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PREFACE

Naclear data research is conducted for the purpose of producing the
nuclear informaltion which is needed for those technologies that are baged
upen fundamental nuclear processes. Examples of these techuologies are the
production of energy via fission and fusion reactors. This field of
endeavor has developed because the needs are of a quantitative pature, and
meeting them often requires investigative effort which differs corsiderably
in style from that expended in the conduct of basic nuclear research.

Since there is a strong emphasis on quantitative matters, it follows
that investigators in this field should be very concerned with the accuracy
of their work. Indeed, workers in this field have been quite aware of the
need for good accuracy from the beginning, but it is rather surprising that
there has beea very little disciplinel effort directed toward its proper
assessment until reocent times. About a decade or so0 ago, nuclear data
evaluators began to explicitly focus on this issue, and steps were taken to
define and deal with the problems. Evaluators began by addressing the
matter of improving those methods which they usa in data evaluation. Soon,
however, it became clear that this effort would be of limited value unless
data measurers improved the methods they employ to analyze their data and
report ¢heir results, especially with regard toe the matter of errors.
Today, most experimentalists in the field are aware of this concern, and
many appear to be making serious attempts to deal with it.

There has been considerable confusion regarding procedures for
estimating nuclear data errors, and for including them in data analysis
and evaluation manipulations. This had led to disagreements and even to
some obvious mistakes. In fairness to workers in the field, it is not a
trivial issue. Nuclear data studies are very involved, and the results
reported are generally abstract quantities whose derivation from measured
data is complex and indirect. Part of the blame does rest, however, with
the nuclear data researchers themselves. The assessment of accuracy in
research endeavors requires that certain rigorous mathematical methods be
used, and many investigators do not seem to appreciate this to the extent
that they should.

Similar methods have been used in several other fields. An example of
one such field is medical research, especially with regard to the

development and testing of new drugs and medical procedures. The
possibilities for adverse social impact in this area can be very
intimidating. A situation where this was clearly demonstrated is the

well-known case of the drug Thalidomide which was found several years ago
to be linked to the occurrence of a number of very serious birth defects.
Current standards of medical research effectively dictate that as much
effort be devoted to assessing the reliability and potential side effects
of a treatment or medication as normally is involved in its discovery and
development.
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The accident at the Three-Mile-Island nuclear electric generating
station in the U.S.A. apparently has produced more significant adverse
economic consequences than actual social consequences; nevettheless, the
general public continues to regard this event more from the point of view
of its social impact. The subsequent, more serious accident at the
Chernobyl plant in the Soviet Union has apparently produced significant
consequences for the local populations and it has solidified world-wide
concern over the matter of nuclear reactor safety. The nuclear industry
will not be permitted ta proceed ir the development of this energy source
unless it adheres ta the highest conceivable standards of quality and
safety, and can convince the public that it is doing so. Nuclear data
resea; chers must recognize and heed this unmistakable message from society,
and therefore willingly accept direct social responsibility for the quality
of their work. There is an indisputable 1link between the quality of
nuclear data and the safety and economic viability of nuclear energy
sources.

Nuclear data researchers who are motivated to learn about the
mathematical tools needed to deal with this subject can, in principle,
garner what they need from the Iliterature. Several ducuments have been
prepared to help busy workers gain some proficiency in this area (e.g., Smi
81 and Man 81). These pragmatic references are very useful, but since they
were produced as explicit "how-to-do-it" guides, they do not alone offer
potential readers the possibility for acquiring much depth of understanding
of the subject. I do not believe that researchers in this field need tco
pursue all the details of mathematical rigor which might be appropriate for
an advanced academic course, but they ought to acquire a better
understanding of the principles which form a basis for the methods which
they will use than can be gained from reading only "cookbook" treatments.
It would certainly be desirable if investigators in the field of nuclear
data could achjeve an adequate perspective of this subject through the
study of material which had been prepared with their interests in mird.
Unfortunately, there does not seem to be a great deal of suitable material
availabie in the literature. 1t is my intent to address this deficiency by
means of this report, and others to follow in this series.

I believe that the subject of errors (or uncertainties, as many
individuals prefer to call them) cannot be addressed to the exclusion of
related technical topics. The terms “probability,” "statistics,” and
"error” appear together in a variety of contexts. The distinctions between
them are apparently not widely understood by nuclear data researchers. A
major objective of this project is to try to clarify these matters for the
benefit of this community of investigators. 1 think that it is worthwhile
to make a qualitative attempt in this regard at an early stage in tLhe
development of this topic so that the reader will understand the need to
investigate certain topics which he might otherwise believe are irrelevant
to his main iInterests. It is known that measurements do not lead to unique
outcomes. Repeated attempts at the same experiment tend to produce varying
results. The outcome of any experiment is, in the final analysis, governed
to a large extent by probability. Error is the term which designates Lhe
dispersion or spread of poussible results one can expect to observe from
experimentation. Probability cannot be measured directly, so one is farced
Lo estimate the essential features of yrobability distributions from the



analysis of accumulated observable results. This artivity constitutes what
is referred to as statistics. There are benefits to be gained from

studying these concepts in a unified fashion. Recipes for performing
certain routine analyses are seen to be related, In terms of the underlying
theory. it is then much easier to remember them. It is suggested,

therefore, that the interested reader should invest some effort and time
learning the foundations of the subject in order to save time and avoid
confusion later on when called upon to apply this knowledge under a variety
of practical circumstances.

1 have chosen to proceed in gradual stages toward my objective of
providing a broad exposition of this subject. The present report
constitutes the first step. I begin by discussing various aspects of
probability theory, since it is basic to all other areas. My treatment of
this subject is not intended to he a comprehensive treatise or review. It
covers only what appear to me to be the more important concepts, presented
from a point of view which should be familiar to nuclear data researchers,
I make no claim of originality for the included material, but I have
interpreted the well-known concepts as I see fit, consistent with the
needs and interests of the community to which this work !s dedicated.
Probability theory draws uwpon material from a number of other
subdisciplines of mathematics. In mapy instances, I have tacitly assumed
that the reader will be familiar with certain facts and concepts, so they
go unmentioned. In other instances, [ allude to requisite or supportive
material, but I have generally tried to avoid delving explicitly into
sticky details in order to ensure that the reader can more easily follow
the essential ideas of the present topic without becoming distruacted along
the way.

The approach utilized in this report is explicitly tutorial, and the
style of presentation is informal and narrative by choice. Consequently,
this material should be of value to students of applied nuclear science.
The treatment is not particularly directed toward individuais who are
already experienced in this area. They are likely to be quite familiar
with most of the fundamentals addressed here and no doubt will have
concerns and specific interests which are generally more advanced and
technical than those which are covered in this series. Experimentally
inclined investigateors will likely find this material of greater relevance
to their work than their theoretical colleagues. Nevertheless, there are
potentially important theoretical applications for this material which are
not as well exploited as they might be. Therefore, [ believe that nuclear

theorists could profit from a study of this work. Mathematicians are
likely to be skeptical of the generally intuitive approach, the
incompleteness, and the lack of emphasis on rigor in this treatment. To
them I offer my apologies. This work was not conceived to serve thatl
audience.

It is envisicned that this series will ultimately consist of five
distinct volumes, each of which will be made available to the nuclear data
community as a report in the Argonne National Laboratory ANL/NDM report
series when the work is completed. The five general topic areas which are
to be addressed in these separate reports are: i) probability theory, ii)
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properties of probability functions and the nature of error, 1iii)
swatistical theory, iv) the least-squares method and related topics, and v)
uncertainty analysis in modern nuclear data applications. Since the intent
of this project is to provide a service to the nuclear data community, I
would appreciate receiving from the readers any constructive comments,
suggestions, criticisms, and corrections of errors which are deemed to be
appropriate, in the interest of improving future revisions or reprints of
this material which might be forthcoming.

Donald L. Smith

Argonne, Illinois
December 1988
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NUCLEAR DATA UNCERTAINTIES - I¥

by

Donald L. Smith
Engineering Physics Division
Argonne National Laboratory
9700 South Cass Avenue
Argonne, Illinois 60439
U.S.A.

ABSTRACT

Some basic concepts of probability theory are presented from a
nuclear-data perspectivz, in order to provide a foundation for thorough
understanding of the role of uncertainties in nuclear data research. Topics
included in this report are: events, event spaces, calculus of events,
randomness, random variables, random-variable distributions, intuitive and
axiomatic probability, calculus of probability, conditional probability and
independence, probability distributions, binomial and multinomial
praobability, Poisson and interval probability, normal probability, the
relationships existing between these probability laws, and Bayes' theorem.
This treatment emphasizes the practical application of basic mathematical
concepts to nuclear data research, and it includes numercus simple examples.

*This work supported by the U.S. Department of Energy, Energy Research
Programs, under contract W-31-109-Eng-38.



1. INTRODUCTION

The motivation for undertaking the preparation of this report, and my
approach toward this task, are discussed in the Preface and will not be
repeated again. The basic intent of this work is provision of an expssition
on cerlain mathematical concepts which I believe are essential to the
understanding of nuclear data errors. This introduction is limited to a
discussion of the resource material used to prepare this report, the
procedure I have followed in writing the report, and the general content of
the report.

1.1 Resource Materjal

First, I would like to indicate which published sources of information
have influenced this work. Since there are so many works available on
probability and statistics., my particular selections were. for the most part,
arbitrary. I used two particular sources (Bee 58, Par 60) in undergraduate
courses I had taken as a student a number of years ago. Four other sources
which are available ir my personal library (Eva 55, Fis 63, Bev 69, Hil 52)
were also found to be useful for this project. The technical library at
Argonne National Laboratory provided an additional assortment of sources
which have proven to be convenient rezferences (Bur 68, Fel 50, Bas 66, Ash
70, Tuc 67, Zeh 70, Bro 60, Bra 70, Coo 25, Cra 70, Mar 71, Ney 50, Fre 62,
Men 67). The reader is referred to the Bibliography for a complete list of
these sources. I had no particular reasons for limiting the number of
sources considered, other than a shortage of the time required to study them.
Since I found a great deal of redundancy in the content of these scurces, it
seemed that this particular sample of documents amply addressed most of the
elementary concepts. This report in no way purports to review the subject.
As a rule, the indicated sources contain little, if any, original material.
In practice, I have resorted to using them only for background information
and not as explicit reservoirs of material for this report. The manner of
presentation, and the examples included here, are of my own choosing.
Consequently, there are but a few explicit references to these published
works in the pages of the present report. It is intended that this report,
and later members of this series, serve as reasonably adequate and
self-contained treatments of the subject rather than merely as guides to the
literature. For the convenience of the reader who wishes to pursue this

topic in greater depth, I have suggested a few sources for further study in
Appendix III.

1.2 Prucedure

I am well aware of the fact that most readers for whom this work is
intended desire to lsarn how to estimate and propagate experimental errors
and how to further incorporate error information in evaluations, curve
fitting and other operations involving nuclear data. The many useful
analytical methods which this mathematical discipline provides are strongly
interrelated and, in fact, can be derived from a few rather basic concepts.



The reader who focuses on the methods and fails to recognize and appreciale
the unity and simplicity which the underlying theory provides, will do
himself a disservice. Fer this reason, there is a strong emphasis in this
work on unifying concepts. However, in recognition of the probable needs of
the readers of this work, useful procedures are clearly indicated and
illustrated by examples along the way. Important formulas are summarized in
Appendix [I, and they are cross referenced to the appropriate sections in the
text whure they are introduced and discussed. To save space, I have avoided
numbering many of those expressions or equations to which there are no
references elsewhere in the text. As mentioned above, a guide to additional
reading on selozted topics is provided in Appendix III for the convenience of
the reader. Finally, a topical index is provided at the end of the report,

Selection of adequate notation, and its consistent use, is always
challenging for any work of a mathematical nature. I have attempted to be
reasonably consistent in the use of notation, but there is no expectation
that every reader will be satisfied. The notation employed in this report is
summarized in Appendix 1 for easy reference. Important terms are underlined
at the point in the text where they are either first used or are formally
defined. Elsewhere, they appear without underlining. Numbered equations,
figures, tahles, and examples are labeled in accordance with the section in
which they are introduced and in the order of their appearance therein.

Treatments of this subject which have been prepared by mathematicians---
and, surprisingly enough, many of those written by and for physicists--tend
to illustrate various statistical concepts by means of examples involving
dice, balls and urns, playing cards, and other, similar paraphernalia
associated with games of chance. The origins of probability theory derive
from attempts by mathematicians to deal with games of chance, and traditions
die slowly. Here, I choose to break with this tradition and use examples
which, in one way or another, pertain to nuclear research. The examples are
generally over-simplified to better illustrate the concepts at hand, but they
will hopefully stimulate the reader to extrapolate to more realistic
situations of particular interest or concern to his own work.

Assimilation of the material in this report generally requires prior
exposure to a number of mathematical procedures which ought to be familiar to
students at the undergraduate level. These include algebra, wunalytical
geometry, trigonometry, the calculus, and elementary theory of matrices. In
addition, it is assumed that the reader possesses a basic understanding of
physics and of nuclear phenomena, including aspects which are commonly
encountered in the nuclear data field. Most graduate students ard
professionals in the nuclear science and nuclear engineering fields will find
that they are gufficiently familiar with these topice for present purposes.

1.3 Content

We begin this report by examining events and event spaces. Elementary
events and compound events are considered. Event algebra, usuvally referred
to as Boolean algebra, is introduced. Some basic combinatorial theorems and
their roles in the calculus of events are discussed. Next, the concept of
randomness is dintroduced, and random variables and their functions are



caonsidered. Probability is defined and interpreted in terms of functional
operations on event spaces. Probability theory is approached from both an
intuitive and an axiomatic viewpoint, but little attempt is made to trace the
history of these ideas or to discuss the various controversies which rage to
this day within the community f mathematicians. Some basic combinatorial
properties of probability are introduced, and the calculation of probability
is considered. Following this is a discussion of other important notions
from probability theory. including the concepts of conditional probability
and independence., Some features of probability distributions are introduced,
including that of multivariate distributions and marginal probability
distributions. Next, several important probzbility distributions that are
encountered in the field of nuclear data are considered. These are laws
which govern the frequency of occurrence of random events. Emphasis is on
binomial and multinomial probability, Poisson and interval probability, and
normal probability. Relationships between these individuai probability laws
are also discussed. Finally, considerable attention is devoted to Bayes'
theorem, ity interpretation, and related topics, since this theorem, and the
methods which it has spawned, are very important in the area of nuclear data
evaluation.

This first report does not attempt to address all the important aspects
of probability theory that apply to the field of nuclear data. Discussions
on many of these, e.g.. on the various fundamental properties of probability
distribution functions and how they relate to errors and error propagation,
are deferred to future reports. It is generally believed that certain
matters related to nuclear data uncertainties cannot be addressed entirely
within the framework of statistical theory. An example is the difficult
question of how to deal with systematic error in a consistent fashion. The
reader is encouraged to peruse the very readable and thoughtful essay on this
subject by Youdin (You 61). Some advanced methods for dealing with these
problems have been proposed (e.g., Per 82), but these ideas are at the
frontier of applied mathematical science, and they are difficult to
comprehend without a strong foundation in group-theoretical methods.
Furthermore, they are somewhat controversial and largely untested. For this
reason, 1 have chosen to embed the present treatment solidly within the
familiar, traditional framework of conventioncl statistics. However, the
readel1 should remain fully cognizant of the fact there are nuclear-data
uncertainty problems which appear to fall beyond the scope of elementary

random variable theory and, therefore, will not be addressed tuv any great
extent in this report series.



2. EVENTS AND EVENT SPACES

Probability theory is that branch of mathematical science which deals
with the properties of a certain class of functions that operate on spaces
whose elements are denoted as events. We cannot advance further in our
investigation ol probability without first having a close look at the meaning
of events and event spaces. Some exposure to the rules governing event
manipulation is also needed. The reader should realize that these concepts
are fundamental to achieving an understanding of probability theory and that
they should be understood early on. Visualization of event spaces and
execution of the related computational analyses can be difficult.
Proficiency comes with experience, and obviously the reader cannot be
expected to become a virtuoso in the manipulation of event spaces through the
reading of this volume.

This chapter is divided into three sections. The first section presents
the important ideas from an intuitive viewpoint, complete with illustrative
examples. The second section treats the reader to a more rigorous
presentation of similar material. There is some redundancy in the content of
these two sections, though the correspondence is not ovne-to-one. However,
since the approaches are quite «ifferent, the reader will find that most of
the material in the second section appears to be new. The final section is
an introduction to the topic of event counting, and it deals principally with
permutations and combinations.

2.1 Jotujtive Approach

The essential ingredients to be considered are: i) a well-defined
action or operation, 1i) a closed system or space of all possible outcomes of
this action, iii) the elements or components which comprise this space, and
iv) the rules or laws which govern manipulation of these elements. The
reader may well recollect that these are the essential ingredients of set
theary. The similarities are not coincidental.

The action or operation must be so defined that its execution always
yields a result whose description entitles it to belong to the space of
possible outcomes under consideration. Usually, it is assumed that this
action does not perceptibly alter the content of the space (with replacement
assumptjon), but in some models it may (without replacemepnt agsumptjon). The
statistical laws will depend strongly on which assumption is in effect if the
space is discrete and has a limited content. More will be said about this
peint in Sec. 2.3. Actions or operations on well-defined spaces of outcomes
are usually referred to as sampling.

The space containing all possible outcomes of a particular sampling
procedure is called a gampling space or evept gpace. In the parlance of set
theory, it is a universal set whose elements are called events. Plural
execution of a particular sampling procedure produces a sequence of specific
outcomes. A relatively small collection of these outcomes is usually
designated as a sample. Samples which are so large thal they essentially
resemble or even deplete the entire event space are sometimes referred to as
populations. The terms population and event space are sometimes used
interchangeably, but the reader should realize that there is a distinction.



Probability theory does not dictate how event spaces are to be
congtructed, but vather It sstablishes rules pertaining to operations upon a
space once it is defined. Tiiere are generally many ways to structure and
model a given physical problea. Often the diverse possibilities are
equivalent, but judicious definition of an event space can lead to Impartant
practical simplifications. This aspect of probability theory practice is
more of an art than it is a science, and the true worth of a statistician can
be measured by his skills in this area. A well-developed talent for
visualization of event spaces is essential.

As a general rule, event spaces should be developed, first and foremost,
in terms of elementary (or simple) events. By definition, these are events
which cannot be further decomposed into more basic entities,

Example 2.)

Consider the sampling procedure consisting of selecting and
observing atoms from a spent reactor fuel rod. We could choose to
define the possibilities (events) as: fissionable material,
fertile material, fission products, cladding and other structural
materials, and miscellaneous impurities. A gample would then be a
sequence of outcomes corresponding to these five possibilities.
However, this choice migkt not be very useful and could even be

ambiguous (e.g., fertile materials such as 2380 are also

fissionable for fast neutrons). Clearly, a better choice in this
example would be to characterize a simple event by the pair (Z,N),
since this uniquely identifies which element and isotoupe is
observed (the outcome) in any particular sampling action. In some
applications it might also be important to keep track of whether
an atom was in its ground state or resided as an excited isomer.
Then. our model would have to include a third parameter Ex to

indicate excitation energy of the nucleus. Consequently, a
simple event would be identified univuely by the triplet (Z.N.Ex).

Example 2.1 offers the opportunity to introduce the concept of an
augmented event gpace. We know that all atomic numbers Z from 1 to 108 are
possible (confirmed elements). Alsu, neutron numbers N from 1 to 159 have
been observed. Finally, nucleon binding energies up to Ex < 10 MeV are

possible. However, only certain combinations (Z.N.Ex) for 1 ¢ Z 108, 0 ¢ N
¢ 159 and 0 ¢ Ex < 10 MeV actually correspond to atomic species which can

exist and which might be found in the spent fuel rod. The true event space
is comprised only of these realistic possible outcomes. When the nonphysical
triplets are included, however, we have what is called an augmented space.
Later in our treatment of probabjlity it will be seen that it is sometimes

useful to contemplate such augmented spaces in order to simplify certain
mathematical operations.



A Venn diagram is a graphical representation of an ensemble of
elementary events which form an event space. These pictorial diagrams can be
very ugeful aids in visualizing event spaces and manipulations involving
them.

Example 2.2

Figure 2.1 is a Venn diagram of (Z.N) pairs for an event
gpace consisting of a few light nuclei. Shaded squares represent
nuclei which have been observed, and the totality of these forms
our event space. Blank squares represent nonphysical catities.
The collection of all squares (shaded or blank) fcrm an augmented
evenu space.

The specific parameters which define an elementary event can be either

discrete or continuous. It is evident in Example 2.1 that Z and N are
discrete parameters, while Ex should be treated as continuous. In this

chapter we generally focus on discrete quantities, but more jis said about
continuous ones in Chap. 3 and beyond.

Individual elementary events, or arbitrary collections of simple events
within the space, can be interpreted as subgppces of the event space.
Subspaces with well-defined attributes can also be considered as events.
These are called compound events. In Example 2.1 we alluded to five possible
compound events (e.g., fission products was one of these). Once a set of
elementary events has been defined to form an event space, there is generally
a variety of ways to partition it into subspaces. We will examine this in a
quantitative way later in this report. First, we consider an example in
which some compound events are explicitly illustrated.

Example 2.3

{ne day a nuclear reseacrcher walks into his laboratory and
discovers that a certain piece of electronic apparatus is
malfunctioning. He traces the malfunction to a particular circuit
board. Being a statistically inclined individual, he decides to
analyze the possibilities for failure from this point of view
before proceeding with the repairs. He therefore generates a
fajilure-mode event space based on the status of the board's Ffour
integrated-circuit (IC) components. In this space an elementary
event corresponds to a declaration of the condition of each of the
four IC components as good (G) or bad (B). The sixteen elements
which form this space are listed in Table 2.1. Based on this
model, there are two obvious possibilities for forming compound
events. Possibility A involves gpecification of the number of IC
components involved, i.e., none, one, two, three or all four.
Five compound events of this type span the space. Possibility B
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Figure 2.1: Venn diagram for an event space consisting of
observable light nuclei (shaded). This space
is augmented by the blank squares. See Ex. 2.2.



Table 2.1 Failure Modes for an Electronic Circuit Board
with Four Integrated-Circuit (IC) Components.
See Ex. 2.3.

Compound Eventsb

Elementary

Events® Possibility A | Possibility B

(G.G.G,G) \ No bad IC components (1) ‘ Non~IC failure (1)
i !

(B.G.G.G) One bad IC component (4) IC failure (15)

l

J
(G.B,G,G) |
f
(G.G,B,G) i
I

i

(G.G,G,B)

(B.B,G,G) Two bad IC components (6)

(B,G.B,G)
(B.G.G,B)
(G,B,B,G)
(6.B,G,B)

(6,.G,B,R)

(B.B,B.G) Three bad IC components (4)

(B,B,G,B)
{B,G,B,B)

(G.B.B.B)

a s . . . . .
Position in array (1,2,3,4) designated a particular IC component which
is either good (G) or bad (B).

Value in parentheses (...) designates the number of elementary events
in the subgspace forming the compound event.



categorizes all failures into non-IC failures or IC failures, and
thus involves two compound events. It is interesting to examine
how many elementary events are required to form each of the
cumpound events. For Possibility A, the reader may recognize that
the number of elementary events corresponding to a failure of k IC

components (k = 0,4) equals the well-known binomial coefficient
an for n = 4, namely

C4k = 41/[kt(4-k)!].

This point will be discussed further in Sec, 2.3. The total
number of elementary events in the space representine the present

prablem is 24. An important task in probability theory is that of
determining the sizes of event spaces and of *t:k: subspaces which
represent particular compound events. Tais issue will Dbe
addressed in more detail in other >zciions of this report.

Events are putuzilv oxclugjve if occurrence of one precludes occurrence
of the other. I:: Example 2.3, the event involving two bad IC components is
mutually exclusive from that involving one bad IC component. From Table 2.1,
it is clear that the subsets representing these compound events would not
overlap. Each simple event is mutually exclusive with respect to every other
simple event by definition.

In some applications, grder is important in the generation of an event
space, while in others it is not. In Example 2.3, order is unimportant. If
the failure of the circuit board is due to the first and third IC components
being defective, the outcome is not affected by the order in which these :iwo
IC components are tested during the trouble-shooting process. The following
exumple illustrates how order cun be important in defining an event space
that medels physical reality.

Example 2.4

Consider an experiment designed to measure the energies of
charged particles (CP) traveling in a particular direction. The
CP energy is deduced from a determination of the times at which a
particle passes through two separated, very-thin scintillation
detectors D1 and Da spaced by a distance L, us shown in Fig. 2.2.

We define a simple event by the recorded values of a pair of
signals (one from each detector} at times t1 and ta. respectively.

The choice of zero for the time scale is not important. However,

causality is violated if ta < tl' since it is assumed that the

particles we are interested in pass through D1 first. Actually

(t2 - tl) > L/c is required, since the particle velocity can never

quite reach the speed of light, ¢, and the detectors D1 and D2

10
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Figure 2.2: Venn diagram for an event space consisting of measured
times for the passage of charged particles (CP) incident
from the left through two detectors D, and D, separated
by distance L. Points such as A (sha%ed region) are
physically allowed, while those such as B are not.

See Ex. 2.4.
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have finite separation, L. Thus, the event space of physical
possibilities can be represented by the Venn diagram shown in Fig.
2.2. A point, A, with (t2 - tl) > L/c (shaded region) represents

a valid physical event, while peint B, with (t2 - tl) < L/c is
non-physical. The space of all pairs (tl.ta) is an augmen.ed

event space for which there is no condition on the relatjve
magnitudes of tl and t2.

2.2 Theoretical Approach

This section deals with what is commonly referred to as set theory. The
present treatment is abbreviated by necessity. The importance of
understanding the definitions and concepts presented in this section will
become evident to the reader as he proceeds through later sections of this
report, and other reports in this series.

Basic to the discussion iy the notion of a unjversal get, E, which we
henceforth consider to be an event gpace, in accordance with the connotations
in Sec. 2.1. The fundamental elements of E are simple events, designated by

e, and interpreted as discussed in Sec. 2.1. From the point of view of
dimensionality, E can be fipite, consisting of a limited number of elements
(el.ea... ..en). or depumerable, in which case the number of elements 1is

infinite but countable, i.e., (el.ea....). or pondenumerable, in which casc

we cannot explicitly list the individual elements. Most of the discuszion
here will pertain o finite or denumerable event spaces, since nondenurcrable
spaces require special treatment with regard to certain mathematical
operations. We will consider how to deal with nondenumerable spaces of
interest later in this report. An event space, E, must be gomplete in the
sense that the ensemble of all elements e which form E must exhaust the

possibilities for outcomes of a well-defined sampling activity. as discussed
in Sec. 2.1.

