a
useful theory because one can construct mathematical models within the
framework of the theory which represent the features of many observable
phenomena quite adequately. In later chapters of this report, and in
subsequent reports of this series, we will, on numerous occasions, deal with
mathematical analogues of observable phenomena, but we should not forget that
the mathematical quantities which we will consider are useful only to the
extent that the phenomena in question behave fundamentally in a way that is
consistent with the postulates of the theory (i.e., controlled conditions).

The reader should not be left with the impression that all observable
phenomena have to be distinctly categorized as either deterministic, random
or chaotic. Intermediate situations can and do occur, and this fact adds to
the complexity of interpreting and dealing with the real world. For example,
much of the effort expended by experimental physicists involves identifi-
cation and elimination of chaotic effects (e.g., malfunctioning equipment,
electromagnetic fluctuations and interference, etc.) so that their
experiments can be performed under the controlled conditions that are
required in order to generate random, yet statistically well-behaved results,
consistent with the theories which they seek to explore.

The following example illustrates the concepts discussed above.

Example 3.1

Consider an experimental setup which includes a 14-MeV
neutron generator and a detector used to monitor neutron fluence.
Neutrons are produced by bombarding a thin metal-target layer
containing absorbed tritium with few-hundred-keV deuterons. The
detector is assumed to be an organic scintillator. We seek to
perform a particular experiment under conditions of controlled
neutron production and stable neutron detection. Anyone having
experience with such a facility can immediately identify a number
of factors which influence the experimental configuration, e.g. ,
accelerator-voltage stability, ion-source stability, target
stability, geometry, detector-gain stability, etc. Can we
identify any observables associated with this setup which behave
in a deterministic manner? There are some trivial ones, such as
discrete switch settings for the apparatus, which are assumed to
be fixed from one measurement to the next (sequential samplings).
These should be unambiguous if no one has disturbed the setup.
Experimentalists should, of course, periodically check such
things, because mysterious alterations are not uncommon,
particularly if the apparatus has been left unattended. Some
factors are nearly deterministic, e.g., in the present setup, the
accelerator beam probably consists mainly of deuterons (atomic or
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molecular) if a high-purity deuterium gas supply is attached to
the ion source and the vacuum is good.

However, moat of the parameters we might select to monitor
during this experiment would behave randomly, even under ideal
conditions. If. for example, we were to plot up the actual
neutron yield deduced from the measured detector events per unit
time for a relatively short tine under acceptably stable
conditions, we might obtain a plot as shown in Fig. 3.1(a). The
trend is flat, but there are obviously fluctuations. The nature
of these fluctuations over a large number of trials (and thus the
uncertainty of the fluence determination) could be predicted in a
statistical sense. Figure 3.1(b) exhibits a behavior that
experimenters, who are experienced in this line of work, will
recognize as more realistic than that of near-constant neutron
output. In this case, the systematic decline in neutron yield
over an extended time interval could probably be traced to a
particular factor, e.g., steady depletion of available tritium in
the target. One can usually accommodate such systematic behavior,
once the origin is understood. Note, however, that unavoidable
random fluctuations about the decreasing trend line persist.
Figure 3.1(c) represents a chaotic situation. No experimenter
would tolerate these sudden, unpredictable jumps in measured
neutron output. Clearly, one or more components of the apparatus
are malfunctioning. The experimenter would be forced to find a
solution to this problem before proceeding with the experiment.

In summary, experimenters bear the responsibility of understanding their
experiments to the extent that they can intelligently estimate the degree to
which the observed experimental behavior at hand is deterministic, random, or
chaotic. The manner in which they subsequently interpret their data must be
consistent with these considerations.

3.2 Random Variables

Considerable attention is devoted in Chap. 2 to developing the notion of
events as the possible outcomes fro* random sampling procedures. No
particular effort is made to consider how one might label or characterize
these abstract random events. In practical situations, it is important to be
able to label events, and the use of numerical parameterization is by far the
most versatile approach. It is used, for instance, in Ex. 2.1. There,
atomic number, neutron lumber, and nuclear-excitation energy are employed as
useful parameters for unambiguous event specification. The use of real
numbers to characterize events makes possible the marriage of statistical
theory and numerical analysis, a very powerful combination which is essential
for the present development of uncertainty theory.
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(a) Normally "stable" neutron output

Neutron yield
per unit of
time

JL V
Flat trend

line

Real time

(b) Systematically declining neutron output

Neutron yield
per unit of
time

*"•*"••*.*. Decreasing trend
• line

^ Real time

(c) Chaotic behavior of neutron output

Neutron yield
per unit of
time

.'i

l*J
I i
i I

Chaotic trend
line

Real Time

Figure 3.1: Examples of accumulated "data" from hypothetical neutron Fluence
measurements. See Ex. 3.1.



While numerical-valued random phenomena are encountered quite naturally
in many realistic situations, there are also instances where the outcomes of
a sampling procedure are more qualitative than quantitative in nature. What
does one do then? The following example illustrates this point and indicates
the approach which is normally used to deal with this issue.

Example 3.2

Consider an arbitrary experimental process (sampling
procedure) where the outcome reduces to one of two possibilities:
"on" or "off" (or something equivalent to this). The event space
E consists of two elements, e = "on" and e = "off" . One

trivially notices that the integers 1 and 0 could be used without
ambiguity to represent this apparently qualitative situation.
Then, let e = 1 and e = 0 (of course the assignment is not

unique). This apparently simple step of relating, for example,
the status of a bipolar switching device to the integers 0 and 1
opens up the possibility of employing binary algebra for analysis.
It is from this realization that the concept of a digital computer
was born.

In more general terms, it turns out, for all practical purposes, that numbers
can always be used to characterize the outcomes of statistical sampling
procedures. Mathematicians point out that there are limitations associated
with the requirement that the parameter sets so generated be amenable to the
definition of probability. This is rarely a problem of concern for us, so wt
avoid the issue in tnis discussion.

To simplify matters, we first consider the entire class of events which
can be characterized by the specification of single parameters. The
characterization of events e in event space E in terms of a collection of
representative numerical values is assumed to be accomplished by a function,
say X. which operates on elements e in E in such a way that there is a
particular correspondence between an event e and the real number x - X(e).
The function X. which has as its domain the event space E and yields real
numbers such as x, is called a random variable. It is very important to
grasp the concept that the random variable is the function X, not the
individual values, x = X(e), which this function produces when it operates on
E. In routine practice, however, this distinction between a variable and the
values it can assume is often blurred. For convenience, this will often be
done in the present work. Nevertheless, the reader should always keep this
distinction in mind. In a sense, the nomenclature "random variable" is
somewhat misleading. A better choice would be "random function." However,
we choose to adhere to the traditional convention. Events which can be
specified by a single parameter in this way are designated single-variable
events. Clearly, any number of other functions, e.g., F.Y.Z could be

47



established on E, depending upon the problem at hand. This is illustrated
in the following example.

Example 3.3

Consider a neutron activation experiment in which a number
of very similar cylindrical disks with uniform material content
are irradiated. For each sequential irradiation, the experimenter
reaches into the sample container and selects a labeled sample "at
random." Three obvious possibilities exist for single-variable
categorization of che process of selecting a sample (the selected
sample is an event): diameter (D), thickness (T). and mass (M).
The functions D. T. and M are random variables by definition, each
operate on the event space consisting of the complete sample
collection. The real value provided by function D, when a
particular sample is selected, is d. Likewise, values t and m
are produced by functions T and M, respectively. The experimenter
is free to employ the random variable which best satisfies his
particular needs in order to represent the outcome of the
sample-selection process. For cross-section calculation, the mass
M is probably the one to favor. However, diameter D and thickness
T impact upon various important corrections, and the;, may also
have to be considered by the investigator.

Analysis of errors for the parameters that are chosen to describe the
outcome of an experiment involves the implicit assumption that their observed
frequency distributions (in samples taken from the ensemble of allowed
values) are governed by known or assumed statistical laws, and, hence, that
these parameters satisfy the conditions needed to designate them as random
variables.

Next we consider the dimensionality of random variables. Their
dimensionalities or cardinalities are distinct from those of the underlying
event spaces E with which they are associated. A random variable X has
dimensionality which is specified by the cardinality of the particular set of
real numbers that corresponds to all the functional values obtainable for the
random function X operating on E. E itself may be infinite, countable, or
nondenumerable. This point is further clarified in the ensuing discussions
and examples. Finite random variables are functions X which take on a finite
set of values x = X(e), for e t E. Countable or denumerable random variables
involve infinite sets of functional values which correspond one-to-one to the
set of all integers. Finite and countable random variables are more
generally designated as discrete random variables. The discrete values
x. ,x , . . . are known as the .jump points of X on E. Uncountable or

nondenuaerable random variables, more commonly called continuous random
variables, are real-valued functions whose functional values form uncountable
sets. The sets of numerical values produced by these functions can be mapped
one-to-one into the set of all real uumbers. The outcomes of many
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measurement processes for realistic physical situations are usually treated
this way (e.g., weight, length, time). Hybrid random variables roust be used
whenever the functional value spaces contain various components (subspaces)
of different cardinality. All sorts of combinations are possible. The
following hypothetical example represents a rather simple one.

Example 3.4

Consider the quantum mechanical problem of a particle
interacting with a finite potential well. We assume existence of

both bound and unbound states (solutions to Schrodinger's
equation). The hypothetical sampling process is that of
identifying which state the particle is occupying at a particular
instant (although we realize that this ia physically impossible
according to the Heisenberg Uncertainty Principle). The allowed
states form an event space, and particle energy E is a suitable
representative random variable. It is a fact that the bound
(E < 0) states will be quantized (i.e., discrete), and,
furthermore, that there are a finite number of them in this
situation. The unbound states are uncountable; thus, the allowed
energy values form a cont̂ nu.ua with (0 < E < »). In this example,
particle energy is a hybrid random variable, since its allowed
domain involves discrete values and a continuum region. Note that
in this example the cardinalities of the event space (states) and
the corresponding random-variable descripton (particle energy) are
the same.

Not all events of practical interest can be characterized by the use of
single random variables. An extension to multi-dimensional random variables,
more commonly referred to as joint random variables or random vectors, is
required. In practice, the number of required parameters is finite. Thus,
we consider as an n-component random variable the collection of real-valued
functions (F ,...F ) having the property that when they operate on event e in

E, they produce the array of numerical values (f ,...f ), according to the

rules F, (e) = f, ,...F (e) = f . For convenience, we use the vector notation1 I n n

F = (F.....F ), f = (f ....£ ), and F(e) = f. Previously discussed concepts

of dimensionality carry over to multi-component situations in an obvious way.
Clearly, arbitrary mixtures of discrete and continuous random-variable
components (hybrids) are also permitted in multi-dimensional problems. The
essential feature is that well-defined relationships must exist.

The reader should surmise from the preceding discussion that the notion
of random variables serves as a convenient aid in the numerical specification
of events. By designating functional relationships between event space and
corresponding spaces of numerical values, one avoids having to list tables of
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numerical values explicitly and thereby gains the possibility of utilizing
many useful features of real-valued function theory.

3.3 Random-Variable Functions

We have seen in the previous section that random variables are
essentially "well-behaved" functions which operate on event spaces and yield,
in a well-defined manner, real-number values that serve to unambiguously
identify events. Thus, for instance, if E is an event space with elements e,
and X is a random variable which serves to characterize E, X generates a new
space S of real numbers x = X(e) which acts as an image of E. An important
point, first made in Section 3.2, should be reemphasized here:
Transformation from an event space to an image space containing real numbers
enables numerical analysis to be performed. In this section we focus on
random variables, such as X, and their domains, such as S, but remain
cognizant of the fact that they are really surrogates for the more
fundamental event spaces that they represent. Generalization of this concept
to joint random variables is straightforward.

Once the image space of real numbers is established, we are free to
define functions on this space. Henceforth, we will usually bypass the
previous practice of distinguishing function names from functional values by
using lower case letters for values and capital letters for functions, though
we may occasionally resort to this formal convention. Rather, the
distinction will either be explicitly stated or assumed to be apparent from
the context of the discussion. In this presentation, we will be interested
in three special classes of functions of random variables. The distinctions
are based mainly on their roles in the theory. We begin the discussion of
these here and resume it in Chap. 6 and in later reports of this series.
Since we wish to perform analysis using these functions, they must be
"well-behaved" to the extent necessary to permit such mathematical operations
to be undertaken as may be required in a particular application, e.g.,
differentiation or integration. Mathematicians labor over such matters, but
we will generally be able to avoid detailed technical consideration of this
issue because those functions of random variables which interest us for most
practical applictions tend to be well-behaved; otherwise, they would not have
been found to be useful in the first place. The interested reader n-ill find
extensive discussions along this line in certain of the listed references
(e.g., Fis 63 and Zeh 70). Generally, the functions to be considered will be
bounded and devoid of singularities. Discontinuities, which play havoc with
differentiation, are not uncommon, so care is required in this regard. There
is also be a frequent need to construct augmented spaces. For example, if a
function f of a random variable x is physically defined only over the

interval (x . ,x ), it may be useful to augment the space to (-»,+<»),m m max
namely, the set of all real numbers, and simply provide f with a dummy value,
e.g. zero, outside the intended range. When this is done, discontinuities
may be introduced, and they have to be handled with care.

We now state a fundamental fact without technical elaboration:
Functions of random variables can also serve as random variables, provided
that they are suitably well-behaved. However, not all functions which we
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will choose to define on random variable spaces are intended to serve as
random-variable functions. This point may seem trite, but its consequences
are of great importance to the theory. From a physical point of view this
represents a very reasonable state of affairs. One would expect that one
could define quantities which would be distributed in statistically
predictable ways by the operation of well-behaved functions on random-
variable spaces. That this in fact can be done is, for example, essential to
the notion of error propagation. It also enables statistical analyses to be
performed using specially defined functions that are referred to as
statistics. This topic will be addressed in later reports in this series.

Although we will not make any use of it in this volume, it ia worthwhile
for one to be aware of the notion of an indicator function, for random
variables x belonging to set A. The indicator function I. is defined as

follows: IA(x) = 0 if x £ E but x « A. i.e., if x £ A; however. IA(x) = 1 if

x fe E and x £ A, i.e. . x « A. Thus, given E and A £ E, I. maps every point

in E into either 0 or 1, depending upon whether or not x e A. Indicator
functions are sometimes useful in proving theorems from probability theory.

The three classes of random-variable functions to be emphasized here
cover most situations of applied interest. For lack of a better word, we
refer to the first category as random-variable functions or transformation
functions. These functions are intended to represent certain quantities,
derived directly from other random variables, which correspond either to real
physical parameters or to abstract ones which behave randomly and serve
useful analytical purposes. The random-variable arguments for these
functions can be discrete, continuous, or hybrid in nature. The simplest
case might be represented by y = f(x), in which the space X of real values x
is mapped into an image space Y of real values y by the function f. In many
instances, f will be sufficiently well-behaved so that there exists an

inverse function, g = f , with the property that all points of y in Y can be
mapped one-to-one into equivalent points x in X. Such one-to-one mapping,
with the existence of an inverse function, does not exist for all types of
random-variable functions we will be interested in, so the reader must not
assume its validity a priori. In the most general case, such a

transformation can be represented by the mapping of vectors x = (x ,...x ),

belonging to an n-fold space, X, into vectors y = (y^.-.y ), belonging to an

m-fold space Y, by means of a set f of m functions (f ,...f ). Thus,
1 In

y. = f.(x) for i = l.m, or equivalent y = f(x).



Example 3.5

Consider again the sample collection described in Example
3.2. Let d represent diameter, t represent thickness*, and m
represent mass. There is a functional relationship between these
parameters, namely, m = n(d,t;p). Here, as is commonly done, we
allow m to represent both the random variable (a function) and a
typical value. The density p is assumed to be constant. Since it
is not treated as a random variable like d and t, we choose to
separate it from them by a semicolon. For simplicity, we suppress
p and write the function m as

m(d,t) = npd2t/4 .

Thus, for d, < d < do. and t, < t < t_, we have
1 d X C

1 t 1 / 4 < m < 2 2

The random variable m is treated as derived in this example, but
it can also be directly measured (i.e., it can be deduced from the
sampling process called weighing). The function m of d and t has
no well-defined inverse in that knowledge of m does not yield a
unique pair (d,t). This is consistent with the common sense fact
that a measurement of the mass cannot provide unambiguous
information about the sample geometry. Knowledge about d, t, and
p provides us with a far greater understanding of the nature of a
particular sample than does the weight alone.

Data analysis or data reduction generally involves transformation from
one collection of random variables to a lesser number of derived quantities.
Inverses usually do not exist. Such transformations generally lead to loss
of information. This is illustrated in the following example.

Example 3.6

Neutron cross sections are significant abstract parameters
which are not directly measurable. For a simple hypothetical
experiment, the cross section a is a random variable derived, for
example, from the following measurable random variables: Observed
yield y, neutron fluence V, and sample atoms n. Thus, a =
o(y.¥\n) = y/(Fn). It is evident that if only the cross section o
is given, we can say nothing about the experiment that produced
it.
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We turn our attention next to two classes of functions, involving randon
variables, that serve entirely different purposes. These functions cannot be
interpretated as "random-variable functions" in the sense described above.
The first of these classes is that of density functions. Density functions
involve transformations from single or joint random-variable spaces to
subsets of the set of all non-negative real numbers. Density functions are
not intended to represent observables, or even certain abstract parameters
somehow related to physical ones (e.g., cross sections). We shall see that,
in fact, they are generally used in the quantification of probability. Since
we have not yet introduced the notion of probability, this class of functions
will not be discussed here in a probability context. The arguments of
density functions can be discrete, continuous, or hybrid random variables.
The term mass function is sometimes used to designate density functions with
discrete arguments, since these are not true density functions. For
convenience, we will use "density function" to denote both. Thus, for the
single-variable case we have f operating on x to yield f(x). Given f and a
discrete collection of values (Xj.Xg,...). one obtains the set of

corresponding mass values (t' ,f2,...).

if x . < x < x .
•in - max

generated.

For continuous-variable situations,

then for each x a corresponding density value f(x) is

Example 3.7

A function f. defined for random variable x such that
f(x) - c (a constant) for each x in the range x , < x < x , is

nun max
called a constant density function. We could easily augment the
range of f to encompass the domain of all real numbers bydeclaring that f(x) = 0 for

the discontinuities which are introduced at x

by this procedure.

< x < x . and x < x < +». Note
min max

x . and x
din max

Density functions involving several random variables are called

multivariate or joint density functions. If
v a r i a b l e c o l l e c t i o n (x , . . . x ) , we speak of f

(x ,...x ) or f

represents the random
as a joint density

function with functional values f (x ,...x ) or f (x). Unlike the
i t . • • n l 11 1 L . • • it

situation for transformation functions, arrays of density functions are not
defined. They are always scalar quantities.

Density functions are employed in conjunction with another class of
functions of random variables called distribution functions. In fact,
distribution functions are often defined in terms of corresponding density
functions. In the following discussion, it will be assumed for convenience
that the random-variable spaces are augmented as needed in order to be
equivalent to the set of all the non-negative integers or to the set of all
real numbers. If x is a single random variable and f is a density function,
then the corresponding distribution function F is defined as
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F(z) = x|z f(x). (3.1)

if the domain of x is discrete, or

F(z) = J*^ f(x)dx (3.2)

if the domain of x is continuous. Referring to Fig. 3.2, for instance, the
values of F corresponding to a particular z are equivalent to the shaded
areas in Figs. 3.2(a) and 3.2(b), respectively, for a discrete and continuous
case. Owing to the non-negative nature of density functions, and to the
definition of distribution functions, it holds that F(z) > 0 for all z, and
FU. ) > F(z ) if z. > z . The reader ought to realize that the term

p •" ft D ™ a

"distribution function" is frequently used interchangeably with "density
function." In fact, we will sometimes do this in the volume, in conformance
with standard practice. The distinctions indicated above must be kept in
mind, however.

Extenstion to multivariate situations is straightforward. The
distribution function F associated with a continuous joint density

function f12 is defined as

Z1 z

FiO (Z.....Z ) = f dx,...f ndx f,o (x..,...x ). (3.3)
12...n 1 n ; 1 ' n 12...nv I n

-« —00
A continuous density function is said to be uniformly well-behaved over a
given space of values (z ,...z ) if the following relationship exists between

it and its corresponding distribution function in that region:

Density functions are said to be factorable in the variable x. if there

exist two functions f. and f,n . , . . such that
l 12...1-1,1+1,...n

fi (V fi2...i-i.i+i...n ( x--- xi-i' xi+r---V • ( 3 5 )

It is readily shown that the corresponding distribution function is also
factorable; thus,

(3<6)
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Figure 3.2(a): Histogram represents a discrete density (or mass) function

f. - f(x.). Shaded area represents the corresponding

distribution function F(z) xlz f(x).

3.2(bl : Curve represents a continuous density function y = f(x).
Shaded area represents the corresponding distribution

function F(z) = fX f(x)dx.
* —OO
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where

z.
x

z.
F.(z.) = / x f.U^dx.. (3.7)

—Cft

and

z
' " J " ' ...x ). (3.8)

The factox-ability of distribution functions turns out to be an important
issue when considering aarginal probability and independence.

Finally, we note that probability theory deals with noraalizabie density
functions having corresponding distribution functions which are bounded.
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4. BASIC CONCEPTS OF PROBABILITY

The preceding chapters of this report serve to introduce the reader to
certain basic concepts and mathematical tools which are essential for aa
understanding of probability theory. In the present chapter we come to grips
with the concept of probability itself. Analogous to the approach used in
Chap. 2. we begin in Sec. 4.1 with an intuitive discussion of probability.
This is followed by a more technical exposition in Sec. 4.2. Finally, in
Sec. 4-3, we consider sane of the techniques used in probability
calculations. This development emphasizes probability as it applies
explicitly to event spaces. In Chap. 5. probability is considered in terms
of density and distribution functions which operate on random-variable
spaces. This exposition also strives to prepare the reader for the next
report in this series, in which the relationship between probability theory
aad data uncertainties will be elucidated.

4.1. Intuitive Approach

Readers of this report will have come to realize by now that this
exposition has. to this point, avoided discussion of the central concepts of
probability theory, focusing instead on preliminary matters. This approach
is intentional. In my opinion, many expositions on this subject tend to
thrust tile main ideas of the theory upon the reader before undertaking to
provide the mathematical "infrastructure" needed for them to be properly
assimilated. Automotive enthusiasts will agree that a sophisticated engine
requires a carefully designed and adjusted chassis, an aerodynamic body, an
efficient fuel and air delivery system, etc., in order to manifest its true
capabilities. Of course, once the supporting components of a vehicle are in
place, its heart, the engine, must then be installed. We proceed in this
section to bring the theory of probability to life by adding to it the
central working concept, namely, the notion of frequency of occurrence of
certain well-defined attributes in random sampling from simple-event spaces.

The following example illustrates informally what is meant by frequency
of occurrence, and it explores the link between this concept and some other
previously-discussed notions.

Example 4.1

Consider an electromagnetic isotope separator. We place 100
mg of chemically pure elemental copper in an ion source and set
the machine into operation. This separator is assumed to possess
a well-established collection efficiency that is arbitrarily taken
to be 1%. During operation, individual atoms of copper are
randomly extracted from ths ion source and injected into the
separator. A particular copper atom, once released from the
source material, is either effectively lost (99* of the time) or
makes a successful journey to one of two collectors (1% of the

time). Copper in elemental form has two isotopes, Cu and
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Cu. For successful journeys, it is assumed that Cu atoms

always go to Collector No. 1. while, analogously, Cu atoms go to
Collector No. Z. After 10 mg of the source material (10*) have
been processed, the contents of Collectors No. I and No. 2 are
weighed and it is found that Collector No. 1 contains ~ 70
micrograms of copper and Collector No. 2 contains ~ 30 micrograms
of copper. Correcting for isotopic Mass difference, it is noted
that this result is consistent with the known natural isotopic

abundances (Tul 85): 63Cu (69.17 + 0.02%) and 65Cu (30.83 +
0.03*).

Let us examine this process in terms of the ideas developed
so far in this report. The random sampling process is clearly the
extraction of individual atoms from the mass of material placed in
the separator ion source. Each individual atom extracted
represents a simple event belonging to a sampling space. Our
particular sampling exercise produces a sample equivalent in size
to ~ 10% of the entire sample space. In this instance the sample
is large enough to serve as a population which is representative
of the entire sample space. The observation itself consists of
identifying whether a particular extracted atom (simple event) is

Cu or Cu, and whether or not it makes a successful journey
through the separator to a collector. If the journey through the
separator is indeed successful, then it is essentially
predetermined by the design of the instrumentation as to which
collector will receive a particular isotopic species. In reality,
we do not observe the outcome of individual atom extractions.
That would be impossibly tedious. Instead, we weigh the collected
material and indirectly deduce the total numbers of each isotope
which have made a successful journey. We therefore ire led to
consider compound events, defined according to the two particular
attributes which are of interest to us. Each compound event is a
subspace of the entire space of simple events, and each such
subspace contains a huge number of simple events.

The compound events can be Identified by two random
variables: mass number (A) and transit history (H). Thus,
conpound events (A.H) are: (63,0), (63,1), (65,0), (65,1), where
H=0 (failure) or 1 (success). A and H are joint random variables,
as described in Chap. 3. The transit success-to-failure frequency
ratio for any particular sample (collection of extracted copper
atoms) is determined by the efficiency of the separator. An
efficiency of 1% implies that for a very large number of extracted
atoms, about 1 out of every 100 will reach a collector. However,
for a particular sample of small size, the observed success-to-
failure ratio could be quite different from 1/99: In this
example, however, the sample we have taken is a substantial
portion of the entire event space, so it happens that the observed
success-to-failure ratio is essentially indistinguishable from the
1/99 value characteristic of the entire space. Likewise, the
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observed frequency ratio for isotope type of the extracted atoms
will reflect the underlying isotoplc abundance of elemental copper
whenever the sanple is large, as is the case here. That
frequencies of occurrence of certain well-defined outcomes from
sampling in fact tend to converge toward the underlying features
of the entire sample apace, as the size of the sample becomes
large, is an observed fact of random phenomena in Nature. It
would certainly have been pointless to develop a theory of
probability if matters had been otherwise. This is merely an
affirmation of our previously stated notion of statistical
predictability. Figure 4.1 illustrates the current example. The
simple-event space of individually extracted atoms (shown
symbolically by dots) is partitioned according to attributes
labeled by A and H. The allowed (A,H) pairs are mutually
exclusive compound events. The final outcome (measured masses of
copper in each particular collector) reflects the fact that each
elementary event is equally likely in random sampling, and,
therefore, the likelihoods of the various defined compound events
are determined by relative frequencies with which elementary
events are observed to possess the specific defined attributes
that characterize the compound events in question.

The origin of probability theory as we know it today dates to the
seventeenth century in France. Chevalier de Mere was known to be an ardent
gambler. It seems that he was baffled by some questions concerning a game of
chance which was then popular. He consulted the mathematician Blaise Pascal
who, in turn, wrote to Pierre Fermat. This correspondence led to the
earliest documented formulation of the theory. Great strides were made in
its development in the eighteenth century, particularly as a result of
contributions by Karl Gauss and Pierre Laplace. However, certain conceptual
difficulties with the theory were not resolved until well into the twentieth
century. Growth in the application of probabilistic methods has been very
pronounced since the end of World War II, aided in no small measure by the
advent of the digital computer.

Modern probability theory is based upon a series of postulates.
However, since these are consistent with the notion of frequency of
occurrence, introduced earlier in this chapter, we choose to pursue the
frequency approach in this section and defer discussion of a more rigorous
basis for the theory to Sec. 4.2.

First, consider a finite space E of simple events e ,e ,...e e . At

the same time, define a sampling process which, for simplicity, consists of
selecting a single simple event from E at random. Accordingly, one defines a
scalar function P such that P assigns the value P(e.) to each event e. .

Furthermore, assume that P(e.) = 1/n for each e. in E. This assumption is

known as the Equal-Likelihood Postulate. The implication is that all the
events of E are equally likely to occur when the sampling process is
executed. Suppose A is a compound event consisting of one or more simple
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Failure

Success

63
Cu

. . . ( 6 3 . 0 ) .

. . ( 6 3 . 1 ) . . . .

65,,
Cu

. . ( 6 5 . 0 ) . . .

( 6 5 . 1 ) . . .

Figure 4.1: Event space for copper atoms processed by an isotope
separator. Individual dots symbolize simple events, while the
partition into various regions represent compound events.
Each compound event contains many simple events. See example
4.1.
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events of E which possess a particular attribute. To be definite, assume

that A contains n. distinct simple events E. The complement A = E-A

contains n-n. events which by definition are distinct from those in A. The
A

function P, when applied to A and A, yields, respectively.

Thus,

P{A) = nA/n and P(A) = (n-nA)/n.

P(A) + P(A) = 1 ,

or equivalently. P(E) = 1. Likewise, P($) = 0. P(A) represents the ratio of
the number of simple events nft with attribute characteristic of A to the

total number of events n in E. The function P is the probability function,
or simply probability, associated with a particular sampling procedure and
particular event space E. It is very important to remember that the sampling
procedure and the event space upon which it operates must both be considered
in defining and calculating probability.

Example 4.2

Consider again the situation defined in Ex. 2.3. The simple
events correspond to all of the distinct failure configurations
for a circuit board with four IC components. In this example we
concluded that there were 16 such configurations to consider (see
Table 2.1). Under the category "Possibility A," we also defined
five mutually exclusive compound events, corresponding to the
particular attribute "number of defective IC components on the
board". One of these compound events is "three-bad-component
failure mode". According to Table 2.1, this compound event has 4
simple events associated with it. Thus, the probability of
observing a "three-bad-component failure mode" when examining the
board is 4/16, or 0.25, provided that all simple events are
equally likely to occur.