Next, we discuss some fundamental terms of set theory.
Compound event or subspace:

A is a compound event or subspace of E if all simple events in A also
belong to E. The notation is Ae E. Figure 2.3 is a Venn diagram which
illustrates the notion of a subspace. By definition, a simple event is also
a compound event. Henceforth, the terms event and subspace will be used

interchangeably. Simple and compound events may not be distinguished, except
pussibly by context.

12



Co inment:

If A1 and A2 are two events in E, and every simple event of A2 is also

in Al' then

A, e E, A, e E, and A2 € A

1 2 1’

However, it need not follow that A, e Az' Figure 2.4 is a Venn wiagram which

i

illustrates the case where Aa [ Al' but Al is not cuntained by Aa. This we

designate hy A, ¢ Aa.

By definition, E is a subspace of E (E ¢ E), and E, since it includes
all possible outcomes from sampling, is designated the sure event or certain
event.

Impoggible or aull evept:

In set theory, one is required to define the empty space, designated
for completeness. ¢ is a space with no simple elemerts e of E, yet ¢ € £
definition. Also, @ € A, where A is any subspace of E.

by
Eguality:
Events Al and A2 are equal if they contain the same simple events.

Then, A1 ' A2 and A2 e A

'
Nested sequence of events:

A nested sequence of events is a finite or denumerable collection of
events, e.g., (Al'Aa“"'An) or (81.82....) of E for which a distinct
containment hierarchy exists. We say, e.g., that the sequence (AI'AZ""'An)

is ponincreasing if and only if we have

AL eA € ...¢ A2 € A

1 1

On the other hand, the sequence (81.82,...) is nondecreasing if and only if
we have

B.e B,e ...

13



Figure 2,3:

A 13 a subspace of E (A € E).

Figure 2.4:

A1 and A, are subspaces of
E (A1 e E, A, e E). A, is a
subspace of (A, e A)), bhut

the converse is not true

(Al -4 A).

14



Figure 2.5 exhibits two nested sequences of events in E which are
nonincreasing and nondecreasing, respectively.

The algebra of sets, or Boolean algebra as it is often called, governs
the combination and manipulation of events. This algebra is based upon Lhe
operations discussed below.

Sua or union:

A is the sum or union of events A1 and A2 of E provided it contains

those and only those elementary everts of E which belong to at least one of
the events A1 and Aa. The notation is

If there are several events (AI'AZ""'Ai"") which form a union to yield A,

the definition is similar but the potation

is usually used. The union of events is illustrated via a Venn diagram in
Fig. 2.6.

5 .

The difference A (occasionally called the relative complement) of events
A1 and A2 of E, designated

1 2
consists of all elementary events of Al' but excludes those which are also in
A2. Note that A1 - A2 and A2 - A1 are conceptually different events and are

never equal unless both happen to be the aull event ¢. Figure 2.7 is a Venn
diagram which illustrates the notion of the difference of two events.

Broduct or intersectjon:

Consider two events A1 and A2 in E. The product or intersection of A1
and Az. denoted A1 X Az, is that event A of E which consists only of those

simple events which simultaneously are contained in both A1 and A2. Clearly,

AeE, Ae Al' and A e Aa.

15



Figure 2.5: Nested sequences of events in E. (Al.Az....An) is

nonincreasing, while (Bl.Bz....) is nondecreasing.

Figure 2.6: Union of events Al. AZ' and A3 of E is the shaded area A

designated by A = A1 + A2 + Aa.

16



If several events Al'Aa"" are involved in forming the product A, the

notation

is vsually used. Figure 2.8 illustrates the notion of an event product.

Having defined the basic algebraic operaticns of event space, we are now
in a position to offer a few more useful definitions.

Complement:

If A is an event in E, then the complement A of A is the subspace which
cantains all the remaining elementary events of E that are not in A. It is
thus true, e.g., that

A+A=E AxA=¢, A=E-A and A -E - A,

based on the preceding definitions. Furthermore, it is possible to express
the difference of two events using the notation of complementarity. If A1

and A2 belang to E, then

Figure 2.9 illustrates the notion of a complement.

Mutuall lusi - disioint ts:

Events A1 and A2 are said to be mutually exclusive or disjoint if both

belong to E but have no simple events in common. Clearly, this condition is
represented by the expression

as illustrated in Fig. 2.10. Whenever we have a collection of events
(Al,Aa....) belonging to E which have the property that

Aj X Aj = ¢

for any pair (1,j), we say that the collection is pairwise disioint. For any

event A in E, it is obvious that A and its complement A are a disjoint pair.

17



Figure 2.7: Differences of events A and A, in E: A - A, Is the
dashed region, while A2 - Al.ls the dotted region.

1

Figure 2.8: The shaded region A is the Intersection A1 x A2 of two

events A1 and A2 in E.

18



Figure 2.9: The complement A consists of all simple events in E which
do not belong to A.

Figure 2.10: A1 and A2 are two mutually exclusive events belonging to E.

19



Partition:

Consider a pairwise disjoint ccllection of nonempty (not ¢) events (Al.

Az....) belonging Lo E with the additional property that

We then say that the collection forms a particular partition of E.
Obviously, there are many different ways to partition E, as is evident from
the examples in Fig. 2.11. It is also clear that, for any nonempty event A

in E. the pair (A.A) forms a partition of E, as is illustrated in Fig. 2.9.
The concept of a partition is extremely important in the context of Bayes'
thearem, which we will investigate in considerable detail in Chapter 8 of
this report.

Limit_of o

For a denumerahle sequence of nested events (Al'Az"")' it is
reasonable to define a limit. The manner of defining the limit depends upon
whether the sequence is nonincreasing or nondecreasing. If (A1'A2"") is

nonincreasing, then Lhe limit, A, is defined as

A=m A
il i

However, notice that for this type of sequence (with finite n), we have
n
i3 Ai = An

i=1

Thus, Lhe limit, A, can also be written

A= ¢€8im A
n
n-we

*f (Al‘Aa"") is nondecreasing, then the limit, A, is defired by

20
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Figure 2.11:

(A},.¢.,Ap) and (B},...,B;) represent two different partitions of E.



Thus, the limit A can be written as

A=¢8im A,
n
N—<°

just as it was for a nonincreasing sequence of events.

Given the preceding definitions, we are now in a position to state the
basic postulates of Boolean algebra, as applied ta event sets.

Postulate No. 1: Laws of closure

For every pair of event sets A_ and A, in E, there exist unique sets

1 2
Al * A2 and A1 x A, which also belong in E.

2

Postulate No. 2: Cop

For every pair of event sets A. and Aa, it holds that

1

1 2 2 1
and
A1 x Aa = A2 x A1
Postulate No. 3: socjativ aws
For any triplet of event sets Al' Az. and A3 it holds that
(A) * Ay) + Az = A + (A, + Ay)
and

(A1 x Az) x A3 = A1 x (A2 x AS)'

Postulate No. 4: Distributjve laws

For any triplet of event sets Al' Az, and A3. it holds that

Apx (A, + A3) = (A, x A ¢ (A, x A,)

and

A A X A) =
g (A X A = (A + A)) X (A + A

22



Postulate No. 5: ]Jdentjtv laws

There exist unique events, ¢ (the impossible or null event), and E (the
sure or certain event), such that for any event A it holds that

AXE-=A
and

A+¢=A
Postulate No. G: jon law

Corresponding to each event A there exists a unique event A called the
complement, such that

and

Many useful theorems and formulas that are employed in evenl-space
analysis can be derived from these postulates. Before we examine some of
these, it is worthwhile to digress to some extent in order to introduce the

notion of a Borel field, or Sigma algebra as it is sometimes called. A Borel
field Z based on the event space E is the set of all subsets of E. Since a
subset of E is an event, it follows that Z is the exhaustive set of events
based on E. By restricting our attention here to sets E that are finite or
denumerable, we conveniently avoid difficulties with respect to defining the
associated Borel field Z and subsequently considering its properties.
Technically, the set Z based on E must possess the following five properties
to be a true Borel field.

Property 1:

The event E (sure event) must be in Z.

Property 2:

The event ¢ (impossible event) must be in Z.

Property 3:

If a finite or denumerable collection of events AI'AZ"' belong to Z,

then their sum Z Ai a1so belongs to Z.
i
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Property 4:

If events Al and A2 belong to Z, then their difference Al - A2 also

belongs to Z.

Property 5:

If a finite or denumerable collection of events AL'AZ"" belongs to Z,

then their product =« Ai also belongs to Z.
i

It is shown in Section 2.3 that if E is finite and possesses n elements

e, then the associated Borel field Z has 2“ elements z.

The notion of a Borel field has practical connotations. Given a space E
of elementary events, then the corresponding Borel field represents the
ensemble of all possible outcomes for an exhaustive collection of sampling
procedures involving the elementary events of E.

Another feature of Borel fields is worthy of mention at this point. Let
A be an event of E. Of course, it also belongs to the associated Borel fieid
Z. Furthermore, we assume A is goptrivial (A is not ¢). Thus. A consists of
one or more simple events of E. One can now consider A as a distinct sample
space of simple events, although we are aware that it is em! dded in the
larger space E. Then, one can define a new Borel field Z' base untirely on
A. If B represents any arbitrary event of E, then the elements af Z' can be
looked upon as being generated from products of the form B X A. We shall see

in Chapter 5 that this notion is the basis for dealing with conditional
probability.

We now return to a consideration of the Boolean algebra of events.
Given the preceding definitions, properties, and postulates, one can develop
a rich area of mathematical theory which can only be touched on very briefly
here. The careful reader will have already noticed that event manipulations
aiffer in many respects from thuse with real numbers. Essentially this comes
about because every real number is distinct, or elementary in our current
parlance, while events can be compound and, thus, somehow "overlap” with
other events. The fact that events need not be totally unique and distinct .
from other events leads to complications in set (or event) manipulations that
force the uninitiated practitioner to develop a new arsenal of intuitive
skills. Actually, the fundamental concepts of probability are generally
rather simple. The difficulties one encounters in probability analysis, or
in the consideration of uncertainties, are often truceable to the associated
Boolean operations, not to the concepts themselves.

The foullaowing simple theorems can be readily demonstrated by means of
Venn diagrams, though this «ill not be done here. If E is an event space, A
and B are subspaces, and ¢ is the impossible or null event, then:
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A+E=E, (2.1)
AX ¢ = @. (2.2)
A+ A=A, (2.3)
AX A -2, (2.4)
E = ¢. (2.5)
$-E (2.8)
A=A, (2.7
A+ (AXB) = A, (2.8)
Ax (A+B)=aA, (2.9)

where $ denotes the complement of the impossible event, while the double bar

over A denotes the complement of A.

For interest, a rigorous proof of the theorem represented by Eq. (2.1)
is provided, in terms of the previously ment’-—ed postulates:

Step 1: A+ E

= (A + E) x E, by Postulate 5.

Step 2: (A+E)xE=(A+E)x (A+A), by Postulate 6 and substitution.

Step 3: (A+E)x (A+A) =A+ (Ex A}, by Postulate 4 and substitution.

Step 4: A+ (Ex A) = A + A, by Postulate 5 and substitution.

Step 5: A+ A

Step 6: A+ E

laws:

(A + B

(Ax B

It
<]
=2

«<

[}
<]
o

<

The following two

£ 3
X

) =

>

) =2

+

Given a collection of

Morgan laws in t

he more

Postulate 6.
sebstitution.

equations are collectively known as the de Morgan

B ' (2.10)
B . {2.11)
n evepts Al'AZ'”'An in E, one can express the de

general fors

25



n n
(Z Ai) = T A . (2.12)
i=1 i=1
n n
(m A) = F A . (2.13)
i=1 i=1

Given events A and Bl.Ba....B. in E, one obtains the following two

equations, known as the geperalized distributive laws:
n n
Ax (Z B)= ¥ (AxB) (2.14)
i=1 i=1
m n
A+ (T Bi) = m (A + Bi) . (2.15)
i=1 i=1

Two examples of rather complicated equations fruom Boolean algebra that
can be derived from the definitions and postulates are:

a n i-1
I A, =A +Z |A. - Z (A,xA,)| forn 2, (2.16)
=2 bl e | by T

n [} n n
(Z A)X (% B, = Z Z (A, x B,) : (2.17)
i=1 ! 31 3 e g P

The interested reader can pursue this topic further by referring to
texts which deal explicitly with set theory and Boolean algebra (e.g., Hau
57, Mah 68, Abb 69 and KM 76).

We will now close this section by considering two examples which
illustrate some of the material presented uwp to this point.

Example 2.5

Consider an arrangement whereby collimated neutrons, emitted
from a reactor or accelerator source, impinge normally upon two
separate, axially aligned, thin organic scintillation detectors A
and B (see Fig. 2.12). The sampling process we congsider is the
emission of a single neutron from the source. There are four
elementary events which form the sample space E which we will
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Figure 2,12:

Sample
Space

Simple snd compound events based on nmeutron
detecticn by two organic scintillation detec-
tors. JSee Example 2,5,



consider: i) (1.1): both A and B detect the neutron; ii) (1,0):
A detects the neutron but B does not; iii) (0.1): B detects the
neutron but A does not; and iv) (0,0): neicher A nor B detects

the neutron. Clearly, these labeled outcomes exhaust the
possibilities. Our sample space E also contains the impossible
event ¢. as must all such spaces. Fig. 2.12 exhibits these

possihilities, and it also indicates, by means of tables and Venn
diagrams, several compound events that can be formed based on E.
In Fig. 2.12, A represents the compound event in which detector A
detects the neutron, while B represents the analogous compound
event involving detector B. The validity of the de Morgan laws,
given in Egs. (2.10) and (2.11), is also demonstrated for this
example in Fig. 2.12.

Example 2.6

in this example we consider a simple event space E and
explicitly ennumerate the subspaces which form its associated
Borel field 2. Suppose that we possess a small quantity of
ultrapure monoisotopic, elemental material which hags been
irradiated with neutrons in a reactor. This material consists of
atoes in the grounéd state (G), or in one of two possible
long-lived isomeric states (I1 or 12). The sampling procedure
consists of wselecting an individual atom and then determining
which state it is in. The event space E has three simple events:
e (G). e, (I1) and e, (I2). It was previously indicated that the

Borel field Z must have 23 (namely 8) elements. These are
explicitly:

zy = b z, = e +e,

227 % % T %1 T %

2, =€, z, = e, + e,

%4  ®a g %1 "% T4

Any event we can form by combining the elementary events of E must
be equal to one of these z; (i = 1,8). Fo: example, suppose we
consider (e1 + ez) X (e1 + ea). By Postulate 4 (distribution
law), this event equals e1 + (e2 X es). However, e2 X e3 is the
impossible event ? because the ei are el .entary events and, as
such, are nonintersecting. Thus, the event in question is e, ¢,

which equals e, and, therefore, Zy, by Postulate 5.
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A nontrivial subspace A of E is the space of all simple
events corresponding to detection of an atom in an excited state.
A consists of the two elements e, and e, Furthermore, we can

2
define a new Borel field Z' based on A alane. There are 22
(aamely 4) elements in 2'.

Thege are explicitly:

z.' = ¢ z,' = e

We can. e.g., demonstrate Property 3 (closure) for the Borel field

Z' by considering za' +z3' +z4'. This is equivalent to
e, + e * (e2 + ea) which, in turn, equals (aa + es) + (e2 + e3)
by Postulate 3 (associative law). Finally, this event equals
e, v e, Orz ' by the theorem represented in Eq. (2.3).

4

2.3 Event Countijng

It should be apparent to the reader, from the discussions in the two
preceding gections, that counting the number of ways in which various types
of compound events can be formed from simple events is an essential task for
applications. This point was demonstrated in Example 2.3. So far in this
report no general rules have been provided to indicate how such counting
exercises are to be carried out. However. this matter will be addressed in
the present section. There are a variety of counting algorithms that are
used in practice, depending upon the problem at hand. Here, only a few of
the more imporiant ones will be reviewed. We have seen in the previous
section that counting the number of subsets of a set is important. This by
no means exhausts the applications for counting. 1In statistical physics, and
in many other areas of basic and applied science, one is required to examine
other counting procedures as well.

A few elementary definitions and concepts must be introducved first. A
k=tuple is a collection of k quantities generated from elementary events
belonging to an event space E. For present purposes we assume E to be
finite, thus consisting of n elementsy. A k-tuple need not be a compound
event in the sense discussed in Section 2.2, since a specific elementary
event may be represented more than once in a particular k-tuple. However,
every compound event corresponds to a certain k-tuple. Furthermore, k-tuples
can be either ordered or not. For ordered k-tuples, or arrangements as they
are sometime called, the position of every event in the array is important.
Two k-tuples consisting of identical collections of one or more elementary
events ar= distinguigshable if ordering (or arrangement) is taken into
consideration. Otherwise, they are jindjistingujshable. If each of the
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available elementary events of E can only be represented once in forming
k-tuples, then it is said that the k-tuples are formed without replacement.
Such k-tuples have a one-to-one correspondence with k-fold subsets of E.
Those k-tuples formed without regard to the multiplicity of the appearances
of elementary events are said to be formed wjth replacement. Given an
unordered k-tuple of events, there are a number of distinguishable ways that
ordered k-tuples can be formed from it. Each of these arrangements is said
to be a permutation of the unordered k-tuple. In counting exercises it is
sometimes useful to visualize k-tuples in terms of gccupancy. We then
envision a collection of unique cells which may or may not be occupied. A
k-tuple is equivalent to a k-fold specification of the occupancy status of
these cells. The k entities which occupy these cells in some pattern may or
may not be distianct, and multiple occupancy of cells may or may not be
allowed, depending upon the statistical problem which is under consideration.

Example 2.7
Consider a space E consisting of the events 81'82'83' and e4.
Then (el.ea.ea). (ea.el.ea). (el.el.e4) and (el.e4.e1) are typical

3-tuples formed from E. Both (el.ea.ea) and (ea,el,ea) represent

the same subspace of E, though they are distinct permutations of

the three events e .e,.€q, if ordering is considered. Neither
(el.el.e4) nor (el.e4.e1) can be considered a subspace of E. Each

of these can be viewed as representing double ouccupancy of Cell
No. 1 and single occupancy of Cell No. 4.

The basic princiole of combinatorial analveis can be stated as follows:
The number of ways W of forming ordered k-tuples is given by the formula
k
W= m N, , (2.18)
. i
i=1

where Ni is the number of ways available to form the ith component of the
k-tuple.

The simplest application of this principle is that of calculating the
number of ordered k-tuples which can be formed from a set of n elementary
events, with replacement. Since events can be "reused" according to the
replacement assumption, there are n possibilities for selecting each of the
components of the k-tuple., Therefore, each Ni equals n and
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W= nk . (2.19)

according to Eq. (2.18). It is interesting to note that even though it is
hard to conceive of molecules in a classical gas as being "distinguishable”,
the ! of statistical physics is derived from this
particular rule of counting, and it does seem to adequately deacribe the
behavior of such an ensemble of particles under certain conditions of low
particle density and high temperature (Mor 64).

The second application of Eq. (2.18) to be considered here is a
determination of the number of ordered k-tuples which can be formed from a

set of n events if no replacement is allowed. Under this restriction, N1=n.

Na a n-l....Nk = n-k+l. So, an application of Eq. (2.18) leads to the

expression
W= n(n-1)(n-2)...(n~k+1)} . (2.20)

This formula does not form the basis for any known law of statistical
physics, yet under the conditions for which the Maxwell-Boltzmann Law
applies, this present counting rule leads to nearly the same result. Low
particle density and high temperature imply that k << n, since, from an
occupancy point of view, k represents the number of particles involved while
n represents the number of states available for occupancy (which is large for
high temperature).

Example 2.8

The predictions of Eqs. (2.19) and (2.20) for k=5 and n=1000

can be compared by examining the ratio (10005)/[1000 X 999 x 998 x
997 x 996]. The value of this ratio, to eight significant
figures, is 1.0100654. The difference of 1% is negligible for
most purposes.

Early in the present century it was discovered that certain microscopic
physical phenomena could only be explained if the energy states available to
atomic particles and their radiations were assumed to be quantized rather
than continuous. Classical counting laws, which have in common the fact that
individual particles are treated as distinguishable, alsoc had to be abandoned
in order to explain microscopic phenomena in the limit of low temperature and
high partirle density. It was learned that a particle of one certain class
can never occupy the same quantum state as another similar particle (Pauli
Exclusion Principle). Particles of this type are now known as fermions.
Atomic particles from another clays seem not to mind sharing quantum states
with others of their kind. These particles are classified as pgsops. For
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nuclear scientists, the most important application of these fundumental
principles of guantum statisticg is in the consideration of nuclear
structure, i.e., investigation of the manner in which nucleons (or clusters
of them) occupy the various available states in their collective nuclear
potential. We will now examine the two counting rules which form the basis
of quantum statistics. Common to these two laws is the assumption that the
individual particles which occupy the available quantum states are
indistinguishable from each other. Thus, counting involves only unordered
k-tuples from a space of n elementary events (or k-fold occupancy of n
available cells or quantum states).

First. we consider the number of ways unordered k-tuples can be formed
from n elementary events, without replacement. We recall that Eq. (2.20)
provides an answer so long as ordering is preserved. If ordering becomes
unimportant, the number of distinct possibilities must in general decrease.
If we consider a particular ordered k-tuple, we should note that for k 2> 2
there are others which differ from the one we are considering only in the
sense that they are permutations. Thus, when ordering is unimportant, we
must divide the re:alt of Eq. (2.20) by the number of ways that a collection
of k quantities can be permuted. This number can be deduced by another
k
application of Eq. (2.20), for n=k. The result is w - i, conventionally
i=1
degignated k! (k factorial), with a! = 1, Making use of the factorial
notation, the counting law we seek is given by

W= an = ul/[kl({n-k)1] . {(2.21)

as first indicated in Example 2.3 of Sec. 2.1. The coefficient an is called

the binomial coefficient, for reasons to he discussed shortly. Example 2.3
demonstrates this counting rule. From the occupation viewpoint, we are
considering the number of ways k objects can occupy n available cells, when
the objects are indistinguishable and no two objects may occupy the same
cell. Fermions behave this way, and the law of statistical physics that is

based on this mode of counting is designated as Fermi-Dirac. The value W
given hy Eq. (2.21) is often referred to as the nuaber of possible
combipatjons of n quantities taken k at a time.

Before proceeding to the consideration of another distinct counting
concept, we will address several topics that are convenient to consider at
this point of the present development.

First, for large k the computation of k! can be awkward. Ap

approximation for k!, known as Stirline's approximation. is quite accurate as
long as k is sufficiently large. The formula is

ki = (2mk)1/2kKeK (2.22)
The worth of this formula becomes most evident when various factorial
expressions appear in combination, e.g., as in Eq. (2.21). Since these

combinations usually involve products and quotients, the logarithmic version
of Eq. (2.22), i.e.,
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&n(k!) = (1/2)én(2wk) + kén(k) - k . (2.23)

is often more useful in practice than Eq. (2.22). Table 2.2 provides a
comparison of the directly calculated values k! and é€n(k!), for k = 1 to 10,
with corresponding results obtained from Stirling's approximation, according
to Eqs. (2.22) and (2.23). For k 2 10, the agreement for ¢n(k!) is better
than 0.1%, while that for k! is better than 1%.

The counting rule corresponding to Eq. (2.21) is the one applicable to
the determination of the number of subsets of gize k which can be formed from
the n-fold event space E. The size W(Z) of the Borel field Z associztcd with

E. including the impossible event ¢, is thus

MDD

W(Z) = C

Q

ak (2.24)

i

k

We shall digress for a mument and note that the binomial coefficient an

is thus named because of the role it plays in the well-known bipomial
theorem, attributed to Sir I[saac Newton. This theorem states that for two

numbers al and az.

no_ u ~ k. n-k

(al + a,) oo C ok ulaz (2.25)

2

If we set a, = 1 and a, = 1, we deduce from Egs. (2.24) and (2.25) that W(Z)

equals 2", This proves that the npnumber of elements of the Borel field Z is

2". a fact which has been expressed previously.

The binomial coefficient is readily seen to be symmetric, from its
definition, Eq. (2.21), so

an = C . (2.26)

Likewise, for all n it is clear that

€1 % =1 - (2.27)

Furthermore, it can be proved rather easily that binomial coefficients
satisfy the following useful recursion relation:

cn.k—l * an = Cn+1.k (2.28)

This expression is the basis for the famous geometrical arrangement of

integers known as Pascal's Trjapgle, which is shown in Fig. 2.13. Pascal's
triangle provides an easily remembered algorithm for deriving binomiai
coefficients.
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Table 2.2: Predictions of Stirling's Approximations for ¢n(k!) and ki
fn(k!) k!
k Actual Eq. (2.23) Actual Eq. (2.22)
1 Q - 0.081061 1 0.922137
2 0.693147 0.6518065 2 1.919004
3 1.791759 1.7640815 6 5.8362096
4 3.1780538 3.1572632 24 23.506175
5 4.787492 4.77084705 120 113.019168
6 6.579251 6.56537508 720 710.07818
7 8.5251614 8.51326465 5040 4980.3958
8 10.6046029 10.5941216 40320 39902.395
9 12.80182748 12.79257202 362880 359536.873
10 15.10441257 15.0960821 3628800 3598695.619
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00
0 41
Ca0 Ca1 Coz
C30  Ca C3a  Caa
o gy Ca2 Caz a4
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
Pascal's triangle for the binomial coefficients, The

pattern is based on Eqs. (2.26)-(2.28). The coefficients on

any given row are obtained by summing adjacent coefficients
from the preceding row.
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A generulization of the problem of determining how many subsets of size
k can be rormed from a set of n events is that of determining how many ways
one can partition a set of n events into r ordered subsets so that the first

has size kl' the second has size ka..... and the rth subset has size kr' The

constraint is

To approach this problem, one repeatedly applies the reasoning leading up to
Eq. (2.21). The result is the following product of binomial coefficients:

W=C, C c cC (2.29)
ok, “n-k, .k, n-kl—ka.k3 ook -... kr—l'kr

This coefficient can be written in the more compact form

= =2 nt .
W cn;k K. ...k n./(kllkal...kr!) . (2.30)
172 r
It is called the myltinomial ¢gefficient owing to the role it plays in the
multinomial theorem. This theorem states that for r numbers a,.a,,...8,
r
N k,  k . K
('§1 a.) = i i...i cn;k1kz"‘kra1 1 a, 2...dr I
) 172 r
(k1 + kZ o kr = n) (2.31)

The special case of binary partitioning, which we have already discussed in
detail, {ollows readily from Eqs. (2.30) and (2.31), forr = 2.