For a finite sample space and a well-defined sampling rule, the
definition of probability for various compound events belonging to the
associated Borel field is unambiguous. The postulate of equal likelihood is
almost universally assumed in applications, for this mathematical model
appears to apply to a very large class of random phenomena in nature. For
example, modern quantum theory relies very heavily on this postulate, since
it is largely a statistically based theory. In those instances where it
might appear to not be valid, it is generally possible to restore its
applicability to the problem in question by seeking an alternative and more
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fundamental definition of the simple-event space. It must not be forgotten
that by definition each simple event must be unique, and therefore mutually
exclusive from all other simple events of the sample space.

Difficulties can and do arise in probability analyses with finite sample
spaces, owing to the fact that sampling from a finite space perturbs the
nature of the space, unless the selected event e^ is "replaced" before

undertaking subsequent sampling. The attendant problems do not reflect a
fatal flaw in the theory, however, for they can be handled by being very
careful with the counting procedures. The fundamental importance to
probability theory of the counting rules discussed in Chap. 2 is now very
evident.

Many applied problems require a mathematical model in which the sample
space has such a large number N of simple events that it can, for all
practical purposes, be considered infinite. We then run into a bit of a
problem in defining probability in the manner discussed above. The
probability of each simple event, 1/N, is vanishingly small. In situations
involving such large spaces, we are hardly ever interested in the probability
of individual elementary events. Instead, we are concerned with the
probability of occurrence of some attribute, i.e., with a compound event.
Un.ler these conditions probability can be conveniently envisioned in terms of
observed frequency ratios. Assume that a sampling procedure is repeated a
finite number of timeu, n, on an event space with a very large number of
elementary events (n << N). and that for n. of these times compound event A

occurs. The frequency ratio f(n ,n) = n./n is clearly observable and,
A A

furthermore, tends to converge with increasing n. Therefore, we choose to
interpret as the probability P(A) the following limit:

P(A) = fim f(n .11) . (4.1)

Definition of probability according to Eq. (4.1) is considered to be
unsatisfactory by most pure mathematicians, so they have elected to establish
a theory of probability based on a minimal number of postulates, as discussed
in Section 4.2. It is understandable that they should feel this way. In
order for the limit indicated in Eq. (4.1) to exist, it must be proven that
for any real number t, no matter how small, there exists an integer m such
that for all n > m. |P(A) - f(n ,n)| < e. In fact, there is no way to prove

that such a contention is always true for random phenomena, though there is a
growing body of evidence to the effect that many natural processes do seem to
behave in this way. In any case, the notion of frequency, or relative
frequency, leads to what is known as a posteriori probability, namely a
probability interpretation closely linked with experimentation. Even so,
there remains the unresolvable dilemma that the assumption of equal
likelihood for simple events is equivalent to acceptance of an a priori or
postulated probability which can never be tested directly.
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Example 4.3

The issue of the isotopic abundances of Cu and Cu in
elemental copper, first discussed in Ex. 4.1, illustrates the
Manner in >;hich the frequency notion of probability playa a role
in the development of knowledge through experimentation. First,
we take as premise that even if the universe is accepted to be
finite, so tiat at any instant there exist well-defined values for

the numbers of Cu atoms (Nco) and Cu atoms (N__), it would be
DO D3

impossible to determine these numbers. We are actually quite
certain that both N_o and N change with time (primarily via
creation and destruction through nuclear reactions in stellar
environments). What really concerns us is the relative abundance
of these species on the planet Earth, an environment which we
accept as reasonably stable (i.e., relatively "cold" from a
nuclear point of view) and uniform (insofar as the isotopic
constituency of the distributed elemental copper is concerned).
Even then, explicit counting of all the copper on Earth is
impossible, so we resort to examining finite samples of this
material . Such samples are still of enormous size if we consider
each individual atom to represent a simple event. Examination of
a mass w of elemental copper with an isotope separator yields

Art ft C\

isotope value w_o and wo_ for Cu and Cu, respectively. Let m,
DO DO

m... and mr_ be the atonic masses of elemental copper, Cu and
Do fc&
Cu, respectively, n, n-o, and nfi_ be the total numbers of

DO DO
63 65

elemental Cu and Cu atoms, respectively, given that w is the
total sample mass. We are then led to assume, from an application
of Eq. (4.1), that

P(63Cu)

and

P(65Cu) m (mw65)/(m65w).

AQ fi C

Our knowledge of the Cu and Cu isotopic abundances is
distilled from numerous such determinations, yet they are not
known exactly. Regardless of future attempts at refinement, they
will never be perfectly determined, not only because of the
finiteness of the measured samples, but also because of
measurement (sampling) imperfections.
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The preceding discussions focused on consideration of a single compound
event A. However, suppose that several compound events A^A^.-.A^ are

considered, and that they are pairwise mutually exclusive, i.e., that

A. x A. = <j> (i * j:l.r).

Eq. (4.1) is applicable in that P(A. ) is defined as the limit of the ratio

0.,/n for very large samples n. If we define

r
A = 2 A..

1=1

i.e.. as the union of all these events, then

r
P(A) = Z P(A.) . (4.2)

If the events A ,A2....A% form a partition of E, then

r
Z A. = E ,
i-1 1

and we have P(A) = P(E) = 1. Pairwise exclusivity is absolutely essential
for Eq. (4.2) to be true. That is, if a simple event in E belongs to A., it

cannot belong to another A. (j *• i). Section 4.3 discusses procedures for

calculating probabilities of compound events which are not mutually
exclusive. Knowledge of the rules of Boolean algebra, as discussed in
Chap. 2, is essential for handling such cases.

The rules for probability calculation are meanineless unless one is
dealing with stable, well-understood event spaces. We alluded to this
condition in Ex. 4.3. In applications of probability theory (e.g., in
experimental measurements), great care must be taken to perform
investigations under controlled, reproducible conditions if one hopes to
extract meaningful results. This is illustrated in the following example.

Example 4.4

There are good reasons tj believe that the isotopic

abundances of Cu and Cu in elemental copper are quite uniform
throughout the planet Earth. Consequently, in measurements of
these abundances, we can focus attention on good separation
procedure and not worry about the material itself. What about
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fi 7
determination of the Li and Li isotopic abundances for elemental
lithium? Here we have to be very careful to obtain documentation
on the exact history of the batch of material on which an intended
measurement of "natural" isotopic abundance is to be performed.
During the last several decades, extensive separation work on
lithium material has been undertaken in conjunction with various
nuclear-energy programs. Some partially separated lithium

material (generally partially depleted in Li) has worked its way
back into commercial inventories. Much the same can be said about

boron, where B and B isotopii
supposedly "elemental" material.
boron, where B and B isotopic ratios have been seen to vary in

In summary, we see that probability theory offers a mathematical model
which has been shown empirically to be applicable to the analysis of random
phenomena. In Nature, frequency of occurrence of events in random sampling
from event spaces is seen to be conceptually equivalent to what is defined as
probability in the theory. However, in the theory itself, probability is
postulated in terms of abstract functions operating on well-defined event
spaces, thereby avoiding the ambiguities attendant upon the concept of
frequency. The notion of experimental error or uncertainty is intimately
related to the observation that repeated experimentation under supposedly
weil-controlled conditions inevitably leads to a sequence of unpredictable
outcomes. Obviously, there exists a link between error and probability.
This issue will be addressed formally in the second report of this series.

4.2 Axiomatic Approach.

The challenge that faced mathematicians from the outset was that of
developing a theory of probability which would not only be rigorous and
consistent with other branches of mathematical theory, but would also apply
to many observable situations. That is, the theory had to conform to the
empirically deduced behavior of random phenomena. This was not an easy task,
and its pursuit has generated vigorous disputes over a variety of conceptual
and logical problems, some of which rage unsettled to this day.
Nevertheless, for most applied purposes, the foundations of probability
theory are now considered to be in acceptable form.

Consider an event space E. For convenience we first assume that it
contains a finite number of simple events. Let A and B be two events
belonging to E (either simple or compound events). Quite remarkably, it has
been formally demonstrated that the complete theory of probability can be
derived from the following three axioms attributed to A. Kolmogorov:

Axiom I: To each event A £ E there is a non-negative number P(A), its
probability. Thus. P(A) > 0.

[Existence].
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Axiom II: The certain event E (entire event space) has unit probability.
Thus, P(E) = 1.

[Normalization].

Axiom III: If A and B are mutually exclusive events, that is if
A x B = <|>, then the probability of the union (or sum) of A and
B is given by

P(A t B) = P(A) + P(B).

[Additivity].

These axioms are entirely consistent with the observable behavior of
natural random phenomena, as is shown in Table 4.1. However, they in no way
tell us how to go about actually calculating probability. For present
purposes, the now-familiar Equal-Likelihood Postulate provides us with the
calculational tool we require:

Postulate: [Equal-Likelihood Postulate]

If E is a finite space of simple events, and A £ E, then

P(A) = B£L . (4.3)

where N(E) is the number of elementary events in E and N(A) is the number of
those events with attribute A. An equivalent way to express this postulate
is to say that the probabilities of all simple events of E are equal and have
the value 1/N(E).

In building a theory from the basic axioms, one must be very careful to
avoid certain logical pitfalls. For example, if A t E and P(A) = 1, one
cannot surmise that A = E from an application of Axiom II. It might-happen

that A * $, yet P(A) = 0. This state of affairs is entirely consistent with
both Axioms I atiJ II. However, it is possible to logically deduce a large
number of valid consequences from these axioms. A few of the important
theorems will now be stated, mostly without proof.

Theorem: The impossible event <|> has zero probability, however, the converse
is not true.

Theorem: If A €. E. then

P(A) < 1 . (4.4)

Theorem: If A fe E, then

P(A) = 1 - P(A) . (4.5)
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Table 4.1 Equivalence Between Axioms of Probability Theory and
Intuitive Observations

Intuitive Observation Axiomatic Equivalent

I. The frequency of occurrence of random
events with a particular characteris-
tic oscillates around some fixed value
when the number of trials becomes
large.

For each A £ E there is a
value P(A). called its
probability, such that
P(A) > 0.

II. If every possibility which we might
sample is endowed with the same
characteristic, we can be 100* cer-
tain that any individual trial will
produce this characteristic.

The probability of the
sure event E is unity.
Thus, P(E) = 1.

III. There is an additive property in the
frequency of occurrence of exclusive
random events.

If A t E and B t E, and
A x B = <J», then
P(A + B) = P(A) 1- P(B).
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Theorem: If A t E and B «. E, then

P(A x B) < P(B).

Theorem: [Poincare Law of Probability Addition]

If A fe E and B £ E, then

P(A + B) = P(A) + P(B) - P(A x B) (4.6)

The proof is straightforward. We first note that

A + B = A + (B - A x B)
and

B = A X B + ( B - A x B ) .

Furthermore, it happens that the particular events A and B - (A x B) are
mutually exclusive, as well as are A x B and B - (Ax B). The reader might
find a Venn diagram such as Fig. 2.8 useful in visualizing these results. An
application of Axiom III yields

P(A + B) = P(A) + P(B - (Ax B))
and

P(B) = P(A x B) + P(B - (A x B)) .

The theorem is then proved by simple algebraic manipulations.

The following three theorems are closely related to the preceding one:

Theorem: [Boole's Inequality]

If A t E and B t E, then, in general

P(A 1- B) < P(A) + P(B) (4.7)

To prove this, we refer to the Poincare Law of Probability Addition, namely,
that

P(A * B) = P(A) + P(B) - P(A x B) .
Now.

A x B e E ;
thus,

P(A X B) > 0

by Axiom !. A simple application of algebraic rules for inequalities proves
the theorem.

The preceding two theorems can be generalized to a finite collection of
events in E, namely. A., .A,,....A :

1 2 n
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Theorem: [Generalized Poincare Law of Probability Addition]

n n n
P( I l ) = Z P(A ) - Z P(A x A. )
k=l K k=l • krk2-l

 Kl K2

n
Z FJA. x A. x A. ) + ...

k k k =1 1 2 3

:1 < k2 < k3)

(-l)n+1 P( n A R). (4.8)

Theoten: [Generalized Boole's Inequality]

. (4.9)
n

P( Z A )
k=l K

n
< Z

k=:
P(A.

i

The following theorems are also useful:

Theorea: If A fc E and B t E, then

P(A - B) = P(A x B) = P(A) - P(A x B)

Refer to Fig. 2.8. It is evident that

A - B = A x B,

A = A x B i - A x § ,

and furthermore that

(A x B) x (A x B) = <f>.

Thus.

P(A) = P(A x B) + P(A x B).

'̂ote that if B (. A, then

A x B = B
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and
P(A - B) = P(A) - P(B).

Jheoreg: If A .A .... A all belong to E and are pairwise mutually

exclusive, then

n n
P( Z A. ) = Z P(A. ) . (4.10)

i,_i k . , K

This theorem is a special case of Eq. (4.9), Boole's Inequality.

Theorem: If A .A ,...A forn a partition of E, then

P( X A. ) = 1.
k=»l k

This theorem is proved by noting that

n
Z A. - E .
k=l k

from the definition of a partition. Then Axiom II can be applied.

Theorem: If A.,A-,...A for« a partition of E, and B 4 E, then

P(B) = Z P(B x A. )
k=l k

Extension of the theorem to include denumerably infinite sequences of
sts A .A .... is relatively straightf

X b

accomplished by amending Axiom II I as follows:

subsets A .A . . . . i s re la t ive ly straightforward. This is generally
X b

Axiom III': If E has a denumerably infinite number of elementary events,
and A .A .... is a denumerably infii

mutually-exclusive events of E. then

and A .A .... is a denumerably infinite sequence of pairwise

( Z A ) = Z P(A. )
k=l K k=l K

This augmented version of Axioa III allows us to prove theorems such as
the following:
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Theorem: If A,,A-.... is a nundeereasing sequence of events in E, and

A = * v
then

P(A) =

Theorem: If A..A-.... is a nonincreasing sequence of events in E. and

«
A = n A. .

k=i

then

P(A) P(A
k-«*»

The reader who wishes to pursue the development of other theorems based
on tfte axioms of Kolrsogorov can refer to one or more of the textbooks given
in the bibliography, e.g., Par 60, Fis 65, Tuc 67, and Zeh 70.

Another notion which proves to be very useful on occasion is that of
marginal probability. If the occurrence of an event can be classified
according to multiple criteria, then the term marginal probability Is used
whenever one or more criteria are ignored in the classification. Suppose

V- • and C ,...C8 are three partitions of E. They represent

three different classifications. The marginal probability of A. and C. is
X K

P(A. x C )
m
2 P(A. x B x C. ).

The marginal probability of C, is

P(C. ) =
k

n a
2 2
i=l J=]

P(A. x B. x C. ) =
l J k

n
Z P(A. x C. ) = 2 P(B. x C. )

l k J k

and so on.

If we move into the realm of uncountable event sets, matters become
somewhat more complicated. For a great many cases, most of the rules we have
established apply without difficulty. The essential point is that the event
sets must have well-defined measure and thus be probabillzable. These
difficulties can be resolved in the realm of measure theory, and the subject
is treated in some of the texts listed in the bibliography, e.g., Fis 63.
One obvious candidate for revision, when dealing with infinite event sets
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(c-= table or uncountable) is the Equal-Likelihood Postulate. Eq. (4.3)
must be revised to read

P(A) -{[}${. . (4.11)

where "M" designates a function which provides the appropriate measure of an
event set of the type under consideration. In particular, event sets which
are uncountably infinite, yet still probabilizable, are those where equally
likely simple events can be represented by points in continuous random-
variable spaces, while compound events are represented by well-defined
regions in these spaces. Then, the measure of an event A, M(A), is simply
the "volume" V. of the corresponding finite region of the random-variable

A
space. Even if H(E) is infinite, it is still reasonable to speak of the
relative probability P(A)/P(B) of two events A and B, if M(A) and M(B) are
both finite.

As previous indicated, the basic axioms of probability do not tell us
how to assign probabilities to events; they merely set forth certain
conditions which have to be met. A probability law is a specific functional
law which enables one to calculate probability. At this level, the
distinction between mathematicians and physicists becomes very apparent.
Mathematicians tend to not concern themselves with the applicability of these
laws. They merely accept the laws as interesting functions and explore the
mathematical ramifications (deductive reasoning). Physicists, on the other
hand, must discern which laws are applicable to various classes of observed
phenomena. They often have to guess at the appropriateness of certain
statistical laws, guided by experimentation a^J accumulated experience.
Knowledge evolves from an initial position of ignorance (inductive
reasoning). Chapters 7 and 8 examine in detail some of the probability laws
which play a role in applied nuclear science.

The importance of the counting rules, first discussed in Chap. 2, stems
directly from the Equal-Likelihood Postulate. Many of the probability laws
applied in nuclear science can be derived from careful consideration of the
way in which compound events are formed from equally likely simple events.
This point was explored in Sec. 2.3. While the basic concepts of probability
are not so difficult to grasp, we have already seen that the techniques of
counting are difficult to master. Ash (Ash 70) describes the situation well:
"Multiple counting is the nemesis of the combinatorial analyst." A fitting
corollary to this principle is: "The physicist should likewise be on guard."

4.3 Probability Calculation

In most courses on probability the student is expected to develop skill
in probability calculation through the analysis of a variety of problems.
These exercises can be quite mind taxing, and they sometimes lead to rather
remarkable results which may surprise the inexperienced student. Here, I
irauld like to stress again that our objective is to understand uncertainties,
not to become experts in probability analysis. We shall avoid becoming
excessively distracted by this fascinating but decidedly peripheral topic.
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Nevertheless, it is desirable to exercise our understanding of some of the
concepts discussed so far in this chapter and in Chap. 2: We do this by
reconsidering two of the earlier examples from a strictly probabilistic point
of view.

Mendenhal (Men 67) describes a procedure for calculating probability,
based on the sample-point approach, which is worthwhile repeating here:

Step 1: Define the experiment.

Step 2: List the simple events associated with the experiment and test each
to make certain that they cannot be further decomposed. This
defines the sample space E.

Step 3: Assign reasonable probabilities to the sample points e in E, making
sure £ P(e)=l.

etE

Step 4: Define the event of interest. A, as a specific collection of sample
points. (A sample point is in A if A occurs when the sample point
occurs.) Test all sample points in E to locate those in A.

Step 5: Find P(A) by summing the probabilities of the sample points in A.

Mendendal (Men 67) stresses that combinational methods, such as those
discussed in Sec. 2.3, are pertinent to this procedure because they assist in
determining the total number of points in E, J well as those in A. When the
sample points are, for instance, assumed to be equally likely, summation of
the probability of the sample points in A, Step 5, can be accomplished by
counting the points in A and multiplying by the probability per sample point.

Calculation of the probability of an event by using the five-step
procedure described above is a systematic approach which will lead to the
right solution if all the steps are correctly followed. A major possibility
for error is introduced if one neglects to define the experiment clevrly
(Step 1) and thereby improperly specifies the simple events (Step 2). A
second source of error is the failure to assign valid probabilities to the
sample points. The procedure becomes tedious (and, for all practical
purposes, unmanageable) when the number of sample points in E is large,
except, as indicated above, in those cases where sets of sample points are
equally likely (or euiii-probable I. When this occurs, summation can sometimes
be accomplished by using the counting rules.

I have so far avoided discussing the link between probability and
uncertainty in rigorous terms, and will continue to do so for the remainder
of this report. However, in the next report of this series 1 will pick up on
this topic in a formal way, as the necessary mathematical groundwork will by
then have been well established. In the meantime, I choose to limit myself
to piquing the interest of the reader by dabbling in this general area in a
casual manner by way of the following two examples.
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Example 4.5

Let us reconsider the circupistances described in Ex. 2.3.
Now suppose that the experimenter chooses not to repair the
»alfunctioning apparatus by himself, but instead elicits the
services of a professional repairman who will service the unit
under a maintenance contract for a fixed fee. regardless of the
problem. In establishing the cost for this service, one factor to
be considered is how many IC components will typically have to be
replaced for such a unit. We examine Table 2.1 and, assuming each
elementary failure mode to be equally likely, deduce the fallowing
probabilities P(k) for compound events consisting of the failure
of k IC components (Possibility A): P(0) = 1/16, P(l) = 1/4,
P(2) = ^'8, P(3) = 1/4, and P(4) = 1/16. Note that

4
I P(k) = 1 ,
k=0

as required. Clearly, the most common failure mode is that
involving 2 IC components. Should the repair company figure its
service pricing on the basis that a typical failure involves 2 IC
components? We will eventually learn that the best choice, which
is designated as the expected value or the most-probable or
Host-likelv number of failures, turns out to be the weighted
average

4
<k> = Z k P(k).

k=0

In this problem, the answer is indeed <k> = 2. The nomenclature
<...> is a useful one for designating weighted averages of
observables. Such weighted averages always involve the applicable
probability function P.

We know that there is a spread of possibilities for k
relative to the value 2, but how should this be quantified for
purposes of uncertainty estimation? Again, we will formally
learn, in the following report of this series, that the variance.

2 4 2<(k-2) > = t (k-2) P(k).
k=0

should be used for this purpose. The square root of the variance
proves to be a reasonable measure of the uncertainty in k, and it
is known as the standard deviation of the probability
distribution. In this example, the uncertainty provided by this
measure is approximately 0.4. Practically speaking, the repair
company does not really care about the uncertainty in the true
cost of any individual repair job, but rather is concerned with

74



the uncertainty in the anticipated profits based on many such
repair jobs. Since the probability of a repair job requiring more
than 2 IC-component replacements is P(k>2) = 5/16, while the
probability of requiring fewer than 2 IC components is P(k<2) =
5/16, the same, it is clear that losses to the company due to IC
replacements exceeding the average 2 are generally cancelled by
enhanced profits for repairs involving fewer than 2 IC components.
It turns out that if the company repairs a great many such units
in a given fiscal period, tht> profit uncertainty due to this
effect will be very small.

Example 4.6

Example 2.10 provides the basis ic'or an interesting physical
application of probability which clearly illustrates the procedure
of Mendenhal (Men 67). The elementary events to be considered are
three-particle configurations 'allowed by the applicable
statistical laws, as illustrated in Figs. 2.14 - 2.16.
Corresponding to these are compound events with system total
energy as the distinguishing attribute. Under conditions of
thermal equilibrium, the elementary events do not have equal
likelihood, but are weighted relative to each other by the

-E/kT
Maxwell-Boltzmann Factor, e , where T is the temperature, E is
the ensemble total kinetic energy, and k is Boltzmann's Constant
(Mor 64). We assume that the particles do not interact with each
other. The probability function P which satisfies all the
necessary requirements must have the form

P(E) = [N(E)e E / k t] /Z . (4.12)

where

Z = Z N(E)e " E / k t . (4.13)

and N(E) represents the number of available elementary states
which have system total energy E (see Table 2.3). In other words,
P(E) is interpreted as the probability that the ensemble of three
particles will have total energy E. Z is evaluated by summing
over all allowed states (see Table 2.3) and, in statistical
physics, is called a partition function (Mor 64). Specific
numerical calculations will obviously depend upon system
temperature, so we assume for demonstration purposes that kT = 3e.
The resulting probabilities for each compound event are given in
Table 4.2. The most-likely values for the ensemble total energy,
derived from the formula

= Z p(E)E ,
E
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Table 4.2

Ensemble
Total
Energy (E)

0

e

2e

3e

4e

5e

6e

7e

8e

9e

<E>

Calculated

States. See

Maxwell-
Boltzmann

0.0570386

0.1226098

0.175708

0.209833

0.180423

0.129278

0.0771934

0.0331869

0.0118897

0.00283978

3.2878 e

Prgbabilities for

Ex. 4.6a.

Distinguishable
with
Exclusion

Forbidden

Forbidden

Forbidden

0.384937

0.275819

0.197633

0.141610

Forbidden

Forbidden

Forbidden

4.0959 e

Three-Particle

Bose-
Einstein

0.168815

0.120961

0.173345

0.186311

0.133497

0.0956551

0.0685399

0.0327407

0.0117299

0.00840481

2.8488 e

Total-Kiiurgy

Fermi-
Dirac

Forbidden

Forbidden

Forbidden

0.384937

0.275819

0.197633

0.141610

Forbidden

Forbidden

Forbidden

4.09591 e

Refer also to Figs. 2.14 - 2.16 and Table 2.3. Certain ensemble
total-energy states are forbidden by the statistical laws, as indicated.
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are also shown in Table 4.2. However, since we are dealing with a
quantized physical system, we can never expect to actually observe
the ensemble to have any of these calculated values <E>.

Hopefully, the discussions and examples in this chapter will provide the
reader with an indication of the direction to be taken in the present
development of the subject of uncertainties. Uncertainty is evidently the
consequence of properties of the underlying probability functions which
govern physical processes, of the measurement procedures undertaken to learn
about physical phenomena, or both.
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5. CONDITIONAL PROBABILITY AND INDEPENDENCE

Probability, as defined in Chap. 4. is quite limited with regard to many
important applications. In particular, it does not permit us to deal with
questions having the general form: "What is the probability of B occuring if
we know that A has actually occurred?" Most realistic situations involve
sm:h conditions (explicit or implicit), and outcomes based on probability
depend a great deal on whether these conditions are met or not. The
following example demonstrates this point.

Rxamnle 5.1

A Ge photon detector is employed, in a fixed geometry, to
measure gamma-rays emitted from a source. Under normal conditions
the detector is very stable, and the full-energy peak efficiency
is e. for detection of a particular gamma-ray in the configuration
of the experiment. Let us suppose that the decay mean life r is
very much longer than the counting time t. We observe N events in
the peak following a pcrticular count. We deduce that the
activity A of the source is A * N/(te). An important hidden
condition underlying this simple and very common situation is that
we have assumed that the detection apparatus was operating stably
during the entire counting time t. Just because it was operating
properly when we started the count and when we stopped, it does
not prove continuity over the whole time interval. A careful
experimenter will instinctively review all the available evidence.
For example, if he notices that the electric clock in the counting
room had the right time when the count was stopped, this is
convincing evidence that no detrimental electric power
interruptions had occurred during the count.

In Chap. 2 it was indicated, in conjunction with a discussion of Borel
fields, that one had to consider event counting with respect to subsets in
order to deal with certain conditions that are imposed in probability
analyses. This matter will be explored further in tt.s present chapter. The
principal concepts are discussed from an intuitive point of view in Sec. 5.1
Some formal aspects of the theory are then explored in Sec. 5.2. This aspect
of probability theory is known as conditional probability.

5.1 Intuitive Approach

Let us consider an event space E with n elementary events. Let A and B
IJ

be two arbitrary events of E, with the sole restriction that probability
P(A) > 0. Now we return to the generic question posed early in this chapter:
"What is the probability of event B, given the condition denoted as event A?"
We are immediately led \o consider the event B x A. However, the probability
P(B x A) is not the answer we seek. The space E very likely includes events

78



for which A does not occur, and the function P is based on counting
possibilities with respect to the entire space E. To be precise, we should
denote P by P . Then PC(B x A) is the probability that both A and B occur

given, that E has occurred! This is clearly not what we are looking for. We
must restrict our consideration to the subapace A. and define a new
probability function P. which has the property that P.(A) = 1. The answer to

our original question can now be obtained; ' It is P.(B x A). Here, P is a
A A

conditional probability function in which occurrence of event A is the
condition which Units the range of possibilities we should consider among
those available from E. Normally, the subscripts are omitted, and P.(B x A)
is expressed in the form P(B/A). Note that "B/A" is not a quotient, but
designates the concept: "B given A". We must keep in mind that "P" is being
used to designate two conceptually distinct probabilities. What was labeled
as P is called unconditional probability, or sometimes a priori probability,

EL

while P. is called conditional probability, or a posteriori probability with
respect to event A. The subscript "E" will usually not appear in
representations of unconditional probability.

How do we calculate P(B/A)? Suppose n. designates the number of

elementary events in E which belong to A. We require n. > 0. Furthermore,
A

nfi and n A Q designate the simple-event measures for B and B x A, respectively.

The frequency definition of probability tells us that

P(A) = nA/nE>

P(B) = nB/nE.

and

P(B x A) = nAB/nE .

P(B/A) is therefore defined in the frequency sense by

P(B/A> = nAB/nA . (5.1)

Consequently, one is led to the general relationship

P(B/A) = P(B x A)/P(A). if P(A) > 0, (5.2)

between the conditional probability P(B/A) and the unconditional
probabilities P(A) and P(B x A).

Furthermore, suppose that B is nontrivial and P(B) > 0. It is simple to
show the validity of the interesting, symmetrical formula

P(B/A)P(A) = P(A/B)P(B) . (5.3)
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The reader nay find it helpful to refer to the Venn diagram in Fig. 5.1 in
order to gain some insight concerning this matter. The following example
will serve to further acquaint the reader with conditional probability.

Example 5.2

The situation first discussed Ex. 2.3 provides an excellent
vehicle for illustrating the notion of conditional probability.
The elements which denote the event space E are listed in Table
2.1. Let A. be the event that IC No. i fails (i = 1.4). Also,

consider events A, x A_ and A, x Ao x AQ. The simple elements of
1 £ 1 £ O

each of these events are listed explicitly in Table 5.1, using

notation consistent with Table 2.1. Clearly, ̂  = "2
 = n3 = n4 =

8. n1o - 4. and n1oo =* 2 are the measures of these selected
1 1 £compound events. If we treat all elementary events as equally

likely, then

P(A.) = 8/16 = 1/2 (i = 1.4).