Finally. we turn our attention to yet another counting scheme. For this
case, we consider forming unordered k-tuples witk replacement allowed. From
the occupancy point of view, multiple occupancy of the available cells is
permitted and the occupants are indistinguishable. In statistical physics,
this scheme is labeled Bose-Einstejn. Ensembles of bosons at extremely low
temperatures tend to accumulate in the available lowest-energy states
{condensation), giving rise to nonclassical phenomena such as superfluidity.
We state here, without proof, that the number of k-tuples that can be formed,
subject to these conditions, is the particular binomial coefficient

W=Cli1k - (2.32)
This result can be proved by the induction method (e.g., Par 60), but, in
general, the process is not as intuitively simple to visualize as the

preceding counting rules. For small n and k it can be readily demonstrated
that Eq. (2.32) gives the correct result, as the following example indicates.
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considered in

Example 2.9

Consider fovming pairs (k = 2) from a set of three (n = 3)
elements, €y: €5, and e,. If the pairs are ordered and formed
with replacement, Eq.

(2.19) tells us that there are 32 = 9 of

them. They are explicitly:
(el.ell (ea.el) (ea.el)
(el.ea) (ea.ea) (ea.ez)
(el.ea) (ea.ea) (ea.ea)

If we arrange these differently and drop the ovdering condition,
we have:

(el.ea) -

(eroeg) | | legeey) | | (epeey)
(ez.ez)

(ey.e,) (eg4.e) (ey.e,)
(e3.e3)

The pairs in the boxes are no longer distinct if ordering is
dropped. Thus, for the Bose-Einstein condition we have only 6
distinct pairs, in agreement with Eq. {2.32).

For the convenience of the reader, the four basic counting laws we have

this section are summarized in Fig. 2.14.

section by considering an
material discussed in this section.

exawple which

further

illustrates some of

Example 2.10

Consider four distinct energy levels as follows: e, = 0,

e2 2 @, e3 = 2e, and e4 = 3e. Furthermore, assume that there are

three particles to be distributed among these available energy
levels. Let E be the total energy of the system corresponding to
an arbitrary allowed-occupancy configuration for the particles.
The objective is to determine the number of distinct states that
can be formed for each possible total energy E of the system of
particles, considering the four statistical counting rules
summarized in Fig. 2.14. The results of this investigation are
indicated in Figs. 2.15 and 2.16 and Table 2.3. Clearly, the
choice of statistical counting law has a dramatic impact on the
outcome for this simple example. We note that the distributions
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items from a collection of n.
are binomial coefficients as defined by Eq.
the k-tuple and occupany viewpoints are indicated.
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Distinguishable Indistinguishable Occupancy
picture
ﬁ'th W= nk ﬁ = C Wiéhbut
1 n+k-1.k

replacement (Maxwell-Boltzmann) (Bose-Einstein) exclusion
Without W= W= an With
replacement n(n-1)...(n-k+1) (Fermi-Dirac) exclusion
Foraing
k-tuples Ordered Unordered
Figure 2.14: Summary of several important counting laws dealing with kK

The indicated C-coefficients

(2.21). Both
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(el.a.b): (ea,a.b): (el.a.b): (ez.a.b):
» x ] *
€, 3e 4e 5e B6e e4 4e bLe 6Be Te e4 4e bSe e4 4e Be
e, 2e 3e 4e 5e eq 3e 4e Se 6e e, # 3e * Se e, 3e * * ge
b b b b
* * *® L * *
e2 e 2e 3e AJe e2 2e 3e 4e B5e 92 3e 4e e2
e, 0 e 2e 3e e1 e 2e 3e dJe El * * * * €y ¥ % a3p 4e
€ €2 €3 & €1 f2 “3 % €y f2 %3 % ¢ €2 ®3 %y
a a a a
(ea.a.b): (e4.a.b): (ea.a.b): (84.ﬂ.b):
x * * * * ¥
e4 Se 6e 7Te B8e e4 6 7e B8e 9e e 5e 6e e4
3 * x x  J *
e, 4e De 6Ge Te e3 be 6e 7e 8e e, 2, 5e 6e
b b b b
* E *
e, Jde 4e 5e 6Ge ea 4e G5Se 6e Te e, 3e * 6Ge 82 4e Be
e 2e 3e 4de B5e e 3e 4e 5e 6be e * 3¢ * 5e e, * 4e 5S5e *
e, e, e; e, e, e, &5 e, e e, e; e, e, e, e3 €,
a a a a
(A) No exclusion (Maxwell-Boltzmann), Eq. (2.19). {B) With exclusion, Eq. {(2.20).

Figure 2.15: Distinct ways of distributing three distinguishable particles among four energy
states. Allowed total energies E appear in the square arrays. Acterisks mark the

excluded configurations. See Ex. 2.10.
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E=7e E=6e E=Te E=8e E=9e E=6e
(A) No-exclusion (Bose-Einstein), Eq. (2.32) (B) With exclusion (Fermi-Dirac)
Eq. (2.21)

Figure 2.16: Distinct ways of distributing three indistinguishable particles among four energy
states. Ensemble total energies ar indicated under each diagram. See Ex. 2.10.



Iable 2.3: Available Configurations with Indicated Ensemble Total
Energies for Three Particles Distributed Among Four Available Energy States.

See Example 2.10%,

Ensemble — Distinguishable

Total Maxwell- with Bose- Fermi-

Energy (E) Boltzmaan Exclugion Einstein Dirac
0 1 - 1 -
e 3 - 1 -
le 6 - 2 -
3e 10 6 3 1
de 12 6 3 1
Je 12 6 3 1
6e 10 6 3 1
Te 6 - 2 -
8e 3 - 1 -
ge 1 - 1 -

Possible

Configurations 64 24 20 4

dRefer also to Figs. 2.14-2.16. Hyphens indicate excluded total energies.
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of numbers of available states of a given total energy are
symmetric, regardless of the statistics. Applicatien of the
exclugion principle for individual particles results in
inaccessibility for configurations corresponding to many of the
total energies which would otherwise be represented,.

The link between nuclear data uncertainties and the material presented
in this chapter has not yet been established, but it will be made clearly
evident in due course in this series. In the next chapter we investigate
some additional concepts which are needed in order to be able to make this
connection. The reader should depart from the present chapter with a respect
for the complexities associated with event definition and event counting.
The reader should also reflect upon the number of interesting symmetries
which have been observed. Skill in visualizing such symmetries is essential
to the mastery of event-space analysis.
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3. RANDOM VARIABLES AND THEIR FUNCTIONS

At this stage we are not yet ready to directly undertake a study of
probability theory, First, it is necessary to explore three additional
related aapects of the theory, namely, the notions of randomness, random
variables, and functions of random variables. The relaticnship between
random events and random variables must be established. The differences
between discrete and continuous random variables also need to be understood.
Tais chapter is divided into three sections. The first deals with the
concept of randomness. The second discusses random variables, both discrete
and continuous, and how they relate to observable events. Finally, the last
section addresses three classes of random-variable functiens which play
important roles in the theory.

3.1 Concept of Randompess

We can easiiy conjure mental images, based on our personal experiences,
that illustrate the concept of randompess. Terms such as "unpredictable,”
“unbiaged." “indeterminate,"” etc¢., are often used to Jescribe our
interpretations of this notion. Generally. these preconceived concepts of
randomness serve us well, since random phenomena are common in the
experiences of life. Nevertheless, it is necessary at this point to refine
this concent somewhat in order to be sure that we agree on the meaning of
certain terms before proceeding to develop the topic further.

The following intuitive definition, quoted from Parzen (Par 60), serves
well for present purposes: "A random (ov ghance or gtochastic) phenomenon is
an empirical phenomenon characterized by the pruperty that its observation
ender a given set of circumstances does not always lead to the same observed
outcome (so that there is no deterministic regularitv)., but rather to
different outcomes in such a way that there is "statistical repularitv.”

This can be restated using terms from Chapter 2. When a process
operates on an event gpace but there is no way to control individual outcomes
of the procedure involved, then the process itself is random and the events
which constitute the event space in question are rapgdom events. Although the
exact outcome of any single random trial is unpredictable, a pattern is
expected to emerge based on the accumulated experience of many trials (i.e.,
a sample of reasonable size). In fact, in the spirit of Parzen (Par 60), we
will treat as random only thos: situations in which we anticipate a priori
that such a pattern exists. It is essential to understand the distinction
between randomness, with attendant statistical regularity, and ghaos.
Chaotic phenomena exhibit no discernible [attern, even for substantially
large samples. However, one cannot learn whether a particular process is
chaotic or statistically "well-behaved" by considering only a single trial.
This must either be postulated on the basis of related experience or "common
sense,” or must be deduced from protracted sampling experiments. Suffice to
say, statisticians earn their livings by dealing with these issues in
practical applications, but experimenters are required to have a reasonable
understanding for their own purposes.
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Fortunately. natural processes are rarely found to be chaotic when they
become well understood. On the other hand, results of individual trials
generally do fluctuate in a random way, so that the outcomes are unot
deterministically predictable. The mathematical theory of probability has
been developed to treat such random processes in a rigorous way. It is a
wseful theory because one can construct mathematical models within the
framework of the theory which represent the features of many observable
phenomena quite adequately. In later chapters of this report, and in
subsequent reports of this series, we will, on numerocus occasions, deal with
mathematical analogues of observable phenomena, but we should not forget that
the mathematical quantities which we will consider are us#ful only to the
extent that the phenomena in question behave fundamentally in a way that is
consistent with the postulates of the theory (i.e., controlled conditions).

The reader should not be left with the impression that all observable
phenomena have to be distinctly categorized as either deterministic, random
or chaotic. Intermediate situations can and do occur, and this fact adds to
the complexity of interpreting and dealing with the real world. For example,
much of the effort expended by experimental physicists involves identifi-
cation and elimination of chaotic effects (e.g., malfunctioning equipment,
electromagnetic fluctuations and interference, etc.) so that their
experiments can be performed under the controlled conditions that are
required in order to generate random, yet statistically well-behaved results,
consistent with the theories which they seek to explore.

The following example illustrates the concepts discussed above.

Example 3.1

Consider an experimental setup which includes a 14-MeV
neutron generator and a detector used to monitor neutron fluence.
Neutrons are produced by bombarding a thin metal-target layer
containing absorbed tritium with few-hundred-keV deuterons. The
detector is assumed to be an organic scintillator. We seek to
perform a2 particular experiment under conditions of controlled
neutron production and stable neutron detection. Anyone having
experience with such a facility can immediately identify a number
of factors which influence the experimental configuration, e.g.,
accelerator-voltage stability, ion-source stability, target
stability, geometry, detector-gain stabllity, etc. Can we
identify any observables associated with this setup which behave
in a deterministic manner? There are some trivial ounes, such as
discrete switch settings for the apparatus, which are assumed to
be fixed from one measurement to the next (sequential samplings).
These should be upambiguous if no one has disturbed the setup.
Experimentalists sheuid, of course, periodically check such
things, because mysterious alterations are not uncommon,
particularly if the apparatus has been left unattended. Some
factors are nearly deterministic, e.g., in the present setup, the
accelerator beam probably consists mainly of deuterons (atomic or
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molecular} if a high-purity deuterium gas supply is allached Lo
the ion source ana the vacuum is good.

However, most of the parameters we might select to monitor
during this experiment would behuve randomly, even under ideal
condilions. If, for example, we were to plot up the actual
neutron yield deduced from the measured detector events per unit
time for a relatively short time under acceptably stable
conditions, we might obtain a plot as shown in Fig. 3.1(a). The
trend is flat, but there are obviously fluctuations. The nature
of these fluctuations over a large number of trials (and thus the
uncertainty of the fluence determination) could be predicted in a
statistical sense. Figure 3.1(b) exhibits a behavior that
experimenters, who are experienced in this line of work, will
recognize as more realistic than that of near-constant neutron
output. In this case, the gygstematic decline in neutron vield
over an extended time interval could probably be traced to a
particular factor, e.g., steady depletion of available tritium in
the target. One can usually accommodate such gystematic behavior,
once the origin is understood. Note, however, that unavoidable
random fluctuations about the decreasing trend 1line persist.
Figure 3.1{(c) represents a chaotic situation. No experimenter
would -tolerate these sudden, unpredictable jumps in measured
neutron output. Clearly. one or more components of the apparatus
are malfunctioning. The experimenter would be forced to find a
solution to this problem before proceeding with the experiment.

In summary, experimenters bear the responsibility of understanding their
experiments to the extent that they can intelligently estimate the degree to
which the observed experimental behavior at hand is deterministic, random, or
chaotic. The manner in which they subsequently interpret their data must be
consistent with these considerations.

3.2 Random Varjables

Considerable attention is devoted in Chap. 2 to developing the notion of
events as the possible outcomes from random sampling procedures. No
particular effort is made to consider how one might label or characterize
these abstract random events. In practical situations, it is important to be
able to label events, and the use of numerical parameterization is by far the
most versatile approach. It is used, for instance, in Ex. 2.1. There,
atomic number, neutron number, and nuclear-excitation energy are employed as
useful parameters for unambiguous event specification. The use of real
numbers to characterize events makes possible the marriage of statistical
theory and numerical analysis, a very powerful combination which is essential
for the present develoupment of uncertainty theory.
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ol.

F-——— ——=>

o/

o/
Je

See Ex. 3.1.

Flat trend
line

Real time

Decreasing trend
line

Real time

Chaotic trend
line

Real Time

Examples of accumulated "data' from hypothetical neutron fluence
measurements.



while pumerjcal-valued random phepomena are encountered quite naturally

in marv realistic situations, there are also instances where the outcomes of
a sampling procedure are more qualitative than quantitztive in nature. What
does one do then? The following example illustrates this point and indicates
the approach which is normally used to deal with this issue.

Consider an arbitrary experimental process (sampling
procedure) where the outcome reduces to one of two possibilities:
“gn" or "off" (or something equivalent to this). The event space

E consists of two elements, el = "on” and e2 = "off" . One

trivially notices that the integers 1 and 0 could be used without
ambiguity to represent this apparently qualitative situation.
Then, let e1 = 1 and e1 = 0 (of course the assignment is not

unique). This apparently simple step of relating, for example,
the status of a bipolar switching device 1o the integers 0 and 1
opens up the possibility of employing binary algebra for analysis.
It is from this realization that the concept of a digital computer
was born.

In more general terms, it turns out, for all practical purposes, that numbers
can always be used to characterize the outcomes of statistical sampling
procedures. Mathematicians point out that there are limitations associated
with the requirement that the parameter sets so generated be amenable to the
definition of probability. This is rarely a problem of concern for us, so we
avoid the issue in tnis discussion.

To simplify matters, we first consider the entire class of events which
can be characterized by the specification of single parameters. The
characterization of events e in event space E in terms of a cellection of
representative numerical values is assumed to be accomplished by a functiop,
say X, which operates on elements e in E in such a way that there is a
particular correspondence between an event e and the real number x = X(e).
The function X, which has as its domain the event space E and yields real
numbers such as X, is called a random variable. It is very important to
grasp the concept that the random variable is the function X, not the
individual values, x = X(e), which this function produces when it operates on
E. In routine practice, however, this distinction between a variable and the
values it can assume is often blurred. For convenience, this will often be

done in the present work. Nevertheless, the reader should always keep this
distinction in mind. In a sense, the nomenclature “random variable” is
somewhat misleading. A better choice would be "random function."” However,
we choose to adhere to the traditional convention. Events which can be
specified by a single parameter in this way are designated single-variable
events. Clearly, any number of other functions, e.g., F,Y,Z,..., could be
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established on E., depending upon the problem at hand. This is illustrated
in the following example.

Example 3.3

Consider a neutron activation experiment in which a number
of very similar cylindrical disks with uniform material content
are irradiated. For each sequential irradiation, the experimenter
reaches into the sample container and selects a labeled sample "ai
random.” Three obvious possibilities exist for single-variable
categorization of che process of selecting a sample (the selected
sample is an event): diameter (D), thickness (T), and mass (M).
The functions D. T. and M are random variables by definition, each
operate on the event space consisting of the complete sample
collection. The real value provided by function D, when a
particular sample is selected, is d. Likewise, values t and m
are produced by functions T and M, respectively. The experimenter
is free to employ the random variable which best satisfies his
particular needs in order to iepregsent the outcome of the
sample-selection process. For cross-section calculation, the mass
M is probably the one to favor. However, diameter D and thickness
T impact upon various important corrections, and the;, may also
have to be considered by the investigator.

Analysis of errors for the parameters that are chosen to describe the
outcome of an experiment involves the implicit assumption that their observed
frequency distributions {in samples taken from the ensemble of allowed
values) are governed by known or assumed statistical laws, and, hence, that
these parameters satisfy the conditions needed to designate them as random
variables.

Next we consider the dimensionality of random variables. Their
dimensionalities or cardinalities are distinct from those of the underlying
event spaces E with which they are associated. A random variable X has

dimensionality which is specified by the cardinality of the particular set of
real numbers that corresponds to all the functional values obtainable for the
random function X operating on E. E itself may be infinite, countable, or
nondenumerable. This point is Ffurther clarified in the ensuing discussions
and examnles. Finite rapdom variables are functions X which take on a finite

set of values x = X(e), for e € E. Countable or depumerable random variables
involve infinite sets of functional values which correspond one-to-one to the

get of all intepers. Finite and countable random variables are more
generally designated as discrete random_ varjables. The discrete values
Xy Xy, ... are known as the _jump opoints of X op E. Uncouptable or

nondenuperable random varjabley, more commonly called contipuous random
variables, are real-valued functions whose functional values form uncountable
sets. The sets of numerical values produced by these functions can be wapped
one-tu-one into the set of all real uumbers. The outcomes of many
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measurement processes for realistlc physical situations are usually treated
this way (e.g., weigtt, length, time). Hvbrid random varjables must be used
whenever the functional value spaces contain various components (subspaces)
of different cardinglity. All sorts of combinations are possible. The
following hypothetical example represents a rather simple one.

Example 3.4

Consider the quantum mechanical problem of a particle
interacting with a finite potential well. We assume existence of

both bound and unbound states (solutions to Schrodinger's
equation). The hypothetical sampling process is that of
identifying which state the particle is occupylng at a particular
instant (although we realize that this ia physically impossible
according to the Heisenberg Uncertainty Principle). The allowed
states form an event space, and particle energy E is a suitable
representative random variable. It is a fact that the bound
(E < 0) states will be guantized (i.e., discrete), and,
furthermore, that there are a finite number of them in this
gituation. The unbound states are uncountable; thus, the allowed
energy values form a gcontipuum with (0 ¢ E < %), In this example,
particle energy is a hybrid random variable, since its allowed
domain involves discrete values and a continuum region. Note that
in this =xample the cardinalities of the event space (states) and
the corresponding random-variable descripton (particle energy) are
the same.

Not all events of practical interest can be characterized by the use of

single random variables. An extension to multi-dimensional random varjables,
more commonly referred to as joint random variables or random vectors, is

required. In practice, the number of required parameters is finite. Thus,

we consider as an p-component random variable the collection of real-valued

functions (Fl....Fn) having the property that when they operate on event e in
E, they produce the array of numerical values (fl....fn). according tc the
rules Fl(e) = fl....Fn(e) = fn. For convenience, we use the vector notation

F = (Fl....Fn), f = (fl....fn). and E(e) = f. Previously discussed concepts

of dimensionality carry over to multi-component situations in an obvious way.
Clearly, arbitrary mixtures of discrete and continuous random-variable
components (hybrids) are also permitted in multi-dimensional problems. The
essential feature is that well-defined relationships must exist.

The reader should surmise from the preceding discussion that the notion
of random variables serves as a convenient aid in the numerical specification
of events. By designating functional relationships between event space and
corresponding spaces of numerical values, one avoids having to list tables of
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numerical values explicitly and thereby gains the possibility of wutilizing
many useful features of real-valued function theory.

3.3 Random-Variable Fupctions

We have seen in the previous section that random variables are
essentially "well-behaved” functions which operate on event spaces and yield,
in a well-defined manner, real-number values that serve to unambiguously
identify events. Thus, for instance, if E is an event space with elements e,
and X is a random variable which serves to characterize E, X generates a new
space S of real numbers x = X(e) which acts as an image of E. An important
point, first made in Section 3.2, should be reemphasized here:
Transformation from an event space to an image space containing real numbers
enables numerical analysis to be performed. In this section we focus on
random variables., such as X, and their domajns, such as S, but remain
cognizant of the fact that they are really surrogates for the more
fundamental event spaces that they represent. Generalization of this concept
to joint random variables is straightforward.

Once the image space of real numbers is established, we are free to
define functions on this space. Henceforth, we will usually bypass the
previous practice of distinguishing function nemes from functional values by
uring lower case letters for values and capital letters for functions, though
we may occasionally resort to this formal convention. Rather, the
distinction will either be explicitly stated or assumed to be apparent from
the context of the discussion. In this presentation, we will be interested
in three special classes of functions of random variables. The distinctions
are based mainly on their roles in the theory. We begin the discussion of
these here and resume it in Chap. 6 and in later reports of this series.
Since we wish to perform analysis using these functions, they must be
“well-behaved” to the extent necegssary to permit such mathematical operations
to be undertaken as may be required in a particular application, e.g.,
differentiation or integration. Mathematicians labor over such matters, but
we will generally be able to avoid detailed technical consideration of this
issue because those functions of random variables which interest us for most
practical applictions tend to be well-behaved; otherwise, they would not have
been found to be useful in the first place. The interested reader will find
extensive discussions along this line in certain of the listed references
(e.g.. Fis 63 and Zeh 70). Generally, the functions to be considered will be
bounded and devoid of gingulapjtiey. Discontinujtjes, which play havoc with
differentiation, are not uncommon, so care is required in this regard. There
is also be a frequent need to construct augmented spaces. For example, if a
function f of a random variable Xx is physically defined only over the

interval (xmin'xmax)' it may be useful to augment the space to (-, o),

namely, the set of all real numbers, and simply provide { with a dummy value,
e.g. zero, outside the intended range. When this iy done, discontinuities
may be introduced, and they have to be handled with care.

We now state a fundamental fact without technical elaboration:
Functions of random variables can also serve as random variables, provided
that they are suitably well-behaved. However, not all functions which we
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will choose to define on random variable spaces are intended to serve as
random—-variable functions. This point may seem trite, but its consequences
are of great importance to the theory. From a physical point of view Lthis
represents a very reasonable state of affalrs. One would expect that one
could define quantities which would be distributed in statistically
predictable ways by the operation of well-behaved functions on random-
variable spaces. That this in fact can be done is, for example, essential to
the notion of error propagation. It also enables statistical analyses to be
performed using specially defined functions that are referred to as
statistics. This topic will be addressed in later reports in this series.

Although we will not make any use of it in this volume, it ia worthwhile
for one to be aware of the notion of an jndicator fupciion for random

variables x belonging to set A. The findicator function IA is defined as

follows: IA(x) =0 if xe¢ Ebut x ¢ A, Il.e., if x € K; however, IA(x) = 1 if

Xx€ Eand xe A, i.e., x € A. Thus, given E and A e E, [A maps every point

in E into either 9 or 1, depending upon whether or not x e A. Indicator
functions are sometimes useful in proving theorems from prebability theory.

The three classes of random-variable functions to be emphasized here

cover most sitwations of applied interest. For lack of a better word, we
refer to the first category as r - i or transformation
functions. These functions are intended to represent certain quantities,

derived directly from cther random variables, which correspond either to real
physical parameters or to abstract ones which behave randomly and serve
useful analytical purposes. The random-variable arguments for these
functions can be discrete, continuous, or hybrid in nature. The simplest
case might be represented by y = f(x), in which the space X of real values x
is mapped into an jmage space Y of real values y by the function f. In many
instances, f will be sufficiently well-behaved so that there exists an

inverse function, g = 1. with the property that all points of y in Y can be

mapped one-to-one into equivalent points x in X. Such one-to-one mapping,
with the existence of an inverse function, does not exist for all types of
random-variable functions we will be interested in, so the reader must not
assume its validity a priori. In the most general case, such a

transformation can be represented by the mapping of vectors x = (xl....x").

belonging to an n-fold space, X, into vectors y = (y .ym). belonging to an

1
m~fold space Y, by means of a set F of m functions (fl,...fm). Thus,

yi = fi(i) for i = 1,m, or equivalent § = f(i).
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Consider again the sample collection described in Example
3.2. Let d represent diameter, t represent thickness, and m
represent mass. There is a functional relationship between these
parameters, namely, m = m{(d,t;0). Here, as is commonly done, we
allow m to reoresent both the random variable (a function) and a
typical value. The density p iy assumed to be constant., Since it
is not treated as a random variable like d and t, we choose to
separate it from them by a semicolon. For simplicity, we suppress
p and write the function m as

m(d,t) = npd°t/4

A

te<t

Thus, for d1 < d < dz. and t1 < <L, we have

2 2
npd1 t1/4 < mg npd2 t2/4

The random variable m is treated as derived In this example, but
it can a2lso be directly measured (i.e., it can be deduced from the
sampling process called weighing). The function m of d and t has
no well-defined inverse in that knowledge of m does not yield a
unique pair (d,t). This is consistent with the common sense fact
that a measurement of the mass cannot provide unambiguous
information about the sample geometry. Knowledge about d, t, and
P provides us with a far greater understanding of the pature of a
particular sample than does the weight alone.

Data anulvsis or data reductjon generally involves transformation from
one collection of random variables to a lesser number of derived quantities.
Inverses usually do not exist. Such transformations generally lead to loss
of information. This is illustrated in the following example.

Example 3.6

Neutron cross sections are significant abstract parameters
which are not directly measurable. For a simple hypothetical
experiment, the cross section o is a random variable derived, for
example, from the following measurable random variables: Observed
yield y, neutron fluence ¥, and sample atoms n. Thus, g =
ag{y.¥,n) = y/(¥n). It is evident that if only the cross section o

is given, we can say nothing about the experiment that produced
it.
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We turn our attention next to two classes of functions, involving random
variables, that serve entirely different purposes. These functions cannot be
interpretated as “"random-variable functions” in the sense described above.
The first of these classes is that of depgity functions. Density functions
involve transformations from single or joint random-variable spaces to
subsets of the set of all non-negative real numbers. Density functions are
not intended to represent observables, or even certain abhstract parameters
somehow related to physical ones (e.g., cross sections). We shall see that,
in fact. they are generally used in the quantification of probability. Sioce
we have not yet introduced the notion of probability, this class of functions
will not be discussed here in a probability context. The arguments of
density functions can be discrete, continuous, or hybrid random variables.
The term mass function is sometimes used to designate density functions with
discrete arguments, since these are not true density functious. For
convenience, we will use “"density function” to demote bhoth. Thus. for the
single-variable case we have f operating on x to yield f(x). Given f and a
discrete collection of values (xl.xz....). one obtains the set of

corresponding mass values (f}.t ). For continuous-variable situations,

PR
., ¢ x <X . then for each x a corresponding density value f(x) is

min max

generated.

il x

Example 3.7

A function f, defined for random variable x such that

f(x) = ¢ (a constant) for each x in the range x . ¢ x <X . . is

called a congstant densitv function. We could easily augment the
range of f to encompass the domain of all real numbers by
declaring that f(x) = 0 for < { x < xnin and x.ax < x { +%, Note

the discontinuities which are introduced at x = x ., and x = x
Rin max

by this procedure.

Density functions involving several random variables are called

multivariate or _joint dengity functions. If x represents the random

variable collection (xl....xn). we speak of f12 n 2% 2 joint density

function with functional values rla...n(xl""xn) or f12...n(x)' Unlike the

situation for transformation functions, arrays of density functions are not
defined. They are always scalar quantities.

Density functions are employed in conjunction with another class aof
functions of random variables calied distribution functions. In fact,
distribution functicns are often defined in terms of corresponding density
functions. 1In the following discussion, it will be assumed for convenience
that the random-variable spaces are augmented as needed in order to be
equivalent to the set of all the non-negative integers or to the set of all
real numbers. If x is a single random variable and f is a density function,
then the corresponding distribution function F is defined as
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Flz) = B, f(x), (3.1)

if the domain of x is discrete, or
F(z) = fim £(x)dx (3.2)

if the domain of X is continuous. Referring to Fig. 3.2, for instance, the
values of F corresponding to a particular z are equivalent to the shaded
areas in Figs. 3.2(a) and 3.2(b), respectively, for a discrete and continucus
case. Owing to the non-negative nature of depsity functions, and to the
definition of distribution functions, it holds that F(z) > 0 for all z, and
F(zb) > F(za) if zy, > Z,. The reader ought to realize that the term

"distribution function" is frequently used interchangeably with “density
function."” In fact, we will sometimes do this in the volume, in conformance
with standard practice. The distinctions indicated above must be kept in
mind, however.

Extenstion to multivariate situations is straightforward. The

distribution function F12 a associated with a continuous joint density

function f12...n is defined as

Z 4
= (! n
Fio o (2ge--02)) = Iqwdxl...[_mexn PP COPRRRE N B (3.3)

A continuous density function is said to be upiformly well-behaved over a
given space of values (zl....zn) if the following relationship exists between

it and its corresponding distribution function in that region:

n
3F o  al2pr--eez MOz 2z =1, (z,....2) (3.4)

Density functions are said to be factorable in the variable X if there

. s i,
exist two functions fi and f12...1—1.i+1....n such that
B2, af%preoxy) =
PN TS S PO NP CEEEL YUCTL I VOLEREL Y B (3.8)

It is readily shown that the corresponding distribution function is also
factorable; thus,

Fla. alZpeee2y) =
Fi(zi)Flz...i-1.1+1...n(zl'"'zi—l'zl+1""zn) . (3.6)
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Figure 3.2(a}): Histogram represents a discrete density (or mass) function
fi = f(xi). Shaded area represents the corresponding

distributfion function F(z) = x%z f(x).
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Eigure 3.2(b): Curve represents a continuous density function y = f(x).
Shaded area represents the corresponding distribution

functlion F(z) = ffmf(x)dx.
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where

Z.

Fi(zi) = Iq; fi(xi)dxi' (3.7)
and

12...8-1,0+1, . ..at%1 B o1 B e o2y

Z Z z

J'_:; dx, .. J’_:;-l X, _, j’_;ﬂ dx;

j'zndx £oo0.., (RyvevoX o X 1uuuX ). (3.8)

w N1 i-1,2¢1,...0°71 I-1,7i+1 n

The factorability of distribution functions turns out to be an important
issue when considering marginal probability and independence.

Finally, we note that probability theory deals with pormalizabie density
functions having corresponding distribution functions which are bounded.
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4. BASIC CONCEPTS OF PROBABILITY

The preceding chapters of this report serve to introduce the reader to
certain basic concepts and mathematical tools which are essential for aa
understanding of probability theory. In the present chapter we come to grips
with the concept of probability itself. Analogous to the approach used in
Chap. 2., we begin in Sec. 4.1 with an intuitive discussion of probability.
This is followed by a more technical exposition in Sec. 4.2. Finally, in
Sec. 4.3, we conzider some of the techniques wused in probability
calculations. This development emphasizes probability as it applies
explicitly to event spaces. In Chap. 5, probability is considered in terms
of density and distribution functions which operate on random-variable
spaces. This exposition also strives to prepare the reader for the next
report in this series, in which the relationship between probability theory
aad data uncertainties will be elucidated.

4.1. Intwitive Approach

Readers of this report will have come to realize by now that this
exposition has, to this point, avoided discussion of the central concepts of
probability theory. focusing instead on prelimirary matters. This approach
is intentional. In my opinion, many expositions on this subject tend to
thrust the main ideas of the theory upon the reader before undertaking to
provide the mathematical "infrastructure” needed for them to be properly
assimilated. Automotive entliusiasts will agree that a sophisticated engine
requires a carefully designed and adjusted chassis, an aerodynamic body, an
efficient fuel and air delivery system, etc., in order to manifest its true
capabilities. Of course, once the supporting components of a vehicle are in
place, its heart, the engine, must then be installed. We proceed in this
section to bring the theory of probability to life by adding to it the
central working concept, namely, the notion of freguency of occurrence of
certain well-defined attributes in random sampling from simple-evenl spaces.

The following example illustrates informally whal is meant by frequency
of occurrence, and it explures the link between this concept and some other
previously-discussed notions.

Example 4.1

Consider an electromagnetic isotope separator. We place 100
mg of chemically pure elemental copper in an ion source and set
the machine into operation. This separator is assumed to poussess
a well-established collection efficiency that is arbitrarily taken

to be 1%. During operation, individual atoms of copper are
randomly extracted from the ion source and injected into the
separatoer. A particular copper atom, once released from the

source material, is either effectively lost (99% of the time) or
makes a successful journey to one of two collectors (1% of the

time). Copper in elemental form has two isotopes, 63Cu and
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65Cu. For successful journeys. it is assumed that 63Cu atoms
always go to Collector No. 1. while, analogously, 650u atoms go to
Callector No. 2. After 10 mg of the source material (10%) have
been processed, the contents of Collectors No. 1 and No. 2 are
weighed and it is found that Collector No. 1 contains ~ 70
micrograms of copper and Collector No. 2 contains ~ 30 micrograms
of copper. Correcting for lsotopic mass difference, it is noted
that this result is consgistent with the kinown natural isotopic

abundances (Tul 85): 63Cu (69.17 + 0.02%) and 650u (30.83 +

0.02%). -

Let us examine this process in terms of the ideas developed
so far in this repert. The random sampling process is clearly the
extraction of individual atoms from the muss of material placed in
the 4eparator ion source. Each individual atom extracted
represents a simple event belonging to a sampling space. Our
particular sampling exercise produces a sample equivalent in size
to ~ 10% of the entire sample space. In this instance the sample
is large enough to serve as a population which is representative
of the entire sample space. The observation itself consists of
identifying whether a ﬁarticular extracted atom (simple event) is

630u or 65Cu. and whether or not it makes a successful journey
through the separator to a collector. If the journey through the
separator is indeed successful, then it is essentially
predetermined by the design of the instrumentation as to which
collector will receive a particular isotopic species. 1In reality,
we do rot observe the outcome of individual atom extractions.
That would be impossibly tedious. Instead, we weigh the collected
material and indirectly deduce the total numbers of each isotope
which have made a successful journey. We therefore :re led to
consider compound events, defined according to the two particular
attributes which are of interest to us. Each compound event is a
subspace of the entire gpace of simple events, and each such
subspace contains a huge number of simple events.

The compound events can be identified by two random
variables: mass number (A) and transit history (H). Thus,
coppound events (A.H) are: (63,0), (63,1), (65,0), (65,1), where
H=0 (failure) or 1 (success). A and H are joint random variables,
as described in Chap. 3. The transit success-to-failure freguency
ratjg for any particular sample (collection of extracted copper
atoms) is determined by the efficiency of the separator. An
efficiency of 1% implies that for a very large number of extracted
atoms, about 1 out of every 100 will reach a ccllector. However,
for a particular sample of small size, the observed success-to-
failure ratic could be quite different from 1/99: In this
example, however, the sample we have taken is a substantial
portion of the entire event space, so it happens that the observed
succesy-to-failure ratio is essentially indistinguishable from the
1/98 value characteristic of the entire space. Likewise, the
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observed frequency ratio for isotope type of the extracted atoms
will reflect the underlying isotopic abundance of elemental copper
whenever the sample ig large., as is the case here. That
frequencies of occurrence of certain well-defined outcomes from
sampling in fact tend to converge toward the underlying features
of the entire sample space, as the size of the sample becomes
large, is an observed fact of random phenomena in Nature. It
would certainly have been pointless to develop a theory of
probability if matters had been otherwise. This is merely an
affirmation of our previously stated npotion of statistical
predictability. Figure 4.1 illustrates the current example. The
simple-event space of individually extracted atoms (shown
symbolically by dots) is partitioned according to attributes
labeled by A and H. The allowed (A,H) pairs are mutually
exclusive compound events. The final outcome (measured masses of
copper in each particular collector) reflects the fact that each
elementary event is equally likely in random sampling, and,
therefore, the likelihoods of the various defined compound events
are determined by [relative freguenciey with which elementary
events are observed to possess the specific defined attributes
that characterize the compound events in question.

The origin of probability theory as we know it today dates to the
seventeenth century in France. Chevalier de Mere was known to be an ardent
gambler. [t seems that he was baffled by some questions concerning a game of
chance which was then popular. He consulted the mathematician Blaise Pascal
who, in turn, wrote to Pierre Fermat. This correspondence led to the
earliest documented formulation of the theory. Great strides were made in
its development in the eighteenth century, particularly as a result of
contributions by Karl Gauss and Pierre Laplace. However, celtain conceptual
difficulties with the theory were not resolved until well into the twentieth
century. Growth in the application of probabilistic methods has been very
pronounced since the end of World War II, aided in no small measure by the
advent of the digital computer.

Modern probability theory is based upon a series of postulates.
Hewever, since these are consistent with the notion of frequency of
occurrence, introduced earlier in this chapter, we choose to pursue the

frequency approach in this section and defer discussion of a more rigorous
basis for the theory to Sec. 4.2.

First, consider a finite space E of simple events el.ea....ei....en. At

the same time, define a sampling process which, for simplicity, consists of
selecting a single simple event from E at random. Accordingly, one defines a
scalar function P such that P assigns the value P(ei) to each event ei.

Furthermore, assume that P(ei) = 1/n for each ei in E. This assumption is

kncwn as the Equal-Likelihood Pogtulate. The implication is that all the
events of E are equally likely to occur when the sampling process is
executed. Suppose A is a compound event consisting of one or more simple
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63 65

Cu Cu
. (63,0) . . . .. . (65,0)
Failure
Success . .. (63,1) . . . . . (65,1)
Figure 4.1: Event space for copper atoms processed by an isotope

separator. Individual dots symbolize simple events, while the
partition into various regions represent compound events.
Each compound event contains many simple events. See example
4.1.
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events of E which possess a particular attribute. To be definite, assume

that A contains n, distinct simple events E. The complement A = E-A

contains n—nA events which by definition are distinct from those in A. The

function P, when applied to A and A, yields, respectively,
P{A) = nA/n and P(A) = (n-nA)/n.
Thus,

P(A) + P(A) = 1,

or equivalently, P(E) = 1. Likewise, P(¢) = 0. P(A) represents the ratio of
the number of simple events n, with attribute characteristic of A to the

total number of events n in E. The function P is the probabjilitv function,
or simply probability, associated with a particular sampling procedure and
particular event space E. It is very important to remember that the sampling
procedure and the event space upon which it operates must both be considered
in defining and calculating probability.

Example ¢.2

Consider again the situation defined in Ex. 2.3. The simple
events correspond to all of the distinct failure configuratiors
for a circuit board with four IC components. In this example we
concluded that there were 16 such configurations to consider (see
Table 2.1). Under the category "Possibility A," we also defined
five mutually exclusive compound events, corresponding to the
particular attribute "number of defective [C components on the

board". One of these compound events is "three-bad-component
failure mode". According to Table 2.1, this compound event has 4
simple events associated with it. Thus, the probability of

observing a "three-bad-component fajilure mode" when examining the
board is 4/16, or 0.25, provided that all simple events are
equally likely to occur.

For a finite sample space and a well-defined sampling rule, the
definition of probability for various compound events belonging to the
associated Borel field is unambiguous. The postulate of equal likelihood is
almost universally assumed in applications, for this mathematical model
appears to apply to a very large class of random phenomena in nature. For
example, modern quantum theory relies very heavily on this postulate, since
it is largely a statistically based theory. In those instances where it
might appear to not be valid, it is generally possible to restore its
applicability to the problem in question by seeking an alternative and more
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fundamental definition of the simple-event space. It mest not be forgotten
that by definition each simple event must be unique, and therefore mutually
exclusive from all other simple events of the sample space.

Difficulties can and do arise in probability analyses with finite sample
spaces, owing to the fact that sampling from a finite space perturbs the
nature of the space, unless the selected event e is "replaced” before

undertaking subsequent sampling. The attendant problems do not reflect a
falal flaw in the theory, however, for they can be handled by being very
careful with the counting procedures. The fundamcntal importance to
probability theory of the counting rules discussed in Chap. 2 Is now very
evident.

Many applied problems require a mathematical model in which the sample
space has such a large number N of simple events that it can, for all
practical purposes, be considered infinite. We then run into a bit of a
problem in defining probability in the manner discussed above. The
probability of each simple event, 1/N, is vanishingly swmall. In situations
involving such large spaces, we are hardly ever interested in the probability
of individual elementary events. Instead, we are concerned with the
probability of occurrence of some attribute, i.e., with a compound event.
Unler these conditions probability can be conveniently envisioned in terms of
observed frequency ratios. Assume that a sampling procedure is repeated a
finite number of timeu, n, on an event space with a very large number of

elementary events (n << N), and that for nA of these times compound event A

occurs. The frequency ratio f(nA.n) = nA/n is clearly observable and,

furthermore, tends to converge with increasing n. Therefore, we choose to
interpret as the probability P(A) the following limit:

P(A) = ¢im f(nA.n) . (4.1)
e

Definition of probability according to Eq. (4.1) is considered to be
unsatisfactory by most pure mathematicians, so they have elected to establish
a theory of probability based on a minimal number of postulales, as discussed
in Section 4.2. It is understandable that they should feel this way. In
order for the limit indicated in Eq. (4.1) to exist, it must be proven that
for any real number €, no matter how small, there exists an integer m such
that for all n > m, |P(A) - f(nA,n)l < €. In fact, there is no way to prove

that such a contention is always true for random phenomena, though there is a
growing body of evidence to the effect that many natural processes do seem to
behave in this way. In any case, the notion of freguency, or relative
frequency, leads to what is known as g pogsterjori probability, namely a
probability interpretation closely linked with experimentation. Even so,
there remains the unresolvable dilemma that the assumption of equal

likelihood for simple events is equivalent to acceptance of an a prjori or
postulated probabjlity which can never be tested directly.
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Example 4.3

The issue of the isotopic abundances of 63Cu and 650u in

elemental copper, first discussed in Ex. 4.1, illustrates the
manner in which the frequency notion of probability plays a role
in the de.elopment of knowledge through eiperimentation. First,
we take as premise that even if the universe is accepted tc be
finite, so crat at apy instant there exist well-defined values for

the numbers of 63Cu atoms (N63) and 65Cu atoms (N65), it would be

impossible to determine these numbers. We are actually quite

certain that both N63 and N65 change with time (primarily via

creation and destruction through nuclear reactions in stellar
environments). What really concerns us is the relative abundance
of these gpecies on the pianet Earth, an environment which we
accept as reasonably stabie (i.e., relatively "“cold" from a
aueclear point of view) and uniform (ingofar as Lhe isotopic
constituency of the distributed elemental copper is concerned).
Even then, explicit counting of all the copper on Earth is
impossible, s0 we resort to examining finite samples of this
material . Such samples are still of enormous size if we consider
each individual atom to represent a simple event. Examination of
a mass w of elemental copper with an isotope separater yields
63 65

isotope value We3 and Wes for Cu and ~ Cu, respectively. Let m,

Mag® and m be the atomic masses of elemental copper, 63Cu and

€5
65Cu. respectively, n, Nea and Ngs be the tbtal numbers of
elemental 63Cu and 65Cu atoms, respectively, given that w is the
total sample mass. We are then led to assume, from an application
of Eq. (4.1), that

63 .
P( " "Cu) =~ n63/n e \mwﬁa)/(meaw)
and
65
P("Cu) = (nwﬁs)/(mssw).
63 65 . . .
Our knowledge of the Cu and Cu isotopic abundances is

distilled from numerous such determinations, yet they are not
known exactly. Regardless of future attempts at refinement, they
will never be perfectly determined, not only because of the
finiteness of the measured samples, but also because of
measurement (sampling) imperfections.
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The preceding discussions focused on consideration of a single compound

event A. However, suppose that several compound events Al’Aa""Ar are

considered, and that they are pairwise mutually exclusive, i.e., that
= i# j:1,r).
Ap X Ay ¢ (i # j:l,r)

Eq. (4.1) is applicable in that P(Ai) is defined as the limit of the ratio

nAi/n for very large samples n. If we define

i.e., as the union of all these events, then

r

P(A) = Z P(A.) . (a4.2)

. i
i=1

If the events AI'AZ""AP form a partition of E, then

and we have P(A) = P(E) = 1. Pairwise exclusivity is absolutely essential
for Eq. (4.2) to be true. That is, if a simple event in E belongs to Ai' it

cannot belong to another Aj {j # i). Section 4.3 discusses procedures for

calculating probabilities of compound events which are not mutually
exclusive. Knowledge of the rules of Boolean algebra, as discussed in
Chap. 2, is essential for handling such cases.

The rules for probability calculation are meaningless unless one is

dealing with stable, well-understood event spaces. We alluded to this
condition in Ex. 4.3. In applications of probability theory (e.g., in
experimental measuremnents), great care must be taken to perform

investigations under controlled, reproducible conditions if one hopes to
extract meaningful results. This is illustrated in the following example.

a e 4.4

There are good reasons tu believe that the isotopic

63 65
abundances of Cu and “’Cu in elemental copper are quite uniform

throughout the planet Earth. Consequently, in measurements of
these abundances. we can focus attention on good separation
procedure and nol worry about the material itself. What about
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determination of the 6Li and 'Li isotopic abundances for elemental
lithium? Here we have to be very careful to obtain documentation
on the exact history of the batch of material on which an intended
measurement of “npatural"” isotopic abundance is to he performed.
During the last several decades, extensive separation work on
lithium material has been undertaken in conjunction with various
nuclear-energy programs. Some partially separated lithium

material (generally partially depleted in 6Li) has worked its way
back into commercial inventories. Much the same can be said about

boron, where 10B and 11B isotopic ratios have been seen to vary in
supposedly “"elemental” material.

In summary, we see that probability theory offers a mathematical model
which has been shown empirically to be applicable to the analysis of random
phenomena. In Nature, frequency of occurrence of events in random sampling
from event spaces is seen to be conceptually equivalent to what is defined as
probability in the theory. However, in the theory itself, probability is
postulated in terms of abstract functions operating on well-defined event
spaces, thereby avoiding the amhiguities attendant wpon the concept of
frequency. The notion of experimental error or uncertainty is intimately
related to the ohservation that repeated experimentation under supposedly
weil-controlled conditions inevitably leads to a sequence of unpredictable
cutcomes. Obviously, there exists a link between error and probability.
This issue will be addressed formally in the second report of this series.

4.2 Axiomatic Approach

The challenge that faced mathematicians from the outset was that of
developing a theory of probability which would not only be rigorous and
consistent with other branches of mathematical theory, but would also apply
to many observable situations. That is, the theory had to conform to the
empirically deduved behavier of random phenomena. This was not an easy task,
and its pursuit has generated vigorous disputes over a variety of conceptual
and Jlogical problems, some of which rage unsettled to this day.
Nevertheless, for most applied purposes, the foundations of probability
theory are now considered to be in acceptable form.

Consider an event space E. For convenience we first assume that f{t
contains a finite number of simple events. Let A and B be two events
belonging to E (either simple or compound events). Quite remarkably, it has
been formally demonstrated that the complete theory of probability can be
derived from the following three axioms attributed to A. Kolmogorov:

Axiom [: To each event A ¢ E there is a non-negative number P(A), its
probability. Thus, P(A) > O.

[Existence].
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Axiom II: The certain event E (entire event space) has unit probability.
Thus, P(E) = 1.

{Nermalization].

Axiom III: If A and B are mutually exclusive events, that is if
A X B = ¢, then the probability of the union (or sum) of A and
B 1s given by

P(A + B) = P(A) + P(B).
[Additivity].

These axioms are entirely consistent with the observable behavior of
natural random phenomena, as is shown in Table 4.1. However, they in no way
tell us how to go about actually calculating probability. For present
parposes, the now-familiar Equal-Likelihood Postulate provides us with the
calculational tool we require:

Postulate: [(Equal~Likelihood Postulate]
If E is a finite space of simple events, and A ¢ E, then

P(A) = %%%% , (4.3)

where N(E) is the number of elementary events in E and N(A) is the number of
those events with attribute A. An equivalent way to express this postulate
is to say that the probabilities of all simple events of E are equal and have
the value 1/N(E).

In building a theory from the basic axioms, one must be very careful to
avoid certain logical pitfalls. For example, if A ¢ E and P(A) = 1, one
cannot surmise thal A = E from an application of Axiom II. It might-happen

that A # ¢, yet P(A) = 0. This state of affairs is entirely consistent with
both Axioms I anl II. However, it is possible to logically deduce a large
number of valld corseguences from these axioms. A few of the important
theorems will now be stated, mostly without proof.

Iheorem: The impossible event ¢ has zero probability, however, the converse
is not true.

Iheorem: If A e E, then
P(A) ¢ 1 . (4.4)

Theorem: If Ae E, then

P(A) = 1 - P(A) . (4.5)
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Table 4.1 Equivalence Between Axioms of Probability Theory and
Intuitive QObservations

intuitive Observation Axiomatic Equivalent
The frequency of occurrence of random For each A ¢ E there is a
events with a particular characteris- value P(A), called its
tic oscillates around some fixed value probability, such that
when the number of trials becomes P(A) > O,
large.
If every possibility which we might The probability of the
sample is endowed with the same sure event E is unity.
characteristic, we can be 100% cer- Thus, P(E) = 1.

tain that any individual trial will
produce this characteristic.

. There is an additive property in the If A¢ E and B¢ E, and
frequency of occurrence of exclusive AXB-= ¢. then
random events. P(A + B} = P{(A) + P(B).
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Theorem: 1f Ae¢ E and B € E, then
P(A x B) ¢ P(B).
Theorem: |Poincare Law of Probability Addition]
If A€ E and B e E, then
P(A + B} = P(A) + P(B) - P(A x B) (4.6)
The proef is straightforward. We first note that
A+B=A+ (B~ AXB)
and
B=AxB + (B -AxB).
Furthermore, it happens that the particular events A and B - (A x B) are
mutually exclusive, as well as are A X B and B - (A x B). The reader might
find a Venn diagram such as Fig. 2.8 useful ln visualizing these results. An
application of Axiom III yields
P(A + B) = P(A) + P(B - (A x B))
and
P(B) = P(A x B) + P(B - (A x B))

The theorem is then proved by simple algebraic manipulations.

The following three theorems are closely related to the preceding one:

Theorem: {[Boole's Inequality]
If A€ E and B e E, then, in general
P(A + B) < P(A) + P(B) (4.7)

To prove this, we refer to the Poincare Law of Probability Addition, namely,
that

P(A + B) = P(A) + P(B) - P(A x B)
Now,
AX Be E ;
thus,

P(AX B) 2 0

by Axiom I. A simple application of algebraic rules for inequalities proves
the theorem.

The preceding two thearems can be generalized to a finite collection of

events in E, namely, A Az An'
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Theorem: ([Generalized Poincare Law of Probability Addition]

n n n
P(EZA )= ZP(A) - z P(A X A )
k=1k k=1 kl.k2;1 k1 kz
(k1< k2)
n
* z F(Ak x Ak x Ak ) +
kl.kz.k3=1 1 2 3
(k1 < k2 < ka)
n+l n
+ (=-1) P(m Ak).
k=1

Theorem: [Generalized Boole's Inequality])

n
P(ZA) ¢
k=1 & "k

M2

P(A)
1 k

B

The following theorems are also useful:

Iheorem: If Ae¢ E and B ¢ E, then

P(A - B) = P(A x B) = P(A) - P(A x B).

Refer to Fig. 2.8. [t is evident that
A-B=AxB,

A=AxB~+AxB,

and furthermore that

(AxB) x (AxB)=¢.

Thus,

P(A) = P(A x B) + P(A x B).

Note that if B € A, then

Ax B-=28
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and
P(A - B) = P(A) - P(B).

heorem: If AI'AZ"" An all belong to E and are pairwise mutually

exclusive, then
n n
P(Z A) = ZPA) . (4.10)

k-1 & k=1 K

This thzorem is a special case of Eq. (4.9), Boole's Inequality.

Theorem: If Al.Az....A" foriv a partition of E, then
n
P(Z A = 1.
k=1 K

This theorem is proved by noeting that

from the definition of a partition. Then Axiom II can be applied.

Iheorem: If AI‘AZ"“An form a partition of E, and B € E, then

n
P(B) = Z P(B x )
k=1 Ak

Extension of the theorem to include denumerably infinite sequences of

subsets Al'Aa“" is relatively straightforward. This is generally

accomplished by amending Aiiom III as follows:

xio II': If E has a denumerably infinite number of elementary events,

and Al'Az"“ is a denumerably infinite sequence of pairwise

mutually-exclusive events of E, then

o0
{Z A ) = Z P(4A,)
k=1 & k=1 K

8

This augmented version of Axiom III allows us to prove theorems such as
the following:
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Iheorem: If AI'AZ"" is a nundecreasing sequence of events in E, and

then
P(A) = &¢im P(A))
k-0 *

Theorem: If AI‘AZ"" is a nonincreasing sequence of events in E, and

A=A,
k=1 k

then

P(A) = tim P(Ak)
| ST

The reader who wishes to pursue the development of other theorems based
on the axioms of Kolmogorov can refer to one or more of the textbooks given
in the bibliography, e.g., Par 60, Fis 63, Tuc 67, and Zeh 70.