It is intuitively reasonable that the probability for failure of
any particular IC component should be 1/2 in this example.

The probability that both IC No. 1 and IC t . 2 fail is

P(A x Ao) = 4/16 = 1/4.
1 fa

However, the conditional probability that IC No. 2 fails, given
that IC No. 1 failed, is

x A2)/P(A1) = (l/4)/(l/2) = 1/2.

Also, note that

= P(A1/A2)P(A2) = (1/2) (1/2) = 1/4.

The probability that IC Nos. 1.2 and 3 fail is

P(A. x A. x A,) = 2/16 = 1/8.
1 c «i

However the probability that IC No. 3 fails, given that IC Nos. 1
and 2 failed, is

P(A3/Aj x A2) = P(AX x A2 x Ag/PUj x Ag) = (l/8)/(l/4) = 1/2.
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Figure 5.1; Venn diagram illustrating the relationship between events A,
B, and A x B which are used to introduce the concept of
conditional probability/.
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Table 5 .1 E x p l i c i t S truc ture of Severa l Compound Events Formed from the
Elementary Events Def ined i n Table 2 . 1 , See Ex. 5 . 2 .

A. x A
2"

( B . G . G . G )

(B.B.G.G)
(B.G.B.G)
(B.G.G.B)
(B.B.B.G)
(B.B.G.B)
(B.G.B.B)
(B.B.B.B)

( G . G . B . G )

(B.G.B.G)
(G.B.B.G)
(G.G.B.B)
(B .B .B .G)
(B .G.B .B)
(G.B .B .B)
( B . B . B . B )

( B . B . G . G )

(B.B.B.G)
(B.B.G.B)
(B.B.B.B)

3 :

( G . B . G . G )

(B.B.G.G)
(G.B.B.G)
(G.B.G.B)
(B.B.B.G)
(B.B.G.B)
(G.B.B.B)
( B . B . B . B )

( G . G . G . B )

(B.G.G.B)
(G.B.G.B)
(G.G.B.B)
(B.B.G.B)
(B.G.B.B)
(G.B.B.B)
( B . B . B . B )

(B.B.B.G)

( B . B . B . B )
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One interesting feature that emerges in this example is that
it looks as if

P(A./Q* =

regardless of the condition Q. This happens because we have
postulated a scenario in which the probability of failure of any
particular IC component in no way depends upon what happens to the
other IC components. When this is the case, we say that the
events Q and A are stochastically independent. We could also

demonstrate by examples that

x Q)

whenever A. and Q are independent events of E.

Much has already been said about the concept of sampling. The term
trial is usually used to designate one step among many in sequential sampling
exercises. We have also introduced the concept of an ordered k-tuple (Sec.
2.3). Imagine for a moment that we have a space E of simple events e. We
choose to perform k trials, with the proviso that no trial perturbs the
essential nature of the space E. This requirement can be satisfied if the
events are replaced after the trial or if E contains so many events e that it
remains effectively unperturbed by the k sequential trials. Under these
conditions, one must conclude that the outcome of any one of the k trials is
unaffected by the fact that there have been prior trials. Trials of this
nature are called independent trials. This notion is very important to our
understanding of uncertainty. For example, in the evaluation of nuclear data
it is quite often assumed that various data sets which are employed in an
evaluation result from independent experiments (independent trials).

Associated with E is a probability function P such that P(e) is the
probability of e, and

Z P(e) = 1.
e&E

The result of k trials is a collection of k outcomes which fern the ordered
k-tuple (an arrangement) (e ,e ,...e.). This particular arrangement can ba

considered as an event h belonging to the event space H consisting of all
possible k-tuples which could be formed from E with replacement. For
independent trials, one defines a probability function for H which is related
to that for E by the equation

k
P(h) = n P(e.) . (5.4)
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Qnce again we stress that two distinct probability functions. P and P^. are

L-ealiy involved, but according to convention the subscripts are omitted and
the space to which a particular probability function refers must be deduced
from the context.

The following example illustrates the action -f probability for a
sequence of independent trials:

Example 5.3

Consider an experimental procedure in which the outcome is
either success (S> or failure (F). The event space E has two
events; thus E: {S.F}. The probabilities are assumed to be P(S) -
s and P(F) = f, with s •*• i - 1. Two independent trials are to be
performed. The event space H of possible outcomes has the form
H: {(S.S), (S.F). (F.S). (F.F)}. Notice that (S.F) and (F,S) are
distinct because H consists of ordered pairs. In accordance with
Eq. (5.4), we assume that the probabilities for the outcomes h e H

are: (S.S), s2; (S.F). sf; (F,S). fs = sf; (F.F). f2.
Probability defined on H sust satisfy the three axioms discussed
in Sec. 4.2. Clearly, P(h) > 0 for each h e H, so Axiom I is
satisfied.

P(H) = s2 + 2sf * f2 = (s * f) 2 = I2 = 1,

so Axiom II is satisfied. Since all of the defined elementary
events h £ H are obviously mutually exclusive, any two mutually
exclusive compound events generated from them will satisfy the
additivity property, Axiom III. Thus, we see that probability as
we have defined it for the space of all pairs of outcomes of two
independent sequential trials, H, satisfies the required axioms
and also conforms with our intuitive notion of what the
probability should be.

We shall see in Chap. 7 that the trial procedure discussed in Ex. 5.3
belongs to a class of trials known as independent Bernoulli trials. Several
probability functions that are important for applications evolve from
Bernoulli trials.

5-2 Theoretical Approach

As indicated in Sec. 2.2, if E is an event space with a corresponding
Borel field 2, and if A e E and is nontrivial, that is if A * (j) and P(A) > 0,
then one can define a new Borel field Z1 which is the collection of all
possible events of the form B x A. for arbitrary events B of E. The
conditional probability P(B/A) is formally defined for all th<sse events
belonging to Z' by the expression
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P(B/A) = P(B X A)/P(A),

consistent with Eq, (5.2). In order for conditional probability defined in
this way to represent a valid probability function, it must satisfy the three
axioms discussed in Sec. 4.2. P(A) > 0 and P(B x A) > 0, so Axiom I is thus
satisfied. A represents the sure event with respect to the Borel field Z'.
Furthermore,

P(A/A) » P(A x A)/P(A) = P(A)/P(A) = 1.

Therefore. Axioa U is also satisfied. Let B and C e E, with

B x C = f.

Then

P(B * C/A) = P[(B <• C) x A]/P(A) = P(B x A + C x A)/P(A).

However.

(B x A) X (C x A) = (B x A) x (A x C) = B x (A x A) x C = B X A x C =

(BxC)xA=<{>xA=<j>

from the rules of Boolean algebra, as discussed in Sec. 2.2. Consequently,
(B x A) and (C x A) are Mutually exclusive. Therefore,

P(B x A + C x A)/P(A) = [P(B x A) + P(C x A)]/P(A) = P(B/A) + P(C/A).

Axiom III is therefore satisfied, so conditional probability, as defined
above, is legitimate and applicable to every event in Z'.

There are many interesting features of conditional probability. A few
of these will be expressed below in the form of theorems.

Theorem: If A e E with P(A) > 0 and B e E with P(B) > 0, then

P(B/A)P{A) = P(A/B)P(B),

consistent with Eq. (5.3.).

The proof involves a trivial application of the definition of conditional
probability.

Clearly, P(A/B) and P(B/A) have different meanings, and they are equal
in value only when P(A) = P(B). This is also evident from the following
theorem.

Theorem: If A fc E with P(A) > 0 and B e E with P(B) > 0, and furthermore.
B e A, then

85



P(B/A) = P(B)/P(A)

while P(A/B) = 1.

Some other useful theorems related to conditional probability are:

Theorem: [Chain Rule]

If A, 8 and G e E. then

P(A x B X C) = P(A) P(B/A) P(C/A x B) {5.5)

Let Q = A x B: then

P(A x B x C) = P(Q x C) = P(C/Q)P(Q);

but

P(Q) = P(B/A)P(A).

The theorem is proved by substitution.

Theorgg: [Generalized Chain Rule]

If A. e E (i = i.n). then

n n-1
P( n A.) = PtA^PfAg/A^PtAg/A x A2)...P(A / ff A ) (5.6)

i=l i=l

Theore.1: If A £ fc' and P{A) > 0, then P(E/A) = 1.

Theorem If A and B £ E and P(A) > 0, then P(B/A) < 1.

Note that E = B «• B, so

P(E/A) = 1 = P(B/A) + P(B/A),

since B and B are mutually exclusive. However, P(B/A) > 0. Therefore,
P(B/A) < 1.

Theorem: If A £ E with P(A) > 0 and B £ E with P(B) = 0, then P(B/A) = 0.

B = B x A + B x A .

Also , (B x A) and (B x A) are mutual ly e x c l u s i v e . There fo re ,

P(B) = P(B x A) + P(B x A).
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Since P(B) = 0, P(B x A) > 0 and P(B x A) > 0, it must be the case that
P(B x A) =0. Therefore.

P(B/A) = P(B X A)/P(A) = 0.

Theorem: [Poincare Law of Conditional Probability Addition]

If A. B and C «. E with P(A) > 0, then

P(B + C/A) = P(B/A) + P(C/A) - P(B x C/A) . (5.7)

Theorem.: [Rule of Total Probability]

Let A ....A be a partition of E with P(A.) > 0 (i = l,n). Then if

B e E.

n
P(B) = 2 P(B/A )P(A.) . i5.8)

i=l

Now,
n

B = Z B x A..
i = l 1

and, from the discussion in Sec. 4.2 on marginal probability, we know that

n
P(B) = Z P(B x A.).

l

The theorem is thus proved from the definition of conditional probability,
naicely,

PtB/A^ » P(B x A.J/P^).

Figure 5.2 shows the relationship between event B and the events A,,A,,...A

which form a partition of E.

The rule of total probability is useful if direct computation of P(B) is
difficult, whereas calculation of the probabilities P(A.) and P(B/A.) is not

so difficult. Although this is not the case for the following example, it
nevertheless does demonstrate how this rule can be applied.
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Figwre 5,3: Venn diagram illustrating the relationship between event B
belonging to E and the events A .

partition of E.

A2>...A which form a
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Example 5.4

Let's reconsider Ex. 2.3. Referring to Table 2.1, we see
that one possible partition of the event space is ;v. (i = 0,4),

where "i" designates the number of IC components which fail. Let
B be the event that IC No. 1 fails. Table 5.2 summarizes the
pertinent parameters of this example and explicitly demonstrates
the application of Eq. (5.8) for evaluation of P(B).

The following theorem is of such fundamental importance to applications
of probability theory that Chap. 8 of this report is devoted to providing
examples and discussing related philosophical implications. The theorem is
called Baves,' Theorem. after the eighteenth century clergyman, Rev. Thomas
Bayes, who is usually credited with its discovery. First, we state the
theorem and provide a proof.

Theorem; [Bayes1 Theorem]

Let AA (i = l.n) be a partition of E with all PfAj) > 0.

Furthermore, let B t E with P(B) > 0. Then for every k, 1 < k < n,

n
P(AR/B) = P(B/AR) 9(^/1 Z P(B/A.)P(A.)] . (5.9)

This theorem is a natural extension of the Rule of Total Probability. ihus,

n
P(B) = Z P(B/A.)

In a previous theorem, it was shown that

P(AR/B) P(B) = P(B/Ak) P(Ak),

given that A, and B e E, and that P(A-) > 0 and P(B) > 0. Equation (5.9)

follows directly from substitution.

Although Bayes' theorem is discussed extensively in Chap. 8, it should
be indicated at this point what the role of this theorem is in probability
theory. So far, we have viewed the analysis of probability as proceeding
from the definition of probabilities for simple events toward the calculation
of probabilities for mare complex events. In practice, however, what is
often required is just the inverse; that is, given certain experimental
observations, we wish to learn something about the parent population and
generating mechanism which were responsible for our observations. This
process is known as statistical inference. Suppose that event B has been
observed. That event could be explained by several mutually exclusive causes
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Table 5.2 Paraweters Relevant to Example 5.4

Partition:

AQ: No IC component fails. P(AQ)

A : Doe IC component fails. P(A ) = 4/16

A.: Two IC components fail. P(A2) - 6/16

A,.: Three IC components fail.
•i

P(A_) = 4/16

A4: Four IC components fail. P(A4) * 1/16

Marginal Probabilities:

P(B/AQ) = 0

= 1/4

P(B/A2) = 3/6

P(B/A3) = 3/4

P(B/A4) = 1

P(B) = Z P(B/A.
i=0 X

(3/6)(6/16) + (3/4)(4/16)

= 8/16 = 1/2.
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or hypotheses A ,A2,...A (a partition of the space E of all possible

explanations for B). Each hypothesis A. has an a priori probability P(A.) of

being true; that is. before the trial that produced B was executed, the P(Ak)

represented our "state-of-the-art" understanding of the situation. However,
once the trial has been performed and B has been observed, we have acquired
new knowledge. Consequently, our understanding of the probabilities for
validity of the various hypotheses must be revised. We should now substitute
a posteriori probabilities P^/B) for the original PfA^). Formally, Bayes1

theorem provides the mechanism for calculating these revised probabilities.
The quantity P(B/A.) is cailed a likelihood factor or likelihood.

Calculation of the likelihood is usually straightforward, if A. is a

reasonable hypothesis. Our real problem lies in establishing the a priori
probabilities P(A.). If we commence from a status of total ignorance, then

there would seem to be no basis for favoring one hypothesis over another.
The assumption that all the possible hypotheses should have equal a priori
probabilities is known as Baves' Postulate. The reader saould note that this
process can be repeated again and again. For example, for a second trial,
the a priori probabilities are taken to be P(A./B), since the first trial

produced B, and one therefore has revised the P(A.). This approach toward

statistical inference is appealing to many applied scientists. The reader
who is at all familiar with nuclear data evaluation will surely recognize
this as the approach often used in this field. That is, one eventually
"learns" about the nature of fundamental nuclear properties by repeated and
ever more refined experimentation. However, many statisticians are not
comfortable with the concept of Bavesian statistical inference ami therefore
avoid it. That this remains a point of controversy is one indication that
the field of statistics has not attained full maturity.

Two events A and B belonging to E are defined to be independent if

P(A x B) = P(A) P(B).

From the definition of conditional probability, it then follows that

P(A/B) = P(A) if P(B) > 0

and

P(B/A) = P(B) if P(A) > 0.

If, for a collection of events A. (i = l,n),

P(A. x A.) = P(A.)P(A.)
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whenever i * j, then these events are said to be oairwise independent; they
are not necessarily Mutually independent. The terms independent en bloc or
fully independent are also used to denote Mutual independence. To be
•utually independent, it is required that

P(Akl X A k 2 x,.,x A R s) - P(AR1) P(Ak2)...P(A,<s> <5.!0)

for any s = l.n and I < k < ko <...< k < n.

A number of theorems can be proved relating to independent events.
Among them are the following:

Theorem; If A and B are independent events then:

(1) A and B are independent,

(2) A and B are independent,

(3) A end B are independent.

He prove Part (1) for demonstration purposes:

A = A x E = A x (B + B) = A x B + A x B.

Since (A x B) and (A x B) are mutually exclusive.

P(A) = P(A x B) + P(A X B).

Thus,

P(A x B) = P(A) - P(A X B) = P(A) - P(A)P(B) = P ( A ) [ l - P ( B ) ] .

Since B and B are mutually independent,

1 - P(B) = P(B).

Part (1) is therefore proved by substitution.

Theorem: If A ,...A and B t E and B is pairwise independent with respect to

each A. (i = l.n), then

n n
P[( Z A.) x B] « P( Z A.) P(B) .

i=l 1 i«l l

Thwoi-pm: if A ,Ao,...An are mutually independent, theni c n
n n _

P( Z A ) = 1 - n P(A.) .
i-1 i i*l x

The notion of independent trials is discussed extensively in Sec. 5.1.
Probability for the event space of k-tuples is formally defined by Eq. (5.4)
when the trials are independent. One can show that probability defined this
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way satisfies the three axioms of Sec. 4.2. We demonstrated this in the
special case of Ex. 5.3, and pursue the issue no further here.

All trials which do not satisfy the condition of independence are
denoted dependent trials. Let A denote the collective outcome of k
sequential trials, the

k
A - H A.

of which yields A.. Clearly,

..

The probability P(A), in the case of arbitrary dependencies, can be derived
in principle using the Generalized Chain Rule for conditional probability.
Usually this is impractical, For this reason, great pains are taken to set
up experiments in such a way that they approximate independent trials.

Although we shall not pursue the matter to any great extent, for
interest we now introduce a particular class of dependent trials known as
Markov TriajLs. Again, let A^.A-.^.A. be the events observed for k

sequential trials. If these were independent trials, then for the jjjj trial,

3-1
P(A./ H A.) = P(A.) (j < k < 2).

J 1 J

In short, there would be no memory of any of the preceding trials at each
stage of the chain of trials. However, Markov trials differ in the sense
that

j-l
P(A / ff A = P(A /A )

J j i
(j < k < 2).

For Markov trials, the outcome of any particular trial depends upon the
preceding trial, but not on any of the earlier ones. Markov-trial processes
involve memory of the immediate past but nothing more.
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6. PROBABILITY DISTRIBUTIONS

Random variables, random-variable transfornations, and distribution and
density functions were discussed in Chap, 3- Probability, as applied
directly to events, was treated in Chaps. 4 and 5. The present chapter
addresses the unification of these concepts, i.e., the merger of analysis and
probability theory.

Without loss of generality, we restrict this discussion to event spaces
which can be represented by one or more continuous* random variables, each of
which usually spans the entire range of real numbers (-»»,+»»). First,
consider events which can be represented by a single random variable x. Let
a be any real number. We choose to ask the question: "What is the
probability that a trial will yield a value of x < o ?" It is postulated
that such a probability exists and that it satisfies the basic axioms of
probability theory as enumerated in Chap. 4. It is designated as P(x < a),
or P(ot) for convenience. P is a called a cumulative probability or
probability distribution function, consistent with the convention of Sec,
3.3. The term univariate is often used to indicate that a single random
variable is involved. Normally, one needs to be concerned only with
probability functions which are either absolutely continuous, or are at most
discontinuous in a "mild" way at a discrete number of points in the range
(-»,+»). we will not elaborate on what is meant by "mild discontinuities,"
but, for example, singularities are unacceptable while simple lump
discontinuities can be accommodated. For simplicity, let us avoid further
discussion of discontinuities. The interested reader is referred to the
bibliography (e.g.. Zeh 70) for consideration of the complications which they
introduce. For an absolutely continuous probability distribution function P
there exists a corresponding non-negative function p known as the probability
density function. The relationship is

p(a) = /_^ P(x)dx for -» < a < +«© . (6.1)

The reader is reminded that in Sec. 3.3 we approached this topic from a
different point of view. There the density function was treated as the more
basic function, with the distribution function evolving from it. However, it
is a tradition in probability theory to treat P as the more fundamental of
the two, since P. in fact, is a true probability while p is not. For our
purposes, we will assume that both P and p exist and will not concern
ourselves further with which is the more fundamental. Some important
properties of these functions that we will consider are:

i) P(a) > 0 for all real a. [Axiom I],

ii) If p > a, then P(/J) > P(a). fMonotonic Property].

iii) <im P(a + h) = P(a)
h -* 0

iv) M m P(a) = 0.
a -» -oo
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Note Chat this is equivalent to the statement that P(<j>) = 0, where ty is
the null event.

v) «im P(a) = 1 [Axiom II].
a -* *«>

vi) p(x) > 0 for all real x as a consequence of the monotonic property
of P.

He cannot express Axiom III (Additivity Property) until the notion of an
interval is introduced. Let I = l{a,p) denote the collection of all values x
such that a < x < /?, If A is the set of all x < a and B is the set of all
x < p, then the interval I is the set B x A. The probability of occurrence
of I can be denoted as

./J)] - P(o;/J).

It is related to P(ot) and P(/3) by the relationship

- P(a) . (6.2)

Note that here a could be -*» and p could be *». Such intervals are
designated as unbounded intervals. If both a and p are finite, the interval
is bounded. If I and I. are two nonintersecting intervals (mutually

exclusive events in event language), then

This corresponds to a statement of Axica III in the present context.

The following simple example demonstrates the Poincare Law of
Probability Addition:

Example 6.1

Let A be the event that x < a while B is the event that
x < p. Suppose p > a. Clearly, A t B. Now

P(A * B) = P(A) + P(B) - P(A x B).

But A x B = A. so P(A + B) = P(B). Now P(B) = P(/J). This clearly
is intuitively reasonable. Whenever x < a, it also holds that
x < p. The probability of x being less than a or p is just the
probability of x < p.
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A simpler relationship between P and p than indicated by Eq. (6.1) is
apparent at the differential level. Consider the small interval a < x. < a +
A\, where 4x represents a small increment of the continuous random variable
x.

Then, referring to Eq. (6.2),

= P(a • 4 K ) - P(«) = /_J * Aii p(x)dx - J " p(x)dx =

In the limit as Ax. becomes vanishingly small (apppsacS-™? a d.l r JW-sT-t *. * ? d x ) ,
we have P(a + dx) - F(a) = dP(a) =» p(«)dx, or p(a) = dP(a)/dx = P'(a ) . The
density function p is just the derivative or the distribution function P,
provided that P is continuous and differentiable over the region in question.
This is also quite evident from Eq. ' M ) , considering the definition of an
integral. It is clear that there is no meaning to the question: "What is the
probability of observing a particular value a ?" One must ask for the
probability of finding x in some interval. That probability vanishes as the
size of the interval approaches zero. Probability density is the local
probability per unit of interval. It therefore possesses an intrinsic
dimensionality, whereas probability itself is dimensionless.

A multivariate probability distribution or joint probability
distribution P is defined whenever a probability law applies to events

which require more than one random variable to represent them. Consistent
with Sec. 3.3, we can define a Joint probability density function p if

x • • • n
the joint probability distribution P1 is absolutely continuous. The
relationship is

ct a
Pt (a ,.. .a ) = j' dx .../ n dx p (x ,.. .x ), (6.3)

and P ia non-negative whenever it is defined.

Analogous to the notion of probability on an interval for an univariate
distribution, one can define probability on a particular region or volume of
n-dimensional space. If A designates that region, then

Figure 6.1 shows a typical region for two continuous random variables. .

Consider a probability law involving two random variables, ( x . , x , ) . The

distribution function is designated P,o and the density function'is p,_. One

can define two new functions p 1 and p as follows:
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Figure 6.1: Typical region A for an event space described by two random
variables
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P1 (V = f-Z **2V12UV*2) . (6-5)

The function P1 is called the Marginal diatribution of x , and it is a

density function with respect to the variable Xj. Analogous statements can

be Bade for xo. Two other functions, which are called conditional
fa

probability density functions, can be defined in terms of the unconditional
probability density p and the marginal distributions p1 and pg. They are;

if " V V > ° ' (6'7)

(6.8)

The concept and structure of these definitions should be familiar from Sec.
5.2. The Rule of Total Probability can be expressed in the present context
using this nomenclature. Thus.

Pl<*l> = /_<* dx2p12(xl'X2) = >-<* dx2P2*X2*P*Xl/X2* ' *6'9*

p,(x2) = J_w dx p (x ,x ) = /_co dx pJxJpfxJx ) . (6.10)

One should keep in mind the following fundamental equation:

{conditional probability} = {""conditional probability}
{marginal probability} * '

provided that the marginal probability is nonvanishing. With this in mind,
we consider the following question: "What is the probability of finding the
second random variable in the interval dl2: (x-,x2 + dx ) given that the

first random variable is known to be in the interval dl^ (Xj.x. + dx ).

According to Eq. (6.11), the answer to this question is:

p12(x1>x2)dx1dx2/[p1(x1)dx1)] =

Similarly,

) = p(x1/x2)dxr
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This discussion can be extended to random variable spaces of larger
dimensionality; however, we will not pursue this matter further.

The concept of independence is easily expressed for probability density
tions. 1

provided that

functions. The random variables x^.-.x are deemed mutually independent

In short, the joint probability density function is factorable into a product
of marginal distributions for all of the random variables involved. For two
independent random variables,

Therefore, from Eqs. (6.7) and (6.8) we have that ptx^/Xj) = PgUg) a n d

p(x1/x2) = p.(x1). This is entirely consistent with the notion of

independence which was developed in Chap. 5.

Let x be a continuous random variable which conforms to a space X. It
represents events e belonging to the space E. Suppose that y is another
random variable representing the events e of E such that y = y(x) for x e X.
The resultant y conforms to a space Y. This is an example of a random-
variable transformation, as discussed in Sec. 3.3. Suppose that we know that
a probability density function p is defined for all x e. X. What are the

A

required conditions for the corresponding function p to be defined for

y c Y, and what is its relation to p ? This is a very important question in

practice so we will explore it here in some detail.

First, we approach this issue from a intuitive point of view. The
incremental probability of an event for which x is in the interval (x,x + dx)
i;i simply dP = p (x)dx (dx > 0 by convention). We assume for simplicity

A X

that the function y is continuous and differentiable over the whole space X,
and furthermore that the derivative y'(x) * 0 anywhere in X. Thus y'(x) < 0
or y'(x) > 0 everywhere in X. Now we turn to a description of events in
terms of the random variable y. For the stringent conditions of the present;
transformation, p does indeed exist over the entire space Y which is formed

by pointwise mapping of the space X. Corresponding to differential dx in X
is the differential dy in Y given by

dy = (dy/dx)dx . (6.14)

Since dy may be negative, we consider instead the positive quantity

|dy| = |dy/dx|dx . (6.15)

99



Here, the notation (•.•! designates absolve value. The event for which x
belongs to dx is also described by y belonging to |dy| (a positive
differential). The incremental probability expressed in terms of the
variable y is thus

dPy = py(y

The magnitude of the incremental probability must be independent of the
choice of random variable used to describe the event, so

dP Py(y)|«ly/dx|dK.

From this we can deduce the important formula

Py(y) - Px(x)/|dy/dx| = px(x)/|y'(x)| = Px(x)/|J| (6.16)

Figure 6.2 illustrates the present situation graphically. This is the
law of probability transformation for univariate random-variable events. The

restrictive conditions insure that the inverse function y~ exists. Thus,

while

x = y~ (y) for y 6- Y

y = y(x) for x t X.

The factor J = (dy/dx) is the simplest possible example of what is known more
generally as a Jacobian for the transformation.

Let us explore the more general situation. Suppose events can be

described by n-diniensional vectors x = (X.....X ) of random variables. They

span an n-dimensional space X. Consider also the collection of n-dimensional
vectors

= y(x) (or for i = l,n)

of random variables which form Y. X is mapped into Y, one-to-one. The
transfcrmation is assumed to be continuous and all partial derivatives
dy^dx. exist on X. Furthermore, assume that the determinant J of the matrix

of partial derivatives,

J = det

ay /axn n

100



Area

dP

Conservation of probability
is equivalent to conservation
of area in this figure;
therefore.

dP

Figure 6,8: Graphical illustration of probability transformation.
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namely, the Jacobian for this transformation, is nonvanishing. Then the
probability transformation law is

Py(y) • Px(x)/|J| • < 6 H )

Eq. (6.16) is a special case of Eq. (6.17). Note that J can vary with x; it
is not necessarily a constant. Since the inverse transformation exists under

these conditions, we have x = y (y) for y t Y while y = y(x) for x t X.

Example 6.2

Consider the density function

x

for -<» < Xj < + «• and < - «• < x_ < + •».

Let y = x •*• x and y. = x1 - x_. The partial derivatives of the

transformation are:

d yl / d Xl

= 1.

dy2/dx2 = -1.

Therefore, the Jacobian J is -2. The inverse transformation
exists and takes the form: Xj = (y. + y2)/2 and x g = (y, - y2)/2.

According to Eq. (6.17). p (y) can be derived from p (x). The
y x

result of this analysis is:
+ y2>

/2- (Vi - v2
)/2]

The concepts discussed in this chapter apply to all probability laws
which satisfy certain fundamental requirements. Very little has been said
about specific probability laws, e.g., their origins and applicability to the
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description of real random phenomena. We will begin to explore this topic in
earnest in Chap. 7, and will continue the discussion in later reports of this
series. To close the present chapter, we mention for interest that Karl
Pearson, one of the founders of modern statistics, discovered that solutions
to the differential equation

_1 d [p(xj] _ d - x ^ (6.18)

p(x) dx a + bx + ex

for various choices of the constants a,b,c, and d, remarkably yield most of
the univariate probability density functions of importance in modern
applications. We will demonstrate this fact later on appropriate occasions.

We now touch upon a point of particular interest to the nuclear data
field because it is so often encountered in practice. Usually in statistics
it is preferable to represent event spaces which appear to be effectively
uncountable (e.g., a collection of atoms in a macroscopic sample) by
continuous random variables. In nuclear data applications, however, one
often proceeds in the opposite direction. For example, neutron energy is
seemingly very well represented by a continuous random variable, and thus so
are neutron fluence or a particular neutron cross section which is
functionally related to the energy. However, it is common practice in
reactor physics studies to generate an energy-group structure by dividing the

neutron energy range of interest (e.g., 1 x 10 eV to 20 MeV) into a
sequence of contiguous energy intervals called groups. These groups are
defined by their upper and lower energies, called group limits. Sometimes a
median energy is also identified for each group. Functions dependent upon
neutron energy are also represented by a group structure. For example,
consider the neutron fluence density function ? which is a function of
neutron energy E. Associated with each energy interval (E..,E..) there is

defined a group fluence *.. In order to conserve neutron number it is

required that

E
*. = / *(E)dE . (6.19)

1 Eii

Consequently, if y is the total neutron dose, then

n 20 MeV
r = Z *. = / *(E)dE • (6.20)

1=1 10~5 eV

The reason this is done is partly a matter of tradition in the field, but
mostly it is for very practical reasons. In order to solve the complex
differential and integral equations which often arise in reactor neutron
transport studies, it is very useful to resort to finite-difference methods
(e.g., Hil 52) which can be readily programmed on a digital computer. These
methods require selection of a group structure and. subsequently, a group
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representation of such pertinent energy-dependent parameters as neutron
fluence and cross sections.

In neutron transport problems it is often necessary to know the
probability of a neutron being found in a particular energy group. A neutron
energy probability density function can be readily derived from the fluence
function. It is

p(E) = *(E)/*.

However, for analysis involving a group-structure formulation, we require
instead the mass distribution function (as defined in Sec. 3.3), where
P. = *./¥. Clearly, the group-structure mass distribution function and the

underlying density function are related via Eq. (6.19),

He will also see in a later report of this series thai it is usually
desirable to cast nuclear data evaluation endeavors into group formats even
though tbe parameter being evaluated is naturally amenable to representation
by a continuous random variable.
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7. SOME IMPORTANT PROBABILITY LAWS GOVERNING THE FREQUENCY OF
OCCURRENCE OF RANDOM EVENTS

In this chapter the emphasis shifts from consideration of general
characteristics of probability laws to a discussion of some specific laws
that are important to nuclear science. In order to be legitimate, all
probability laws must satisfy the three basic axioms discussed in Sec. 4.2.
From a mathematical point of view, discrete random variables present few
technical difficulties. For continuous random variables, one generally deals
with probability laws which are described by functions that are continuous
and differentiable, except possibly at a few jump points. Not all functions
that possess either necessary or desirable mathematical properties are useful
in practice. In the final analysis the only laws that are worthy of
consideration are those which have been found to provide a description of the
actual behavior of random phenomena. Therefore, applied statistics is
necessarily linked to the physical process of observation.

Our particular concern is with the description of random events in the
field of nuclear science. In many ways, nuclear phenomena are unique. Small
samples of material are composed of enormous numbers of individual atoms, yet
the quantities of energy involved in nuclear transformations are usually
extremely large, relatively speaking. Therefore, it is often possible to
observe a single nuclear transformation at a macroscopic level, e.g., a track
in a bubble chamber or the click of a Geiger counter. It should come as no
surprise to the reader that the most important probability laws affecting
nuclear phenomena have their origins in consideration of the frequency of
occurrence of certain well-defined random quantum processes.

The discussion here will be limited to consideration of the following
laws:

i) the binomial law and its generalization the multinomial law (Sec.
7.1).

ii) the Poisson law (Sec. 7.2).

iii) the normal (Gaussian) law (Sec. 7.3).

These laws are related, and some of these relationships are explored at
appropriate points in this chapter. Discussion of other probability laws
that are useful in nuclear applications is deferred to future reports.

7.1 Binomial and Multinomial Probability Laws

The fundamental concepts leading to the binomial probability law were
introduced earlier in this report (Sees. 2.3, 3.1, 3.2, 3.3, and 5.1, and Ex.
5.3). Here, the essential points are restated, and from those the binomial
probability function is deduced. It is appropriate to designate it as a mass
function because the random variable is discrete.
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Consider an event space E consisting of elementary events e. Consider a
partition of E into two spaces Aj and A . That is.

Aj • A2 = B,

A 2 - A,.

and

Now consider forcing a new space E1 in which the elementary events e1 are
ordered n-tuples of events taker, from E. These o-tuples are formed by
conducting n independent trials (experiments) in which events are selected
(sampled) from R Now, assume that all we are really interested in with
regard to this process is whether any particular elementary event e of E
possesses attribute A (belongs to A.) or possesses attribute A- (belongs to

A ). An essential assumption is that the experimental process of forming an

n-tuple does not perturb deplete) event space E. As indicated previously,
one way to do this is to "replace" a particular event e after it is selected.
The result is the same if E contains so many ever.es that formation of an
n-tuple does not alter the character of E. Let p be a probability function
defined on E. Then p(A ) is the probability that a sampling experiment

results in A1, while p(A.) is the probability that A o is obtained. They are
1 fa b

designated p. and p. for convenience. We permit ourselves the indulgence of
using lower case "p" to designate probability in contrast with our previous
convention of reserving lower-case symbols for density functions. All of the
n trials are identical in nature as well as independent, and the assumption
that the character of E remains unperturbed by the sampling process leads us
to the conclusion that for any particular trial, the probability is p for

observing A ind p for observing A?. Naturally, p * p? = 1 because A and

A form a partition of E. Now we turn to consideration of the n-tuples e'

and the space E1 formed from from them. We ask: "What is the probability
that n trials, as described above, will result in k occurrences of A., (k. <

n) and k occurrences of A2> with kj + k = n?" We denote this probability

mass function by the expression p(n:Pj ,p -.kj ,k 2), with k. the random variable

which can assume n +• 1 integer values between 0 and n (k is derived from

kj). In fact, this is the binomial law we seek. Again, we have used "p" to

designate probability functions for two different spaces, but in this field
it is a common practice to which the reader should become accustomed.

Before answering the question stated in the preceding paragraph, we pose
and answer a simpler question: "What is the probability that in n trials,
the first kj in a row will yield A , while the remaining k = n - k will
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kl k2
produce A2?" The probability of such an event e1 is simply p p , by

virtue of independence and the identical nature of each trial. Since we
really don't care about the order of the occurrences of A and Ao.

p(n;p1 ,p_ ;k.. ,k_) should, in general, be larger than this simple product of
X <» x c

probabilities, reflecting existence of other ordered n-tuples with k of A

kl k2
and kg of Ag which have the same probability Pj P2 . Thus,

l.P2!k1.k2) = ^ ^ 2 (7.1,

where C . is the binomial coefficient from Eq. 2.21. Recall that C .

reflects the number of ways k. indistiguiahable events (occurrence of A.) can

be distributed among n positions in an ordered n-tuple. The binomial
coefficient C , is identical to the multinomial coefficient C . . defined

nK n;K.Kp

in Eq, (2.30), so we can also write Eq. (7.1) in the form

kl k2
l.p2ikrk2) - C ^ ^ p , P2 (7.2)

The detailed process described above is known as a Bernoulli experiment,
after the eighteenth century mathematician Jacques Bernoulli.

The notation leading up to Eqs. (7.1) and (7.2) was selected for reasons
that will be clear in the development below, but it is not conventionally
used. More commonly, A is designated as S (success) and A as F (failure).

The probability p is simply desinged as p. while p = 1 - p. If k = k and

kg = n - k, then one obtains the more familiar expression for the binomial

probability law:

p(n.p;k) = Cnkp
k(l - p ) n " k . (7.3)

While the concepts and notation surrounding the binomial law are fresh
in mind, we proceed to a discussion of the multinomial probability law.
Indeed, the concepts are identical. The only difference is that instead of
two possibilities. A and Ao, one has r possibilities A,.AO,...A (r < n) for

the outcome of an individual trial. Thus,

r
Z A. = E,

L
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and the A. are all mutually exclusive (they form a partition of E). The

nomenclature evolves from the case of two possibilities to possibilities in
an obvious way, with Pj.p-,.,.? representing probabilities for observing

A..,AO,.,.A at each trial, respectively. It should come as no surprise that

the multinomial probability law assumes a form similar to Eq. (7.2). namely:

kl k2 kr
1.P2....Prik1.k2,...kr) - C i k P l P2 ...Pr . (7.4)

with
r
Z k. = n

Here, p(n;p ,p ,...p ;k1>ko,...k ) is the probability that n trials, in an
l & r i A r

environment where r outcomes are possible, will generate k of A-, k2 of

A k of A . The multinomial coefficient C . . . , given by Eq.
c r r n^K^K^.-.K

x b r
2.30,' represents the number of ordered n-tuples that satisfy our particular
requirement, which has no concern for ordering.

Example 7.1

We now demonstrate -,ome properties of the binomial
probability law, as manifested in Eq. (7.3), by considering
specific numerical values for p and n. In Fig. 7.1, values of
p(n,p;k), far n = 20, k = 1 to 20 and p = 0.1, 0.3 and 0.5. are
plotted (taken from Fis. 63, p. 133). Since the mass function is
defined only for integer values k. the lines drama between the
mass points are intended only to serve as eyeguides. Three
features of the binonial law are clearly evident in this figure:
First, we note that for p = 0.5 the mass function is symmetric.
Next, we note that the mass function appears co reach a maximum
value tor k * pn. Finally, it is evident that the "areas" under
the plotted distributions are the same. This follows from Axiom
II (Sec. 4.2) which requires that probability be normalized. In
fact, from the binomial theorem, Eq. (2.25), it is clear that
n

W_Q = P(n,p;k) = 1 for every integer n, and p < 1.
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p»0.5

6 8 10 12 14 16 18 20

Figure 7,1: Plots of binomial probability mass functions p(n,p;k) for
n = 20. k = 1 to 20 and p = 0.1, 0.3 and 0.5. Solid lines
connecting Mass points are there Merely to serve as
eyeguides. Figure is taken from Fis 63, p. 133. See Ex.
7.1.
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Example 7.2

Now consider p(n,p:k) for p = 0.5 and n = 10 and 20. Each of
these two mass functions is syanetric. For n = 10, symmetry is
about k = 5, while for n = 20 symnetry is about k = 10, For each
of these probability laws we ask the question: "What is the
probability that k will equal or exceed by 20* the particular
value of k corresponding to symmetry?" For n = 10, the desired
probability is

10
Z p(10,0.5:k) = 0,1719.

However, for n - 20. the desired probability is

20
S p(20,0.5;k) - 0.0577.

k=14

A general conclusion can be drawn from this comparison: As n
increases, the probability of observing a number k of successes
which exceeds the product pn by some fixed percentage decreases.
Thus, the larger n beccaes, the less likely one is to observe
success fractions, for an n-fold collection of outcomes, which
differ significantly froa the probability p of observing a success
when selecting a single event at randoa from E (a trial). This
result, S"iown as Bernoulli's Law of Large Numbers, is a feature of
the binoaial probability law. It is an intuitively reasonable
result, for when n is large, the enseable of results froa n trials
tends to airror the larger event spece. In essence, it approaches
a population.

Laplace suggested a rather siaple aatheaatical aodel, based on the
binoaial probability law, which can be used to describe how randoa error
coaes about in measurement processes. The notions behind this aodel, known
as the Laplace Law of Error, are similar to those which lead to the Central
Liait Theorem, a result which justifies widespread use of the normal
probability law in statistics. Discussion of the Central Limit Ineorem is
deferred to Section 7.4. Here, we focus specifically on the Laplace Law of
Error.

Let the true value of a parameter one seeks to measure be a . In
o

reality, one usually does not measure precisely a but, rather, other values

a, because the measurement process is perturbed by a nuaber of unknown
independent causes. Laplace assumed that n disturbances occur, with each
disturbance contributing a deviation of the saae magnitude fe. However, these
"identical" disturbances could be of either a positive or negative nature
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(± £)• Let m(n,t;k) be an actual value of m measured when the n disturbances
involve k of +fi and (n - k) of -e. Thus.

Mn.*.;k) = mQ + ka - (n - k)t « mQ + (2k - n)t . (7.5)

We now ask about the probability of observing the various values of in
obtained from Eq. (7.5). As indicated above, this model of error assumes
that +«. and -e disturbances are equally likely. Clearly, this model
establishes conditions identical to those upon which the binomial probability
law is based. Consequently, the distribution for the ra(n,e;k) of Eq. (7.5)
is

p(n.l/2;k) = CnkU/2)
k(l/2)n~k = ̂ ( 1 / 3 ) " . (7.6)

The quantities p(n.l/2;k) are the basis for the interesting array of numbers
shown in Fig. 7.2. The similarity of this array to the Pascal Triangle given
in Fig. 2.13 is evident.

Example 7.3

Suppose e = 0.01 (1% disturbance) and n = 20. What is the
probability of measuring a value m which deviates by at least 3e
from m ? Since the binomial mass function is symmetric about

20
k = 10. the probability we desire is 2[ I p(20,l/2;k)] = 0.2632

k=13
(- 26*).

The following example raises an important physical problem that
illustrates several concepts already discussed in this report. We examine a
procedure for calculating the relative probabilities of populating the ground
state and an isomeric level of a nucleus formed in a highly excited state by
slow-neutron capture. De-excitation of the nucleus proceeds by a sequence of
electromagnetic (EM) quantum transitions which are random in nature. This
process has been investigated in detail by Poenitz (Poe 66). Here we discuss
a highly simplified version of this problem for demonstrative purposes.

Example 7.4

Nuclear EM decay is governed by transition energy, spin-
selection rules, and multipole-radiation probabilities. Models
exist for calculating probabilities of electric- and magnetic-
multipole transitions between two nuclear states, given the spins
and parities of the states and their energy separation. We avoid
these complexities by considering a hypothetical nucleus and a
simple transition-probability law. The details of our model are
as follows:
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p(Q,l/2;Q)

p(l,l/2;0) p(l,1/2:1)

p(2.1/2;0) p(2.1/2;l) p(2,l/2;2)

p(3.1/2:0) p(3.1/2:1) p(3,1/2:2) p(3,l/2;3)

1

1/2 1/2

1/4 1/2 1/4

1/8 3/8 3/8 1/8

Figure 7.2: Array of values p(n,l/2;k) from Eq. (7.6) for n = 0,1,2,...
and k = 0,1,...n. Note similarity of this array to the
Pascal Triangle from Fig. 2.13.
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1) The nucleus:

It is assumed to have a ground state with spin J = 0 and four
bands of excited states. The kill excited-state band has k + 1
levels with spins J •= 0,...k, respectively. We ignore the issue
of parity. The spacing between* levels within each excited-state
band is assumed to be AE whicn is very snail compared with the
uniform inter-band spacing E. The excited-state bands are thus
nearly equally spaced above the ground state. The level with spin
J = 0 belonging to the first excited-state band is taken to be the
isoaer. See Fig. 7.3.

2) Neutron capture process:

Neutron capture is assumed to populate initially only the
levels within the fourth excited-state band. The capture
probabilities are considered to be proportional to the neutron-
capture cross sections for each level within this. band. For
present purposes we employ capture cross sections o(J) appearing
in Table 7.1. We suppose that resonance effects are largely
responsible for the wide variation in these cross sections.

3) EM-transition selection rule:

The only transitions with significant probability are assumed
to be inter-band, with spin change A3 = 1. Other possibilities
are at the very least highly suppressed, if not forbidden. It is
therefore clear why the J = 0 level of the first excited-state
band is an isomer.

4) Transition probability rules:

An EM transition from state of spin J can proceed only to a
state J1 = J + 1 or J' = J - 1, by Item (3) above. When only one
transition channel is open, we assume the transition probability
is unity (an excited state must decay). When two decay channels
are open (Bernoulli problem), then it is assumed that each has an
equal probability of 1/2.

The decay paths permitted by the preceding rules are shown in
Fig. 7.4. From this figure it is evident that neutron capture for
all even-J levels leads ultimately to population of the ground
state, while capture for all the odd-J levels populates only the
isomer. Starting at the capture level, EM decays produce a
cascade "tree" in which each successive step of the cascade
increases the range of accessible spin-J states. The
probabilities for populating these states would indeed generate an
array of binomial coefficients identical to Fig. 7.2 were it not
for the fact that the number of available spin states in this
particular problem becomes successively more limited at each stage
of the cascade.
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neutron
capture

4th band 0=0,1,2,3,4

I
EM transition

(AJ-1)

3rd band J=0,l,2,3

2nd band 0=0,1,2

1st band

ground state

J=0 (isomer),!

AE

J=0

Figure 7.3: Level structure of the hypothetical nucleus which is
considered in Example 7.4.
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Table 7.

J

0

1

2

3

4

1 Parameters

o(J) a

8.5

178.0

22.0

1.0

0.7

Used in

P(J) b

0.0404

0.8468

0.1047

0.0048

0.0033

the Analysis

P(g.s/J)C

1

0

1

0

1

of Example 7.4

P(isom./J)c

0

1

0

1

0

o(J) is the neutron capture cross section for the spin-J member of

the fourth excited-state band of the hypothetical nucleus of

Ex. 7.4. The cross section units are unimportant.

. 4
P(J) = o(J)/ Z a(J').

J'=0

C Refer to Fig. 7.4.
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J = 0 Capture J • 1 Capture

•a
c

J =

1/2
C

J =

J ' 2 Capture

•a
c
CO

J = 3 Capture

•a

c

J =

J = 4 Capture

Figure 7.4: Decay paths permitted by the A3 = 1 selection rule, and
their associated probabilities. Ground state is indicated
by a darkened rectangle, while the isomer level is the open
rectangle. See Ex. 7.4.



The rule of total probability. Eq. (5.8), is very iseful in
calculating the probability P(g.s . ) of populating the ground state
and P(isom.) of populating the isomer. Applied here, we have

4
P(g.s . ) = Z P(g.s. /J)P(J)

J=0
and

4
P(isom.) = t P(is?om./J)P(J).

J=0

P(J) is the relative probability for neutron capture into the
level with spin J in the fourth excited-state band. It i s given
by the formula

4
P(J) = O(J)/ Z o (J ' ) ,

J'-O

where o(J) represents the previously mentioned neutron-capture
cross section. P(g.s./J) and P(isom./J) are conditional
probabilities for populating the ground state or isomeric state,
respectively, given that neutron capture involved the spin-J level
of the fourth excited state band. Table 7.1 summarizes all
parameters needed for the analysis. The final result is,
therefore, P(g.s.) =• 0.1484 and P(isom.) = 0.8516.

In this particular example, capture into the J = 1 state of
the fourth excited-state band is dominant. This qualitatively
explains why this particular capture process results mainly in
production of nuclei in the isomeric state.

We close this section by giving an example which i l lustrates use of the
multinomial probability law.

Example 7.5

Consider an experiment with four independent detectors that
are multiplexed into a single computer-based data acquisition
system, as shown in Fig. 7.5. Data from the measurement apparatus
are formulated into computer words consisting of two parts. The
first part contains analog (A) information (e.g., pulse heights,
timing information, etc.). The second part is a tag (T) which
identifies the detector of origin of the particular event e which
is characterized by the array (A,T). Note that T = 1,2,3, or 4,
since there are four detectors. We assume that the apparatus is
adjusted (e.g., timing, gating, etc.) in such a way that every
data word accepted by the computer represents a legitimate event
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(i.e., no "defective" data are recorded). Furthermore, we assume
that the natural system deadtime (due primarily to the time needed
by the computer to process the events) introduces i > bias against
any particular detector (i.e., all detectors are equally
afflicted). The data "words", (A,T), are recorded in sequence,
e.g., on magnetic tape, word by word, in what is commonly referred
to as the event mode. After the experiment, the event words are
read back by a computer (playback) and combined (processed)
according to the specific objectives of the experiment. The
question we pose is the following: "What is the probability that
after recording a sequence of n events, k. of these will have tag

4
T =* i (i = 1,4), where 2 k. = n?" The conditions of the present

i=l *
experiment satisfy the requirements for applicability of the
multinomial law; therefore, the answer to the question we have
posed is given by Eq. (7.4), with r = 4. The probabilities
p. (i = 1,4) are surely related to the radiation fluences f. and

detector efficiencies e. applicable to each detector, as well as

to the live-time fractions, A.. We therefore assume that

4

P. = (ViV.^
 (*jejV-

The A-factors ultimately cancel because we have assumed that
Aj « A (i = 1,4). Suppose that n = 12 and pA = 1/4 (i = 1,4).

What is the relative probability that one will observe k = 1.

k2 = 2, k,= 4, k = 5, versus that of observing all k. = 3 (i =

1,4)? From Eq. (7.4)

.12

= 83160 (1/4)J°

and

p(12;l/4.1/4.1/4,l/4;l,2,4.5) = (121/1121415!)
.12

p(12-;l/4.1/4.1/4,1/4:3.3.3,3) = (121/3131313! ) (1/4)12

= 369600 (1/4)12

Thus, it is more probable by a factor of ~ 4.44 that an equal
number of events will be observed from each detector than the
other possibility indicated above.

In reality, the binomial probability Jaw is rarely employed explicitly
in statistical applications. Its significance stems from the fact that the
more important Poisson and normal (Gaussian) probability laws are, in fact,
limiting cases of the binomial law. This matter is explored in Sec. 7.4.
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7.2 Poisson Probability Law

Suppose vie wish to analyze a problem involving a large number n of
independent random trials, with a small probability p that an event A will
occur on a single trial. Furthermore, suppose that we are mainly interested
in the probability of exactly k occurrences of A in n trials when k « n. In
principle, the binomial probability function of Eq. (7.3) is applicable in
this situation, but it is extremely ackward, if not impossible, to use for
the given conditions. This will be apparent to the careful reader who worked
through some of the examples given in the preceding section. The nineteenth
century French mathematician S. Poisson suggested a probability law, known as
the Poisson probability law in his honor, which turns out to be a good
approximation to the Monomial law under these conditions.

There are various ways to derive the Poisson probability law. Below, we
discuss the most commonly used approach. This method explicitly demonstrates
that the Poisson law is indeed a good approximation to the binomial law under
the conditions indicated in the preceding paragraph. However, it is
important to realize that the Poisson probability law is a distinct
probability law which need not be considered as just a limiting case of the
binomial probability law. In fact, this law has been demonstrated to be
applicable to the analysis of certain random phenomena for which the
conditions on the number of trials and probability per trial are not as
severe as implied in the following derivation. We demonstrate below that
this law satisfies the basic axioms of probability. Its importance in
applied statistics stems from the fact that it seems to describe very well a
large number of random phenomena of practical interest, especially in the
area of nuclear processes.

Theorem: [Poisson Approximation]

Let n be a very large number of independent trials in which the
probability p of occurrence of an event in a single trial is very small,
i.e., n » 1 and p « 1. Let A = np. Then, for k « n, the binomial
mass function, Eq. (7.3), is approximated very well by the expression

p(n,p;k) « Ake A/k! (7.7)

Proof of the theorem involves appropriately grouping some factors and then
making certain limiting approximations. Starting with binomial formula, Eq.
(7.3), we carry out the following algebraic manipulations:
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p(n.p;k) - p) n " k

k!(n - k)! K v *'

- «(n - 1) (n - 2) ... (n - k + 1) k.
kl p {

.n - k

= n(" - 1) (n - 2) ... (n - k

k!
( A / n )

k (1 - A/n)

(1 - A/n)1

_ n(n - 1) (n - 2) . . . (n - k + 1) Ak (1 - A /n ) n

nk k! (1 - A/n)k

— (1 - A/n)1

It is well known that

1(1 - 1/ n ) ( l -

(1

2/n) . . .

- A/n) k

[1 - (k - D/n]

fim (1 - A/n)
n -• «•

-A

so for large n we therefore can approximate the factor (1 - A/n) by e
We now notice that most of the remaining factors an near unity since k « n
and A « n. This proves the result stated in Eq. (7.7).

Since in the binomial probability law p can range from 0 to 1, another
way to view the Poisson law is that it becomes a good approximation to the
binomial law whenever the number of trials n is large and binomial law is
very asymmetric, i.e., when p is « 1, and thus is far removed from p = 0.5,
the point of symmetry.

An important difference between the Poisson probability law and binomial
probability law is that in the former a single parameter A explicitly
replaces the two parameters n and p of the latter. However, A is still
interpreted as the product np in the limit of large n and small p. This
transformation from n and p to A via the product A = np is known as the
Poisson condition •;. Poisson transformation. Clearly, it is essential to
both the binomial and Poisson probability laws that there exists a
fundamental probability p for the occurrence of an event A in any sing)**
random trial. This probability is an intrinsic feature of the space of
events. Probability is not an observable, but the quantity k/n is, where k
is the number of occurrences of event A, and n is the sample size. Our
theory suggests that, for large n, k/n is likely to be close to p, regardless
oi n. The parameter A, of course, depends on n and is therefore not as
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fundamental as p. The reader will recall fro* the discussion of Bernoulli's
law of large numbers (in Example 7.2) that, for a large number of independent
trials n, the probability of finding that A has occurred k tiaes is small if
k is substantially different from np, i.e., from A. This is just an
equivalent way to state the particular concept under consideration. The
Poissun law is therefore understood as that law which provides probabilities
associated with various values of the integer random variable k, which
represents the observed frequency of occurrence of A after a large number of
trials, given that A is known to be the most likely frequency of occurrence
of A. In applications one is generally interested in the probabilities for
various k in the vicinity of A. However, the Poisson probability law is
formally defined for all non-negative integers k, and for arbitrary positive
real numbers A, by the following mass function:

p(A;k) 3 Ak e~A/k! (A > 0 and k = 0, «) . (7.8)

Theorem:

The Poisson formula of Eq. (7.8) satisfies the basic axioms of
probability, as described in Section 4.2.

To prove this, we demonstrate that the basic axioms are satisfied.
Clearly, p(A;k) > 0 for all allowed A and k, so Axiom I is satisfied. The
event space to which this probability applies is the set of all non-negative
integers k. Each such event is mutually exclusive in the sense that for a
particular set of n random trials one cannot observe both k occurrences of A
and k* occurrences of A if k1 * k. However, the probability of observing
either k occurrences of A or k' occurrences of A is implicitly taken to be
the sum p(A;k) + p(A;k'), in compliance with Axiom III. The theorem is
proved if we can demonstrate nornalization (Axiom II), i.e., if

X p(A;k) = 1.
k»0

This is a straighforward task. From Eq. (7.8),

<» » «o

Z p(A;k) = Z (Ake~A/k!] - e'A Z (Ak/kl)] = e""V - 1,
k=0 k=0 k=0

from the well-known series expansion for the exponential factor e .

One application of the Poisson law is in the calculation of failure
frequencies for like components which are fabricated in large quantities and
are known to fail relatively infrequently. This is demonstrated by the
following example.
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Rxaanle 7.6

Suppose that experience has shown that for a certain type of
precision resistor obtained fro* a particular supplier, an
intolerable defect (e.g. departure of the actual resistance from
the nominal value by More than 20*) is encountered at an average

5 -4
frequency of 10 defects per 10 ; thus, p = 10 (probability that
any particular resistor will be defective) and A = np = 10. The
probabilities for observing defect numbers k ranging from zero to

20 per 10 , in any large batch obtained from this supplier, should
be represented well by the Poisson lew. These probabilities are
listed in Table 7.2.

Although it night be known a priori that the Poisson probability law is
applicable (due to the nature of the independent trials), the parameter A
must be deduced from experimentation in any practical application. For
example, it would have been impossible to perform the analysis indicated in
Example 7.6 without the knowledge that A *» 10, based on prior experience.
This situation illustrates a basic feature of applied statistics, namely,
that the fundamental parameters of any probability law must ultimately be
deduced experimentally.

Example 7.6 also demonstrates that the probability mass function indeed
peaks for k = A. It also appears to be somewhat skewed, with larger
probabilities for k = A - i than for k = A + i, when i is a positive integer.
This is a manifestation of the following theorem of Poisson probability which
is presented without proof:

Theorem:

Let A = m, an integer. Let i be another integer such that 1 < i < m.
Then, for the Poisson probability law, p(m;m - i) > p(m;m + i).

He also note from Table 7.2 that for A = m, an integer, p(m;m - 1) =
p(m;m). This is a general result which can also be expressed as a theorem:

Theorei

Let A = m, with m an integer greater than 1. Then, for the Poisson
probability law. p(m:m - 1) = p(m;m).

To prove this refer to Eq. (7.8). Thus,

p(m;m - 1) = mm " 1 e~"/(m - 1)!

""1e""/[(m) (n - 1)!]

m'Wml = p(m.m).
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When A becomes very large (» 1), then the Poisson mass function
approaches a symmetric shape for k in the vicinity of A. This result follows
from the next theorem which is offered here without proof:

Theorem:

Let A be a large positive number (» 1). For all intents and purposes,
•id suppose that it is an integer. He also suppose that k « A + m and
k' = A - m. where m is a non-negative integer such that m « A. Then

p(A;k')/p(A;k) = A~2*(A + m)!/(A - m)!.

This ratio is close to unity under the conditions stated here. The result is
easy to demonstrate. Suppose, for example, that m = 2 and A « 1000, then
p(A;k')/p(A:k) * 1.002.

Since radioactive decay involves a very large number of atoms, and the
probability is small that a particular atom will decay during a time interval
which is short compared with the decay half life, one would expect that
Poisson statistics should apply to such problems. Through a aeries of very
thorough experiments conducted early in this century, E. Rutherford and
coworkers demonstrated the validity of this contention. Indeed, the Poisson
probability law is now considered to be the premier statistical law of
nuclear science. The Law of Exponential Decay of radioactivity follows from
similar assumptions. Consider an interval of time At which is much smaller
than the decay half life for the atoms in a radioactive sample. Let p
represent the probability per unit time that a particular atom will decay.
Then p4t is the probability that it will decay in time At. Since it is
assumed that the sample we are observing contains a very large number of
atoms n which have not decayed, the most likely number of atoms actually
expected to decay during a small tiae interval At is On = npdt. This
assumption is experimentally verifiable, and it is also consistent with both
Bernoulli's law of large numbers and the Poisson probability law. For small
At, 5n « n. If we consider the number of atoms in the sample which have not
decayed to be a function of time, for instance, n = n(t), then the change An
in n during time At is given by the formula

An = -5n = -npAt.