Another notion which proves to be very useful on occasion is that of
marginal oprobabiijity. If the accurrence of an event can be classified
according to multiple criteria, then the term marginal probability is used
whenever one or more criteria are ignored in the classification. Suppose
Al....An:Bl....Bm; and Cl....Ce are three partitions of E. They represent

three different classifications. The marginal probability of Ai and Ck is

P(Ai X Ck) = _g P(Ai X Bj x Ck).
J=1
The marginal probability of Ck is
n m n a
P(Ck) = iil Jil P(A, x Bj x €)= iii P(Ai X Ck) = Jil P(Bj x C).
and so on.

If we move into the realm of uncountable event sets, matters become
somewhat more complicated. For a great many cases, most of the rules we have
established apply without difficulty. The essential point is that the event
sets must have well-defined measure and thus be probabilizable. These
difficulties can be regolved in the realm of measute Lheory, and the subject
is treated in some of the texts listed in the bibliography, e.g., Fis 63,
One obvious candidate for revision, when dealing with infinite event sets
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(c'r stable or uncountable). is the Equal-Likelihood Postulate. Eq. (4.3)
must be revised to read

P(A) =E{—%’ : (4.11)

where "M" designates a function which provides the appropriate measure of an
event set of the type under consideration. In particular, event sets which
are uncountably infinite, yet still probabilizable, are those where equally
likely simple events can be represented by points in continuous random-
variable spaces, while compound events are represented by well-defined
regions in these spaces. Then, the measure of an event A, M(A), is simply

the “volume” VA of the corresponding finite region of the random-variable

space. Even if M(E) is infinite, it is still reasonable to speak of Lhe
relative probability P(A)/P(B) of two events A and B, if M(A) and M(B) are
both finite.

As previous indicated, the basic axioms of probability do not tell us
how to assign probabilities to events; they merely set forth certain
conditions which have to be met. A probgbjlity law is a specific functional
law which enabies one to calculate probability. At this level, the
distinction between mathematicians and physicists becomes very apparent.
Mathematicians tend to not concern themselves with the applicability of these
laws. They merely accept the laws as interesting functions and explore the
mathematical ramifications (deductive reasoning). Physicists, ou the other
hand, must discern which laws are applicable to various classes of observed
phenomena. They often have to guess at the appropriateness of certain
statistical laws, guided by experimentation and accumulated experience.
Knowledge evcelves from an initial position of ignorance (inductive
reasoning). Chapters 7 and 8 examine in detail some of the probability laws
which play a role in applied nuclear science.

The importance of the counting rules, first discussed in Chap. 2, stems
directly from the Equal-Likelihood Postulate. Many of the probability laws
applied in nuclear science can be derived from careful consideration of the
way in which compound events are formed from equally likely simple events.
This point was explored in Sec. 2.3. While the basic concepts of probability
are not so difficult to grasp, we have already seen that the techniques of
counting are difficult to master. Ash (Ash 70) describes the situation well:
"Multiple counting is the nemesis of the combinatorial analyst." A fitting
corollary to this principle is: "The physicist should likewise be on guard."

In most courses on probability the student is expected to Jdevelop skill
in probability calculation through the analysis of a variety of problems.
These exercises can be quite mind taxing, and they sometimes lead to rather
remuckable results which may surprise the inexperienced student. Here, I
would like to stress again that our objective is to understand uncertainties,
nul to become experts in probability analysis. We shazll avoid becoming
excessively distracted by this fascinating but decidedly peripheral topic.
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Nevertheless., it is desirable to exercise our understanding of some of ihe
concepts discuse-d so far in this chapter and in Chap. 2: We do this hy
reconsidering two of the earlier examples from a strictly probabilistic point
of view.

Mendenhal (Men 67) describes a procedure for calculating probability,
based on the sample-pojnt approach, which is worthwhile repeating here;

Step 1: Define the experiment.
Step 2: List the simple events associated with the experiment and test each
to make certain that they cannot be further decomposed. This

defines the sample space E.

Step 3: Assign reagonable probabilities to the sample points e in E, making
sure I FPF(e)=1.
eeE
Step 4: Define the event of interest, A, as a specific collection of sample

points. (A sample point is in A if A occurs when the sample point
occurs.} Test all sample peoints in E to locate those in A.

Step §: Find P(A) by summing the probabiiities of the sample points in A.

Mendendal (Men 67) stresses that combinational methods, such as those
discussed in Sec. 2.3, are pertinent to this procedure because they assist in
determining the total number of points in E, 1 well as those in A. When the
sample points are, for instance, assumed to be equally likely, summation of
the probability of the sample points in A, Step 5, can be accomplished by
couating the points in A and multiplying by the probability per sample point.

Calculation of the probability of an event by using the five-step
procedure described above is a systematic approach which will lead to the
right solution if all the steps are correctly followed. A major possibility
for error is introduced if one neglects to define the experiment clesrly
(Step 1) and thereby improperly <c¢pecifies the simple events (Step 2). A
second source of ervor is the failure to assign valid probabilities to the
sample points. The procedure becomes tedious (and, for all practical
purposes, unmanageable) when the number of sample points in E is large,
excepl, as indicated abave, in those cases where sets of sample points are
equally likely (or egui-probgble). When this occurs, summaiion can sometimes
be accomplished by uging the counting rules.

I have so far avoided discussing the link between probability and
uncertainty in rigorous terms, and will continue to do so for the remainder
aof this report. However, in the next report of this series I will pick up on
this topic in a formal way, as the necessary mathematical groundwork will by
then have been well established. In the meantime, I chouose to limit myself
to piquing the interest of the reader by dabbling in this general area in a
casual manner by way of the following two examples.



Exanmple 4.5

Let us reconsider the circumstances described in Ex. 2.3.
Now suppose that the experimenter chooses not to repair the
malrunctioning apparatus by himsclf, but instead elicits the
services of a professional repairman who will service the unit
under a maintenance contract for a fixed fee, regardless of the
problem. In establishing the cost for this service, one factor to
be considered is how many IC components will typically have to be
replaced for such a unit. We examine Table 2.1 and, assuming each
elementary failure mode to be equally likely, deduce the f:llowing
probabilities P(k) for compound events consisting of the failure
of k IC components (Possibility A): P(0) = 1/16, P(1) = 1/4,
P(2) = 48, P(3) = 1/4, and P(4) = 1/16. Note that

4
Z P(k) =1 ,
k=0
as required. Clearly, the most common failure mode 1s that

involving 2 IC components. Should the repair company figure its
service pricing on the basis that a typical failure involves 2 IC
components? We will eventually learn that the best choice, which
is designated as the expected value or the most-probable or
nost-likelv number of failures, turns out to be the weighted
average

4
<k> = Z k P(k).
k=0

In this problem, the answer is indeed <k> = 2. The nomenclature
<...> is a useful one for designating weighted averages of
observables. Such weighted averages always involve the applicable
probability function P.

We know that there is a gpread of possibilities for k
relative to the value 2, but how should this be quantified for
purpsses of uncertainty estimation? Again, we will formally
learn, in the following report of this series, that the yariance,

4
<(k-2)2> = Z (k—a)ap(k).
k=0

should be used for this purpose. The square rcot of the variance
proves to be a reasonable measure of the uncertainty in k, and it

is known as the s viatj of the probability
distribution. In this example, the uncertainty provided by this
measure is aprroximately 0.4. Practically speaking, the repair

company does not really care about the uncertainty in the tirue
cost of any individual repair job, but rather is ccncerned with

74



the uncertainty in the anticipated profits based on many such
repair jobs. Since the probability of a repair job requiring more
than 2 IC-component replacements is P(k»2) = 5/16, while the
probability of requiring fewer than 2 IC components is P(k<2) =
5/16, the same, it is clear that losses to the company due to IC
replacements exceeding the average 2 are generally cancelled by
enhanced profits for repairs involving fewer than 2 IC components.
It turns out that if the company repairs a great many such units
in a given fiscal period, the profit uncertainty due to this
effect will be very small.

Example 4.6

Example 2.10 provides the basis for an interesting physical
application of probability which clearly illustrates the procedure
of Mendenhal (Men 67). The elementary events to be considered are
three-particle configurations 1] lowed by the applicable

statistical laws, as illustrated in Figs. 2.14 - 2.18.
Corregponding to these are compound events with system total
energy as the distinguishing attribute. Under conditions of

thermal equilibrium, the elementary events do not have equal
likelihood, but are weighted relative to each other by the

r E/kT. where T is the temperature, E is

Maxwell-Boltzmanu Factor.

the ensemble total kinetic energy, and k is Boltzmanp's Congtant
(Mor 64). We assume that the particles do not interact with each
other. The probability function P which satisfies all the
necessary requirements must have the form

~-E/kt

P(E) = [N(E)e ] /2 , (4.12)

where

Z = £ K(E)e /Rt (4.13)

E

and N(E) represents the number of available elementary states
which have system total energy E (yee Table 2.3). In other words,
P(E) is interpreted as the probability that the ensemble of three
particles will have total energy E. Z is evaluated by summing
over all allowed states (see Table 2.3) and, in statistical
physics, is called a partition function (Mor 64). Specific
numerical calculations will obviously depend upon system
temperature, so we assume for demonstration purposes that kT = 3e.
The resulting probabilities for each compound event are given in
Table 4.2. The most-likely values for the ensemble total energy,
derived from the formula

<E> = Z P(E)E ,
E
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Table 4.2 Calculated Probabilities for Three-Particle Total-Energy
States. See Ex. 4.6%.

Ensemble Distinguishable

Total Maxwell- with Bose- Fermi-

Energy (E) Boltzmann Exclusion Einstein Dirac
0 0.0570386 Forbidden 0.168815 Forbidden
e 0.1226098 Farbidden 0.120961 Forbidden
2e 0.175708 Forbidden 0.173345 Forbidden
3e 0.209833 0.384937 0.186311 0.384937
de 0.180423 0.275819 0.133497 0.275819
S5e 0.129278 0.197633 0.0956551 0.1976323
Ge 0.0771934 0.141610 0.0685399 0.141610
Te 0.0331869 Forbidden 0.0327407 Farbidden
8e 0.0118897 Forbidden 0.0117299 Farbidden
9e 0.00283978 Forbidden 0.00840481  Forbidden
<E> 3.2878 e 4.0959 e 2.8488 e 4.09591 e

ARefer also to Figs. 2.14 - 2.16 and Table 2.3.

Certain ensemble

total-energy states are forbidden by the statistical laws, as indicated.
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are also shown in Table 4.2. However, since we are dealing with a
quantized physical system, we can never expect to actually observe
the ensemble to have any of these calculated values <E>.

Hopefully, the discussions and examples in this chapter will provide the
reader with an indication of the direction to be taken in the present
development of the subject of uncertainties. Uncertainty is evidently the
consequence of properties of the underlying probability functions which
govern physical pracesses, of the measurement procedures undertaken to learn
about physical phenomena, or both.
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5. CONDITIONAL PROBABILITY AND INDEPENCENCE

Probability, as defivned in Chap. 4, is quite limited with regard Lo many
important applications. In particular, it does not permit us to deal with
guestions having the general form: “What is the probabllity of B occuring if

we know that A has actually occurred?” Most realistic situwations invelve
such conditions (explicit or implicit), and outcomes based on probability
depend a great deal on whether these conditions are met or not. The

following example demonstrates this point.

Example 5.1

A Ge photon detector is employed, in a fixed geometry, to
measure gamma-rays emitted from a source. Under normal conditions
the detector is very stable, and the full-energy peak efficiency
is & for detection of a particular gamma-ray in the ccnfiguration
of the experiment. Let us suppose that the decay mean life 7 is
very much longer than the counting time t. ¥e observe N events in
the peak following a perticular count. We deduce that the
activity A of the source is A = N/(te). An important hidden
condition underlying this simple and very common situation is that
we have assumed that the detection apparatus was operating stably
during the entire counting time t. Just because it was operating
properly when we started the count and when we stopped, it does
not prove continuwity over the whole time interval. A careful
experimenter will instinctively review all the available evidence.
For example, if he notices that the electric cleck in the counting
room had the right time when the count was stopped, this is
convincing ecvidence that no  detrimental electric power
interruptions had occurred during the count.

In Chap. 2 it was indicated, in conjunction with a discussion of Borel
fields, that one had to consider event counting with respect to subsets in
order to deal with certain conditions that are imposed in probability
analyses. This matter will be explored further in thke present chapter. The
principal concepts are discussed from an intuitive point of view in Sec. 5.1.
Some formal aspects of the theury are then explored in Sec. 5.2. This aspect

of probability theory is known as conditional probabjlitv.

5.1 Intujtiv roach

Let us consider an event space E with ng elementary events. Let A and B

be two arbitrary events of E, with the sole restriction that probability
P(A} > 0. Now we return to the generic question posed early in this chapter:
“What is the probab.iity of event B, given the condition denoted as event A?"
We are immediately led \o consider the event B x A. However, the probability
P(B x A) is not the answer we seek. The space E very likely includes events
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for which A does npot oaccur, and the fg¢nction P is based on counting
passibilities with respect to the entire space E. To be precise, we should
denote P by PE' Then PE(B X A) is the probability that both A and B occur

given, that E has cccurred! This is clearly not what we are looking for. Wwe
must restrict our consideration te the subspace A, and define a new
probability function PA which has the property that PA(A) = 1. The answer to
our original question can now be obtained: ' It is PA(B x A). Here, PA is a
copnditional probability fupctiop in which occurrence of event A is the
condition which limity the range of possibilities we should consider among
thogse available from E. Normally, the subscripts are omitted, and PA(B X A)

is expressed in the form P(B/A). Note that "B/A" is not a quotient, hutl
designates tlie concept: "B given A". We must keep in mind that "P" is being
used to designate two conceptually distinct probabilities. What was labeled

as PE is called unconditional orobabjlity, or sometimew a priori probability,
while PA is called gonditional probabjlitv., or a posteriori probability with

respect to event A. The subscript “E" will wusually not appear in
representat ions of unconditional probability.

How do we calculate P(B/A)? Suppose "A

elementary events in E which belong to A. We require nA > 0. Furthermore,

nB and "B designate the simple-event measures for B and B x A, respeclively.

designates the number of

The frequency definition of probability tells us that

P(A) = nA/nE.
P(B) = nB/nE.

and
P(B x A) = nAB/nE

P(B/A) is therefore defined in the frequency sense by

P(B/A) = nAB/nA . (5.1)

Consequently, one is led to the general relationship
P(B/A) = P(B x A)/P(A), if P(A) > O, (5.2)

between the conditional probability P(B/A) and the unconditional
probabilities P(A) and P(B x A).

Furthermore, suppose that B is nontrivial and P(B) > 0. It is simple to
show the validity of the interesting, symmetrical faormula

P(B/A)P(A) = P(A/B)P(B) . (5.3}
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The reader may find it helpful to refer to the Venn diagram in Fig. 5.1 in
order to gain some insight concerning this matter. The following example
will serve to further acquaint the reader with conditional probability.

Example 5.2
The situation first discussed Ex. 2.3 provides an excellent
vehicle for illustrating the notion of conditional probability.

The elements which denote the event space E are listed in Table
2.1. Let Ai be the event that IC No. i fails (i = 1,4). Also,

consider evenis A1 X A2 and A1 X Aa X As. The simple elements of

each of these events are listed explicitly in Table 5.1, using

notation consistent with Table 2.1. Clearly, ny =N, =0, =0,

8, n12 = 4, and n123 =2 2 are the measures of these selected

compound events. If we treat all elementary events as equally
likely. then

P(Ai) = 8/16 = 1/2 (i = 1,4).

It is jntuitively reasonable that the probability for failure of
any particular IC component should be 1/2 in this example.

The prubability that both IC No. 1 and IC .. 2 fail is

P(A1 X A2) = 4/16 = 1/4.

However, the conditional probability that IZ No. 2 fails, given
that IC No. 1 failed, is

P(Aa/Al) = P(A1 X Aa)/P(Al) = (1/4)/(1/2) = 1/2.
Also, note that

P(AZ/AI)P(A1) = P(A1/A2)P(Aa) = (1/2) (1/2) = 1/4.

The probability that IC Nos. 1,2 and 3 fail is

P(A1 x A2 x A3) = 2/16 = 1/8.

However the probability that IC No. 3 fails, given that IC Nos. 1
and 2 failed, is

P(Aa/A1 X Aj) = P(A1 X Aa X A3/P(A1 x A2) = (1/8)/(1/4) = 1/2.
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Venn diagram illustrating the relationship between events A,
B, and A x B which are used to introduce the concept of
conditional probability.
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Table 5.1

Explicit Structure of Several Compound Events Formed from the

Elementary Events Defined in Table 2.1, See Ex. 5.2,
(B,.G,G,G) Aa: (G,B,G.G)
(B,B.G.G) (B,B.G,G)
(8,G6.B,G) (G.B,B,G)
(B,G.G,B) (G,B.G,B)
(8,B.B,G) (B,B,B,G)
(B.B.G.B) (B,B,6,B)
(B.G.B,B) (G.B.B,B)
(R,B.B,B) (B.B,B.B)
(G.G,.B.,G) A4: (G,G,G,B)
(B.G.B,G) (B,G,G,B)
(6,B.B.G) (G,B,G,B)
{G.G,B.8B) (G,G,B,B)
(B.B,B,G) (B.B,G,B)
(B,G,B,B) (B,G,B,B)
(G,B,B,3) (G,B,B,B)
(B.B.B.B) (B,B,B,B)
A1 X Aa: (B.B,G.G) A, x A2 X As: (B,B,B,G)
(B,B,B.G) (B,B,B,B)
(B.B,G,B)
(B,B,B,B)
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One interesting feature that emerges in this example is that
it looks as if

P(Ai/Q) = P(A;).

regardless of the condition Q. This happens because we have
postulated a scenario in which the probability of failure of any
particular IC component in no way depends upon what happens to the

gther IC components. When this is the case, we say thal the
events Q and A1 are gstochastically independent. We could also

demonstrate by examples that

P(A; X Q) = P(A;)PF(Q)

whenever Ai and Q are independent events of E.

Much has already been said about the concept of sampling. The term
trjal is usually used to designate one step among many in sequential sampling
exercises. We have also introduced the concept of an ordered k-tuple (Sec.
2.3). Imagine for a moment that we have a space E of simple events e. We
choose to perform k trials., with the proviso that no trial perturbs the
essential nature of the space E. This requirement can be satisfied if the
events are replaced after the trial or if E contains so many events e that it
remains effectively unperturbed by the k sequential trials. Urder thege
conditions, one must conclude that the outcome of any one of the k trials is
unaffected by the fact that there have been prior trials. Trials of this
nature are called jndepepdent trials. This notion is very important to our
understanding of uncertainty. For example, in the evaluation of nuclear data
it is quite often assumed that various data sets which are employed in an
evaluation result from independent experiments (independent triale).

Associated with E is a probability function P such that P(e) is the
probubility of e, and

Z P(e) = 1.
etk

The result of k trials is a collection of k outcomes which fcrm the ordered
k-tuple (an arrangement) (el.ea....ek). This particular arrangement can ba

considered as an event h belonging to the event space H consisting of all
possible k-tuples which could be formed from E with replaceaent. For
independent trials, one defines a probability function for H which is related
to that for E by the equation

k
P(h) = = P(ei) . (5.4)
i=1
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Once again we stress that two distinct probability functions, PE and PH' are

really invalved. but according to conventian the subscripts are omitted and
the space to which a particular probability function refers must be deduced
from the context.

The fallowing example illustrates the nction _f probability for a
sequence of independent trials:

Example §.3

Consider an experimental procedure in which the outcome is
either success (S' or failure (F). The event space E has two
events; thus E: {S,F}. The probabilities are assumed to be P(3) =
s and P(F) = £, with s + f = 1, Two independent trials are to be
performed. The event space H of possible outcomes has the form
H: {(S.8), (S.F). (F.8), (F.,F)}. Notice that (S§,F) and (F,S) are
distinct because H consists of ordered pairs. In accordance with
Eq. (5.4), we assume that the probabhilities for the qutcomes h e H

are:  (S.S8), s2: (S.F). sf; (F,S)., fs = sf; (F.F), f2.

Probability defined on H must satisfy the three axioms discussed
in Sec. 4.2. Clearly, P(h) > 0 for each he H, so Axiom [ is
satisfied.

P(H) = 32 + 2sf + 52 = (g r f)a = 12 =1,

so Axiom 11 is satisfied. Since all of the defined elementary
events he H are obviously mutually exclusive, any two mutually
exclusive compound evenls generated from them will satisfy the
additivity property, Axiom III. Thus, we see that probability as
we have defined it for the space of all pairs of outcomes of two
independent sequential trials, H, satisfies the required axioms
and also conforms with our intuitive notion of what the
probability should be.

We shall see in Chap. 7 that the trial procedure discussed in Ex. 5.3

belongs to a class of trials known as jndepepdent Bernoullj trialyg. Several
prebability functions that are important for applications evolve from
Bernoujli trials.

5.2 eoretical Approac

As indicated in Sec, 2.2, if E is an event space with a corresponding
Borel field Z, and if A € E and is nontrivial, that is if A # ¢ and P(2) > O,
then one can define a new Borel field Z' which is the collection of all
possible events of the form B x A, for arbitrary events B of E. The
conditional probability P(B/A) is formally defined for all these events
belonging to Z' by the expression
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P(B/A) = P(B x A)/P(A),
consistent with Eq. (5.2). In order for conditional probability defined in
this way to represent a valid probability function, it must satisfy the three
axioms discussed in Sec. 4.2. P(A) > 0 and P(B x A) 2 0, so Axiom I is thus
satisfied. A represents the sure event with respect to the Borel field Z'.
Furthermare,
P(A/A) = P(A x A)/P(A) = P(A)/P(A) = 1.
Therefore, Axiom II is also satisfied. Let B and Ce E, with
BxC=¢.
Then
P{B - C/A) = P[(B + C) x A}J/P(A) = P(Bx A + C x A)/B(A).
However,
(Bx A) x (Cx A) = (Bx A) X (AXC) =Bx (AXA)xC=Bx Ax C =
BxC)xA=¢xA=¢

from the rules of Boolean algebra, as discussed in Sec. 2.2. Consequently,
{B x A) and (C x A) are mutually exclusive. Therefore,

P(B x A + C x A)/P(A) = [P(B x A) + P(C x A)]/P(A) = P(B/A) + P(C/A).

Axiom III jis therefore satisfied, so conditional probability, as defined
above, is legitimate and applicable to every event in Z'.

There are many interesting features of conditional probability. A few
of these will be expressed below in the form of theorems.
Theorem: If Ae E with P(A) > 0 and Be E with P(B) > 0, then
P(B/A)P{A) = P(A/B)P(B),
consistent with Eq. (5.3.).

The proof invelves a trivial application of the definition of conditional
probability.

Clearly, P(A/B) and P(B/A) have different meanings, and they are equal

in value only when P(A) = P(B). This is also evident from the following
theorenm.

Theorem: If Ae E with P(A) > 0 and B ¢ E with P(B) > 0, and furthermore,
B e A, then
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P(B/A) = P(B)/P(A}

while P(A/B) = 1.
Some other useful theorems related to conditional probability are:

Theorem: [Chain Rule]
If A, B and C & E, then
P(A x B x C) = P(A) P(B/A)} P(C/A x B) {5.5)
Let Q = A x B: then
P(Ax Bx C) = P(Qx C) = P(C/Q)PIQ):
but
P(Q) = P(B/A)P(A).

The theorem :is proved by substitution.

Theorem: [Generalized Chain Rule]

If Ai e B (i = i,n), then

n n-1
P(i:1Ai) = P(Al)p(Aa/Al)P(Aa/Al X Aa)...P(An/izlAi) (5.6)

Iheorem: If A€ E and P{(A) > 0, then P(E/A) = 1.

Iheorem: 1If A and B ¢ E and P(A) > 0, then P(B/A) ¢ 1.

Note that E = B + B, so
P(E/A) = 1 = P(B/A) + P(B/A),

since B and B are mutually exclusive. However, P(H/A) > 0. Therefore,
P(B/A) < 1.

Theorem: If A€ E with P(A) > 0 and B ¢ E with P(B) = 0, then P(B/A) = 0.
B=BxA+BxaA.
Also, (B x A) and (B x A) are mutually exclusive. Therefore,

P(B) = P(B x A) + P(B x A).
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Since P(B) = 0, P(B x A) > 0 and P(B x A) » 0, it must be the case that
P(B x A} = 0. Therefore,

P(B/A) = P(B x A)/P(A} = N.

Theorea: [Poincare Law of Conditional Probability Addition]
If A. Band C& E with P(A) > 0, then

P(B + C/A) = P(B/A) + P(C/A) - P(B x C/A) . (5.7}

Theorem: (Rule of Total Probability]

Let Al""An be a partition of E with P(Ai) >0 (i =1,n). Then if

Be E,
n
P(B) = 2 P(B/Ai)P(A.) . {5.8)
. i
i=1
Now,
n
B= F Bx Ai'
i=1

and, from the discussion in Sec. 4.2 on marginal probability, we know that

P(B)

i

n
Z P(Bx A,).
. i
1=1

The theorem is thus proved from the definition of conditional probability,
namely,

P(B/Ai) = P(B x Ai)/P(Ai)'

Figure 5.2 shows the relationship between event B and the events A A

Y- SR
172 n
which form a partition of E.

The rule of total probability is useful if direct computation of P(B) is
difficult, whereas calculation of the probabilities P(Ai) and P(B/Ai) is not

so difficult. Although this is not the case for the following example, it
nevertheless does demonstrate how this rule can be applied.
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Examople 5.4

Let's reconsider Ex. 2.3. Referring to Table 2.1, we see
that one possible partition of the event space is a, (i = 0.4),

where "i" designates the number of IC components which fail. Let
B be the event that IC No. 1 fails. Table 5.2 summarizes the
pertinent parameters of this example and explicitly demonstrates
the application of Eg. (5.8) for evaluation of P(B).