Going to the differential limit yields the differential equation,

dn/dt = -pn, (7.9)

which governs radioactive decay. The solution to this equation is the
formula

n(t) = n(0)e~pt , (7.10)

which is designated the Law of Exponential Decay. It is generally known that
the statistical uncertainty in the number of counts N recorded during a

1/2
particular nuclear measurement is N . This result naturally must follow
from the Poisson probability law, and we shall see in a future report
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precisely how this comes about. Meanwhile, we demonstrate what this
uncertainty signifies through the following example:

Example 7.7

Suppose that A = 100. Values of the Poisson mass function
p(A;k) for k = 80 to 120 are listed in Table 7.3. Note that the
mass function is approximately symmetric for k « A, in accordance
with a previous theorem. It is also seen that p(Ajk) drops to
something on the order of half of the maximum value for k such

that |A - k| ft* A ' . Thus, the statistical uncertainty A is a
measure of the breadth of the Poisson probability mass function.
In general, uncertainty is always a measure of the breadth of
probability density (or mass) functions. In Example 7.2, it was
demonstrated that a binomial distribution becomes "sharper" for
large n, thereby quantitatively demonstrating Bernoulli's law of
large numbers. The same is true for Poisson functions, where the

-1/2fractional uncertainty varies as A . This is the origin of the
well-known rule that long radioactivity counts produce better
"statistics," i.e., better precision.

Statistical uncertainty associated with the Poisson distribution, as
discussed in Example 7.7, is a fundamental reason why there is a limit to the
resolution which is obtainable for pulse-height spectra recorded from a
nuclear radiation detector. This point is demonstrated in the following
example:

Example 7.8

Suppose that a 1-MeV photon gives up all its energy within a
germanium diode detector. The signal generated by the detector
has an amplitude which is proportional to the collected ionization
charge, and that, in turn, is generally proportional to the energy
deposited in the diode by the photon. We will assume that one
quantized unit of ionization charge is collected per 1 eV of
deposited energy, taking into consideration recombination and
other losses. Thus, it is most likely (in the Poisson sense) that

10 quantized units of charge will be collected when a 1-MeV
photon is completely absorbed by the detector. However, other
charge numbers k are possible, and their probabilities are derived
using the Poisson law. Consequently, the pulse-height full-energy
peak that is formed in analysis ut the signals produced by
detecting many 1-MeV photons could be expected to resemble a
Poisson distribution, all other considerations aside. The
spectrum width, expressed in energy units (keV), would be of the

order of 2(10 /10 )(1000) = 2 keV. In fact, this represents an
upper limit to the obtainable resolution since other random
process, e.g., electronic noise, will serve to broaden the peak
even further.
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Table 7.2: Poisson Probabilities for A= 10 and k = 0 to 20

p(10;k) p(10;k) p(10;k)

0

1

2

3

4

5

6

0.0000453

0.000453

0,00227

0.00757

0.0189

0.0378

0.0631

7

8

9

10

11

12

13

0,0901

0,113

0.125

0.125

0.114

0.0948

0.0729

14

15

16

17

18

19

20

0,0521

0.0347

0,0217

0.0128

0.00709

0,00373

0.00187

Table 7.3: Poisson Probabilities for A = 100 and k = 80 to 120. The
breadth of the distribution is characterized by the para-
meter yk = 10 which is designated the statistical error
in the most probable value A*

p(100;k) p(100;k) p(100;k)

8 0
8 1
8 2
8 3
8 4
8 5
S&
8 7
8 8
8 3
3 0
9 1
9 £
9 3
9 4

0.5£0350E-0£
13. 64£39iZiE-0£
0.783383E-02
0.9437£9E-0£
0.11S351E-01
0.132172E-01
0. 15368SE-01
0. 17S667E-01
0.E00753E-01
0.££5548E-01
0. £506£itfS-01
0.£75404E-01
0. 299350E-01
0. 221881E-01
0. 342411E-2I1

9 5
9 6
9 7
9 8
9 9

1 0 0
1 0 1
1 0 2
1 0 3
1 0 4
1 0 5
1 0 6
1 0 7
1 0 8
1 0 9

0 .
0 .
0 .
0 .
0 .
0 .
0 .
0 .
0 .
0 .
0 .
0 .
0 .
0 .
0 .

36044SE-01
375469E-01
387033E-01
394955E-01
398929E-01
398953E-01
394980E-01
387£££E-01
375927E-01
36148££-01
344£76E-01
3£478££-01
303508E-C1
S81041E-01
£57851E-01

1 1 0
1 1 1

n e
1 1 3
1 1 4
1 1 5
1 1 6
1 1 7
1 1 8
1 1 9
1 2 0

0 .
0 .
0 .
0 .
0 .
0 .
0 .
0 .
0 .
0 .
0 .

234404E-01
£11153E-01
188533E-01
166847E-01
146364E-01
12727EE-01
10970£E-01
937643E-0S
794603E-0E
S6773£E-0£
55S4S&Z-02
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All nuclear radiation detectors require a certain amount of time to
process an event once such an event has been detected. Because events occur
randomly, there is a chance that soHe events will be lost because they happen
to occur during the intervals of detection paralysis which follow detection
of preceding events. The Poisaon probability law is ideally suited to
analyzing these losses. This is illustrated in the following example:

Example 7.9

Suppose that the average number of detector events per unit
time is R, based on experience accumulated over a large number of
random trials. Also, suppose that after it has accepted an event,
the detector is unable to record another event for a time T which
is the same for all such events. The average rate of events
occurring during an interval of time T is A = RT. One can
approach this problem in either one of two equivalent ways:

Live time approach:

Let P be the probability that no pulses will be lost duringL
the time interval T. According to the Poisson probability law,

O -RT -RT
this is given by P. = p(RT;0) => (RT) e /0! = e . If RT « 1,

Li

which is generally the case for reasonable detector setups, then
PL * 1 - RT.

Deadtime approach:

Let P be the probability that one or more events will be

lost during the time interval T. Applying the Poisson probability
law again, we have

00 00 00

P = Z p(RT;k) = e"RT X (RT)k/k! = e~RT [ T. (RT)k/k! - 1]
k=l k=l k=0

-RT, RT ,. , -RT= e (e - 1) = i - e

If RT « 1. then PD «» RT.

Note that regardless of the particular value for RT, P + P
L D

= I. The detector either loses one or more events or it loses
none during time interval T. There are no other possibilities.
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Coincidence-measurement techniques are quite important in experimental
nuclear physics. However, it is well known that in addition to true
coincidence events, one can also obtain random (false) coincidences which can
be misleading if suitable corrections are not applied. Interference from
random coincidences become problematic if the timing resolution is poor, or
if the count rates are high. In the following example, Poisson statistics is
employed to derive u well-known formula for estimating random coincidences.

Fxaaple 7.10

Consider two separate detectors D and D which observe
1 b

radiation from two distinct sources S. and S , respectively, as
Ji fa

shown in Fig. 7.6. The two detection channels are thus
independent, and no true coincidences are to be expected.
However, random coincidences are possible. Suppose that N and N»

are the measured average singles count rates for detectors D , and

D respectively. Let T be the resolving time of the coincidence

apparatus, i.e., if events are recorded in D and D within an
elapsed time of T or less, there will be a coincidence recorded.
Furthermore, suppose that N T « 1 and N T « 1. If D registers

a count, then it is very improbable that another count will occur
in this channel within the following time interval T; however, a
count may occur in 0 . In fact, the probability that one or more

counts occur in D o in the particular time interval T initiated by

an event in D is

-NT -NT
(N.T) e c /k! = 1 - e

k=l a

So, an approximation to the random coincidence rate in this limit
is

- N T
N c « N^l - e ) « N ^ T .

So long as the count rates in these detectors satisfy the
requirements NJT « 1 and NgT « 1. we are led to the same result

by this method of derivation regardless of which detector is first
considered. However, if one or both of the detectors has a
substantial count rate, the problem becomes more complex and must
be approached in a more sophisticated manner. This problem is not
considered in this report.
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Figure 7.6: Schematic diagram of the experiment described
in Example 7.10.
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Examples 7.9 and 7.10 lead us to consideration of the so-ualled
exponential or Interval distribution This distribution can be derived
directly from the Poisson probability law, and it describes the distribution
in the sizes of the time intervals betueen successive events in any random
process in which the average rate is R events per unit time. Pursuing this
notion further, we note that the probability that no events will be observed
in the time interval from 0 to t is just

ft ~Rt — RI"
piRtjQ) - (Rt) e * /0! - e .

The probability that exactly one event will be observed in the sequential
time interval from t to t + dt is just

p(Rdtil) = (Rdt)1e~Rdt/l! * Rdt.

for a differential time interval dt. The interval distribution describes the
probability for a composite scenario, namely, no events for a time t followed
by a single event in time dt. Owing to independence, this probability is the
product of the two factors described above. In differential form, it is
given by the equation

Rt

dP = R e dt . (7.11)

It is easy to prove that the interval distribution is normalized, i.e., that

i\Zdp = R Q e"Rtdt -1 •
We can thus consider

P(t) = Re"Rt

as a continuous probability density function with a single random variable t
ranging from 0 to «>, and a single fixed parameter R. We should again remind
ourselves that only measurement, not theory, provides R.

Equation (7.11) is very useful for addressing problems involving
anticipated count rates. The following example illustrates an application of
the interval distribution.

Example 7.11

Consider an experiment with a mean rate of R events per unit
time. We measure the actual elapsed time intervals between
observed events until data have been recorded for a large number N
of such events. How many of these intervals would we expect to
have times t < T? From Eq. (7.11) we deduced that the probability
of observing a time interval t < T, namely,

P(t < T) = R /T e"Rtdt = 1 - e"RT.
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—RT
Consequently, we would anticipate N(l - e ) intervals shorter

—RT
than T. Analogously, we would expect to observe Ne intervals
exceeding tine T. Clearly, the longer the time T is considered,
the less probable it is that intervals of this duration will be
observed.

Poisson probability satisfies an important property of additivity. We
now state this in terms of two theorems. To prove these theorems requires
mathematical techniques somewhat beyond the present treatment, so they will
be stated without proof. However, the concept will be illustrated below with
an example.

Theorem: [Addition Theorem!

Let kj aud k 2 be two distinct random variables, k. is distributed

according to the Poisson law p(A ;k.) while kg is distributed according

to the Poisson law p(A ;k 2), in accordance with Eq. (7.8). If

k = k * k is treated as a random variable, then k is distributed

according to the Poisson law p(A;k), where A = A + A .

This theorem has an inverse which is attributed to the Russian
mathematician D. Raikov:

Theorem: [Raikov's Theorem]

If k and kg are independent, and k = k + kg follows a Poisson law,

then each random variable, k and k,,, follows a Poisson law of its own.

ExamDle 7.12

The addition theorem is very important in counting
applications. Suppose two detectors D and D, are independent and

the counting processes obey Poisson statistics. Detector D

yields Nj counts, while detector D yields U counts in a

1/2
particular experiment. The statistical errors are N and

1/2
N 2 , respectively. The sum N = N + N also obeys Poisson

1/2
statistics, by the addition theorem, so its error is N . By
Raikov's theorem, if the sum of two detector channels obeys
Poisson statistics, then each individual channel must also. These
theorems are commonly applied in the composition or decomposition
of multi-channel spectra from a single detector, where the
individual channel contents can be viewed as having been
accumulated independently.
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We close this section on Poisson probability with an example of Poisson
statistics which offers us an interesting insight into the nature of modern
scientific research in general.

Example 7.13

De Sola Price (Prt 63) conducted a study of many individual
cases of scientific discovery. From this work he was able to
reach the following interesting conclusion: The nuaber of cases k
of simultaneous scientific discovery, as evidenced by publications
reporting them, seemed to conform proportionally to (1/ki). We
note that the Poissou probability formula

p(l;k) = (lj'Wk!

is also proportional to (1/k!). Therefore, data of De Sola Price
apparently support the contention that, while it is still most
likely that any particular scientific discovery will be made just
once, multiple discoveries do occur with Poisson frequencies owing
to the apparent tendency for scientists to work independently of
one another. In short, scientists tend to publish papers but
rarely read the work of their peers! In view of the explosion of
scientific knowledge in this century, and the acknowledged
pressure placed upon scientists to be productive, this is not a
surprising state of affairs.

7.3 Normal (Gaussian) Probability Law

The normal probability law is by far the best known and most widely used
probability law of statistics. In this section we examine a few of its
properties and offer some indication as to why it Is hard to exaggerate its
importance in realistic applications. The origins of this law stem from the
early eighteenth century. Scientists began to observe an astonishing degree
of regularity in the errors of measurement. The so-called "normal" curve (we
have come to know of it informally as the bell-shaped curve) seemed very
often to approximate the outcomes of multiple observations. The individuals
credited with outlining the mathematical properties of this distribution and
providing a theoretical basis for its application are: Abraham DeMoivre
(1667-1745), Pierre Laplace (1749-18117). and Karl Gauss (1777-1855). In
honor of the latter, the distribution is often referred to as a Gaussian
distribution. Investigation of the properties of this distribution, and
development of a better understanding of why it seems to be of such
importance in Nature, persist as important research areas in the field of
stochastic theory up to the present time.

Unlike the binomial and Poisson laws discussed in Sections 7.1 and 7.2,
respectively, the normal law involves a continuous density function of a
continuous random variable which we will designate as x. < This variable can
assume any real-number value from -» to +«. Furthermore, there are two
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constant parameters of the distribution, o and A, which are known as the
standard deviation and expected value of the distribution, respectively. The
density function for the normal probability law takes the form

p o pi/p

p(g,X;x) = exp[-(x " A) /2o ]/(2noV , (7.12)

for -» < x < **. The parameter a must be positive, since it is related to
the width of the distribution. A can be any finite real number. Referring
to Pearson's uifferential equation (Eq. 6.18 in Chapter 6), it is rather easy
to show that Eq. 7.12 is indeed a solution of this differential equation for

2
the special case a = o , b = c = 0, and d = A. It can also be seen by
referring to tables of definite integrals that this density function is
normalized, i.e..

for arbitrary A and o (o > 0).

A compilation of all the known properties of the normal distribution
would fill many volumes. Here we only indicate a few of them, without proof:

Theorem: (Symmetry Theorem]

p(o,A;x = A + z) = p(o,A;x = A - z) for all real z.

Theorem:

2 -1/2
(a) 0 < p(o.A;x) < p(o,A;A) = (2no ) IC for all x,

-1/2
(b) p(c,A;x = A ± o)/p(o,A;A) = e ' * 0.6065,

1 /?
(c) p[o.A;x = A ± (2«n2) ' o]/p(o,A;A) = 1/2,

1/2
(d) p[o,A,x = A ± (2) o]/p(o,A;A) = 1/e « 0.3679.

Theorem:

The derivative of p(o,A;x) with respect to x, exists everywhere and has
the form

p'(O,A;x) = (A - x)p(O,A;x)/O2.

Thus:

(a) p'(o,A;A) = 0,

(b) p(O,A;x) < 0 if X > A,
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(c) p'(o,A;x) > 0 if x < A,

(d) p'(o,A;x = A f z) = -p'(a,A;x = A - z) for all real z,

(e) |p'(o,A;x)| < |p'(o.A; A ± o ) | = e ~ J / 2 / ( 2 T I O 4 ) 1 / 2 for all x.

Theorem:

The tangents to the normal cm>ve at x = A * Q and x = A - Q intercept
the zero probability density axis at x = A *• 80 and x = A - 2a,
respectively.

Theorem: [Addition Theorem]

Suppose a random variable x is distributed according to pto^.A^iXj).

while xg is distributed according to p(02.A2;x2). Next, suppose x is a

random variable such that x = x. + x . Then x is distributed according

2 2 2
to p(o,A;x). with A = A + A and a = o + o .

\ €* J- b

Theorem: [Levy-Cramer Theorem]

Let x and x? be independent random variables and let x be the normally

distributed random variable that is the sum, x = x + xg. Then both x

and x2 are normally distributed.

This theorem is essentially the inverse of the Addition Theorem, and it
was first proven by H. Cramer.

It is evident from Eq. 7.12 that there is no unique normal distribution,
but an infinitely large family of such distributions, characterized by the
parameters a and A. This obvious fact makes for difficulty in tabulating the
normal distribution. However, if we let o = 1 and A = 0, we obtain a special
member of this family known as the standard normal distribution or standard
Gaussian:

2 1/2
f(x) = p(1.0:x) = .,-xp(-x /2)/(2irr' . (7.13)

Furthermore, the integral

F(x) = /*x f(z)dz (0 < x < «>) (7.14)

is very useful since it represents an actual probability for observing the
random variable z in the range (-x,x), for x > 0, when this random variable
is distributed according to the standard Gaussian. Tables of f(x) and F(x)
are widely available, and an abbreviated version is provided in this report
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as Table 7.4. The functions f and F, and tables thereof, are very useful in
general because any normal distribution of the random variable x, which is
characterized by A and o, can be transformed to the standard normal
distribution in z by the linear random-variable transformation.

z = (x - A)/o. (7.15)

The variable z in this form is known as a reduced variable or a standard
variable for the distribution. The simplification afforded by this
transformation is one of the many reasons why the normal distribution is so
convenient for applications.

Statisticians often refer to flne-sigma. two-sigma or three-sigma limits.
Table 7.4 helps us understand what this means. From the values of F(x) in
this table, and Eq. 7.14, it is evident that the probability, for the
standard Gaussian, that x will be observed to exceed 1 (one sigma) in
repeated trials is ~ 31.7%. From Eq. 7.15, it is seen that for arbitrary
standard deviation o and expected value A, this is equivalent to |x - A| > a
(one sigaa). Likewise, the probability, for the standard Gaussian, of |x|
exceeding 2 (two sigma) is seen to be ~ 4.6*. Finally, the probability for
the standard Gaussian that |x| wiil exceed 3 (three sigma) is only ~ 0.3%,
which is nearly negligible for many practical purposes. It is the
three-sjqma rule which is generally used by statisticians as a test of
confidence, and it is often applied to distributions other than the Gaussian.
Then, o is the standard deviation of the particular distribution in question.
It is important to keep in mind that the "confidence" limit values indicated
above (in percent) apply only to normal distributions. It should also be
stressed that when a Gaussian distribution is used to approximate another
type of probability distribution, no physical credence should be given to
values of x beyond the range of the particular distribution in question. A
similar caveat was established in Section 7.2, with regard to the Poisson
distribution, which also has an infinite range defined for its random
variable k.

He now examine in more detail several reasons why the Gaussian
distribution holds a place of such eminence in statistics. Most of the
arguments favoring its use fall into the following four categories: i) it is
convenient to use, ii) it has been found (from basic or empirical
considerations) to be the appropriate (or nearly appropriate) probability law
for certain important physical processes, iii) it is a reasonably good
approximation to several other probability distributions, and iv) the
influence of the Central Limit Theorem. We have already presented evidence
to the effect that Gaussians possess mathematical properties which make them
convenient to use. This matter will be pursued further in later volumes of
this report series. We should mention here that, by the use of random-
variable transformations (see Section 3.3), it is sometimes possible to
analyze certain phenomena in terms of Gaussian distributions even though they
are not directly applicable. The following example illustrates this point:
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Table 7.4 Numerical

X

0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1,1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5

f(x)b

0.39894228

0.39695255
0.39104269
0.38138782
0.36827015
Q.35206535
0.33322462
0.31225393
0.28969154
0.26608522
0.24197068
0.21785217
0.19411861
0.17136866
0.14972757
0.12951772
0.11092098
0.94049237(-1)
0.78950324(-1)
0.65615982(-l)
0.53991129(-l>
0.43983751(-1)
0.35474737(-l)
0.28327169(-l)
0.22394648(-l)
0.17528404(-1)

Values for the

F(x)C

0

0.79695370(-l)d

0.15855852
0.23586098
0.31088031
0.38296014
0.45152710
0.51610393
0.57631818
0.63190636
0.68271369
0.72868966
0.76988008
0.80641618
0.83850168
0.86639860
0.89041259
0.91087859
0.92814740
0.94257362
0.95450535
0.96427581
0.97219693
0.97855492
0.98360750
0.98758277

Standardized Normal Disi

X

2.6

2.7
2.8
2.9
3.0
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
4.0
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
5.0
5.1

f(x)b

0.13583059(-l)

0.10421Qll(-l)
0.79155151(-2)
0.59525848(-2)
0.44318910(-2)
0.32668533(-2)
0.23841153(-2)
0.17225901(-2)
0.12322355(-2)
0.87269508(-3)
0.61191124(-3)
0.42478781(-3)
0.29195199(-3)
0.19865914(-3)
0.13383285(-3)
0.89263514(-4)
0.53944366(-4)
0.38536094(-4)
0.24943084(-4)
0.15984155(-4)
0.10141128(-4)
0.63700076(-5)
0.39614182(-5)
0.24390376(-5)
0.14867686(-5)
0.89727451(-6)

:ribution

F(x)C

0.99067935

0.99306748
0.99489094

0.99626938
0.99730107
0.99806556
0.99862641
0.99903377
0.99932672
0.99953529
0.99968230
0.99978490
0.99985580
0.99990429
0.99993713
0.99995916
0.99997378
0.99998339
0.99998964
0.99999367
0.99999624
0.99999787
0.99999889
0.99999950
0.99999989
1.00000000

Calculations performed using a microcomputer. Eight-significant figure
reproduction from the output does not guarantee eight-significant-figure
accuracy. Comparison with other tables indicates that f(x) is accurate
to at least five significant figures, while F(x) is accurate to at W s t
four significant figures, for 0 < x < 3 (through three standard
deviations).

bf(x) = exp(-x2/2)/(2n)1/2.
CF(x) = f(z)dz.

0.79695370(-1) signifies 0.79695370 x 10-1
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Exaaole 7.14

Suppose that we consider a large number of similar shielding
blocks with uniform density. As an exercise, we weigh each block
and ask how the masses are distributed. It is known that the
linear dimensions of objects follow distributions which appear to
be well approximated by Gs'issians, if the Measurement sample sizes
(number of blocks considered) are large. The mass M of a block is
given in terns of uniform density p, length t , width w, and height
h by the formula

M = p£wh.

We shall assume for simplicity that the precision to which the
blocks are cut is uniform for each of the three linear dimensions,
and that there exist constant scale factors s^, sw> and s^ for

this particular problem, such that t = s^x, w * a^x and h = shx.

Under this assumption we express H in terms of a single random
variable, namely, a generic linear dimension x, by means of the
expression

M = V wV
3.

1/3 1/3
Clearly, M is proportional to x, so we expect H to be
distributed as a Gaussian from the preceding discussion. He may

1/3
be satisfied to limit our statistical consideration to M
However, if I, w. and h vary randomly, and independently of each
other (which is more realistic), then it is more of a problem to
examine the probability distribution for the mass M. We shall see
in the next report of this series that it is generally not
necessary to know the probability distribution in detail.
Knowledge of a few of its moments will generally suffice. For
this problem, it turns out that

O2/<M>2 = o2/<«>2 + o2/<w>2 + o2/<h>2,
w r w n

where <...> denotes mean values and o denotes standard deviations.

The normal probability law is not noteworthy as a truly fundamental
distribution. In fact, few phenomena can be considered to behave
statistically in naturally Gaussian fashion. Its importance stems mainly
from the empirical observation that it often is a very good approximation to
other more fundamental distributions of Nature, in the limit of large
samples. Nevertheless, some physical phenomena involve such large samplings
that Gaussian distr.ibutiuns are postulated as fundamental for all intents and
purposes. The next two examples illustrate this point:
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gxapple 7.15

The Maxwell-BoItZMann Law of Molecular Velocities evolves
from the assumption of Gaussian probability distributions.
Consider a uniform classical gas of molecules with mass H and
temperature T (degrees absolute). Since there is no preferred
direction in space, we can arbitrarily define a Cartesian
coordinate system in real space and a corresponding one in
velocity space. A poinl in velocity space is represented by
(v ,v ,v ). Here, v represents the component, of iuifigi} v for a
x y z x

particular molecule, as projected onto the x-axis, and we
postulate that v is distributed according to the Gaussian

x.
2 2
3 v )

with -» < v < ••-». The same is true for v and vr . These

distributions are symmetric about zero because we postulate no
preferred direction in space, i.e., zero Xiojj for the gas. For
convenience we omit normalization constants for these
distributions. Since there is no net flow of the gas, v , v and

x y
v can be treated as independent random variables. Thus, the
z

probability of finding a molecule within a small element dv dv dv
x y z

in velocity space (or pernaps we might consider this as
essentially an element in phase space) is the product

Px ( vx ) py ( vy ) pz ( vz ) d vx d vy d V^ ~ eKP^?^ * vy * \) J d v x d v y d V

However, the speed v is related to its componwnts v , v and v by
x y z

2 2 2 2
v = v f v + v ,

x y z

so the increment of probability associated with this small phase
2 2

space element i s ~ exp(-/J v )dv dv dv . The Maxwell-Boltzmann
x y z

distribution is concerned with molecular speed v, so we are
interested in the probability of finding molecules having speeds
between v and v •»• dv, namely, p(v)dv. To determine this
probability we must sum over all cartesian phase space elements
dv dv dv far which the speed is between v and v *• dv; namely,

A y z
2 2

p(v)dv = Z exp(-/J v )dv dv dv . Because of the symmetric
A y z

relationship between speed v and its components v , v and v, , the
phase space region is a thin spherical shell of radius v and
thickness dv centered on the origin (v ,v ,v ) = (0,0,0). The

x y z
shell volume is proportional to the volume element v dv.
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Therefore, the Maxwell-Boltzmann Law is expressed as the
normalized probability density function

2 2 2 2 1/2
p(v) = 4/Tv exp(-/J v )/ir . for 0 < v < «.

The constant p is related to the fundamental molecular parameters

according to p = M/2kT, where k is Boltzmann's Constant.

In Section 7.1 we discussed a simple model of error, based on binomial
probability, which is attributed to Laplace. In the next example we examine
another model of error, based on the normal distribution, which was suggested
by John Herschel, and is thus known as Herschel's Modei of Error.

Example 7.16

Herschel envisioned release of an essentially infinite number
of identical grains of sand from a point in space onto a plane.
That the continuous distribution of their individual landing
positions is Gaussian can be derived from just two very plausible
postulates. Of course, it is obviously assumed that there are
random disturbances present which insure that the grains do not
all fall directly below their point of release. The first
postulate states that there is no preferred azimuthai bias. Thus,
in cylindrical coordinates, ttie density function is

p(r,e) = h(r).

where r is the radial distance from the projection of the drop
point onto the plane (i.e., the density function has only one
random variable). We can define a Cartesian coordinate system
with origin coinciding with the cylindrical coordinate system.
The orientation is arbitrary, but we assume that x = rcosfi, y =
rsinfi. Herschel's second postulate states that the distribution
function, expressed in Cartesian coordinates, is independent with
respect to the two coordinates, namely,

p(x.y) = f(x)g(y).

Let dA be an increment of area on the plane. Then,

h(r)dA - f(x)f(y)dA

so

h(r) = f(x)g(y)

and

tn h(r) = £n f(x) +• fn g(y).
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Then,

fa h(r) = ?n f(rcosS) • ta g(rsinS).

Take the derivative of both sides of this expression with respect
to 9 , then

d[8n h(r)]/'d© = [fix)]" d[f(rcose)]/de + [g(y)J *dlg{rsine)]/d«.

Therefore.

— i — 1
0 = -rsine [f(x)] d[f(x)]/dx •» rcosfl [g(y)l d[g(y)]/dy.

by the chain rule of differentiation. So. in abbreviated terms.

r U J / l x f U ) ] = g'(y)/[yg(y)].

Now. there should be no particular distinction between f and g or
x and y, since our choice of a Cartesian coordinate system was
arbitrary. Therefore, f'(x)/[xf(x)] is independent of x for all x
and must be a constant, which we choose to call -C. Since

f'UHxfU)] = -C,

it must be the case that

f(x) ~ exp(-Cx2/2).

neglecting a normalization factor. It would be impossible to
normalize f for -» < x < •*» without requiring C > 0. Finally,

_r 2
h(r) ~ e " '* (r > 0).

Science museums oftsn set up displays which demonstrate formation
of a "bell-shaped" normal curve in the manner suggested by
Herschel.

The normal probability law is often used as a mathematically convenient
continuous approximation to the discrete binomial distribution for large n.
As discussed in Section 7.2. the binomial distribution is difficult to
calculate for large n. So long as p << 1, the Poisson distribution is
useful. Otherwise, the normal law must be used. If u is large and p « 1,
yet A = up » 1, the normal law also approximates the Poisson law fairly well
for x = k « A. However, the Poisson distribution is decidedly assymmetric,
while Gaussians are intrinsically symmetric. These relationships are
clarified in Table 7.5. The reader can refer to this table for guidance on
how and when to use the binomial, Poisson, or Gaussian distributions in
practical applications.
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Table 7.5 Use of Poisson and Normal Distribuions to Approximate
the Binomial Distribution.

Rlnoalal Distribution:

p(n.p;k) = CnR p
k(l - p)"" k Ik = (0 to n)].

Valid for all n > 0, and all p > 0, as is discussed in Sec. 7.1.
For large n, this distribution is awkward to use and should be
approximated by either the Poisson or normal distributions, as
discussed below.

Poisson Distribution:

p(A;k) = Ake~A/k! [A s np > 0, k = 0 to «] .

Used to approximate the binomial distribution when n >> 1 and 0 < p
« 1, as discussed in Sec. 7.2. Then, the binomial is very
asymmetric. Often A is not large in situations where this
approximation is useful. This is a discrete, infinite
distribution. Comparison with the binomial is meaningless for
k > n. A need not be an integer.

Normal Distributions:

p(o.A;x) = exp[-(x - A)2/2o2]/(2ro2)1/2

[-«• < x < -H», A = np, o = np(l - p)] .