The following theorem is of such fundamental importance to applications
of probability theory that Chap. 8 of this report is devoted to providing
examples and discussing related philosophical implications. The theorem is
called ! , after the eighteenth century clergyman, Rev, Thomas
Bayes, who is usually credited with its discovery. First, we state the
theorem and provide a proof.

Iheoren: [Bayes' Theorem]

Let Ai (i = 1,n) be a partition of E with all P(Ai) > 0.
Furthermore, let B e E with P{B) > 0. Then for every k, 1 ¢ kK ¢ n,

n
P(Ak/B) = P(B/Ak) P(Ak)/[ii P(B/Ai)P(Ai)] ) (5.9)

1

This theorem is a natural extension of the Rule of Total Probability. rhas,

n
P(B) = Z P(B/Al) P(Ai).
i=1

In a previous theorem, it was shown that

P(Ak/B) P(B) = P(B/Ak) P(Ak).

given that Ak and B ¢ E, and that P(Ak) > 0 and P(B) > 0. Equation (5.9)
follows directly from substitution.

Although Bayes' theorem is discussed extensively in Chap. 8, it should
be indicated at this point what the role of this theorem is in probability
theory. So far, we have viewed the analysis of probability as proceeding
from the definition of probabilities for simple events toward the calculation
of probabilities for more complex events. In practice, however, what is
often required is just the inverse; that is, given certain experimental
observations, we wish to learn something about the parent population and
generating mechanism which were responsible for our observations. This
process is known as statistical inference. Suppose that event B has been
observed. That event could be explained by several mutually exclusive cauges
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Table 5.2 Parameters Relevant to Example 5.4

Partition:
Ao: No I(C component fails. P(AO) = 1/16
Al: One I component fails. P(Al) = 4/16
Aa: Two IC components fail. P(Az) = 6/16
A3: Three IC components fail, P(Aa) = 4/18
A4: Four IC components fail. P(A4) = 1/16

Marginal Probabilities:

P(B/AO) =0
P(B/Al) = 1/4
P(B/Aa) = 3/6
P(B/As) = 3/4
P(B/A4) =1
4
P(B) = Z P(B/Aj)P(Ai)

i=0

(0)(1/16) + (1/4)(4/16) + (3/6)(6/16) + (3/4)(4/16) + (1)(1/16)

8/16 = 1/2.
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or hvpotheses AI'AZ""An (a partition of the space E of all possible
explanations for B}. Each hypothesis Ak has an a priori probability P(Ak) of
being true; that is, before the trial that produced B was executed, the P(Ak)

represented our “state-of-the-art” understanding of the situation. However,
once the trial has been performed and B has been observed, we have acquired
new knowledge, Consequently, our understanding of the probabilities for
validity of the various hypotheses must be revised. We should now substitute
a posteriori probabilities P(Ak/B) for the original P(Ak)' Formally, Bayes'

theorem provides the mechanism for calculating these revised probabilities.
The quantity P(B/Ai) is cailed a likelihood factor or Jikelihood.

Calculation of the likelihood is wusually straightforward, if Ai is a

reasonable hypothesis. COur real problem lles in establishing the a priori
probabilities P(Ai)' If we commence from a status of total ignorance, then

there would seem to be no basis for favoring one hypothesis over another.
The assumption that all the possible hypotheses should have equal a priori
probabilities is known as Baves' Pogstulate. The reader saould note that this
process can be repeated again and again. For example, for a second trial,
the a priori probabilities are taken to be P(Ai/B). since the first trial

praduced B, and one therefore has revised the P(Ai). This approach toward

statistical inference is appealing to many applied scientists. The reader
who is at all familiar with nuclear data evaluation will surely recognize
this as the approach often used in this field. That is, one eventually
"learns" about the nature of fundamental nuclear properties by repeated and
ever more refined experimentation. However, many statisticians are not
comfortable with the concept of Bavesian statistical inference ausd therefore
aveoid it. That this remains a point of controversy is one indication that
the field of statistics has not attained full maturity.

Two events A and B belonging to E are defined to be ipdependept if
P(A x B) = P(A) P(B).

From the definition of conditional probability, it then follows that

P(A/B) P(A) if P(B) > 0O

and

P{B/A) = P(B) if P(A) > 0.

If, for a collection of events Ai (i i.,n),

P(Ai X AJ.) P(Ai)P(Aj)
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whepever i # i, then these events are said to be pajrwise indepepdent: they

are not necessarily mutually independept. The terms g e bloc or
fully indepepndent are also used to denote mutual independence. To be

mutually independent, it is required that

P(A X...X Aks) = P(Akl) P(Akz) .P{A {(5.10)

k1 * Pk Ks!

for any s = 1,n and 1 ¢ k1 < ka <...% ka < n.

A number of theorems can be proved relating to independent events.
Among them are the following:
Theorem: If A and B are independent events then:
(1) A and
(2)
(3)

8 are independent,
A and B are independent,
A B

2nd are independent.

We prove Part (1) for demonstration purposes:
~AxE=Ax (B+B) =AXB+ A XxB,

Since (A x B) and (A x B) are mutually exclusive,
P(A) = P(A X B) + P(A x B).

Thus,
P(A x B) = P(A) - P(A x B) = P(A) - P(A)P(B) = P(A)[1 - P(2)].

Since B and B are mutually independent,
1 - P(B) = P(B).

Part (1) is therefore proved by substitution.
Iheorem: 1If Al....An and B ¢ E and B is pairwise independent with respect to

each Ai (i = 1,n), then

n
P[( £ A ) x B} = P( Z A ) P(B)} .
i=1 i=1

Iheorem: 1If Al.Aa....An are mutually independent, then

n n -
PCZ A =1- T PQ&)
i=1 i=1 !

The notion of independent trials is discussed extensively in Sec. 5.1.
Probability for the event space of k-tuples is formally defined by Eq. (5.4)
when the trials are independent. One can show that probability defined this
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way satisfies the three axioms of Sec, 4.2. We demonstrated this in the
special case of Ex. 5.3, and pursue the issue no further here.

All trials which do not satisfy the condition of independence are
denoted depepdent triais. Let A denote the collective outcome of Kk
sequential trials, the iijj of which yieids Al' Clearly,

K
A= T A..
i=1

The probability P(A), in the case of arbitrary dependencies, can be derived
in principle asing the Generalized Chain Rule for conditional prohability.
Usually this is impractical. For this reason, great pains are taken to set
up experiments in such a way that they approximate independent trials,

Although we shall not purswue the matter to any great extent, for
interest we now introduce a particular class of dependent trials known as
Markov Trials. Again. let Al'Aa""Ak be the events observed for Kk

sequential trials. If these were independent trials, then for the jih trial,

j-1
P(A./ T A ) = P(A, i < k¢ 2).
(Ji=1 1) (J) (J £ kg 2)

In short, there would be no memory of any of the preceding trials at each

stage of the chain of trials. However, Markov trials differ in the sense
that

3-1
P(A./ T A) = P(A./A;
(Ag/ T Ag) = PlAy/A;

) Uekg 2

For Markov trials, the outcome of any particular trial depends upon the
preceding trial, but not on any of the earlier ones. Markov-trial processes
involve memory of the immediate past but nothing more.
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6. PROBABILITY DISTRIBUTIONS

Random variables, random-variable transformations, and distribution and
density functions were discussed in Chap. 3. Probability, as applied
directly to events, was treated in Chaps. 4 and 5. The present chapter
addresses the unificalion of these concepts, i.e., the merger of analysis and
probability theory.

Without loss of generality, we restrict this discussion to event spaces
which can be represented by one or more continuous random variables, each of

which usually spans the entire range of real numbers (-»,w), First,
consider events which can be represented by a single random variable x. Let
&« be any real number. We choose to ask the question: "What is the

probability that a trial will yield a value of x <« ?" It is postulated
that such a probability exists and that it satisfies the basic axioms of
probability theory as enumerated in Chap. 4. It is designated as P(x < a),
or P(a) for convenience. P is a called a cumuylative probability or
probabjlity digtribution function. consistent with the convention of Sec.
3.3. The term ugpjvarjate is often used to indicate that a single random
variable is involved. Normally, one needs to be concerned only with
probability functions which are either absolutely continuous, or are at most
discontinuous in a "mild" way at a discrete number of points in the range
(—,+0)., We will not elaborate on what is meant by "mild discontinuities,"

but, for example, singularjties are unacceptable while simple _jump
discontinuitjes can be accommodated. For simplicity, let us avoid further
discussion of discontinuities. The interested reader is referred ts the

bibliography (e.g., Zeh 70) for congideration of the complications which they
introduce. For an absolutely continuous probability distribution function P
there exists a corresponding non-negative functioa p known as the probabilitv
density fupction. The relationship is

P(a) = IJ: p{x)dx for < < a < +» (6.1)

The reader is reminded that in Sec. 3.3 we approached this topic from a
different point of view. There the density function was treated as the more
basic function, with the distribuiion function evolving from it. However, it
is a tradition in probability theory to treat P as the more fundamental of
the two, since P, in fact, is a true probability while p is not. For our
purposes, we will assume that both P and p exist and will not corcern
ourselves further with which is the more fundamental. Some important
properties of these functions that we will consider are:

i)  P(a) > 0 for all real «. [Axiom I].

ii) If p 2 a, thea P(B) 2> P(x). (Mopotonic Propertv].

iii) ¢im P(x + h) = P(ax)
ha+0

iv) ¢im P{a) = 0.

A - 0
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Note that this is equivalent to the statement that P($) = 0, where ¢ is
the null event.

v) &im P(a) = 1 [Axiom II].
X = +20

vi) p(x) 2> 0 for all real X as a consequence of the monotonic property
of P.

We cannot express Axiom III (Additivity Property) until the notion of an

interval is introduced. Let I = I(«x,B) denote the collection of all values x
such that &« ¢ x < 8. If A is the set of all x <« and B is the set of all

x ¢ 8, then the interval I is the set B x A. The probability of occurrence
of I can be denoted as
P(I) = P[I(x.8)] = P(a:p).

It is related to P(«) and P(B8) by the relationship

Pla;:8) = P(8) - Pla) . {6.2)
Note that here o could be - and 8 could be w0, Such intervals are
designated as unbounded intervals. If both « and 8 are finite, the interval
is bounded. If I1 and 12 are two rgsecting intervals (mutually

exclusive events in event language), then
P(Il *I,) = P(Il) * P(Ian-

This corresponds to a statement of Axica IIl in the present context.

The following simple example demonstrates the Poincare Law of
Probability Addition:

Example 6.1

Let A be the event that x < & while B is the event that
X < B. Suppose £ > a. Clearly, A e B. Now

F(A + B) = P(A) ~ P(B) - P(A x B).
But Ax B = A, s0 P(A -~ B) = P(B). Now P(B) = P(8). This clearly
is intuitively reasonable. Whenever X < a, it also holds that

X < f. The probability of x being less than a or B is just the
probability of x < 8.
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A simpler relationship between P and p than indicated by Eg. (6.1) is
apparent at the differentia. level. Consider the small interval « ¢ x < a «
4dx, where Ax represents a small increment of the continuous random variable
X.

Then, referring to Eq. (6.2),

Plai @ + 4x) = Pla + 4x) - P(a) = [ & 7 4% prx)dx - [ 3 p(x)dx =
I“a + AX p(x)dx

In the limit as 4x becomes vanishingly small (appreactsz a divTe=cantie? dx),
we have P(a + dx) - F{a) = dP(«) = p(a)dx, or p(a) = dP(a)/dx = P'(«x). The
deugity function p is just the derivative of the distribution function P,
provided that P is continuous and differentiable over the region in question.
Thig is also quite evident from Eq. ‘’.1), considering the definition of an
integral. It is clear that there is nuv meaning to the question: "What iy the
probability of observing a particular value « ?" One must ask for the
probability of finding X in some interval. That probability vanishes as the
size of the interval approaches zero. Probability density is the local
probability per unit of interval. It therefore possesses an intrinsic
dimensionality, whereas probability itself is dimensiocnless.

A 1t ial babilit listributi or ioint babilit
distribution P1 n is defined whenever a probability law applies to events

which require more than one random variable to represent them. Consistent
with Sec. 3.3, we can define a _jojnt orobability densitv fupction p,  if

the joint probability distribution P1 a is absolutely continuous. The

relationship is
a

v 1 n
Pl_”n(dl....an) = J—m dxl...f_ﬂ d.«(n pl...n(xl._._xn)' (6.3)

and Pl n is non-negative whenever it is defined.

Analogous to the notion of probability on an interval for aa univariate
distribution, one can define probability on a particular regicn or volume of
n-dimensional space. If A designates that region, then

1 =
P1...n(A’ IA dxl'"dxnpl...n(xl"°'xn) ' (6.4)

Figure 6.1 shows a typical region for two continuous random variables.

Consider a probability law involving two random variables, (xl.xa). The
distribution function is designated P12 and the density function “is Pyo- One

can define two new functions Py and p, as follows:
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Figure 6.1: Typical region A for an event space described by two random
variables
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pylx) = f o dx,p o (x .x,) (6.5)

pa(xa) = I_ﬁ dxlpla(x Xy ) . (6.6)

The function Py is called the parginal distribution of L and it is a

density function with respect to the variable x Analogous statements can

1
be made for X, Two other functions, which are called gonditiopal

probabjlity depsity functiony, can be defined in terms of the unconditional
probability density PN and the marginal distributions Py and Py They are:

pla(xl.xa)

p(xa/xl) = __E;T;;T—_ if pl(xl) >0 , (6.7)
pla(x X, ) ‘

p(xl/xa) = ——B;TEZT——- if pz(xz) >0 . (6.8)

The concept and structure of these definitions should be familiar from Sec.
5.2. The Rule of Total Probability can be expressed in the present context
using this nomenclature. Thus,

py () = o dx,p, 5 (% .%,) = S dx,p, (%, )P(x,/%,) (6.9)

[ -] o«
{2 = = . .
Polag) = [ axpoo(x,.x,) = f o dx p(x)p(x,/%)) (6.10)
One should keep in mind the following fundamental equation:

{unconditional probability}

{conditional probability} = {marsInal probabllity) .

(6.11)

provided that the marginal probability is nonvanishing. With this in mind,
we consider the following question: "What is the probability of finding the
second random variable in the interval dIZ:(xa.xa + dxa) given that the

first random variable is known to be in the interval dII: (xl.x + dxl).
According to Eq. (6.11), the answer to this question is:

1

P(dlz/dll) = plz(xl.xz)dx1dxa/[pl(xl)dxl)] = p(xz/xl)dxa.
Similarly,

p(dIl/dIZ) = p(xl/xa)dxl.
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This discussion can be extended to random variable spaces of larger
dimensionality; however, we will not pursue this matter further.

The concept of independence is easily expressed for probability density

functions. The random variables xl....xn are deemed mutually independent
provided that
n
. = . 6.12
pl---n(xl. xn) x pi(xi) ( )

i=1

In short. the joint probability density function is factorable into a product
of marginal distributions for all of the random variables involved. For two
independent random variables,

Pial¥ %) = pylx)Rplxy).

Therefare., from Eqs. (6.7) and (6.8) we have that p(xa/xl) = pz(xa) and
p(xllxa) = pl(xl). This is entirely consistent with the notion of
independence which was developed in Chap. 5.

Let x be a continuous random variable which conforms to a space X. It
represents events e belonging to the space E. Suppose that y is another
random variable representing the events e of E such that y = y{x) for x e X.
The resultant y conforms to a space Y. This is an example of a random-

variable transformation, as discussed in Sec. 3.3. Suppose that we know that
a probability density function Py is defined for all x ¢ X. What are the

required conditions for the corresponding function py to be defined for
yve Y, and what is its relation to px? This is a very important question in
practice g0 we will explore it here in some detail.

First, we approach this issue from a intuitive point of view. The

incremental probability of an event for which x is in the interval (x,x + dx)
i simply dPx = px(x)dx (dx > 0 by convention). We assume for simplicity

that the function y is continuous and differentiable over the whole space X,
and furthermore that the derivative y'(x) # 0 anywhere in X. Thus y'(x) < ©
or y'(x) > 0 everywhere in X. Now we turn to a description of events in
terms of the random variable y. For the stringent conditions of the presernt
transformation, py does indeed exist over the entire space Y which is formed

by pointwise meapping of the space X. Corresponding to differential dx In X
is the differential dy in Y given by

dy = (dy/dx)dx . (6.14)
Since dy may be negative., we consider instead the positive guantity

ldy| = |dy/dx|dx . (6.15)
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Here, the notation I...l designates absolute value. The event for which x
belongs ta dx is also described by y belonging to [dyl (a positive
differential). The incremental prabability exeressed in terms of the
variable y is thus

ap, = p, (v)|ay].

The magnitude of the incremental probability must be independent of the
choice of random variable used to describe the event, so

P, = p(x)dx = dP, = p (v){dy| = p (v){dy/dx|dx.
From this we can deduce the important formula

e l¥) = p, (x}/|dy/dx| = px(x)/ly'(x)l = p, (x)/]J] (6.18)

Figure 6.2 illustrates the present situation graphically. This is the
law of probability transformation for univariate random-variable events. The

restrictive conditions insure that the inverse function y"1 exists. Thus,

X = y—l(y) for y& Y

while

y = y(x) for x ¢ X.

The factor J = (dy/dx) is the simplest possible example of what is known more
generally as a Jaceobiapn for the transformation.

Let us explore the more general situation. Suppose events can be
described by n-dimensional vectors x = (xl....xn) of random variables. They

span an n-dimensional space X. Consider also the cellection of n-dimensional
vectors

y = y(x) (or v = yi(i) for i = 1,n)

of random variables which form Y. X is mapped into Y, one-to-one. The
transformation is assumed to be continuous and all partial derivatives
ayi/axj exist on X. Furthermore, assume that the determinant J of the matrix

of partial derivatives,

9
6y1/ Xy s ayl/axn
J = det : .

ayn/axl ayn/axn
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Figure 6.2: Graphical illustration of probability transformation.
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namely, the Jacubian for this transformation, is nonvanishing. Then the
probability transformation law is

p, (V) = p (x)/{3] . (6.17)

Eq. (6.16) is a special case of Eq. (6.17). Note that J can vary with x; it
is not necessarily a constant. Since the inverse transformation exists under

these conditions, we have x = §_1(§) for y € Y while v = v(x) for xe X.

Example 6.2

Consider the density function

2

2)

- 2
Px(xl.xa) = (1/m)exp( X] - X
t‘or—°°<x1<+°°and<-w<x2<+oo,

Let yl = xl + xa and ya = x1 - xa.

transforaation are:

The partial derivatives of the

ayl/ax1 =1,
ayl/ax2 =1,
aya/ax1 =1,
ayz/ax2 = -1,
Therefore, the Jacobian J is -2. The inverse transformation

exists and takes the form: Xy = (y1 + yz)/2 and X, = (y1 - yz)/a.

According tec Eq. (6.17), py(§) can be derived from px(i). The

result of this analysis is:

]

py(vl.va) (1/2)px[(y1 * v /2, lyy - vz)/al

(1/2m)expl-(v2 + y2)/2}.

The concepts discussed in this chapter apply to all probability laws
which satisfy certain fundamental requirements. Very little has been said
about specific probability laws, e.g., their origins and applicability to the
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description of real random phenomena. We will begin to explore this topic in
earnest in Chap. 7, and will continue the discussion in later reports of this
series, To close the present chapter, we mention for interest that Karl
Pearson, one of the founders of modern statistics, discovered that solutions
to the differential equation

1 dlpxj)] _ __d-x

pix) dx a +~ bx + cx2

' (6.18)

for various choices of the constants a,b,c, and d, remarkably yield most of
the wunivariate probability density functions of importance in modern
applications. We will demonstrate this fact later on apprupriate occasions.

We now touch upon a point of particular interest to the nuclear data
field because it is so often encountered in practice. Usually in statistics
it is preferable to represent event spaces which appear to be effectively
uncountable (e.g., a collection of atoms in a macroscopic sample) by
continuous random variables. In nuclear data applications, however, one
often proceeds in the opposite direction. For example, neutron energy is
seemingly very well represented by a continuous random variable, and thus so
are neutrorn fluence or a particular neutron cross section which is
functionally related to the energy. However, it is common practice in

reactor physics studies to generate an energv-group structure by dividing the

neutron energy range of interest (e.g., 1 X 10_5 eV to 20 MeV) into a
sequeace of contiguous energy intervals called groups. These groups are
defined by their upper and lower energies, called group limits. Sometimes a
medjan energy is also identified for each group. Functions dependent upon
neutron energy are also represented by a group structure. For example,
consider the neutron fluence density function ¥ which is a function of
neutron energy E. Associated with each energy interval (Eei’Ehi) there is

defined a group fluepce ’Pi. In order to conserve neutron number it is
required that

Eni
*, = f T ®(ENME . (6.19)
E,.
€i
Consequently, if ¥ is the total neutron dose, then

n 20 MeV
¥ =z =( ¥(E)E . (6.20)

1 1077 ev

The reason this is done is partly a matter of tradition im the field, but
mostly it is for very practical reasons. In order to solve the complex
differential and integral equations which often arise in reactor neutron
transport studies, it is very useful to resort to finite-difference methods
(e.g.. Hil 52) which can be readily programmed on a digital computer. These
methods require selection of a group structure and, subsequently, a group
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representation of such pertinent energy-dependent parameters as neutron
fluence and cross sections.

In npeutron transport problems it is often npecessary to know the
probability of a neutron being found in a particular energy group. A neutron
energy probabiliiy density function can be readily derived from the fluence
function. It is

p(E) = *(E)/*.

However, for analysis involving a group-structure formulation, we require
instead the mass distribution function (as defined in Sec. 3.3), where

Pi = ?i/?. Clearly., the group-structure mass distribution function and the
underlying density function are related via Eq. (6.19).

We will also see in a later report of this series that it is usually
desirable to cast nuclear data evaluation endeavors into group formats even

though ihe parameter being evaluated is naturally amenable to representation
by a continuous random variable.
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7. SOME IMPORTANT PROBABILITY LAWS GOVERNING THE FREQUENCY OF
OCCURRENCE OF RANDOM EVENTS

In this chapter the emphasis shifts from consideration of general
characteristics of probability laws to a discussion of some specific laws
that are important to nuclear science. In order to be legitimate, all
probability laws must satisfy the three basic axioms discussed in Sec. 4.2.
From a mathematical point of view, discrete random variables present few
technical difficulties. For continuous random variables, one generally deals
with probability laws which are described by functions that are cont inuous
and differentiable, except possibly at a few jump points. Not all functions
that possess either necessary or desirable mathematical properties are useful

in practice. In the final analysis the only laws that are worthy of
consideration are those which have been found to provide a description of the
actual behavior of random phenomena. Therefore, appiied statistics 1is

necessarily linked to the physical process of observation.

Our particular concern is with the description of random events in the
field of nuclear science. In many ways, nuclear phenomena are unique. Small
samples of wmaterial are composed of enormous numbers of individual atoms, yet
the quantities of energy involved in nuclear transformations are usually
extremely large, relatively speaking. Therefore, it is often possible to
observe a single nuclear transformation at a macroscopic level, e.g., a track
in a bubble chamber or the click of a Geiger counter., It should come as no
surprise to the reader that the most jimportant probability laws affecting
nuclear phenomena have their origins in consideration of the frequency of
accurrence of certain well-defined random quantum processes.

The discussion here will bhe limited to consideration of the following
lawg:

i) the bipomial law and its generalization the multipomjal law (Sec.

7.1),
ii) the Pojsson law (Sec. 7.2).
iii) the normal (Gaussiap) Jaw (Sec. 7.3}.

These laws are related, and some of these relationships are explored at
appropriate points in this chapter. Discussion of other probability laws
that are useful in nuclear applications is deferred to future reports.

7.1 Binomjal and Multinomjal Probability Laws

The fundamental concepts leading to the binomial probability law were
introduced earlier in this report (Secs. 2.3, 3.1, 3.2, 3.3, and 5.1, and Ex.
5.3). Here, the essential points are restated, and from those the binomial
probability function is deduced. 1t is appropriate to designate it as a mass
function because the random variable is discrete.
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Consider an event space E consisting of elementary events e. Consider a

partition of E into two spaces A1 and Aa. That is,

A, = Al'

Ap X Ay = .

and

Now consider forming a new space E' in which the elementary events e' are
ordered n-tuples of c<vents taken from E. These n-tuples are formed by
conducting n independent trials (experiments) in which events are selected
(sampled) from E. Now, assume that all we are really interested in with
regard te 3hiz process is whether any particular elementary event e of E
possezses attribute A1 (belongs to Al) or poysesses attribute Aa (belongs to

Aa). An essential assumption is that the experimental process of forming an

n-tuple does not perturb ’'deplete) event space E. As indicated previously,
one way to do this is to "replace" a particular event e after jt is selected.
The result is the same if E contains so many evepr¢s thal formation of an
n-tuple does not alter the character of E. Let p be a prohability function
defined on E. Then p(Al) is the probability that a sampling experiment

results in Al' while p(Aa) is the probability that A_ is obtained. They are

2
designated p1 and pa for convenience. We permit ourselves the indulgence of

uging lower case "p" to designate probability in contrast with our previous
convention of reserving lower-case symbols for density functions. All of the
n trials are identical in nature as well as independent, and the assumption
that the character of E remains unperturbed by the sampling process leads us
to the conclusion that for any particular trial, the probability is Py for
observing Al and Py for observing Aa. Naturally, P, * Py = 1 because A1 and
Aa form a partition of E. Now we turn to consideration of the n-tuples e’

and the space E' formed from from them. We ask: "What is the probability
that n trials, as described above, will result in k1 occurrences of A1 (k1 <
n) and ka occurrences of Aa. with k1 + k2 = n?" We denote this probability
mass function by the expression p(n;pl.pa;kl.ka). with k1 the random variable
which can assume n + 1 integer values between 0 and n (k2 is derived from
kl)' in fact, this is the binomial law we seek. Again, we have used "p" to
designate probability functions for two different spaces, but in this field
it is a common practice to which the reader should become accustomed.

Before answering the question stated in the preceding paragraph, we pose
and answer a simpler question: “What is the probability that in n trials,

the first k1 in a row will yield Al' while the remaining ka =n - k1 will
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k, k

. . 1
praduce Aa?" The probability of such an event e' is simply P, P, 2. by
virtue of independence and the identical nature of each trial. Since we
really don't care about the order of the occurrences of A1 and Az.

p(n;pl.pa;kl.ka) shonld, in general, be larger than this simple product of
probabilities, reflecting existence of other ordered n-tuples with k., of A

1 1
k1 ka
and ka of A, which have the same probability P, P, . Thus,
k, k .
p(n.pl-Paokl.ka) = an p lp 2 (7.1,
11 T2
where C is the binomial coefficient from Eq. 2.21. Recall that C
nk1 nk1
reflects the number of ways k1 indistiguishable events (occurrence of Al) can
be distributed among n positions in an ordered n-tuple. The binomial
coefficient C is identical to the multinomial coefficjent C defined
nk1 n:klk2
in Eq. (2.30), so we can also write Eq. (7.1) in the form
k1 kz
plnipy.Byiky k) = oy k, P1 P2 (7.2)

The detailed process described above is known as a pBernoulli experiment,
after the eighteenth century mathematician Jacques Bernoulli.

The notation leading up to Egqs. (7.1) and (7.2) was selected for reasons
that will be clear in the development below, but it is not conventionally
used. More commonly, A1 is designated as S (success) and Aa as F (failure).

The probability P, is simply desinged as p. while P, = 1 -p. If k1 = k and
ka = n - k, then one obtains the more familiar expression for the binomial
probability law:

p(n,p:k) = anpk(l -t . (7.3)

While the concepts and notation surrounding the bjinomial law are fresh
in mind, we proceed to a discussion of the myltinomial probabilitvy law.
Indeed, the concepts are identical. The only difference is that instead of

two possibilities, A1 and Az. one has r possibilities A]'Az""Ar (r ¢ n) for

the ocutcome of an individual trial. Thus,

X
Z A, =E,

O
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and the Ai are all mutually exclusive (they form a partition of E). The

nomenclature evalves from the case of two possibilities to . possibilities in
an cobvious way, with PR T representing probabilities for observing

AI‘AZ“"Ar at each trial, respectively. It should come as no surprise that

the multinomial probability law assumes a form similar to Eq. (7.2), namely:

k1 k2 kr
p(n:plupzu---pr;k1|k2|-~~kl‘) = Cn;k k ..-k pl pa Y ) . (7c4)

12 % r

with

Here, p(n:pl.pa....pr;kl.ka....kr) is the probability that n trials, in an
environment where r outcomes are possible, will generate k1 of Al. k2 of
Aa..... kr of Ar' The multinomial coefficient cn;klka"'kr‘ given by Eq.
2.30,  represents the number of ordered n-tuples that satisfy our particular
requirement, which has no concern for ordering.

Example 7.1

We now demonstrate <ome properties of the binomial
probability law, as manifested in Eq. (7.3), by considering
specific numerical values for p and n. In Fig. 7.1, values of
p(n.p:k). for n = 20, k=1 to 20 and p = 0.1, 0.3 and 0.5, are
plotted (taken from Fis. 63, p. 133). Since the mass function is
defined only for integer values k, the limes drawa between the
mass polints are intended only to serve as eyeguides. Three
features of the binomial law are clearly evident in this figure:
First, we note that for p = 0.5 the mess funrtion is symmetric.
Next, =we note that the mass function appears <o reach a maximum
value for Kk = pn. Finally, it is evident that the "areas" under
the plotted distributions are the same. This follows from Axiom
11 (Sec. 4.2) which requires that probability be normalized. In

fact, from the binomial theorem, Eq. (2.25), it is clear that
n

z
k=0 = p(n,p;k) = 1 for every integer n, and p ¢ 1.
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k(20,p;k)

A, p=0.1

2 4 6 8 10 12 14 16 18 20
k

Plots of binomial probability mass functions p(n,p:k) for
n=20 k=1*% 20 and p = 0.1, 0.3 and 0.5. Solid lines

connecting mass points are there merely to serve as
eyeguides. Figure is taken from Fis 63, p. 133. See Ex.

7.1.
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Example 7.2

Now consider p{n,p:k) for p = 0.5 and n = i0 and 20, Each of
these &$wo mass functions is symmetric. For n = 10, symmetry is
about k = 3, while for n = 20 symmetry is about k = 10. For each
of these probability laws we ask the question: "What is the
probability that k will equal or exceed by 20% the particular
value of k corresponding to symmetry?” For n = 10, the desired
probability 1is

10
Z p(10,0.5:k) = 0,1719.
®=1

However, for n = 20, the desired probability is

20
£ p(20,0.5:k) = 0.0577.
k=14

A general conclusiorn can be drawn from this comparison: As n
increases. the probacility of observing a number k of successes
which exceeds the product pn by some fixed percentage decreases.
Thus, the larger n beccmes, the less likely one is to observe
suwccess fractions, for an n-fold coliection of outcomes, which
differ significantly from the probability p of observing a success
when selecting a single event at random from E (a trial). This
result, »7own as Berpnoulli's Law of Large Numbers., is a feature of
the binomial probability law. It is an intuitively reasonable
result, for when n is large, the ensemble of results from n trials

tends to mirror the larger event spezce. In essence, it approaches
a population.

Laplace suggested a rather simple mathematical model, based on the
binomial probability law. which can be used to describe how random error
comes about in measuresment processes. The notions behind this model, known
as the Laplace Law of Ecrror. are similar to those which lead to the Ceptral
Limit Theorea, a result which justifies widespread use of the normal
probability law in statistics. Discussion of the Central Limit Tneorem is
deferred to Section 7.4. Here, we focus specifically on the Laplace Law of

Error.
Let the true value of a parameter one seeks to measure be 'o' In
reality, one usually does not measure precisely mn but, rather, other values

m, because the measurement process is perturbed by a number of unknown
independent causes. Laplace assumed that n disturbances occur, with each
disturbance contributing a deviation of the same magnitude ¢. However, these
“identical” disturbances could be of either a positive or negative nature
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(£ ¢). Let m(n.,&;k) be an actual value of m measured when the n disturbances
involve k of +e¢ and (n - k) of -e¢. Thus,

m(n,s:k) = mo ks - (n - k)e = L (2k - n)e . (7.3)

We now ask about the probability of observipg the various valves of m
obtained from Eq. (7.3). As indicated above, this model of error assumes
that +e and -& disturbances are equally 1likely, Clearly, this model
establishes conditions identical to those upon which the binomial probabilitly
law is based. Consequently, the distribution for the m(n,e;k) of Eq. (7.3)
is

5. _ k n-k _ n
p(n,1/2;:k) = cnk(1/2) (1/2) = cnk(lla) . (7.6)

The quantities p(n.1/2;k) are the basis for the interesting array of numbers
shown in Fig. 7.2. The similarity of this array to the Pascal Triangle given
in Fig. 2.13 is evident.

Example 7.3

Suppose € = 0.01 (1% disturbance) and n = 20, What is the
probabjlity of measuring a value m which deviates by at least 3¢
from no? Since the binomial mass function is symmetric about

20
k = 10, the probability we desire is 2{ Z p(20,1/2;k)] = 0.2632
k=13
(~ 26%).

The following example raises an important physical problem that
illustrates several concepts already discussed in this report. We examine a
procedure for calculating the relative probabilities of populating the ground
state and an isomeric level of a nucleus formed in a highly excited state by
slow-neutron capture. De-excitation of the nucleus proceeds by a sequence of
electromagnetic (EM) quantum transitions which are random in nature. This
process has been investigated in detail by Poenitz (Pue 66). Here we discuss
a highly simplified version of this problem for demonstrative purposes.

Example 7.4

Nuclear EM decay is governed by transition energy, spin-
selection rules, and multipole-radiation probabilities. Models
exist for calculating probabilities of electric- and magnetic-
multipole transitions between two nuclear states, given tLhe spins
and parities of the states and their energy separation. We avoid
these complexities by considering a hypothetical nucleus and a
simple transition-probability law. The details of our model are
as follows:
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p(0,1/2;0)
p(1,1/2;0) p(1,1/2;1)
p(2,1/2;0) p(2,1/2;1) p(2,1/2;2)

p(3.1/2;0) p(3.1/2;1) p(3,1/2;2) p(3,1/2;3)

1
1/2 1/2
1/4 1/2 1/4
1/8 3/8 3/8 1/8
Figure 7.2: Array of values p(n,1/2;k) from Eq. (7.6) for n = 0,1,2,...
and k = 0,1,...n. Note similarity of this array to the

Pascal Triangle from Fig. 2.13.
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1) The nucleus:

It is assumed to have a ground state with spin J = 0 and four
bands of excited states., The kth excited-state band has k + 1
levels with spins J = 0,...k, respectively, We ignore the issue
of parity, The spacing between levels within each excited-state
band is assumed to be 4E which is very small compared with the
uniform inter-band spacing E. The excited-state bands are thus
nearly equally spaced above the ground state. The level with spin

J = 0 belonging to the first excited-state band is taken to be the
isomer. See Fig. 7.3.

2) Neutron capture process:

Neutron capture is assumed to populate initially only the
levels within the fourth excited-state band. The capture
probabilities are considered to be proportional to the neutron-
capture cross gections for each level within this band, For
present purposes we employ capture cross sections o(J) appearing
in Table 7.1. We suppose that resonance effects are largely
respongible for the wide variation in these cross sections.

3) EM-transition selection rule:

The only transitions with significant probability are assumed
to be inter-band, with spin change 4J = 1. Other possibilities
are at the very least highly suppressed, if not forbidden. It is
therefore clear why the J = 0 level of the first excited-state
band is an isomer.

4) Transition probability rules:

An EM transition from state of spin J can proceed only to a
gtate J' = J + 1 or J' = J -1, by Item (3) above. When only one
transition channel is open, we assume the transition probability
is unity (an excited state must decay). When two decay channels
are open (Bernoulli problem), then it is assumed that each has an
equal probability of 1/2.

The decay paths permitted by the preceding rules are shown in
Fig. 7.4. From this figure it is evident that neutron capture for
all even-J levels leads ultimately to population of the ground
state, while capture for all the odd-J levels populates only the

isomer. Starting at the capture level, EM decays produce a
cascade "tree" in which each successive step of the cascade
increases the range of acceasible spin-J states. The

probabilities for populating these states would indeed generate an
array of binomial coefficients identical to Fig. 7.2 were it not
for the fact that the number of available spin states in this
particular problem becomes successively more limited at each stage
of the cascade.
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Figure 7.3: Level structure of the hypothetical nucleus which is
considered in Example 7.4.
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Igble 7.1 Parameters Used in the Analysis of Example 7.4

J a(n)? p(1)P Plg.s/0)°¢ P(isom./J)°
0 8.5 0.0404 1 0
1 178.0 0.8468 0 1
2 22.0 0.1047 1 0
3 1.0 0.0048 0 1
4 0.7 0.0033 1 0

¢(J) is the neutron capture cross section for the spin-J member of
the fourth excited-state band of the hypothetical nucleus of

Ex. T.4. The cross section units are unimportant.

b 4
P(J) =0(J})/ T a(J').
J'=0

€ Refer to Fig. 7.4.
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The rule of total probability., Eq. (35.8), is very useful in
calculating the probability P(g.s.) of populating the ground state
and P(isom.) of populating the isomer. Applied here, we have

4
P(g.s.) = I Plg.s./J)P(J)
J=0
and
4
P(isom.) = I Plizom./J)P(J).
J=0

P(J) is the relative probability for neutron capture jinto the
level with spin J in the fourth excited-state band. It is given
by the formula

4
P(J) = oJ)/ Z a(J'),
J'=0

where o(J) represents the previously mentioned neutron-capture
cross section. P(g.8./J) and P(isom./J) are conditional
prababilities for populating the ground state or isomeric stale,
respectively., given that neutron capture involved the spin-J level
of the fourth excited state band. Table 7.1 summarizes all
parameters needed for the analysis. The final result is,
therefore, Pl(g.s.) = 0.1484 and P(isom.) = 0.8516.

In this particular example, capture into the J = 1 state of
the fourth excited-state band is dominant. This qualitatively
explains why this particular capture process results mainly in
production of nuclei in the isomeric state.

We close this section by giving an example which illustrates use of the
multinomial probability law.

Example 7.5

Consider an experiment with four independent detectors that
are naultiplexed into a single computer-based data acquisition
system, as shown in Fig. 7.5. Data from the measurement apparatus
are formulated into computzr words consisting of two parts. The
first part contains analog (A) information (e.g., pulse heights,
timing information, etc.). The second part is a tag (T) which
identifies the detector of origin of the particular event e which
is characterized by the array (A,T). Note that T = 1,2,3, or 4,
gsince there are four detectors. We assume that the apparatus is
adjusted (e.g., timing, gating, etc.) in such a way that every
data word accepted by the computer represents a legitimate event
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(i.e., nu "defective" data are recorded). Furthermore, we assume
that the natural system deadtime (due primarily to the time needed
by the computer to process the events) introduces 1, bias against
any particular detector (i.e.., all detectors are equally
afflicted). The data "words", (A,T), are recorded in sequence,
e.g., on magnetic tape, word by word, in what is commonly referred
to as the event mode. After the experiment, the event words are
read back by a computer (plavback) and combined (processed)
according to the specific objectives of the experiment. The
question we pose is the following: "What is the probability that
after recording a sequence of n events, ki of these will have tag

4
T=1i(i=1,4), where T k., = n?" The conditions of the present
i=1
experiment satisfy the requirements for applicability of the
multinomial law: therefore, the answer to the question we have
posed is given by Eq. (7.4), with r = 4. The probabilities
P (i = 1,4) are surely related to the radiation fluences ?i and

detector efficiencies € applicable to each detector, as well as
to the live-time fractions, Ai. We therefore assume that

4

pi = (*ieiAi)/.z (?jejkj).

j=1
The A-factors ultimately cancel because we have assumed that
Ai =A (i = 1,4). Suppose that n = 12 and B, = 1/4 (i = 1,4).
What is the relative probability that one will observe k1 = 1,
ka = 2, ks = 4, k4 = 5, versus that of observing all ki =3 (i =
1,4)? From Eq. (7.4)

(121/11214151) (1/4)2
83160 (1/4)2

p(12;:1/4,1/4,1/4,1/4;1,2,4,5)

and

L}

(121/31313131) (1/4)12
369600 (1/4)12

p(12:1/4.1/4,1/4,1/4;3,3,3,3)

Thus, it is more probable by a factor of ~ 4.44 that an equsl
number of events will be observed from each detector than the
other possibility indicated ahove.

In reality, the binomial probability law is rarely employed explicitly
in statistical applications. 1Its significance stems from the fact that the
more important Poisson and normal (Gaussian) probability laws are, in fact,
limiting cases of the binomial law. This matter is explored in Sec. 7.4.
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7.2 Pojsson Probabilitv Law

Suppose we wWish to analyze a problem involving a large number n of
independent random trials, with a small probability p that an event A will
occur on a single trial. Furthermore, suppose that we are mainly interested
in the probability of exactly k occurrences of A in n trials when k << n. In
principle, the binomial probability fupction of Eq. (7.3) is applicable in
this situation, but it is extremely ackward, if not impossible, to use for
the given conditions. This will be apparent to the careful reader who worked
thraough some of the examples given in the preceding section. The nineteenth
century French mathematician S. Poisson suggested a probability law, known as
the Poisson probability law in his honor, which turns out to be a good
approximation to the bionomial law under these conditions.

There are various ways to derive the Poisson probability law. Below, we
discuss the most commonly used approach. This method explicitly demonstrates
that the Poisson law is indeed a good approximation to the binomial law under
the conditions indicated in the preceding paragraph. However, it 1is
important to realize that the Poisson probability law is a distinct
probability law which need not be considered as just a limiting case of the
binomial probability law. In fact, this law has been demonstrated to be
applicable to the analysis of certain random phenomena for which the
gonditions on the number of trials and probability per trial are not as
severe as implied in the following derivation. We demonstrate below that
this law satisfies the basic axioms of probability. Its importance in
applied statistics stems from the fact that it seems to describe very well a
large number of random phenomena of practical interest, especially in the
area of nuclear processes.

Iheorem: ([Poisson Approximation}]

Let n be a very large number of independent trials in which the
probability p of occurrence of an event in a single trial is very smalil,
i.e., n> 1 and p << 1. Let A = np. Then, for k << n, the binomial
mass function, Eq. (7.3), is approximated very well by the expression

pln.p:k) = ARe™ /K (7.7)

Proof of the theorem inveolves appropriately grouping some factors and then
making certain limiting approximations. Starting with binomial formula, Eq.
(7.3), we carry gut the following algebraic manipulations:
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_ k _ n -k
p(n,p;k} = an p (1 - p)

_ n! k(l _ )n -k

“Ktn-xnt P P

- n{n - 1) (n - z)k;.. (n - k,+ 1) pk(1 - p)n -k

_Mo-1) (0 -2) . (n-k 1), 0k (3= a/m)t
k! (1 - A/n)

- n(n -1)(n-2) ... (n -k + 1) _E (1 - A/n)n
K k! {1 - a/m)E

AK 11 - 1/m)(1 - 2/n) ... [1 - (k - 1)/n]
= o7 (1 - a/m)” -
’ (1 - A/n)

It is well known that

eim (1 - A/n)® = &7,

n-—+®

so for large n we therefore can approximate the factor (1 - )\/n)n by e-A.
We now notice that most of the remaining factors ar¢ near unity since k << n
and A << 1. This proves the result stated in Eq. (7.7).

Since in the binomial probability law p can range from 0 to 1, another
way to view the Poisson law is that it becomes a good approximation to the
binomial law whenever the number of trials n is large and binomial law is
very asymmetric, i.e., when p is << 1, and thus is far removed from p = 0.5,
the point of symmetry.

An important difference between the Poisson probability law and binomial
probability law is that in the former a single parameter A explicitly

replaces the two parameters n and p of the latter. However, A is still
interpreted as the product np in the limit of large n and small p. This
transformation from n and p to A via the product A = np is known as the

. Poisson transformation. Clearly, it is essential to
both the binomial and Poisson probability laws that there exists a
fundamental probability p for the occurrence of an event A in any single
random trial. This probability is an intrinsic feature of the space of
events. Prebability is not an observable, but the quantity k/n is, where k
is the number of occurrences of event A, and n is the sample size. Our
theory suggests that, for large n, k/n is likely to be close to p, regardless
oL n. The parameter A, of course, depends on n and is therefore not as
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fundamental as p. The reader will recall from the discussion of Bernoulli's
law of large numbers (in Example 7.2) that, for a'large number of independent
trials n, the probability of finding that A has occurred k times is small if
k is substantially different from np, i.e., from A, This is just an
equivalent way to state the particular concept under consideration. The
Poisson law is therefore understood as that law which provides probabilities
assaciated with various values of the integer random 'variable k, which
represents the observed frequency of occurrence of A after a large number of
trials, given that A is known to be the most likely frequency of occurrence
of A. In applications one is generally interested in the probabilities for
various k in the vicinity of A. However, the Poisson probability law is
formally defined for all non-negative integers k, and for arbitrary positive
real numbers A, by the following mass function:

k

o(A:k) = AK e /K (A>0and k=0, » . (7.8)

Iheorea:

The Poisson formula of Eq. (7.8) satisfies the basic axioms of
probability, as described in Section 4.2.

To prove this, we demonstrate that the basic axioms are satisfied.
Clearly, p(A;k) 2 0 for all allowed A and k, so Axiom I is satisfied. The
event space to which this probability applies is the set of all non-negative
integers k. Each such event is mutually exclusive in the sense that for a
particular set of n random trials one cannot observe both k occurrences of A
and k' occurrences of A if k' # k. However, the probability of observing
either k occurrences of A or k' occurrences of A is implicitly taken to be
the sum p(A:k) + p(A;k'), in compliance with Axiom III. The theorem is
proved if we can demoanstrate normalization (Axiom IX), i.e., if

o
Z p(A;k) = 1.
k=0

This is a straighforward task. From Eq. (7.8),
<« o <
A A

zpik) = £ Ke ki) = et 2 (aKskny) = et =1,
k=0 k=0 k=0

from the well-known series expansion for the exponential factor eA.

One application of the Poisson law is in the calculation of failure
frequencies for like components which are fabricated in large quantities and

are known to fail relatively infrequently. This is demonstrated by the
following example.
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Example 7.6

Suppose that experience has shown that for a certain type of
precision resistor obtained from a particular supplier, an
intolerable defect (e.g. departure of the actual resistance from
the nominal value by more than 20%) is encountered at an average

frequency of 10 defects per 1(15: thus, p = 1()"4 (probability that
any particular resistor will be defective) and A = np = 10. The
orobabilities for observing defect numbers k ranging from zero to

20 per 100. in any large batch obtained from this supplier, should
be represented well by the Poisson low. These probabilities are
listed in Table 7.2.

Although it might be known a priori that the Poisson probability law is
applicable (due to the nature of the independent trials), the parameter A
must be deduced from experimentation in any practical application. For
example, it would have been impossible to perform the analysis indicated in
Example 7.6 without the knowledge that A s 10, based on prior experience.
This situation iilustrates a basic feature of applied statistics, namely,
that the fundamental parameters of any probability law must ultimately be
deduced experimentally.

Example 7.6 also demonstrates that the probability mass function indeed
peaks for k = A. It also appears to be somewhat skewed, with larger
probabilities for k = A - i than for k = A + i, when i is a positive integer.
This is a manifestation of the following theorem of Poisson probability which
is presented without proof:

Theorem:

Let A = m, an integer. Let i be another integer such that 1 ¢ i < m.
Then, for the Poisson probability law, p(m:m - i) > p(m;m + i).

We also note from Table 7.2 that for A = m, an integer, p(m;m - 1) =
p(m:m). This is a general result which can algo be expressed as a theorenm:

Iheoren:

Let A = m, with m an integer greater than 1. Then, for the Poisson
probability law, p(m:m - 1) = p(m;m}).

To prove this refer to Eq. (7.8). Thus,

o™ "1 e /(m - 1)!

p(m:m - 1)

(m)m'—le--/[(m) (m - 1)t}

n"e "/m! = p(m,m).
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When A becomes very large (>> 1), then the Poisson mass function
approaches a symmetric shape for kX in the vicinity of A. This result follows
from the next theorem which is offered here without proof:

Iheores:

Let A be a large positive number (>> 1). For all intents and purposes,
e suppose that it is an integer, We also suppose that k = A + m and
k! = A - m, where m is a non-negative integer such that m << A, Then

p(A:k')/plAik) = A“a‘(h + m)l/(A - m)!.

This ratio is close to unity under the conditions stated here. The result is
easy to demonstrate. Suppose, for example, that m = 2 and A = 1000, then
p(A:k')/p(A:k) = 1.002.

Since radicactive decay involves a very large number of atoms, and the
probability is small that a particular atom will decay during a time interval
which is short comprred with the decay half life, one would expect that
Poisson statigstics should apply to such problems. Through a series of very
thorough experiments conducted early in this century, E. Rutherford and
coworkers demonstrated the validity of this contention. Indeed, the Poisson
praobability law is now considered to be the premier statistical law of
nuclear science. The Law of Exponential Decay of radioactivity follows from
similar assumptions. Consider an Interval of time 4t which is much smaller
than the decay half life for the atoms in a radioactive sample. Let p
represent the probability per unit time that a particular atom will decay.
Then pdt is the probability that it will decay in time 4t. Since it is
agsumed that the sample we are observing contains a very large number of
atoms n which have not decayed, the most likely number of atoms actually
expected to decay during a small time interval 4t is &n = npdAt. This
assumption is experimentally verifiable, and it iy also consistent with both
Bernoulli's law of large numbers and the Poisson probability law. For small
4t, &n << n. If we consider the number of atoms in the sample which have not
decayed to be a function of time, for instance, n = n{(t), then the change 4n
in n during time 4t is given by the formula

4dn = -8n = -npAdt,

Going to the differential limit yields the differential equation,

dn/dt = -pn, (7.9)
which governs radicactive decay. The solution to this equation is the
formula

. -pt
n(t) = n(0)e , (7.10)

which is designated the Law of Exponential Decay. It is generally known that
the statistical uncertainty in the number of counts N recorded during a

particular nuclear measurement is NI/Z. This result naturally must follow

from the Poisson probability law, and we shall see in a future report
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precisely how this comes about. Meanwhile, we demonstrate what this
uncertainty signifies through the following example:

Example 7.7

Suppose that A = 100. Values of the Poisson mass function
p{A:k) for k = 80 to 120 are listed in Table 7.3. Note that the
mass function is approximately symmetric for ks A, in accordance
with a previous theorem. It is also seen that p(Ar;k) drops to
something on the order of half of the maximum value for k such

f . 1/2
that |A - k| ] Alla. Thus. the statistical uncertainty A / is a

measure of the breadth of the Poisson probability mass functioen.
In general, uncertainty is always a measure of the breadth of
probability density (or mass) functions. In Example 7.2, it was
demonstrated that a binomial distribution becomes “sharper" for
large n, thereby quantitatively demonstrating Bernoulli's law of
large numbers. The same is true for Poisson functions, where the

fractional uncertainty varies as A-l/a. This is the origin of the
well-known rule that long radioactivity counts produce better
"statistics,” i.e., better precisicr.