Used to approximate the binomial distribution when n » 1 and p is
unrestricted. It is an especially good approximation when the
binomial is nearly symmetric (p ~ 0.5). This is a continuous,
infinite distribution. Direct comparison with the binomial is made
only for x = k (k = 0 to n). Comparison is meaningless for x < 0

or x > n. When i « 1 but n is so large that o2 * A and A » 1,
then the normal distribution (with o = A) is a reasonably good
approximation to the corresponding Poisson distribution as well as
to the binomial, particularly for x in the vicinity of A.
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It is not a straightforwafd matter to prove that a binomial distribution
can be approximated by a Gaussian for large n, so we avoid the details and
simply accept this result as fact. The essence of this result is embodied in
the following famous theorem (De Moivre-Laplace) which is stated here without
proof:

Theorem: [De Moivre-Laplaee Theorem]

Let a and b be two non-negative integers with a < b, and let n and p be
parameters of the binomial distribution p(n,p;k). Then for large n,

b a

2 p(n.p;k) * r p(1.0:x)dx.
k=a

where p(1.0;x) is the standard normal distribution, while

1/2
a = (a - np - l/2)/[np(l - p)]

and
1 /p

/} = (b - np + l/2)/[np(l - p)T .

Very crudely speaking, what this theorem states is that the sum of the
areas of contiguous histogram segments, representing discrete binomial
probabilities, approximately equals the area under the corresponding
continuous Gaussian curve spanning the same region. While it has been
stressed that n should be large for the binomial to be represented well by
the corresponding Gaussian ap(>. cximation from Table 7.5, it is remarkable how
good this approximation becomes, even for relatively small n. when p * 1/2.
This is demonstrated in the following example.

Example 7.17

Refer to Table 7.6 for values of the binomial distribution
p(n.p;k) for n = 10 and p = 1/2, and of the corresponding normal

1/2distribution p(o.A;x) for a = (2.5) and A = 5. The agreement
is quite good. To demonstrate the validity of the De Moivre-
Laplace theorem, we first consider

4
Z p(10.0.5;k) » 0.3662.
k=2

Then consider

|J'j dx{exp[-(x - 5)2/5](5Ji)1/2} « 0.3622.

The difference is only ~ 1%. This example is illustrated
graphically in Fig. 7.7. The shaded area represents the integral,
while the associated histogram rectangles represent components of
the discrete sum.
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Table 7,

k

§ A Comparison of

Binomialb

p(n,p;k)

Binomial and Normal Distr

Normal
p(O,A;x)

ibut ions

Difference
(*)

0
1
2
3
4
5
6
7
8
9
10

9.77(-4)
9.77(-3)
4.39(-2)
0.117
0.205
0.246
0.205
0.117
4.39(-2)
9.77(-3)
9.77(-4)

1.70(-3)
1.03(-2)
4.17(-2)
Q.U3
0.207
0.252
0.207
0.113
4.17(-2)
1.031-2)
1.70(-3)

+74.0
+ 5.4
- 5.0
- 3.4
+ 1.
+ 2.
• 1

.0

.4

.0
- 3.4
- 0.0
+ 5.4
+74.0

Calculations performed using n = 10, p = 0.5, A = 5 . 0
p

o = np(l - p) = 2.5.

bp(n.p;k) Pk(l -

Cp(O.A;x) = exp[-(x - A)2/2o2]/(2no2)1/2, with x = k.
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Figure 7.7: Graphical demonstration of the DeMoivre-Laplace Theorem for the
special case discussed in Example 7.17.
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The following example presents a special case in which the corresponding
binomial. Poissou, and Gaussian distributions yield very nearly equal values
over a narrow range.

Example 7.18

Let n -- 100000 and p = 0.01. Therefore, A = np = 1000 and

o 2 = up(l p) = 990 « 1000. Table 7.7 contains values for
equivalent binomial. Poisson, and Gaussian distributions. The
differences between these three distributions are smaller than 1*
over the indicated limited range.

We alluded previously to the fact that normal distributions derive much
of their importance from the fact that they seem to describe (at least
approximately) a great many random phenomena observed in Nature and in every
day life, even though there is no a priori reason to expect that this should
be the case. One interesting clue as to why this actually happens may be
found by considering an extremely important theorem of statistics known as
the Central Limit Theorem. This theorem is stated in a variety of ways in
textbooks, and it has been found to apply under even quite weak assumptions.
Below we state a version of this theorem which, while not the strongest ut-
most general statement of the concept one could make, is perhaps the easiest
to understand and demonstrate:

Theorem: [Central Limit. Theorem]

Suppose that a particular random property can be described by the random
variable x. Suppose that we sample this random variable from a very
large population in which x is distributed about an expected value A
with standard deviation o. Now consider an experiment which is repeated
m times. For eacli of the m repetitions, we sample x randomly frosi the
population n times, independently, and then consider the random variable
z, given by

n
z a Z x..

i

This procedure yields a sequence of values z. (k * l.m). As m and n
K

become large, it turns out that the random variable z becomes very
nearly distributed as a Gaussian witli expected value

A1 - nA

and standard deviation

1/2
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Tab It; 7.7 A Cuniparison of Equivalenl Binomial, Fuissun and Normal

Distributions

990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
100G
1007
1008
1009
1010

Binomial

p(n.p;k)

0.01211
0.01222
0.01232
0.01241
0.01249
0.01255
0.0X260
0.01264
0.01267
0.01268
0.01268
0.01267
0.01264
0.01260
0.01255
0.01249
0.01241
0.01233
0.01223
0.01212
0.01200

Poissun
p(A;k)

0.01206
0.01217
0.01237
0.01235
0.012-13
0.01249
0.01254
0.01258
0.01260
0.01262
0.01262
0.01260
0.01258
0.01254
0.01249
0.01243
0.01235
0.01227
0.01217
0.01206
0.G1194

Normal
p(o,A;x)

0.01200
0.01211
0.01222
0.01231
0.01239
0.01246
0.01252
0.01256
0.01259
0.01261
0.01262
0.01261
0.01259
0.01256
0.01252
0.01246
0.01239
0.01231
0.01222
0.01211
0.01200

Density (unutiuiis arc; computed with the following parameters:
il = lOOOuO. p = 0.01. A = np = 1000.0.

p(A;k) = Ake"A/k!

(.1 ? 2 2 1 /9 5>
p(o.A;x) = exp[ (x - A) /2a ] / (2no ) ' . wi tli o = A « np( l p)
fur p << 1 aiul x - k.
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The larger n and m become, the better the representation by a Gaussian
distribution. In practice, n need not be too large, but m needs to be rather
sizable to obtain a reasonable Gaussian-like distribution. Also, we note
that for fixed a and A

(o'/A1) ~ n

so this Gaussian becomes more sharply peaked as n increases.

Proof of the theorem is beyond the level of the present treatment, so we
merely accept it. This is, indeed, a remarkable theorem with profound
consequences. What it says, in essence, is that sums of random variables
tend to be normally distributed regardless of the nature of the distribution
of the individual components. In the preceding statement of the Central
Limit Theorem it was assumed that each component of the sum was identically
distributed. However, more general statements of this theorem relax this
condition and allow the component random variables to be distributed
arbitrarily. The only requirement is that the individual probability
distributions be well-behaved. In particular they must be normalized and
possess well-defined mean values and variances.

The Central Limit Theorem can be understood and appreciated through the
following example:

Example 7.19

Envision a very large collection of cylindrical metal disks
(foils). All the foils are made of the same material and have the
same diameter. However, they differ in thickness. We assume that
each foil belongs to one of three distinct categories based on
thickness. One third of the foils are 0.01 cm thick, another
third are 0.02 cm thick, while the rest are 0.03 cm thick. We
suppose, for present purposes, that all foils belonging to a
particular category are so identified.

Now consider the hypothetical exercise in which we wake
samples to irradiate in some experiment. We fabricate each sample
by stacking and gluing together ten foils (n -- 10) selected at
random from an essentially inexhaustible supply. Each of the ten
foils is selected independently and the samples themselves are
independently fabricated. We fabricate a total of m of these
samples and ask how the resulting sample thicknesses are
distributed.

For simplicity, we suppose that the disk thickness x can
assume only the values x = 1,2, and 3. The probability
distribution p(x) is completely characterized by the values p(l) =
p(2) = p(3) = 1/3. According to the definitions given in Ex. 4.5
of Sec. 4.3, the expected value of foil thickness, which we
designate as <x>, is given by

<x> - 2 xp(x) - (1) (1/3) + <2) (1/3) + 3 (1/3) = 2.
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This is the average value since. p(x) is a uniform distribution.
The variance in x is given by

2 2
O = Z(x - <x>) p(x)

=. (1 -2)2(l/3) + (2 - 2)2(l/3) +• (3 - 2)2(l/3) = 2/3.

1/2
Thus, the standard deviation is o = (2/3) * 0.8165. The
thicknesses of samples formed by stacking ten randomly-selected
foils are represented by the random variable

10
i = Z x,.

1 = 1

where each x. is distributed as indicated above.

In this example we simulate the experiment described above on
a microcomputer using a random number generator. This represents
a particular application of the powerful Monte-Carlo Method which
will be discussed in later volumes of this series. We simulate
the random selection of individual foils from the population by
generating a real random number R in range 0 < R < 1 with a
computer. If 0 < R < 1/3. we assume x = 1. If 1/3 < R < 2/3, we
assume x = 2. Finally, if 2/3 < R < 1, we assume x = 3. It is
clear that z can assume any integer value in the range 10 < z <
30. but no others. The simulation process is as follows: Using
the computer we "fabricate" m samples. For each sample, we record
the resulting thickness z, and by the Monte-Carlo procedure
generate the array of numbers N(z) for z = 10,11,...30. N(z) is
the number of samples, out of a total of m, which are found to
have thickness z. Since

30
Z N(z) = m,
z=10

the normalized distribution we desire is just p(m;z), where
p(m;z) = N(z)/m (z = 10,11....30). The results of three distinct
simulation exercises of this nature, for m = 10, 100 and 1000,
respectively, are plotted in Fig. 7.8. The particular
distribution for m = 1000 is compared with the Gaussian

distribution p(a'.A';z), with A' = 2 0 and o1 = (10)1/2o =
i/2

(10) (0.8165) •-= 2.582. It is clearly demonstrated that p(m;z)
becomes very well approximated by p(o,A';z) as m gets rather
large. Remember that the distributions p(m;z) are discrete and
finite, while p(o,A;z) is continuous and infinite. It is
understood, then, that comparison with a continuous Gaussian is
meaningless where p(m;z) is undefined.
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Figure 7.8: Graphical demonstration of the Central Limit Theorem for the
special case discussed in Example 7.19.
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The outcome of this computer simulation excited me greatly
when I first did the calculations, and it has left me with a deep
and lasting respect for the beauty and power of statistical
analysis. 1 hope that the reader will be similarly impressed. It
seems to me that the fundamental meaning of nuclear data
uncertainty is clearly demonstrated in a very convincing fashion
via this simple exercise.

In view of the preceding example, it is not hard to visualize why random
variables that describe the linear dimensions of like macroscopic objects
tend to be Gaussian-distributed for large populations. Macroscopic physical
objects can be considered to be built up from many smaller components, each
of which is distributed in its own way. When we consider the composite
object, the Central Limit Theorem tells us that we need not be concerned with
how these various components are distributed (so long as the distributions
are physically reasonable), because this composite will be well described by
a Gaussian. This very powerful result makes the job of statistical analysis
much simpler. Once the mathematical form of the underlying distribution is
known, the only remaining task is that of estimating its parameters. We
shall see in a later report of this series that this is achieved using
various sampling procedures and random variable statistics called estimators
(as defined in Sec. 3.3).

We saw in Sec. 7.2 that the Polsson distribution is strictly univariate.
However, in Sec. 7.1 it was indicated that the univariate binomial
distribution has a multivariate equivalent known as the multinomial
distribution. Gaussian distributions can also be multivariate. We now
examine a few features of these more complicated multivariate normal
distributions.

Using compact matrix notation, the general form for an n-dimensional
Gaussian is

p(V.A;i) = exp[-(l/2)(x - A ) + V-1(i - A)]/{(2ir)n/2[det(V)]1/2). (7.16)

x represents the random variable array (X.....X ), a point in n-dimensional

random variable space. A represents the expected value of x with respect to

this distribution, and it is the array (A ,...A ). V is an n x n symmetric.

non-singular, positive-definite matrix called the variance-covariance matrix
(or simply covariance matrix for short) of this distribution. The diagonal
elements V.. (i = l,n) are variances, while the off-diagonal elements V. ..

(i * j = l.n) are called covariances. To be consistent with the univariaut
case, we express the variances V.. in terms of standard deviation o by V.. =

2 -
a. . There exists a related matrix C called the correlation matrix. Its
elements are given by the formula
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1/2

The quantity det(V) is the determinant of the matrix V. If det(V) £ 0. then

the inverse V exists and V is non-singular. The superscript "+" designates
transposition. The matrix product

Q = (x - A)"*" V~1(x - A) (7.18)

is known as a generalized quacflrfltic form of order n. We shall discuss these
matters in far greater detail in future reports of this series.

Multivariate Gaussians share many properties in common with un-'variate
Gaussians. We shall avoid consideration of these, since many of them are
obvious. One feature of multivariate Gaussians which has no counterpart in
the univariate case is embodied in the following theorem which is offered
without proof:

Theorem:

The random variables x. and x. (i * j = l,n) are mutually independent

if. and only if V.. = 0 (i * j = l.n). Then

- - - n i/?
p(V.A;x) = It p[(V..) .A ;x . ] .

1=1 1X x x

1 /?
with p[(V..r ,A.;x.] given by Eq. (7.12).

Rather than dwelling further on general properties of multivariate
Gaussians, we will examine the special case of bivariate Gaussians. Some of
their features can be readily demonstrated graphically.

From Eq. (7.17), it is evident that the correlation matrix C is
characterized by a single parameter p = C = C for the bivariate case, p

in this special case is called the correlation coefficient. Thus, we can
write the bivariate equivalent of Eq. (7.16) as

r V W r 2 2 i 2 (7.19)

with

Q2 = [(x : - - y 2 / ^ - 2p(x1 - ^ ( U g " V / O l ° 2 + U 2 " A 2 ) 2 / ° 2 ] / ( 1 " pZ)-

(7.20)
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The parameter p can span the range -1 < p < *l; however, we run into
difficulty if p = * 1. according to Eqs. (7.19) and (7.20). We will see
what this means shortly, but, for the present, assume that p t ±1. P2

 > °

fur all lx ,x ), so

defines a surface which blankets the entire plane defined by Xj = 0. The

random variables x- and x~ are defined with respect to a Cartesian coordinate

system in this plane, and x. represents probability density. Now consider a

plane x = c (constant), with

0 < c < 1/(21x0^(1 - p V / 2 ] .

The set of all points (x, ,xo) for which xo = c is of interest. Since xo is

constant, Q must also be constant. In fact, if x = c, then

Q? = c
1 = - j g

However, Eq. (7.20) (for Qp constant) is the general equation for an ellipse

in terms of x and x . Thus, planes of constant prottbiii?y intercept the
1 Ct

bivariate Gaussian probability surface in a series of ellipses which are
centered about x1 = A and x2 = A , as shown in Fig. 7.9(a). We note in

passing, without proof, that any plane perpendicular to the (x ,x ) plane,

and passing through x = A and x = A , slices the bivariate Gaussian

surface into a univariate Gaussian profile, as shown in Fig. 7.9(a). Thus a
bivariate probability distribution is "mound-like" with simple vertical
univariate Gaussian profiles and elliptical horizontal profiles.

For constant probability p = xo = c, the corresponding (x ,x_) ellipse

can be fitted into a rectangle centered about x1 = A and x0 = A with a side

of length t = 2/Ja in the x1 direction and lp = 2,0a in the x direction (p

is a uouuegative constant which depends upon the probability p = x = c), as

shown in Fig. 7.9(b).

Suppose that we keep a and o fixed in magnitude, but consider the

family of bivariate normal distributions generated by merely varying the
correlation coefficient. The family of ellipses which is generated by
varying p over the range -1 < p < -I, for the expression
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Figure 7.9: Illustration of various features of a bivariate normal probability density function.



x i i x ~
 A

t ) (
x
a - Ai ) / Oi°2 + (X2 ~ A2 ) 2 / < J2 2 ] = constailL-

is known as the covariance ellipse family or ellipses of covariance. The
shapes and orientations of the ellipses depend upon p, a , and a . as shown

in Fig. 7.9(o and d). When xx and x_ are independently distributed, p = 0.

Then the axes of the ellipses are parallel to the coordinate axes.
Otherwise, the ellipses are tilted. However, by suitable transformation of
the random variables (via formation of linear combinations of the original
variables), it is possible to find an orthogonal. independent set of
equivalent variables, thereby eliminating this tilt. For these bivariate
distributions, this amounts to rotation of the (xt,x0) coordinates. When

p ~ ±1. the ellipses degenerate into lines, as shown in Fig. 7.9(c and d).
If p = 1, x and x,, are fullv correlated and do not have distinct

distributions. In fact, x is always proportional to X-. If p = -i, x} and

Xo are fully anticorrelated and do not have distinct distributions. Then x2

is always proportional to -x . In either case, the notion of a bivariate

distribution for these two random variables becomes meaningless, and this is
reflected by the fact that Eqs. (7.19) and (7.20) are then undefined.
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8. BAYES' THEOREM AND APPLICATIONS

Bayes' theorem (or Bayesj' Rule as it is commonly called) is stated and
proved in Chap. 5. The nation of statistical inference is also introduced
there, and the role of Bayes' theorem in this area of statistical theory is
mentioned briefly. Furthermore, it is hinted in Chap. 5 that difficulties
and controversies are associated with the issue of statistical inference in
general, and with Bayes' Rule in particular. In this chapter we proceed to
investigate this matter further. The intent here is for the reader to gain
some insight into the function of Bayes' Rule in applications, and to acquire
=\n appreciation for the subtleties of statistical inference in a wider sense.
The reader is forewarned that this topic is so broad that it amounts to no
less than an entire field of professional specializatiom. We will touch upon
it again in later reports of this series, but will succeed in doing little
more than just "scratching the surface." Debates over the interpretation of
several important theorems of statistical inference, particularly in the
field of applied statistics, have led to a dichotomy of statisticians into
two distinct categories: classical statisticians and Bavesian statisticians.
It is my intent to provide the reader with enough iasight into this issue so
that he will at least recognize and appreciate the two distinct philosophies
involved. 1 do not care to promote one view point at the expense of others,
but, as was mentioned in Chapter 5. I strongly suspect that the reader will
be led to share my opinion that the process of nuclear-data development, as
it is currently practiced, is essentially Bayesian in nature.

We begin by demonstrating Bayes1 Rule, as embodied in Eq. 5.9, through
two simple examples:

Example 8.1

Consider two indistinguishable containers, each holding five
samples that are to be used in a neutron-activation experiment.
The samples are either iron (Fe) or copper (Cu). However, they
are physically similar in the sense that they are all disks which
have nearly the same diameter, thickness, and weight. If an
investigator were "blind," and thus were not able to distinguish
U w Fe from the Cu samples by their visual appearance, he might
i .deed not be able to distinguish them on the basis of his
qualitative sense of "feel" alone. All that the blind
investigator is presumed to know is that there are some of each
type present. The information available to us, but not to our
blind investigator, is that container 1 has 3 Fe samples and 2 Cu
samples, while container 2 lias 1 Fe sample and 4 Cu samples. This
state of affairs is illustrated schematically in Fig. 8.1.
Consider the following process: The blind investigator first
selects a container at random, and then from it he selects a
single sample at random. We choose to pose, and then to answer,
two quesitons about this process:

First Question: Wlial is the probability thai the selected sample
will be Fe?
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Figure 8.1: Illustration of details from Example 8.1.
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Referring to Chap. 5, we recognize that this question can be
answered by applying Eq. (5.8), namely, the rule of total
probability. In accordance with the notion cf Fig. 8.1,

I = (Ax x I) + lAg x I).

Then,

since

P(I) = P(A2 x I) + P(A2 x I),

x A2 = f

From Eq. 5.2, we have that

and

So.

P(Aa x I) =

P(A2 x I) = P(I/A2)P(A2).

P(I/A2)P(A2),

which is a statement of the rule of total probability, re-derived
here in order to remind the reader of the concepts involved. The
total probability for I is therefore a weighted average of the two
conditional probabilities P(I/Aj) and Pd/Ag). with P(Aj) and

P(A ) serving as the weighting factors. It is very evident in

this simple situation that

I = 1/2.

I = 3/5
i

and
P(I/A2) = 1/5.

Consequently,

P(I) = (l/2)(3/5) i- (l/2)(l/5) = 2/5 (40*)

is the answer to our first question. We note in passing that the
probability of selecting an Fe sample just equals the relative
frequency of Fe samples in the entire collection of 10 samples,
regardless of their distribution among the containers. The reason
for this is that the selection of a container was conducted in an
unbiased manner.

Second Question: Given that an Fe sample was selected, what is the
probability that it came from Container 1?

The reader who has been carefully following the concepts and
examples presented in this report should immediately sense that a
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new element of logic is involved in this question. Previously,
the reader has been asked to consider the prediction of
probability for a certain event occurring, given a particular set
uf circumstances. Now we are asked to speculate; about the
circumstances themselves, given a particular outcome for a random
procedure. Clearly, this problem forces us into pursuing a line
of reasoning which proceeds from effect backward toward cause,
rather than from cause forward toward effect, namely, logical
inference rather than logical deduction. Bayes' Rule provides us
with a formal algorithm for answering the question thus posed.
What we seek is the conditional probability P(Aj/I). Bayes'

formula, namely, Eq. (5.9). states that

2
P(A./I) = P(I/A )P(A.)/[ Z PU/A. )P(A. )]

1 * 1 k=l k K

Since we indeed possess knowledge of all the parameters appearing
on the right-hand side of this equation from the preceding
deliberations, we can calculate P(A /I). Thus

PiAj/I) = (3/5)(l/2)/(2/5) = 3/4 (75*).

Tltis answer makes a lot of sense, in view of our extensive
knowledge of the facts in this situation. Actually, we have not
learned much about the problem that we could not have already
surmised from a casual glance at Fig. 8.1.

Consider, instead, what might be the outcome if our blind
investigator had been called upon to answer this question. He
executes the procedure of this example and is told that he has
selected an Fe sample, but not which container was picked.

As this example is formulated, the blind investigator knows
that there are two indistinguishable containers, each holding five
physically similar samples of two types, but he does not know how
many of the samples in all are Fe or how they are distributed
anong the containers. In order to apply Bayes' Rule, he is forced
to speculate on the input parameters. For this particular
situation, lie has good reason to assume that

P(Aj) = P(A2) = 1/2,

because even though he is blind he can arrange to select a
container at random. However, he does not have enough information
available to compute either P(I/A ) or P(I/A ). Forced to

speculate on the matter, he proceeds to argue along the following
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subjective lines: Because it makes good sense to store like
samples together in the same container, he presumes that there
exist 5 Fe and 5 Cu samples. and that they are segregated. Then
he is faced with the following possibilities: either i)

or

= 1 and P(I/A2) = 0,

= 0 and P{I/Ag) = 1.

He applies Bayes' theorem as follows:

Possibility (i'j:

I) = (l)(l/2)/(l/2) = 1.

Possibility (ii):

= (0)(l/2)/(l/2) = 0.

Since the predictions are so different, he decides to hedge by
averaging these two possibilities, thereby suggesting that

PtA^'I) - 1/2 (50*).

Actually his result, though at variance with the truth as we know
it, is not too very far removed from it. In actual fact, he was
merely fortunate, because it is obvious that he jus*: did not have
enough factual information available to him to cope with the
problem in a meaningful way. For example, his speculation that
there were equal numbers of Fe and Cu samples, and that they were
segregated, bear little resemblance to reality.

The lesson to be learned from this example is that although Bayes' Rule
is a completely valid mathematical result, its application is subject to
question when the available (a priori) input information is speculative.

Next, we apply Bayes1 Rule to an example involving radioactivity:

Example 8.2

Consider Fig. 8.2. We suppose that the indicated detector
responds to indistinguishable radiation from two physically
distinct, weak radioactive sources with emission strengths S and

S , respectively. For example, these sources might each decay via

positron emission, with the detector responding explicitly to the
corresponding 0.511-MeV annihilation-radiation photons. We
further assume that the efficiencies for detection of the photons
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Figure 8.2: Schematic diagram of the experiment from Example 8.2,
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from Source 1 and Source 2 are fc and *„, respectively. Since the

emission rates from these sources are taken to be low, we shall
make the assumption that the likelihood of two photons (one from
each source) being detected within the required signal-processing
time is negligible. Define the following events:

A. = emission of a photon from Source 1,

A = emission of a photon from Source 2,

B = detector records a count.

The question that we wish to ask is the following: Given that the
detector has recorded a count (event B has occurred), what is the
probability that the photon that produced the count originated
from Source 1? We can solve this problem using Bayes' Rule.
Formally, the answer is

2
= P(B/A )P(A )/[ 2 P(B/A )P(A^)].

k=l

The probabilities P(A ) and P(A2) are proportional to the

respective source strengths. Thus,

I a S,
i 1

and
P(A2) a S2.

The conditional probabilities P(B/A.,) and P(B/A ), i.e., the

likelihood factors, are proportional to the respective
efficiencies. Thus,

and
P(B/A2) a

Combining these results, we obtain

P (V B ) =tlV(tlSl +£2S2>

from Bayes' Rule. To add life to this example, let us assume that
S = 10S and fe = 2t Then,

i. fa X £

'B) = (2)(10)e S /[(2)(10)6 So + e_So] = 20/21 (95.2*).
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We can derive the probability that B was caused by a photon from
Source 2 by a completely symmetrical development, namely,

P(A2/B) - £2S2/[(2)(1O)£2S2 + £2S2] = 1/21 (4.8%).

This sort of analysis is quite useful in correcting the
results of a radioactivity measurement for background effects. In
such a situation, Source 1 is considered to be the primary source
(foreground) while Source 2 represents the background source. Now
if Source 1 is a point source, computation of e may be a

manageable task. If Source 2 is background radiation, its
distribution in space nay not be known, and thus £~ may not be

calculable. A key point is that Bayes' Rule in this instance
requires only that the product (eS) be known for each source,
since (*•$), = e S, and (eS)o = e S . Furthermore, since the

detector count rates R. and R_ for each source are equivalent to

(fcSL and (tS)2> respectively, the information required for the

application of Bayes' theorem is directly measurable! In
practice, we measure (R + R-), namely, the detector count rate

with both sources present (foreground plus background), and the
background rate R? when Source 1 is removed. Then, in terms of

measurable quantities, Bayes' Rule states

PtAj/B) = Rj/tRj * Rg) = [(Rj + R2) - R2l/(Rj * Rg).

So, we see that the well-known procedure for correcting
radioactivity data for background effects originates from the
notion of Bayesian statistical inference.

It is evident from these examples that use of Bayes' Rule demands that
one become comfortable with the notion of backward or inductive reasoning,
and possess a willingness to employ subjective information as a basis for
statistical inference. In the field of nuclear data these are relatively
familiar conditions, since there is rarely enough information at hand to be
able to make predictions concerning nuclear parameters with a great degree of
certainty. Complete faith in the process of learning through experience is
thus implicit in this procedure. One must possess some confidence in the
notion that, even though experience and subjective intuition may appear to
form an uncertain foundation for the building of rigorous knowledge,
uncertainty associated with this subjectivity will gradually be dispelled as
factual information is accumulated through sound experimental procedure. An
example which ought to instill a degree of confidence in the reader
concerning this approach is presented later in this chapter.

Recall from Chap. 5 that Bayes' theorem is formally based upon a
collection of events A. (i = l,n) which form a partition of the entire event
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space E. These A. are mutually exclusive and exhaustive. The manifestation

of this condition in the domain of realistic applications is that all
possible hypotheses or causes for an observed event must be taken into
consideration, and they must indeed be distinct. In addition to considering
all reasonable hypotheses, we must be in possession of tenable a priori
estimates of the probabilities for validity of each of these hypotheses. It
is then required to determine the conditional probabilities (likelihood
factors) that the event, which in fact lias actually been observed, might have
been caused by each of the hypotheses under consideration. These stringent
demands of Bayes' Rule often exceed what can be realistically met for many
intended applications. The main problem that generally emerges is usually
not one of calculating likelihood factors, but rather one of estimating the a
priori probabilities of the various hypotheses.

Since a priori probabilities must often be subjectively estimated, there
have indeed been instances of abuse ant! distorted reasoning associated with
the application of Bayes' Rule, with the consequence that for many years it
suffered from discredit in the eyes of numerous statisticians. While quite a
few statisticians continue to view with considerable skepticism the methods
which this theorem suggests, it has enjoyed a certain resurgence of
popularity in recent years. In the imperfect world in which we live, prudent
application of Bayes' Rule clearly provides us with a powerful tool for
merging speculative; information with factual knowledge, in order to advance
our understanding of a particular situation. One approach which has come to
be accepted rather widely as being a legimate one is that ir> nhich a priori
probabilities and likelihood factors required for the applicu.un of Bayes'
Rule are derived from mathematical theories that appear to offer promising
possibilities for explanation of the phenomena in question. An important
criterion for a theory to be considered as reasonable and practical is that
it offer clearly defined algorithms for calculation of the likelihoods
associated with phenomena which have actually been observed.
Experimentation, in concert with Bayesian analysis of the data, permits us to
refine our understanding of the issue at hand—rejecting theories which
appear to be at odds with observation while reinforcing those which are found
to be consistent with reality. The a posteriori probabilities in this
context represent an amalgamation of theory and experiment in the sense that
the hypotheses for which theory and experiment are most consistent are
favored by greater a posteriori probability than are those for which theory
and experiment are at odds. Acceptance of this philosophical approach to
inductive reasoning does not appear to be at odds with generally accepted
methods of scientific investigation.

Bayesian analysis is certainly not the only method used in inductive
reasoning. It is not our intent to dwell at length on this matter, but it is
worthwhile to mention here another method that is based on what is known as
the Principle of Maximum Likelihood. This principle states that when
confronted with an exhaustive set of several hypotheses which might have
caused a particular observed effect, we select as correct, unequivocably, the
single hypothesis which is most likely to have produced that effect. This
approach to inductive reasoning would appear to be less conservative than
Bayesian reasoning because it seems to be inconsistent with the normal
learning process, namely, that knowledge is acquired, and confidence in the
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validity of certain hypotheses relative to other possible ones is developed
in gradual steps. While the Principle of Maximum Likelihood obviously offurs
logical expediency, there would appear to be an attendent risk of prematurely
forming rigid conclusions which might well be prone to bias. This risk could
be significant when the observations are subject to considerable variance or
possible systematic effects, as is often the case in nuclear-data research.
We will encounter the Principle of Maximum Likelihood in other contexts in a
later report in this series, and there we will learn that it does have a
valid place in certain aspects of statistical theory. In fact, in some
instances the application of this principle leads to results which are
consistent with the Bayesian approach. For these reasons, the reader should
not be led to regard the Principle of Maximum Likelihood as unworthy of
further consideration.

An important problem of statistical inference is that of predicting -the
future outcomes from a sequence of random trials, given that a certain
history of outcomes has been compiled for previous trials of identical
nature. We limit consideration to sampling procedures where the outcomes can
be categorized simply as either "success" or "failure," i.e., Bernoulli
trials. This problem can be formally posed and answered in the form of a
theorem:

Theorem: [Laplace's General Rule of Succession]

Given that n random trials have been performed with respect to an
essentially infinite population, and that all of these have been
successful (event A), the probability that the next n' trials will also
be successful (event B) is given by the formula:

P(B/A) = (n + l)/(n + n1 + 1). (8.1)

Proof of this theorem begins with the rule of total probability and
ultimately involves approximation of certain disc»«;te sums by definite
integrals, an approximation that is well justified for large populations.
The proof is given in Parzen (Par 60) and will not be repeated here.

A special case of this theorem is that for which n' = 1:

Theorem: [Laplace's Special Rule of Succession]

Given that n random trials have been performed with respect to an
essentially infinite population, and that all of these have been
successful (event A), the probability that the very next trial will also
be successful (event B) is given by the formula

P(B/A) = (n + l)/(n + 2). (8.2)

The latter result generally is referred to simply as Laplace's Rule of
Succession, a law which has garnered considerable notoriety in the annals of
statistical history. Laplace himself was aware of the potential for abuse
which it afforded. In jest, he once was quoted as using this theorem to
"prove" that there was a finite probability (in fact, 1 part in 182614) that
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the sun would not rise on the following day based on recorded observations
that the sun had risen faithfully on each day during the preceding 5000
years!

As with all exercises in inductive reasoning, one can trust the
predictions of Laplace's Rule (in the statistical sense) only to the extent
.that the process to which it is applied is random, with a legitimate range of
possible outcomes. For example, in the case of Laplace's paradox, the rising
of the sun is not governed by statistics (insofar as we are aware), and the
event that the sun does n»t rise on a particular day is not just improbable,
it is inconceivable! We know this to be the case based on knowledge which
transcends the mere fact that the sun has been observed to rise each day
during a period of 5000 years of recorded history.

We will now provide two further examples of the use of Laplace's Rule of
Succession. From these it is hoped that the reader can "infer" where the
hazards lie. The first example demonstrates proper use of the rule:

Example 8.3

A research laboratory stocks a sizable supply of a
particular transistor which is commonly used in applications in
that lab. This transistor is often replaced in the circuitry
where it is found. The purchased transistors were randomly
selected from a very large population, the manufacturer's
inventory. The laboratory in question has had no previous
experience with this vendor. It is anticipated that there will be
some defective transistors in the lot, but no data to this effect
are available a priori to the lab. Some time aftei- the initial
puchase, it is noted that the last 8 transistors used in the lab
were good ones. What is the probability, based on the lab's
experience, that the next transistor selected will also be good?
Laplace's Law of Succession provides the answer 9/10 (90*). While
there might be reason to expect the probability to be higner
(otherwise the vendor would have a bad reputation), this result is
not unreasonable, as a conservative choice. The validity is
supported by the fact that the trials were performed at random
from a large population, and that both success and failure were
physically possible outcomes. Finally, the ninth trial is
performed under the same circumstances as the previous eight.

The next example demonstrates improper use of Laplace's Rule of
Succession:

Example 8.4

A scientist wishes on a particular day to perform a certain
measurement outdoors using a temporary setup which is intolerant
of rainy conditions. For example, he might wish to set up an
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unprotected scintillation detector at a long distance from a
neutron source in order to measure a certain spectrum by
ti*e-of-flight with exceptionally good resolution. Pu the
previous eight days it did not rain. What is the prouafo'.iity that
on the ninth day it will not rain? Laplace's Rule of Succession
provides the answer 9/10 ;90S>). Common sense tells us that this
is absurd! In order to have a reasonable chance of success in
predicting the weather on a given day, one must scientifically
analyze a great deal of information (e.g., the time of year, the
climatic history of the region over an extended period of tine,
the current weather conditions in neighboring regions, etc.).
Anyone who relies on Laplace's Rule of Succession to predict the
weather is being naive.

The preceding considerations lead to a statement of what could aptly be
called the Fundamental Principle of Applied Probability ffaegry: Before
applying any theorem, particularly in the realm of statistical inference, be
certain that the conditions under which the theorem is being applied are
exactly those upon which the theorem is predicated, and, furthermore, that
these conditions will continue to hold well into the future period in which
one is attempting to make a prediction.

It has been indicated previously that Bayes' Theorem is an important
concept of applied statistics because it offers an algorithm for combining
old and new information in a manner that builds knowledge, i.e., it
formalizes the learning process. We now outline in more detail how the
Bayesian learning process proceeds, and ultimately demonstrate it with a very
detailed example.

The Bayesian method offers its greatest potential when viewed as an
iterative process. This process is outlined formally in Table 8.1. The
reader should study this table carefully and, in particular, should keep in
mind a very important caveat regarding the issue of "confidence." Implicit
in the application of the process described in Table 8.1 are two distinct
notions of confidence. First, there is the idea of confidence that
hypothesis A. is the correct one. After a trials, the confidence levels for

the various A. are properly reflected in the corresponding probabilities

P (A.), as indicated in the table. However, there is another type of
HI K

confidence with which one should be familiar. That is the "confidence" that
occurrence of an event B will provide us with a strong indication as to which
hypothesis is correct. This latter form of confidence is measured by
P(B/A ). i.e., the likelihood factors. For example, if P(B/A.) « 1 and

['(B/'Â ) * 0 for k = l.n (excluding j), then the observance of B strongly

enhances our confidence that A. is the correct hypothesis.

Those who work Lu the field of nuclear data will appreciate the
following manifestation of this issue: One desires to know a particular
cross section o, which is assumed to have a precise and unchanging value,
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Table 8.1 Bayesian "Learning" by Iterative Application of Bayes' Rule.

$tep J,: Establish a mutually exclusive ar.d exhaustive set of
hypotheses A. (k = l,n).

For each A. , develop an a priori probability PQ(A^) that the

hypothesis is correct, based on the best available rational
knowledge. If there is no a priori reason to fqivor one
hypothesis over another, then assume P (A. ) = 1/n (Bayes1

O K

Postulate) in order to avoid bias.

Step 2: Perform the first random trial. Event B occurs. Calculateall the likelihoods P ^ / A ^ (k = l.n). It is assumed that

a requisite feature of each hypothesis A. is that it provide

an algorithm for calculating such likelihoods! Calculate
all the a posteriori probabilities by means of Bayes' Rule,

n

W V = p ( W p o ( V / [ x p<VAi)po(Ai)] (k = l>n)

X ~* A

Step 3: Replace each a priori probability P (A. ) by the a posteriori
O K

probability p
1(

A
k''B1)> i-

e- let

P 1 ( V = Pl(Ak/Bl) (k

Step 4: Perform the second random trial. Event B,, occurs.

Calculate all the likelihoods PtBg/'A.) (k = l,n).

Calculate all the a posteriori probabilities by means of
Bayes1 Rule,

n

" V W = P(WPl(Ak)/[.Z
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Table 8.1 (cont'd)

Replace each a priori probability PjtA. ) DV the a posteriori

probability P2(Ak/B2), i.e., let

W = P2 (V B2 ) (k " lin)>

This iterative process is continued, with the results B ,B . ...B of the

successive random samplings incorporated into the learning process described
above.

After m independent trials have been performed, each hypothesis A. is

found to have a probability P (A. ) which represents the best estimate of the

probability that A. is the correct hypothesis. At no stage of this process

is any legitimate hypothesis explicitly rejected. However, the experience
gained from observation (learning) leads to continuous refinement of our
confidence in the various hypotheses, with ultimate downgrading of those
hypotheses that are at odds with the observations B,,Bn,...B , and

1 2 m
enhancement of confidence in others that seem to be consistent with our
observations.

If m is small, then the initial estimates P (A.) of the probabilities
O K

can be expected to have a noticeable impact on the final P (A. ). For larger
m, the effects of the initial estimates will be "washed out" by the bulk of
new evidence. The number of iterations required to wash out the effects of
the a priori estimates will depend largely on the nature of the likelihood
factors. It is in these factors that one finds quantitative indication of
the "precision" or "reliability" of the various observations B,,BO,...B . In

1 2 m
othsr words, the likelihood factors reflect the uncertainties associated with
these observations. Since observations (measurements) are demanding of
resources (time, manpower, and money), it is essential that this process
embody reasonable hypotheses (theories) and observational procedures
(experiments) which are reliable (accurate) and carefully designed to test
the hypotheses under consideration.
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although it is not known to us with any precision at the outset. Nuclear
model calculations provide us with a range of possible values for o, and an
associated probability density function p (a). Repeated experimentation

ought to lead us to the position where we can state with a certain level of
confidence that o must lie in the range <o> - <*J < o < <o> + Jo. However,
the number of experiments which have to be performed in order to achieve the
desired level of accuracy depends strongly on the precision of the
experimental process (sharpness of the likelihood factors), which ought to be
reflected in the variance of the accumulated experimental results.

We proceed now to demonstrate, by means of a rather lengthy example,
whul has been said above regarding the Bayesian learning process, as
summarized in Table 8.1.

Example 8.5

Consider a hypothetical situation in which a certain
physical parameter has a precise integer value designated by <k>.
In this example we assume that a hypothetical investigator does
not know what <k> is, even though we do know that in fact <k> = 5.
What our investigator does knew, however, is that <k> might be any
integer between 0 and 20. Furthermore, we suppose that when our
hypothetical investigator performs random experiments in order to
gather information relevant to the determination of <k>, he will
observe various values k between 0 and 20 according to the Poisson
probab1'' ity law

p(5;k) = 5ke"5/k!,

i.e., the value k = 5 is the expected value, but the values
actually observed in the course of repeated sampling will scatter
considerably around k = 5. Our investigator does not know,
however, that the method he uses to conduct the sampling (the
"measurement" procedure) is governed by this particular law.
Nevertheless, he needs to make assumptions concerning the a priori
probabilities, and he also requires rules for calculating
likelihoods. The hypothesis A, in this example corresponds to the

statement that <k> = k. Several possible choices for the a priori
probabilities P (A, ) which the investigator might make are

O K,

considered in this example as distinct cases. The investigator
chooses to employ Poisson distributions for the calculation of
likelihoods. The sampling process yields a sequence of integers
k ,k , ...k^, all in the range 0 to 20. Our investigator chooses
to calculate likelihoods according to the formula

k.
P(k./k) = k xe /k.! for i = l.N and k = 1,20.

The Poisson formula does not apply when k = 0. Instead, it is
assumed that P(k./0) = 1 if k. - 0, and 0 if k. > 0. This
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assumption is consistent with the Poisaon probability law in the
limit uf very small k.

A microcomputer with a random number generator is employed
to simulate, by the Monte-Carlo method, the process of sampling
integers from 0 to 20. Four different cases are treated, each
corresponding to a different set of a priori assumptions. For
each case, seven distinct simulated procedures are conducted.
These procedures correspond to N = 1. 5, 10, 20, 50, 100, and 1000
observations (experiments), respectively. Each experiment is
conducted "independently" of all others, at least to the extent to
which the various random numbers produced by the generator are
truly independent.

First, we examine how well the Monte-Carlo method of
sampling integers at random from 0 to 20 performs. The results of
this analysis are plotted in Fig. 8.3. II is seen that after N =
100 observations, the accumulated results of sampling are
distributed very nearly like the Poisson distribution p(5;k),
thereby assuring that the simulation process is satisfactory.

Case 1:

Our hypothetical investigator has no a priori information
regarding <k> other than the range of possibilities, 0 to 20. He
therefore employs Bayes' Postulate, assigning equal value
P (/L ) = 0.0476 (k = 0.20) to each probability, as shown in Fig.

8.4. The first procedure with N = 1 (a single experiment)
produced k = 4, and the conclusions indicated in Fig. 8.4. When

Bayes' Postulate is applied, the a posteriori probabilities are
dominated by the likelihoods when a single experiment is
performed. Thus, for N = 1,

P(k) a Ptkj/k).

The second procedure involved five experiments. The first
experiment produced k = 4, coincidentally, the same value as did

the first procedure. It is seen, after four more experiments,
that the final outcome appears to have been influenced
considerably by the result of the first experiment. Procedures
involving larger numbers of experiments N produce distributions
P(k) which are more and more sharply peaked around <k> = 5. This
Bayesian procedure does seem to converge on the value <k> = 5,
with increasing confidence, as N becomes large. Our investigator
measures his confidence that <k> = 5 by calculating the
probability that <k> * 5, i.e., P(<k> * 5). The results are given
in Fig. 8.4, and they are self-evident. The reader may be
surprised that it. requires so many trials to refine the knowledge
of <k>. This is true because ths "measurement" process, as
considered in this example, is not a very precise one.
Furthermore, the likelihoods reflect a similar lack of
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that values of k > 20 are so unlikely that they can be neglected. See Example 8.5,
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selectivity. It is a well-known rule of experimental science that
a few high quality measurements are more valuable than a host of
experiments with low precision. Accordingly, any experimenter who
is planning a measurement should be aware of the level of accuracy
that will be necessary in order for the measurement to have an
impact on the issue at hand.

Case 2:

Here, it is assumed by our investigator a priori that <k> is
most likely to be 6, but that there is an associated Gaussian
uncertainty distribution, with standard deviation S = 1. Since
the allowed values of k are integers, the normal distribution must
be interpreted accordingly. In reality, it is a distribution that
is applicable only to continuous random variables. This is a more
realistic situation, not unlike circumstances often encountered in
the field of nuclear data. This a priori knowledge of the
parameter in question is much more definitive than the situation
represented in Case 1 (a nearly total absence of knowledge
requiring application of Bayes1 Postulate). We suppose that our
investigator is led to this assumption either by examination of an
existing prior data base or by consideration of a theoretical
model. The results of various sets of experiments are summarized
in Fig. 8.5. Two points ought to be made regarding this case:
First, it still takes quite a few trials N to refine the knowledge
of <k>, even though the a priori assumption was not too distant
from the truth. Again, this reflects the lack of "precision" of
the "measurement" process. Another more puzzling result is that
the final outcome for the experiment with N = 100 trials is less
favorable than that for N = 50! The reader should keep in mind
that these two sets of trials are distinct. Statistical artifacts
of this nature also appear in the simulation exercises of Case 3
and Case 4, below. Whether such occurrences are encountered in
realistic situations is a matter we are not prepared to explore at
this point in the development of this subject.

Case 3:

in this case, the a priori assumption is that <k> is most
likely to be 5, with a Gaussian-like uncertainty distribution of
small width (standard deviation o = 0.5). The results of this
exercise are summarized in Fig. 8.6. Here, it is very evident
that the knowledge of <k> is dominated by the a priori
distribution through many experiments. The z-esults of these
experiments do not conflict with the a priori assumption, yet they
do very little to refine the knowledge of <k> until N is quite
large, since the "measurement" precision is rather poor. This
case clearly illustrates the important point that once a physical
quantity is known rather well, a few additional measurements are
of little value unless they are very accurate ones.
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Case 4:

Finally, the power of the Bayesian learning process to
overcome the effect of an erroneous a priori assumption is tested.
Referring to Fig. 8.7, it is assumed, a priori, that <k> = 8, with
a Gaussian-like uncertainty distribution of width characterized by
the standard deviation a = 1. From Fig. 8.7, it is evident that
the "measured" results ultimately overwhelm the initial wrong
assumption, but it takes many experiments. Thus, if knowledge of
a physical quantity is in error at the outset, and this
discrepancy is compounded by according too high a confidence level
Lu the a priori assumed vaUs, then a few more measurements of
modest quality simply won't have enough impact to overcome initial
prejudices, at least not in the Bayesian context.

Because of the expense and time-consuming nature of real
physical experiments, it is quite unlikely that repetitions N > 10
would be practical in most instances. In the analyses for Cases 1
through 4, we have seen demonstrations that final results can be
very sensitive to the initial assumptions and to the outcomes of
the first few trials, with convergence via Bayesian learning
assured only for large N. It would appear, then, that there is
such a thing as luck (both good and bad) in applied statistics.
To examine this notion, we consider Case 1 ovjee again in the
following context: Five distinct computer procedures are
conducted, each involving N = 10 experiments. The outcomes are
cornered in Table 8.2, in terms of the confidence factors
P{<\ ' 4 5 ) . The results are rather disturbing. Although there is
greater confidence that <k> = 5 after each set of experiments than
existed before them, it is evident that a large variance exists in
the final confidence levels. In one of the procedures (the
fourth), the improvement in confidence is so miniscule that, for
all practical purposes, tiie "measurements" were conducted in vain.
The essence of the problem in this example is the fact that the
"measurements" are not very precise, so the "measurement" process
itself is not very selective, as reflected by the assumed
Poisson-derived likelihoods. The most important lesson to be
learned from this example, then, is that research effort should,
as a general rule, be carefully planned to offer good accuracy and
precision, and a high degree of selectivity with respect to the
physical quantities under consideration! In the field of nuclear
data it is all too often apparent that this rule has been ignored!

Modern nuclear-data evaluation procedures have generally evolved from
either a Bayesian approach, or from the method of least squares which is more
akin to the Principle ot" Maximum Likelihood. Under certain conditions, both
of these approaches lead to the same formulas for combining new and old data,
as is discussed by Peelle (Pee 82). The common result is most often referred
to as the Generalized Least-Suuares Method. We can pursue this issue no
further until the concept of least squares has been developed, and this is a
task for a future report in this series.
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Figure 8.7: Results of Bayesian analyses of the simulated-measurement

exercises described in Case 4 of Example 8.5.
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falile 8.2 Comparison of five distinct computer procedures involving

N = 10 experiments each

Procedure P 1 0 ( < k > *

1st 0.470

2 n d 0.437

rrl

3 0.867

4 t h 0.937

5 t h 0.448

a Refer to Ex. 8.5. A priori probabilities P (k) = 0.0476 (k = 0.20).

in accordance with Bayes1 Postulate, as discussed for Case 1. Thus,

P (<k> * 5) = 0.952 measures the a priori confidence level in the
assertion that <k> = 5.

P.-(<k> * 5) measures the confidence that <k> = 5 after ten Monte-

Carlo experiments
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Earlier iu this chapter, it was noted that statisticians tend to group
into two distinct categories, depending upon whether their philosophies
regarding statistical inference are classical or Bayesian. It has been noted
that classical statisticians avoid use of subjective probabilities. Another
important difference in these two points of view has to do with the
interpretation of probability and other parameters of statistical analysis.
In the most general terms, classical statisticians interpret probability
strictly in the sense of relative frequency. On the other hand, Bayesians
view probability as a measure of rational degree of belief, For this reason,
classical statisticians cannot evaluate probability until there is knowledge
available on the structure of event space, while Bayesians are free to
speculate on, or to postulate a priori probabilities in the absence of
concrete factual evidence. Since these interpretations of probability are
quite different, it is clear that there is room for controversy.
Furthermore, the two different approaches to statistical inference may very
well lead to distinct results in applications.

Often the same formulas are used by classical statisticians and
Bayesians, since these result from rigorous mathematical theorems that are
accepted by all statisticians. The differences lie in interpretation of the
parameters used in these formulas. This state of affairs is clearly
demonstrated in Table 8.3, where Bayes' Rule is considered from these two
distinct perspectives.

The risks associated with use of subjective information in various
processes of statistical inference are amply illustrated above, but they
generally seem to be unavoidable in the field of nuclear data. The sentiment
that nuclear-data evaluation is part art and part science has been expressed
often in this community. I tend to agree with this contention. Hopefully,
the discussions in the present chapter will help to provide the reader with
some insight into which aspects of this discipline constitute "art" and which
constitute "science". The reader will have attained a considerable level of
sophistication if he understands these distinctions and can function
comfortably in spite of the apparently unavoidable ambiguities of this
discipline.
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Table 8.3

Para«eter

Comparison
parameters

Bayes' Rule:

Classical

An event

of classical
of Bayes' Rule.

P(Ak/B) » P(B

Interpretation

and

/A.)

b

Bayesian

n

interpretations of the

Bayesian Interpretation

A cause or hypothesis

P(V Relative frequency with which
event A. occi
probability)

event A. occurs (conventicnal

A priori Measure of the

rational degree of belief

that A. is the correct

cause or hypothesis)

P(B/Ak) Relative frequency of

occurrence of B given that

A. has occurred (conditional

probability)

Likelihood that the cause

or hypothesis A. could

have produced occurrence

of B

P(AR/B) Relative frequency of

occurrence of A. given that B

has occurred (conditional

probability

A posteriori Measure of

the rational degree of

belief that Ak is the

correct cause, or
hypothesis, after know-
ledge that B has
occurred is available

Eq. 5.9.

Both interpretations assume that randoa sampling is involved in an event

space whiei exhausts the possibilities for the problea at hand.
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APPENpiX I; Notation

The notation used in this report is indicated below in order of
appearance in the text. Chapters and page numbers are indicated for the
convenience of the reader. Notational details which are of such common and
standard usage that there is little possibility for confusion are not cited.

An attempt is made to maintain a reasonable degree of consistency in the
use of notation throughout this report; however, some departures are
inevitable and they should be clear from the context. In such instances, it
is my judgement that tite readers for whom this work is intended are not
likely to be confused as a consequence of these particular inconsistencies.

Chapter 1: Introduction

No natation is introduced.

Chapter 2: Events and Event Spaces

C . Pg. (10): Binomial coefficient.
OK

e,E (12): Events. In general, e denotes an elementary event
while E denotes the entire event space. Other
alphabetical letters (including Greek) are also
used, generally to designate compound events.

(e ,e ,...) (12): A collection of elementary events.

A «. E (13): Event A is contained by event E (a subset).

A < A (13): Event A is not contained by event A .

4> (13): Null event or empty event space.

A + A (15): Union of events A and Ao.
1 A 1 2

J Ai (15): Union of collection of events typified by A..

A. - A (15): Difference or relative complement of events A. and

V
Aj * A 2 (15): Product or intersection of events A. and A .

ff A (17): Product of a collection of events typified by A..
i x

A (17): Complement of Event A.
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Z (23): Borel field.

z (24): Element of a Borel field.

W (30): Often used to designate the number of compound
events corresponding to a particular counting rule.

C , , . (36$: Multinomial coefficient.
n : 1V k2- kr

Chapter 3: Random Variables and Their Functions

X.x (47): Random variable. Upper case alphabetical letters
(including Greek) are usually used to designate the
variable, while lower case symbols denote a specific
numerical value which that variable assumes. Often,
lower case symbols are used to designate either the
variable or values which it assumes. In the
framework of function theory, X designates a
function, events e are operated upon by X to yield
values x according to the relationship x «= X(e).

F, f (49): Vector arrays of random variables (functions)
(F , F ,...F ) and corresponding values

(fltf2,...fn). where ^ = F^e).

f~ (51): Inverse function of f.

f(x) (54): Usually designates a density function.

F(z) (54): Usually designates a distribution function. F and f

are related by F(z) = Z f(x) or / ^ dx f(x).
x<z

Sometimes the term "distribution" function is used
to designate a density function.

f12...n(VV"--Xn):

(54): Joint density function of n random variables.

F12,..n(VZ2
(54): Joint distibution function of n random variables.

Chapter 4: Basic Concepts of Probability

P.P(e) (59): Probability, e.g., P(e) is the probability of event

e. Sometimes, upper case "P" denotes probability
density and lower case "p" signifies probability.
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N,N(A) (66): Actual number of events, e.g., N(A) denotes number
of elementary events associated with compound event
A. See "W", Chap. 3.

M,M(A) (72): Measure of an event set, e.g., M(A) measures the
"size" of A. Used instead of "N" when space is
infinite.

<k> (74): Excepted value of k with respect to probabilities
P(k). <k> is the weighted average Z kP(k),
inclusive of all possible k, such thai Z P(k) = 1.

k

Chapter 5: Conditional Probability and Independence

P(B/A) (79):

Chapter 6: Probability

P(x«x). P(ct) (94):

p.p(x) (94):

I(a.yQ) (95):

) (95):

p i 2 . . . « ( x r - - V
(90):

P 1 2 . . . n ( O

P12...n<*

P,(x )

i - - V
<96):

L) ( 9 6 ) :

( 9 8 ) :

( 9 8 ) :

Conditional probability of event B, given that event
A has occurred.

Distributions

Probability distribution.

Probability density function.

An interval, namely, a l l x such that a < x < p.

P(/J) - P(a).

Joint probability density function.

Joint probability.

Joint probability that x t A.

Conditional probability density function.

p(x2 /x t) = p1 2(x.1 >x2)/p1(x1) i f P J U J ) > 0.

Marginal dirtribution of x . For example,

J: Jacobian or spin (see context).

det [...] (100): Determinant of the array in brackets.
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Chapter 7: Some Important Probability Laws Governing the Frequency of
Occurrence of Random Events.

p (n. p; k 1

o:

( 1 0 7 ) : Binomial probability.

(108):

I (122):

A (121):

p(o.A;x) (133):

f(x) p(1.0;0)
(134):

V (150):

Multinomial probability.

Cross section or standard deviation (see context).

Poisson probability.

Often used to designate mean value for Poisson or
normal probability.

Normal (Gaussian) probability.

Standard normal (Gaussian) probability function.

A matrix.
matrix.

Usually "V" designates a covariance

p(V.A;x)

V'1

(150): Multivariate Normal (Gaussian) probability.

(150): Transpose of matrix V.

(151): Inverse of matrix V.

A B, A • B, A x.

A • x. y A x :

ij

Examples of matrix products.

(150): Element of matrix V located in the i row and j

column.

C (150): Usually designates a correlation matrix.

Q (151): Quadratic form of order n.

Chapter 8: Bayes' Theorem and Applications

P (A./B ) (167): Bayesian conditional (a posteriori) probability that

A. is the correct hypothesis given that B has been
K m

observed at the m iterative application of Bayes'
Rule.
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P , (A.) (167): Bayesian a priori probability that A. is the correct

hypothesis just prior to m observation which
produces B .

P(<k> * i) (170): Probability that <k> * i, i.e.. 1 - P(<k> = i).
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APPENDIX II: Important Formulas

Chapter 1; Introduction

No formulas

Chapter 2: Events and Event Spaces

(de Morgan Laws]:

Eqn. (2.10) Pg. (25) (A * 8) » A x B

(2.U) (25) (A x B) « A + B

[Binomial Coefficient]:

(2.21) (32) C n R = nl/[kl(n - k)!]

[Stirling's Approximations]:

(2.22) (32) k! = (2ttk)1/2kke~k

(2.23) (33) <n(kl) = (l/2)«n(2nk) + k«nk - k

[Binomial Theorem]:
n .

(2.25) (33) (ax * a,,)" - Z Cnk aJaJ"
K

( 2 3 0 ) (36) Cn;kW...k '^nk1lk2l...kpl]

Multinomial Theorem]:

(2.31) (36)

( I a ) n = r Z ...r C a kl ak2...a kr
j=l J k, k, k n.kjkg...^ 1 Z r

for all k. such that k, + ko +...+ k = n.j 1 2 r

Chapter 3: Random Variables and Their Functions

[Relationship between distribution function F and joint density
l & i t . n

function f „ ]:

(3.3) (54)

Fia...n<V"-V • / - > ! /i dV-"/->n f12...n(xl' • Xn )
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piiapter 4: Basic Concepts of Probability

[Poincare Law of Probability Addition]:

(4.6) (68) P(A * B) « P(A) + P(B) - P(A x B).

Chapter 5: Conditional Probability and Independence

(5.2) (79) P(B/A) = P(B x A)/P(A) if P(A) > 0.

(5.3) (79) P(B/A)P(A) = P(A/B)P(B) if P(A), P(B) > 0.

[Chain Rule]:

(5.5) (86) P(A X B x C) = P(A)P(B/A)P(C/A X B).

[Poincare Law of Addition Probability]:

(5.7) (87) P(B + C/A) - P(B/A) + P(C/A) - P(B X C/A)

[Rule of Total Probability]:
n

(5.8) (87) P(B) = I P(B/A )P(A ).

[Bayes1 Theorem]:
n

(5.9) (89) P(AR/B) = P(B/Ak)P(AR)/[ Z

Chapter 6: Probability Distributions

[Probability Density Transformation Law]:

(6,17) (102) p (y) = P VU)/|J| where
y *

.) ]

J = det

[Pearson's Formula]:

d y n / d x l • • • d y n / d x n

(6.18) (103) (l/p(x)]{d[p(x)]/dx> = (d - x)/(a + bx * ex')
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Chapter 7: Some Important Probability Laws Governing the Frequency of
Occurrence of Random Events

[Binomial Probability Law]:

(7.3) (107) p(n,p;k) =. Gnkp
k(l - p)" " k

[Multinomial Probability Law]:

(7.4) (108)
k k

P P k k V C P P P

(Poisson Probability Law]:

(7.8) (122) p(A;k) = Ake~A/k! for A > 0. k = 0, «>.

[Interval Distribution]:

(7.11) (130) dP = R e dt.

[Nornal Probability Law]:

(7.12) (133) p(o.A;x) = exp (-(x - A)2/ao2]/(2no2)1/2.

(Standard Normal Distribution Function]:

(7.13) (134) f(x) = p(1.0;x) = exp(-x2/2)/(2ff)1/2.

[Muitivariate formal Probability Law]:

(7.16) (150)

ii) = exp [-(l/2)(x - A ) + V-1(x - A)]/{(2n)"/2[det

Relationship between correlation matrix C and covariance matrix V]

1 19
(7.17) (151) C X j = Vij/^iiVjj)

 for i'J = !.«•

Chapter 8. Bayes' Theorem and Applications

[Laplace's General Rule of Succession]:

(8.1) (164) P(B/A) = (n + l)/(n + n1 * 1).

[Laplace's Special Rule of Succession]:

(8.2) (164) P(B/A) = (n + l)/(n + 2).
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APPENDIX III: A Guide to Additional Reading for Selected Topics

Chapter 1: Introduction

• Systematic error
You 61: pp. 56-62
Per 82: pp. 8-19

i- 2: Events and Event Spaces

Properties of event spaces
Hau 57: pp. 11-27
Par 60: pp. 12-16, 22
Fre 62: pp. 10-13
Fis 63: pp. 5-11
Men 67: pp. 60, 62-65
Bur 68: pp. 77-82
Nah 68: pp. 15-46
Abb 69: pp. 21-58
Zeh 70: pp. 10-16, 37-41
KM 76: pp. 1-33

Algebra of event spaces (Boolean algebra)
Par 60: pp. 12-16
Fre 62: pp. 5.15
Man 68: pp. 47-62
Abb 69r pp. 178-217
Ash 70: pp. 3-9
Zeh 70: pp. 16-17
KM 76: pp. 33-42

Borel fields
Par 60: p. 150
Fis 63: p. 10
Zeh 70: pp. 39-40. 90

Sampling and combinatorial analysis
Ney 50: pp. 34-39
Bro 60: pp. 16-19
Par 60: pp. 32-42
Fre 62: pp. 17-27
Men 67: pp. 54-59
Bur 68: pp. 68-76
Mah 68: pp. 69-78
BeV 69: pp. 28-30
Mar 71: p. 9

Maxwell-Boltzaan. Fer«i-Dirac and Bose-Einstein laws of statistical
physics

Fel 50: pp. 53-54
Par 60: pp. 70-71
Ash 70: pp. 20-21
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Stirling's formula
Ney 50: pp. 207-216
Par 60: p. 163

Binomial and multinomial theorems
Par 60: pp. 37-41
Fre 62: pp. 24-26
Mah 68: pp. 77-78
Zeh 70: pp. 127-128, 253

Random Variables and Their Functions

• Random phenomena
Ney
Par

50:
60:

PP-
pp.

• Random variables
Ney
Bro
Par
Fre
Fis
Men
Zeh

50:
60:
60:
62:
63:
69:
70:

• Random-variablt
Par
Fre
Fis
Ash

60:
62:
63:
70:

pp.
pp.
pp.
pp.
pp.
pp.
pp.

9
1-8

166-173
11-16
148-157, 268-275
61-65
29-34, 40-45
70-71. 80-90
48-88

: functions
pp.
pp.
pp.
pp.

Chapter 4: Mas in Concepts

151-157
61-65, 117-125
31-40
70-75

of Probability

Notion of probability
Fel 50: pp. 4-7
Par 60: pp. 1-7
Fre 62: pp. 1-3. 32-34
Fis 63: pp. vii, 3-5
Bas 66: pp. 1, 5-6, 16-18
Bur 68: pp. 61-66
Zeh 70: pp. 20-22
Mar 71: p. 5

Axioms and formal properties of probability
Ney 50: pp. 16-20. 44-55
Par 60: pp. 17-21, 25-28. 176-182
Fre 62: pp. 34-40
Fis 63: pp. 11-16
Bas 66: pp. 10-11
Tuc 67: pp. 5-8
Bra 70: pp. 6-7
Cra 70: pp. 1-17
Zeli 70: pp. 22-27
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• Calculation of probability
Fel 50: pp. 17-40
Par 60: pp. 32-50, 76-85, 116-117
Bas 66: pp. 11-14
Hen 69: p. 59
Ash 70: pp. 3-9, 15-23
Mar 71: pp. 6-7

Chapter 5: Conditional Probability and Independence

• Concept of conditional probability
Zen 70: pp. 42-44

• Formal properties of conditional probability
Fel 50: pp. 78-81
Par 60; pp. 60-65
Fis 63: pp. 1H-22
Mar 71: pp. 8

• Independence
Fel 50: pp. 85-91
Ney 5Q: pp. 55-65
Par 60: pp. 87-100, 113-il4, 128-129
Fre 62: pp. 47-51
Fis 63; pp. 24-28
Zeh 70: pp. 48-52

Chapter 6: Probability Distributions

• Univariate probability density and distribution functions
Par 60: pp. 151-157
Fre 62: pp. 131
Bas 66: pp. 15-16
Tuc«7: pp. 15-17
Ash 70: p. 52
Bra 70: pp. 9-10
Har 71: pp. 22-24

• Multivariate probability density and distribution functions
Par 60: pp. 285-292
Fre 62: pp. 81-85
Bra 70: pp. 19-21

• Transformations
Bra 70: pp. 27-31

Chapter 7: Some Important Probability Laws Governing the Frequency of
Occurrence of Random Events

• Binomial and multinomial probability
Ney 50. pp. 179-182
Eva 55: pp. 747
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Fre 62:
Fis 63:
Men 69:
Zeh 70:
Mar 71:

pp.
pp.
pp.
pp.
pp.

66-70,
130-134,
101-102
249-253
36-39

85-87
179-180

Laplace's model of ervor and Pascal's triangle
Bra 70: pp. 53-54

Poisson probability
Eva 55: p. 750
Par 60: pp. 251-258
Fis 63: pp. 140-145
Bra 70: pp. 45-49

Relationship between binomial and Poisson probability
Ney 50: pp. 212-213
Bas 66: pp. 131-133

Applications of Poisson probability
Eva 55: pp. 753-754, 766-768, 785-817

Univariate normal probability

Eva
Bee
Bro
Par
Fre
Fis
Bas
Tuc
Bur
Bev
Zeh
Mat-

Mult ivar
Bro
Bas
Bur
Bra
Zeh
Mat-

Central
Par
Men

55:
58:
60:
60:
62:
63:
66:
67:
68:
69:
70:
71:

iate
60:
66:
68:
70:
70:
71:

limit
60:
67:

pp.
PP.
P-
PP.
pp.
PP.
PP-
P-
pp.
PP-
PP-
PP-

748-749
16-20
33
188-191. 237-238
128-131
147-151
87-90
17

153-159
43-45
153-161
26-30

normal probability

P-
pp.
PP-
pp.
PP-
pp.

150
102-109
289-293
61-67
265-278
30-35

theorem

P-
pp.

238
124-129

Hershel's model of «rror
Bra 70: pp. 68-71
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The normal distribution as a limit to the binomial and Poisson
distributions

Fel
Ney
Bro
Par
Bas
Men
Bur
Mar

Chapter 8: Baves'

50:
50:
60:
60:
66:
67:
68:
71:

Theur

• Philosophical
Coo
Fel
Par
Fre
Fis
Has
Bur
Ash
Bra
Zeh
Mar
Pee
Pro

25:
50:
60:
62:
63:
66:
68:
70:
70:
70:
71:
82:
85:

pp.
pp.
pp.
pp.
pp.
PP-
PP-
pp.

em

133-143
215-234
105-112,
239-249
131-133
131-132
160-163
37-38.

150

41

and Application

implications of Bay

pp.
P
pp.
pp.
pp.
pp.
pp.
pp.
P
pp.
pp.
pp.
P-

87-100
85
U9-120
57-58
22-23
35-37
87-90.
35-38
95
44-47.
5-6, !

47-51
236

357-358

416-419

Laplace's Rule of Succession and the Maximum-Likelihood Principle
Par 60: pp. 122-124
Fis 63: pp. 440, 484-487
Zeh 70: pp. 353-370
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INDEX

A

A priori probability
definition of (62. 79)
subjective estimation of in Bayesian inference (163)

A posteriori probability
as an amalgamation of theory and experiment (163)
definition of (62, 79)

Addition theorem
and normal probability (134)
and Poisson probability (131)
importance of in counting experiments (131)

Algebraic manipulations
differences between events and numbers (24)

Algebra of event spaces or sets (15)
Algorithms

event counting (29. 30)
Arrangements of events (29)
Associative laws (22)
Axioms of probability

equivalence to intuitive observations (67)
failure to provide procedures for calculation (66)
foundations of the theory (65,66)

£

Background
educational level required of the reader (3)

Backward reasoning
Bayesian basis for (162)

Bayes, T., English clergyman (89)
Bayesian inference

as a procedure for accepting or rejecting hypotheses (163)
relation to experimental measurements (163)
relation to mathematical theories (163)

Bayesian learning
effect on of attaching too large a confidence level to an assumed

hypothesis (176)
example to demonstrate process of (169-176)
is there an element of "luck" involved in it? (176)
overcoming effects of an erroneous observation (176)

Bayesian statistics
philosophy of (179)
relation to inference (89.91)

Bayes' postulate
definition of (91)
role of in scientific applications (91)

Bayes1 rule
application of in refinement of knowledge of a nuclear cross

section (166, 169)
as a means for merging speculative and observed information (163)
as an algorithm for combining old and new data (166)
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as a substitute term for Bayes' theorem (155)
examples to demonstrate (155-162)
iterative use of (166)
role of in correcting counting data for background (159-162)
speculation on input parameters for the application of (158, 159)

Bayes' theorem
philosophical concepts of (89, 91))
relation to rule of total probability (89)
statement of and proof (89)

Bell-shaped curve (132)
Bernoulli experiment (107)
Bernoulli's law of large numbers

concept of (110)
relation to Poisson probability law (122)

Bernoulli trials
as a basis for several important probability laws (84)
definition of independent (84)

Binary mcdel for certain random phenomena (47)
Binomial coefficient (10. 32)
Binomial probability law

and the binomial coefficient (107)
as descriptive of the outcome of Bernoulli trials (105, 106)
common form for (107)
conceptual derivation of (106, 107)
example to compare to normal and Poisson probability (146)
examples to demonstrate some features of (108-110)
mass function for (107)
multinomial format for mass function of (107)
rarity of use of in practice (119)
relation to frequency of occurrence of events (105)
when to use (141)

Binomial theorem (33)
Bivariate normal probability

density function for (151)
horizontal elliptical profiles for (152, 154)
vertical Gaussian profiles for (152)

Boltzmann's constant (75, 139)
Boolean algebra (15)
Boole's inequality

concept of (68)
generalized form of (69)

Borel field
concept of (23)
as applicable to subspaces (24)
example to demonstrate role of (28, 29)
properties of a (23, 24)
relation to probability (61)
size of a (24, 28, 29)

Bose-Binstein statistics
an example to demonstrate use of (37)
concept of (36)

Bosuns
nature of (31. 32, 36)

Bounded random-variable functions (50)
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Bound states
quantized (49)

Cardinality of event spaces (49)
Causality and the order of occurrence of events (10-12)
Central Halt theorem

example to demonstrate use of (147-150)
formal statement of (145, 147)
general information on (145)
relation to Laplace law of error (110)
relation to normal probability (135)
simple interpretation of (145, 147)

Chance phenomena (43)
Chaos

concept of (43)
Chaotic phenomena (43, 44)
Certain event (13)
Classical statistics, philosophy of (179)
Coincidence measurements

applicability of Poisson statistics to analysis of (128, 129)
Combinatorial analysis

basic principle of (30)
Complement

event (17. 19)
Complementation law (23)
Condensatiou

relation to Bose-Einstein statistics (36)
Conditional probability

an example to demonstrate use of (80, 83)
application of fundamental axioms of probability to (85)
calculation of (79)
chain rule for (86)
concept of (78, 79)
density function for (98)
formula relating it to unconditional probability (79, 98)
functional form for (79)
generalized chain rule for (86)
relation to marginal probability (98)
some basic theorems of (85-87)

Confidence
aspects of in connection with application of Bayes' rule (166)
measure of and normal probability (135)

Containment
and the relationship of two events (13, 14)

Content of this report (xi, xii, 3, 4)
Continuous random variables (48. 94)
Continuum space of events (48, 49)
Convergence

and the Bayesian learning process (170)
Correlated random variables

negatively (154)
positively (154)
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Correlation of two random variables
geometric interpretation of (152-154)

Correlation matrix
relation to covariance matrix (150-151)

Correlation parameter
role of in bivariate normal distribution (151-154)

Countable random variables (48)
Counting laws

example to demonstrate effect on quantum system total energy
(37, 39-42)

summary of those commonly used in statistical physics (38)
Counting of events

concepts (29)
importance in science (29)

Count rates and Poisson probability (124)
Covariance

definition of (150)
Covariance ellipse

family for bivariate normal distribution (152-154)
Covariance matrix

role of in multivariate normal distribution (150-151)
Cramer. H., Swedish mathematician (134)
Cumulative probability (94)

Definitions
how they are identified in this report (3)

de Mere, C . French mathematician (59)
DeMoivre, A., French mathematician (132)
DeMolvre-Laplace theorem

as a link between binomial and normal probability (140, 142)
example to demonstrate (142-145)
formal statement of (142)
simple interpretation of (142)

de Morgan laws
concept of (25-26)
example to demonstrate (26-28)
generalized (25-26)

Density functions
constant (53)
non-negative character of (53)
random variables as the arguments of (53)
relation to random variables (53)

Denumerable random variables (48)
Depletion of event-space elements (5)
Detector deadtime

applicability of Poisson probability to the analysis of (127)
Determinant of a covariance matrix (151)
Deterministic regularity (43)
Difference of event sets (15)
Differential relationship between probability and probability

density (95, 96)
Discrete random variables (48)
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Disjoint events
concept of (17)
pairwiae (17)

Distinguishable events (29)
Distribution function

continuous (54, 55)
definition of (53)
discrete (54, 55)
non-negative character of (54)
term often used as a substitute for density function (54)

Distributive laws
concept of (2a)
generalised (26)

£

Electros£gr*6tic aultipole transitions (111)
Zlliyssa of covariance for bivariate normal distribution (152-154)
Energy-group structure (103)
Equal-likelihood postulate

application in quantum theory (61)
as s foundation for probability calculation (66)
definition of (59)
in relation to the behavior of natural phenomena (61)

Equality of events (13)
Errors

equivalent term for uncertainties (x)
relation to probability and statistics (x)

Estimators
role of in statistics (150)

Events
compound (7, 12)
concept of (5, 6)
elementary (6)
mutually exclusive (10)
nested sequences of (13)
notion of subspaces of compound (12)
probabilizable nature of (71)
random (54)
simple (6)
subspace of (7)

Event space
augmented (6)
closure of (22)
complete (12)
concept of (5-6)
continuous (7)
denumerable (12)
discrete (7)
finite (12)
nondenumerable (12)
nontrivial (24)
partitioning of (7)
size of an (10)
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some basic theorems for (24, 25)
theory of and similarities to set theory (5. 6)
well-defined and stable (64)

Examples
purpose for inclusion in this report (3)

Expected value
notion of (74)
example to demonstrate concept (74, 75)

Exponential decay
derivation of (124)
law of (124)
role of in nuclear science (124)

Factorable
density functions (54)
distribution functions (54)

Factorability and marginal distributions (!56)
Failure frequency

use of Poisson probability in the determination of (122)
Format, P., French mathematician (59)
Fermi-Dirac statistics (31, 32)
Fermions

nature of (31)
Finite difference methods

applicability in reactor physics (103, 104)
Finite random variables (48)
Flow

consideration of for gases in Maxwell-Boltzmann theory (138)
Formulas

important ones (Appendix II, 188-190)
where to find (3)

Frequency of occurrence
an example to demonstrate concept (57-59)
convergence of in large samples (59)
for infinite samples spaces (62)
inadequacy of as basis for probability in pure mathematics (62)
relation to probability (57)
relative (59)
role of in nuclear processes (105)

Function
as defined on event space (47)

Fundamental principle of applied probability theory (166)

Gauss, K., German mathematician (59, 132)
Gaussian distribution (132)
Gaussian probability

as an equivalent term for normal probability (105)
Generalized least-squares method

relation to Bayesian approach (176)
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Group
fluence (103)
Unit* (103)
representation of essentially continuous parameters (104)
structure for a neutron-energy grid (103, 104)

Herscheil, J., English astronomer (139)
Herscheil's model of error

derivation of (139-140)
postulates of (139)
relation to normal distribution (139)

Hybrid random variables (49)
Hypotheses

need for complete range of in Bayesian statistics (162, 163)
role of in statistical inference (91)

Identity laws (23)
Image of an event space (50)
Itage space

role of in random-variable function mapping (51)
Impossible event

definition of (13)
probability of (66)

Independence
expressed in terms of probability density functions (99)
fully or en bloc (92)
mathematical condition for (92)
several basic theorems of (92)
stochastic (83)

Independent events
mutually (91, 92)
pairwise (91, 92)

Indicator functions (51)
Indistinguishable events (29, 30)
Inductive reasoning

building of knowledge from speculative origin through inclusion of
new information gained by observation (162, 163)

relation to Bayes1 Rule (162, 163)
Inference

and Bayes' theorem (89, 91)
statistical (89, 91)

Intersection of events (15-17)
Interval distribution

derivation from Poisson probability law (130) ••
example to demonstrate (130, 131)

Intervals
bounded (95)
non-intersecting (95)
notion of (95)
unbounded (95)
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Inverse of a covariance Matrix
condition for existence of (151)
role of in multivariate normal distribution (150. 151)

Jacobian of a transformation
concept of (100)
n-dimensional form (100. 102)

Joint
probability density function (54)
probability distribution function (96)
random variables (49)

Jump
discontinuities in probability density functions (94)
points (48)

k-tuples
applicability of probability axioms when formed by independent

trials (92, 93)
formation without replacement (29, 30)
formation with replacement (29, 30)
probability of in relation to that for individual trials (83, 84)
role of events in (29, 30)

Kolmogorov, A.. Russian mathematician (65)

Laplace, P., French mathematician (59, 132)
Laplace's general rule of succession

formal expression of (164)
Laplace's law of error

an example to demonstrate use of (111)
basis in binomial probability (110, 111)
derivation of (110, 111)
relation to Pascal's triangle (111)

Laplace's rule of succession
equivalence to Laplace's special rule of succession (164, 165)
example to demonstrate improper use of (165, 166)
example to demonstrate proper use of (165)
necessary conditions for validity of (164, 165)
potential for misuse (164, 165)

Laplace's special rule of succession
formal expression of (164)

Learning process
an iterative Bayesian algorithm for the (167)

Least-squares method
as a basis for nuclear-data evaluation (176)
relation to Bayes' theorem (91)

Levy, P., French mathematician (131)
Levy-Cramer theorem for normal probability (134)

208



Likelihood
factor (91)
relation to Bayes' theorem (91)
theory must provide algorithm for calculation of (163)

Limitations of this report (4)
"Luck"

does it exist in relation to Bayesian learning? (176)

M

Mapping
one-to-one (51)
role of for random-wiriable functions (51)

Marginal probability distribution (98)
Markov processes (93)
Mass function, concept of (53)
Maximum-likelihood principle

as a method for inductive reasoning (163, 164)
instances of consistency with Bayes1 rule (164)
risks associated with use of (163, 164)
statement of (163)

Maxwel1-Boltzmann
conditions for applicability of M-B distribution (30, 31)
factor (75)
law of statistical physics (30 31)
normal probability basis for M-B law of molecular velocity (138, 139)

Measure
of an event set (71, 72)
role of in deiinition of event probability (72)
theory of (71. 72)

Measurement
as an equivalent term for observation (168)

Median energy
of a group (103)

Memory
relation to independent and Markov trials (93)

Monotonic property of probability distributions (94)
Monte-Carlo method

an example to demonstrate the (170)
use of in applications (148)

Most-probable value
notion of (74)

Multi-dimensional random variables (49)
Multinomial

coefficient (36)
theorem (36)

Multinomial probability law
an example to demonstrate the use of (117-17.9)
conceptual derivation of the (107, 108)
mass function for (108)
relation to frequency of occurrence (105)

Multivariate
density function (53)
probability distribution (96)
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Kultivariate normal probability
density function for (150, 151)
existence of (150. 151)
for independent random variables (151)

Mutually exclusive events
concept of (17, 19)
pairwise (64)

Neutron capture process
use of probability to describe (111, 113-117)
non-denumerable random variables (48-49)

Neutron transport
relation of probability to (103. 104)

Nonsingular
requirement far a covariance matrix to be (150, 151)

Normal curve (132-133)
Normalizability of density functions (56)
Normal probability law

as an approximation to binomial probability (140, 141)
as an approximation to Poisson probability (140. 141)
as a limiting approximation to more fundamental laws (135)
convenience of in use (135)
derivative for (133. 134)
example to compare to binomial and Poisson probability (146)
example to demonstrate use of (138, 139)
family of distributions for (134)
general features of (133, 134)
limits of applicability in realistic situations (135)
normalizability of (133)
parameters of (133)
origins of (132)
reasons for importance of in applied statistics (135)
relation to frequency of occurrence (105)
symmetry theorem for (133)
tangents to curve for (134)
univariate density function for (132, 133)
when to use (141)
why it often seems to be applicable (150)

Notation
major features of (Appendix I, 183-187)
use of in this report (3)

Nuclear-data research
accuracy assessment in (ix, x)
Bayesian nature of (155)
purpose for (ix)
quantitative nature of (ix)
social responsibility associated with (ix, x)

Nuclear phenomena
unique properties of (105)

Null event (13)
Numerical-valued random phenomena (47)
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Objectives for the reader (2-3)
Observations

averages of (74)
non-repeatability of and error (65)

Occupancy
events (29, 30)
multiple (29. 30)
single (29. 30)

One-sigma limit for normal distribution (135)
Order

concept of for events (29, 30)
role of in defining event collections (29. 30)

Ordered k-tuples
formed with replacement (30)
formed without replacement (30)

Orthogonal transformation
use of in eliminating tilt of covariance ellipse (154]

Partition
and Bayes' theorem (89)
binary (36)
event (20. 21)
multifold (36)

Partition function
role of in statistical physics (75)

Pascal. B., French mathematician (59)
Pascal's triangle (33. 35)
Pauli exclusion principle (31)
Pearson, K., English mathematician (103)
Pearson's differential equation for probability density

general form of (103)
parameterization of for normal probability (133)

Permutation of events in k-tuple (30)
Perturbation of finite sample spaces (62)
Phase space

consideration of for Maxwell-Boltzmann theory (138)
Poincare law of probability addition

concept of (68)
example to demonstrate (95)
for conditional probability (87)
generalized (69)

Poisson, S., French mathematician (120)
Poisson approximation (120)
Poisson condition (121)
Poisson probability law

a derivation for front binomial probability (120, 121)
an example to compare to binomial and normal probability (146)
an example to demonstrate use of (123)
as a limit to binomial law for rare events (120)
definition of (122)
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experimental determination of parameters for (123)
importance of in analysis of nuclear processes (130, 124)
interpretation of (122)
relation to frequency of occurrence (105)
satisfies the axioms of probability (122)
skewed nature of mass functon for (123)
some theorems relating to the (123. 124)
when to use it (141)

Poisson transformation (121)
Populations (5, 6)
Positive definite matrix

requirement for in normal probability distribution (150)
Postulated probability (62)
Precision

of measurements and impact on Bayesian learning process (166)
Presentation

manner of used in this report (xi)
Probability

additivity axiom for denumerably infinite set of events (70)
additivity axiom in, for finite set of events (66)
calculation via sample-point method (73)
combinatorial methods in (73)
distribution function for (94)
effects of conditions on (78)
existence axiom (65)
function (61)
growth of importance of field of after World War II (59)
intuitive definition of (59, 61)
meaning of a law of (72)
nemesis of (72)
noudecreasing sequence of events (71)
nonincreasing sequence of events (71)
normalization axiom for (66)
of a sum of events forming a partition of event space (70)
practice of as an art (6, 179)
relation to errors and statistics (x, xi)
role of in mathematical science (5)
sum rule for pairwise-exclusive events (64)

Probability density function
behavior under random-variable transformation (99-102)
cannot be interpreted as a true probability (94)
definition of (94)
factorability of joint in case of independence (99)

Probability laws
comment on the usefulness of (105)

Probability theory
avoidance of pitfalls in (66)
consistency with relative frequency concept (59)
developmental challenges in (65)
disputed areas in (65)
historical origins of (59)
need for minimum postulate basis of (62)
role of as a model for random phenomena (44, 59)
role of the postulates of (59)
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Samples
associated event space (5)
imperfections in process of selecting (63)
nature of (5)
replacement to avoid perturbation of finite event space (62)

Scientific discoveries
frequency of multiple occurrences of (132)

Selectivity
importance of in experimental design (176)

Sequence of events
limit of a (20, 22)
nondecreasing (13, 15, 16)
nonincreasing (13, 15, 16)

Sequential trials
probability of success in each trial (164)

Set
equivalence of event space to (5)
universal (12)

Sigma algebra (23)
Simple events

uniqueness of (62)
Single-variable events (47)
Singularities

and random-variable functions (50)
unacceptability of in probability density functions (94)

Speed versus velocity in molecular motion (138, 139)
Spin selection rules (113, 114. 116)
Spread

of observed values (74)
Standard normal distribution

brief table of values for (136)
definition of (134)
some properties (134, 135)

Statistical interpretations
difference between Bayesian and classical approach (179, 180)

Statistical regularity (43)
Statistical uncertainty

example to demonstrate meaning of (125)
Statisticians

Bayesian (155)
classical (155)

Statistics
relation to probability and errors (x, xi)

Stirling's approximation (32, 33)
Stochastic

phenomena (43)
role of normal probability in theory of behavior (132)

Subjective information
risks of using as a basis for Bayesian inference (179)

Success-to-failure ratio
relation to probability (58)

Sum of events (15)
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Procedures followed in this report (2, 3)
Product of events (15, 17, 18)

Quadratic form
role of in multivariate normal distribution (151)

Quantized energy states
concept of (31)

Quantum statistics (32)

£

Radioactivity
relation to Poisson probability (124)

Raikov, D., Russian mathematician (131)
Raikov's theorem for Poisson probability (131)
Random function (47)
Randomness

relation to preconceived concept of (43)
the notion of (43)
an example to demonstrate difference between random and chaotic

behavior (44-46)
Random-number generator

use of in applications (148)
Random phenomena (43)
Random-variable functions

on the nature of (50)
properties of well-behaved (50, 51)
relation to error propagation (51)

Random variables
as a means to characterize random phenomena (45, 47)
n-component definition of (49)
relation to errors (48)

Random-variable transformations
use of to widen scope of applicability of normal probability

distribution (135)
Random vectors (49)
Readers

for whom this report is intended (x, xi, 2)
Recursion formula for binomial coefficients (33)
References to other documents on probability (2)
Relative complement of events (15, 18)
Reliability

of measurements and impact on Bayesian learning process (168)
Replacement of events (5)
Resolution

example to demonstrate statistical nature of (125)
relation to Poisson statistics (125)

Resource material for this report (2)
Rutherford, E., British physicist (124)
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Superfluidity
relation to Bose-Einstein statistics (36)

Sure event (13)
Symmetric Matrix

requirement for in multivariate normal distribution (150)
Symmetries

importance of being able to visualize (42)
Systematic error

of consideration in this report (4)

Theory
equivalence to hypothesis (168)

Three-sigma rule
for normal distribution (135)
general significance of (135)

Total probability
- rule of (87)
usefulness of rule of in applications (87)

Transformation
example to demonstrate for probability (102)
functions (51)
information loss associated with (52)
of random variables (51)

Trials
dependent (93)
independent (83)
Markov (93)
probabilities for dependent based on generalized chain rule (93)
random (43)

Two-sigma limit
from normal probability (135)

Uncertainty
as a consequence of probability distribution (77)
equivalent term for error (x, xi)
its relation to probability and statistics (x, xi, 42)

Uncertainty analysis
literature on (x)

Unconditional probability (79)
Uncountable random variables (48)
Uniformly well-behaved density function (54)
Union of events (15. 16)
Uniqueness of a complement (23)
Univariate probability distribution (94)
Unordered k-tuples

formed with replacement (36)
formed without replacement (32)
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Variance
example to demonstrate concept of (74)
formal definition of (150)
notion of (74)

Variance-covariance matrix
role of in multlvariate normal distribution (150)

Vector functions
of a random variable (51)
of a random vector (51)

Venn diagram (7)
Volume

of n-dimensional event space (96)

Weighted average (74)
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