Statistical uncertainty associated with the Poisson distribution, as
discussed in Example 7.7, is a fundamental reason why there is a limit to the
resolution which is obtainable for pulse-height spectra recorded from a
nuclear radiation detector. This point is demonstrated in the following
example:

Example 7.8

Suppose that a 1-MeV photon gives up all its energy within a
germanium diode detector. The signal generated by the detector
has an amplitude which is proportional to the collected ionization
charge, and that, in turn, is generally proportional to the energy
deposited in the diode by the photon. We will assume that one
quantized unit of ionization charge is collected per 1 eV of
deposited energy, taking into consideration recombination and
other losses. Thus, it is most likely (in the Poisson sense) that

106 quantized units of charpge will be collected when a 1-MeV
photon is completely absorbed by the detector. However, otlher
charge numbers k are possible, and their probabilities are derived
using the Poisson law. Consequently, the pulse-height full-energy
peak that is formed in analysis «+f the signals produced by
detecting many 1-MeV photons could be expected Lo resemble a
Poisson distribution, all other considerations aside. The
spectrum width, expressed in energy units (keV), would be of the

order of 2(103/106)(1000) = 2 keV. In fact, this represents an
upper limit to the obtainable resolution since other random
process, e.g., electronic novise, will serve to breaden the peak
even further.
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Table 7.2: Poisson Probabilities for A= 10 and k = 0 to 20
k p(10:k) k p(10:k) k p(10;k)
0 0.0000453 7 0.0901 14 0,0521
1 0.000453 8 0,113 15 0,0347
2 0.00227 9 0.125 16 0.0217
3 0.00757 10 0.125 17 0,0128
4 0.0189 11 0.114 18 0,00709
5 0.0378 12 0.0948 19 0.00373
6 0.0631 13 0.0729 20 0.00187
Table 7.3: Poisson Probabilities for A = 100 and k = 80 to 120. The
breadth of the distribution is characterized by the para-
meter A = 10 which is designated the statistical error
in the most probable value A.
K p(100;k) k p(100;k) k p(100;k)
aa 2. 5S2A3SAE—0 95 @.36044EE-21 118 Q. 234424E-01
a1 Q. E4239QE—-B2 96 @.375469E-01 111 @.211159E—-21
az 2. 78338302 97 Q@.387Q33E-@1 112 @.188533=-M
a3 @. 943723E—-02 98 Q@.394955E-01 113 2. 166847E~01
84 Q. 1133515-@1 99 @.323323E-81 114 Q. 146364E-01
a5 Q. 132172E—21 122  @. 398953E-01 115 Q. 127272E-01
as Q. 1S3688E~-21 181 @, 3943980E-Q1 116 Q. 1@39722E-1
a7 R. L7666 7E~-Q1 122 Q. 387222E-21 117 @.337642E—-2Z
as 2. 2QR7532~a1 193 @. 375337621 118 @.794623E—-02
89 R. 225548E—R1 104 Q. 3614825-21 119 @.E67738E—E
3a 2. 2SR6SBE~-a1 105 Q. 244276E-Q1 120 Q. SS56486Z-02
91 Q. 275404E—@1 186  @. 3247855-01
3z 2. 2993505 -21 187  @. 393S@8E-21
33 Q. 221881E-21 128  @.2810418-01
34 Q. 34241 15-21 123 @.257851E-@1
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All nuclear radiation detectors require a certain amount of time to
process an event once such an event has been detected. Because events occur
randomly, there is a chance that some events will be lost because they happen
to occur during the intervals of detection paralysis which follow detection
of preceding events, The Poisson probability law is ideally suited to
analyzing these losses. This is illustrated in the following example:

Exam 7

Suppose that the average number of detector events per unit
time is R, based on experience accumulated over a large number of
random trials. Also, suppose that after it has accepted an event,
the detector is unable to record another event for a time T which
is the same for all such events. The average rate of events
occurring during an interval of time T is A = RT. One can
approach this problem in either one of two equivalent ways:

Live time approach:

Let PL be the probability that no pulses will be lost during

the time interval T. According to the Poisson probability law,
this is given by PL = p(RT;0) = (RT)0 e—RT/O! = e-RT. If RT << 1,
which is generally the case for reasonable detector setups, then

PL ~ 1 - RT.

Deadtime approach:

Let PD be the probability that one or more events will be

lost during the time interval T. Applying the Poisson probability
law again, we have

-] XQ
p(RT:k) = e ¥ ¢ RD)¥/k1 = e ®T [ = (RT)%/K1 - 1)

1 k=1 k=0

M 8

PD =

k

-RT, RT -RT
e e - .

( 1) =1 -e

If RT << 1, then PD » RT.

Note that regardless of the particular value for RT, PL + PD
= 1. The detector either loses one or more events or it loses

none during time interval T. There are no other possibilities.
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Coincidence-measurement techniques are quite important in experimental

nuclear physics. However, it is well known that in addition to (rue
coincidence events, oune can also obtain random (false) coincidences which can
be misleading if suitable corrections are not applied. Interference f{rom

random coincidences become problematic if the timing resolution is poor, or
if the count rates are high. In the following example, Poisson statistics is
emploved to derive a well-known formula for estimating random coincidences.

Example 7.10
Consider two separate detectors D1 and D2 which observe
radiation from two distinct sources S1 and Sa. respectively, as
shown in Fig. 7.6. The two detection channels are thus

independent, and no true coincidences are to be expected.

However, random coincidences are possible. Suppose that N1 and N2
are the measured average singles count rates for detectors Dl' and
D2 regpectively. Let T be the resolving time of the coincidence
apparatus, i.e., if events are recorded in D1 and D2 within an

elapsed time of T or less, there will be a coincidence recorded.

Furthermore, suppose that NlT << 1 and NaT << 1. If D1 registers

a count, then it is very improbable that another count will occur
in this channel within the following time interval T; however, a
count may occur in D2. In fact, the probability that one or more
counts occur in D2 in the particular time interval T initiated by
an event in D1 is
« -N,T =N, T

zn e 2/ki=1-e
k=1

Su, an approximation to the random coincidence rate in this limit
is
-N2T
Nc = Nl(l - e ) = NlNaT’

S0 long as the count rates in these detectors satisfy the
requirements NlT << 1 and N2T << 1, we are led to the same result

by this method of derivation regardless of which detector is first
considered. However, if one or both of the detectors has a
substantial count rate, the problem becomes more complex and must
be approached in a more sophisticated manner. This problem is not
considered in this report.

128



Nl

S1

DN

s2

p2

¢

Scaler

N1

Figure 7,6:

Coinc.

NC

129

!

Scaler

N2

Schematic diagram of the experiment described
in Example 7.10.




Examples 7.9 and 7.10 lead us to consideration of the so-called
expopegtial or is tjon. This distribution can be derived
directly from the Poisson probability law, and it describes the distribution
in the sizes of the time intervals between successive evenls in any random
process in which the average rate is R eveats per upit time. Pursuing this
notion further, we note that the probability that no events will be observed
in the time interval from 0 to t is just

p{Rt;0) = (Rt)% Rt/01 = e7RE,

The probability that exactly one event will be observed in the sequential
time interval from t to t + dt iy just

p(Rdt:1) = (Rat) e R4t/11 w Rat,

for a differential time interval dt. The interval distribution describes the
probability for a composite scenario, namely, no events for a time t followed
by a single event in time dt. Owing to independence, this probability is the
product of the two factors described above. In differential form, it is
given by the equation

dP = R e Ngr . (7.11)

It is easy to prave that the interval distribution is normalized, i.e., that

fi5 dP = R[5 e Nt = 1

We can thus consider

P(t) = Re Rt

a8 a continuous probability density function with a single random variable L
ranging from 0 to «, and a single fixed parameter R. We should again remind
ourselves that only measurement, not theory, provides R.

Equation (7.11) is very useful for addressing problems involving

anticipated count rates. The following example illustrates an application of
the interval distribution.

Example 7.11

Consider an experiment with a mean rate of R events per unil
time. We nmeasure the actual elapsed time intervals between
observed events until data have been recorded for a large number N
of such events. How many of these intervals would we expect to
have times t < T? From Eq. (7.11) we deduced that the probability
of observing a time interval t < T, namely,

P(L<T) =R JTeRtat =1 - T,
0
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Congsequently, we would anticipate N(1 - e_RT) intervals shorter

than T. Analogously, we would expect to observe Ne—RTintervals
exceeding time T. Clearly, the longer the time T is considered,
the less probable it is that intervals of this duration will be
observed.

Poisson probability satisfies an important property of additivity. We
now state this in terms of two theorems. To prove these theorems requires
mathematical techniques somewhat beyond the present treatment, so they will
be stated without proof. However, the concept will be illustrated below with
an example.

Iheorem: [Addition Theorem)

Let k1 and kz be two distinct random variables. k1 is digtributed

according to the Paisson law p(Al:kl) while k2 is distributed according

to the Poissan law p(Aa;ka). in accordance with Eq. (7.8). If
k = kl - k2 is treated as a random variable, then k is distributed
according to the Poisson law p(A;k), where A = Al + Aa.

This tlieorem has an inverse which is attributed to the Russian
mathematician D. Raikov:

Theorem: [Raikov's Theorem]

If k1 and ka are independent, and k = k1 + k2 follows a Poisson law,

then each random variable, kl and ka. follows a Poisson law of its own.

Example 7.12

The addition theorem is very important in counting
applications. Suppose two detectors D1 and D2 are independent and
the counting processes obey Poisson statistics. Detector D1
yields N1 counts, while detector D2 yields N counts in a

2
particular experiment. The statistical errors uare N 172

1
1/2 . ;
N2 . respectively, The sum N = N, + N,_ also obeys Poisson

1 2
statistics, by the addition theorem, so its error is NI/Z. By
Raikov's theorem, if the sum of two detector channels obeys
Poisson statistics, then each individual channel must also. These
theorems are commonly applied in the composition or decomposition
of multi-channel spectra from a single detector, where the
individual channel contents can be viewed as having been
accumulated independently.

and
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We close this section on Poisson probability with an example of Poisson
statistics which offers us an Interesting insight into the nature of modern
scientific research in general.

Esample 7.13

De Sola Price (Pri 63) conducted a study of many individual
cases of scientific disgovery. From this work he was able to
reach the following interesting conclusion: The number of cases k
of simultaneous scientific discovery, as evidenced by publications
reporting them, seemed to conform proportionally tc (1/ki). We
note that the Poisson probability formula

p(1:k) = (l)ke—l/k!

is also proportional to (1/k!). Therefore, dala of De Sola Price
apparently support the contention that, while it is still most
likely that any particular scientific discovery will be made just
once, multiple discoveries do occur with Poisson frequencies owing
to the apparent tendency for scientists to work independently of
one another. In short., scientists tend to publish papers but
rarely read the work of their peers! 1In view of the explosion of
scientific knowledge in this century, and the acknowledged
pressure placed upon scientists to be productive, this is not a
surprising stale of affairs.

7.3 Normal (Gaussjan) Probabjlity Law

The normal probability law is by far the best known and most widely used
probability law of statistics. In this section we examine a few of its
properties and offer some indication as to why it is hard to exaggerate its
importance in realistic applications. The origins of this law stem from the
early eighteenth century. Scientists began to observe an astonishing degree
of regularity in the errors of measurement. The so-called 'npormal” curve (we
have come to know of it informally as the bell-shaped curve) seemed very
often to approximate the outcomes of multiple obgervations. The individuals
credited with outlining the mathematical properties of this distribution and
providing a theoretical basis for its application are: Abraham DeMoivre
(1667-1745), Pierre Laplace (1749-1827), and Karl Gaussz (1777-1855). In
honor of the latter, the distribution is often referred to as a Gaussian
distributjon. Investigation of the properties of this distribution, and
development of a better understanding of why it seems to be of such
importance in Nature, persist as important research areas in the field of
stochastic theory up to the present time.

Unlike the binomial and Poisson laws discussed in Sections 7.1 and 7.2,
respectively, the pormal law involves a continuous density function of a
continuous rardom variable which we will designate as x. ' This variable can
assume any real-number value from - to o, Furthermore, there are two
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constant parameters of the distribution, ¢ and A, which are known as the
standard deviation and expected value of the distribution, respectively. The
density function for the normal probability law takes the form

pla.Asx) = expl-(x - A)2r20%)/(2ma®) /2 (7.12)

for % < x < +, The parameter o must he positive, since it is related to
the width of the distribution. A can be any finite real number. Referring
to Pearson's ulfferential equation (Eq. 6.18 in Chapter 6), it is rather easy
to show that Eq. 7.12 is indeed a solution of this differential equation for

the special case a = 02. b=1¢ =0, and d = A. It can also be seen by

referring to tables of definite integrals that this density function is
normalized, i.e..

j:: p(o,A:x)dx = 1

for arbitrary A and ¢ (¢ > Q).

A compilation of all the known properties of the normal distribution
would fill many volumes. Here we only indicate a few of them, without proof:

Theorem: [Symmetry Theorem]

p@,A;x = A +2) =p(0,A;x =A - 2) for all real z.

Theorem:
(@) 0 < p(e.A;x) < p@,Aa:A) = (2162) Y2 for all x.
B -1/2
(b) pl(c,A;x = A £ a)/pl(a,A;A) = e = 0.6065,
_ 1/2
(c) plo.A;x = At (26n2) " "g]/plo,A;A) = 1/2,
1/2
(d) plo,A,x = A £ (2) ""ol/p(e,A;A) = 1/e & 0.3679.
Theoren:
The derivative of p(o,A;x) with respect to x, exists everywhere and has
the form
p'(@,A;x) = (A - x)p(O.A:x)/Oz-
Thus:

(a) p'(o.A;A) = 0,

(b) p'(o,A;x) <0 if x > A,
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(c) p'(a.A;x) > 0 if x <A,

(d) p'(a.A:x = A +z) = -p*{ag,A;x = A - z) for all real z,

(e) lp'(o.A;x)l < |p'(d.A; At o)l = e_llz/(anq4)1/2 for all x.
Theorem:
The tangents to the normal curve at x = A + 0 and X = A - o lntercepl
the zero probability density axis at X = A - 20 and x = A - 20,
respectively.
Theorem: [Addition Theourem]

Suppose a random variable X, is distributed according to p(al.AI:xl).

while x_ is distributed according to p(aa.ha;xa). Next, suppose x is a

2
random variable such that x = Xy * Xge Then x is distributed according
. - 2 __2 2
to plo.A:x), with A = Al + Az and o 01 + 02 .

Theorem: {[Levy-Cramer Theorem]

Let X, and X, be independent random variahles and let x be the normally

distributed random variable that is the sum, x = Xy o+ Xy Then both x1

and X, are normally distributed.

This theorem is essentially the inverse of the Addition Theorem, and it
was first proven by H. Craaer.

It is evident from Eq. 7.12 that there is no unique normal distribution,
but an infinitely large family of such distributions, characterized by the
parameters @ and A. This obvious fact makes for difficulty in tabulating the
normal distribution. However, if we let ¢ = 1 and A = 0, we obtain a special

member of this family known as the gtapdard normal distributjon or gtandard
Gaussian:

f(x) = p(1,0:x) = ;xp(—xa/2)/(21r)1/2 . (7.13)
Furthermore, the integral

F(x) = 7% €(z)de (0 ¢ x ¢ ) (7.14)

is very useful since it represents an actual pirobability for observing the
random variable z in the range (-x,x), for x ?» 0, when this random variable
is distributed according to the standard Gaussian. Tables of f(x) and F(x)
are widely available, and an abbreviated version is provided in this report
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as Table 7.4. The functions f and F, and tables thereof, are very useful in
general because any normal distribution of the random variable x, which is
characterized by A and o, can be transformed to the standard normal
distribution in z by the linear random-variable transformation.

z = (x - A)/g. (7.15)
The variable z in this form is known as a [ : varjable or a gtandard
variable for the distribution, The simplification afforded by this

transformation is one of the many reasons why the normal distribution is so
convenient for applications.

Statisticians often refer to gpe-sigma. iwo-gigma or three-sigmg limits.
Table 7.4 helps us understand what this means. From the values of F(x) in
this table, and Eq. 7.14, it is evident that the probability, for the
standard Gaussian, that x will be obgserved to exceed 1 (one sigma) in
repeated trials is ~ 31.7%. From Eq. 7.15, it is seen that for arbitrary
standard deviation o and expected value A, this is equivalent to |x - A| > o
(one sigma). Likewise, the probability, for the standard Gaussian, of |x[
exceeding 2 (two sigma) is seen to be ~ 4.6X. Finally, the probability for
the standard Gaussian that lx| wiil exceed 3 (three sigma) is only ~ 0.3%,

which 1is nearly negligible for many practical purposes. It is the
three-sigma rule which is generally used by statisticians as a test of

confidence, and it is often applied to distributions other than the Gaussian.
Then, ¢ is the standard deviation of the particular distribution in question.
It is important to keep in mind that the "confidence” limit values indicated
above (in percent) apply only to normal distributions. It should also be
stressed that when a Gaussian distribution is used to approximate another
type of probability distribution, no physical credence should be given to
values of x beyond the range of the particular distribution in question. A
similar caveat was established in Section 7.2, with regard to the Poisson
distribution, which also has an infinite range defined for its random
variable k.

We now examine in more detail several reasons why the Gaussian
distribution holds a place of such eminence in statistics. Most of the
arguments favoring its use fall into the following four categories: i) it is
convenient to wuse, ii) it has been found (from basic or empirical
considerations) to be the appropriate (or nearly appropriate) probability law
for certain important physical processes, iii) it is a reasonably good
approximation to several other probability distributions, and iv} the
influence of the Central Limit Theorem. We have already presented evidence
to the effect that Gaussians possess mathematical propenties which make them
convenient to use. This matter will be pursued further in later volumes of
this report series. We should mention here that, by the use of random- -
variable transformations (see Section 3.3), it is sometimes possible to
analyze certain phenomena in terms of Gaussian distributions even though they
are not directly applicable. The following example illustrates this point:



Table 7.4 Numevical Values for the Standardized Normal Distribution®

X £(x)° F(x)® X £(x)° F(x)©

Q 0.39894228 0 2.6 0.13583059(-1) 0,99067935
0.1 0.39695255 0.79695370(‘-1)d 2.7 0.10421011(-1) 0.99306748
0.2 0.39104269 0.15855852 2.8 0.79155151(-2) 0.99489094
0.3 0.38138782 0.23586098 2.9 0.59525848(-2) 0.99626938
0.4 0.36827015 0.31088031 3.0 0.44318910(-2) 0.99730197
0.5 0.35206535 0.38296014 3.1 0.32668533(~2) 0.99806556
0.6 0.33322462 0.45152710 3.2 0.23841153(-2) 0.99862641
0.7 0.31225393 0.51610393 3.3 0.17225901(-2) 0.99903377
0.8 0.28969154 0.57631818 3.4 0.123223535(-2) 0.99932672
0.9 0.26608522 0.63190636 3.5 0.87269508(-3) 0.99953529
1.0 0.24197068 0.68271369 3.6 0.61191124(-3) 0.99968230
1.1 0.21785217 0.72868966 3.7 0.42478781(-3) 0.99978490
1.2 0.19411861 0.76988008 3.8 0.29195199(-3) 0,99985580
1.3 0.17136866 0.80641618 3.9 0.19865914(-3) 0.99990429
1.4 0.14972757 0.83850168 4.0 0.13383285(-3) 0.99993713
1.5 0.12951772 0.86639860 4.1 0.85263514(-4) 0,99995916
1.6 0.11092098 0.89041259 4.2 0.58944366(-4) 0.99997378
1.7 0.94049237(-1) 0.91087859 4.3 0.38536094(-4) 0.99998339
1.8 0.78950324(-1) 0.92814740 4.4 0.24943084(-4) 0.99998964
1.9 0.65615982(-1) 0.94257362 4.5 0.15984155(-4) 0.99999367
2.0 0.53991129(-1) 0.85450535 4.6 0.10141128(-4) 0.99999624
2.1 0.43983751(-1) 0.96427581 4.7 0.63700076(~5) 0.99999787
2.2 0.35474737(-1) 0.97219693 4.8 0.39614182(-5) 0.99999889
2.3 0.28327169(-1) 0.97855492 4.9 0.24390376(~-5) 0.99999950
2.4 0.22394648(-1) 0.98360750 5.0 0.14867686(-5) 0.99999989
2.5 0.17528404(-1) 0.98758277 5.1 0.89727451(-6) 1.00000000

4calculations performed using a microcomputer. Eight-significant figure
reproduction from the ocutput does not guarantee eight-significant-figure
accuracy. Comparison with other tables indicates that f(x) is accurate
to at least five signifi-ant figures, while F(x) is accurate to at least

four significant figures, for 0 ¢ x ¢ 3 (through three standard
deviations).

br(x) = exp(-x%/2)/(2m 1’2,
“Fx) = {7 £(z)dz.

[

d -
0.79695370(-1) signifies 0.79695370 x 10 !.
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Suppose that we consider a large number of similar shielding
blocks with uniform density. As an exercise, we weigh each block
and ask how the masses are distributed. It is known that the
linear dimensions of objects fallow distributions which appear to
be well approximated by Gaussiang, if the measurement sample sizes
(number of blocks considered) are large. The mass M of a block is
given in terms of uniform density p., length €, width w, and height
h by the formula

M = péwh.

We shall assume for simplicity thal the precision to which the
blocks are cut is uniform for each of the three linear dimensions,
and that there exist constant scale factors se. s“. and sh for

this particular problem, such that ¢ = $,X, W = 8.X and h = 8) X.

Under this assumption we express M in terms of a single random
variable, namely, a generic linear dimension x, by means of the
expression

Clearly, Mlla is proportional to x, so we expect Hl/a to be
distributed as a Gaussian from the preceding discussion. We may

be satisfied to limit our statistical cansideration to H1/3.

However, if €, w. and h vary randomly., and independently of each
other (which is more realistic), then it is more of a problem to
examine the probability distribution for the mass M. We shall see
in the next report of this series that it is generally not
necessary to know the probability distribution in detail.
Knowledge of a few of its moments will generally suffice. For
this problem, it turns out that

2 2

2 2 2 2 2 2
dH/<H> = ae/<e> + o"/<w> + oh/<h> ,

where <...> denotes mean values and o denotes standard deviations.

The normal probability law is not noteworthy as a truly fundamental
distribution. In fact, few phenomena can be considered to behave
statistically in naturally Gaussian fashion. Its importance stems mainly
from the empirical observation that it often is a very good approximation Lo
other more fundamental distributions of Nature, in the 1limit of large
samples. Nevertheless, some physical phenomena involve such large samplings
that Gaussian distributions are postulated as fundamental for all intents and
purposes. The next two examples illustrate this point:
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The Maxwell-Boltzmann W olecular Velocities evolves
from the assumption of Gaussian probability distributioans.
Consider a uniform classical gas of molecules with mass M and
temperature T (degrees absolute). Since there is no preferred
direcvtion in space, we can arbitrarily define a Cartesian
coordinate system in real space and a corresponding one in
velocity space. A poin: in velocity space is represented by

(vx.vy.vz). Here, vx represents the coamponent of gpeed v for a

particular molecule, as projected onto the x-axis, and we
pustulate that Ve is distributed according to the Gaussian

2 2
p (v~ exp(-87v, ")

with = < Vx < 4, The same is true for vy and vz. These

distributions are symmetric about zero because we postulate no
preferred direction in space, i.e., zero flgw for the gas. For
convenience we omit normalization constants for these
distributions. Since there is no net flow of the gas, V! vy and

v, can be treated as independent random variables. Thus, the
probability of findiug a molecule within a small element dvx.dvdez

in wvelocity space (or pernaps we might consider this as
essentially an element in phase gpace) is the product

p (v )p (v )p

Q, 2 2 2
x V)P vy z(vz)dvxdvydvz expl-B8 (vx * vy + vz)]dvxdvydvz.

However, the speed v is related to its componwnts Ve vy and V. 2y

VZ - v2 . v2 N v2'
X y 2

so the increment of probability associated with this small phase

space element is ~ exp(nnava)dvxdv dvz. The Maxwell-Boltzmann

y
distribution is concerned with molecular speed v, 80 we are

interested in the probability of findiing molecules having speeds
between v and v + dv, namely, p(v)dv. Te determine this
probability we must sum over all cartesian phuse space elements
dvxdvydvz for which the speed is between v and v + dv; namely,

p{viydv = Z exp(—pzva)dvxdvydvz. Because of the symmetric
relationship between speed v and its componeuts Ve v and v_, the
phase space region is a thin spherical shell of radius v and
thickness dv centered on the origin (vx.vy.vz) = (0,0,0). The

shell volume is proportional to the volume element vzdv.
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Therefore, the Maxwell-Boltzmann Law
normalized probability density function

p(v) = 4p%v2exp(a3®) ml/2,

is expressed as the

for 0 ¢ v < »,

The constant B8 is related to the fundamental molecular parameters

according to pa = M/2kT., where k is Boltzmann's Constant.

In Section 7.1 we discussed a simple model of error, based on binomial
In the next example we examine

probability, which is attributed to Laplace.

another model of error., based on the pormal distribution,

which was suggested

by John Herschel, and is thus known as Herschel's Mode, of grror.

Example 7.16

Herschel envisioned release of an essentially infinite number
of identical grains of sand from a point in space onto a plane.
That the continuous distribution of their individual landing
positions is Gaussian can be derived from jusiti two very plausible
postulates. 0f course, it is obviously assumed that there are
random disturbances present which insure that the grains do not
all fall directly below their point of release. The [first
postulate states that there is no preferred azimuthai bias. Thus,
in cylindrical coordinates, the density function is

p(r,e) = h(r),
where r is the radial distance from the projection of the drop
point onto the plane (i.e., the density function has only one
random variable). We can define a Cartesian coordinate system
with origin coinciding with the cylindrical coordinate system.
The orientation is arbitrary, but we assume that x = rcosd, y =
rsin@. Herschel's second postulate states that the distribution

function, expressed in Cartesian coordinates, is independeat with
respect to the two coordinates, namely,

p(x.y) = [(x)g(y).
Let dA be an increment of area on the plane. Then,
h{r)dA = £(x)f(y)dA
s0
h(r) = £(x)ely)
and

&n h(r) = €n £(x) + én gly).
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Then.
¢n hi(r) = ¢n f(rcos®) +~ €n g(rsing).

Take the derivative of both sides of this expression with respect
te 6, then

dién h(r)]/de = [f(x)]"ld[r(rcosa)]/de + [gly)l 1d[g(rsine)]/do_

Therefore,

0 = -rsind [r(x)]—ld[r(x)]/dx + rcosé {g(y)]—ld[giv)]/dv-

by the chain rule of differentiation. So, in abbreviated terms,

£ (x)/[x0(x)] = g"(¥)/[ye(yv)].

Now, there should be no particular distinction between [ and g or
x and y, since our choice of a Cartesian coordinate system was
arbitrary. Therefore, f'(x)/[xf(x)] is independent of x for all x
and must be a constant, which we choose to call -C. Since

fr(x)[xf(x)] = -C,

it must be the case that

£(x) ~ exp(-Cx2/2).

neglecting a normalization factor. It would be impossible to
normalize [ for -« < x < o without requiring C > 0. Finally,

2
hir) ~ e—Cl /2 (r > 0).

Science museums oftsn set up displays which demonstrate formation

of a “bell-shaped” normal curve in the manner suggested by
Herschel.

The normal probability law iy often used as a mathematically convenient
continuous approximation to the discrete binomial distribution for large n.
As discussed in Section 7.2, the binomial distribution is difficult to
calculate for large n. So long as p << 1, the Poisson distribution is
useful. Otherwise, the normal law must be used. If n is large and p << 1,
yet A = np >> 1, the normal law also approximates the Paisson law fairly well
for x = k= A. However, the Poisson distribution is decidedly assymmetric,
while Gaussians are intrinsically symmetric. These relationships are
clarified in Table 7.5. The reader can refer to this table for guidance on

how and when to use the binomial, Poisson, or Gaussian distributions in
praclical applications.
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Iable 7.5 Use of Poisson and Normal Distribuions to Approximate
the Binomial Distribution.

Bl {al Distribution:
p(n.p:k) = an pk(l - p)n“k {k = (0 to n)].

valid for all n > 0, and all p > 0, as is discussed in Sec. 7.1.
For large n, this distribution is awkward to use and should be
approximated by either the Poisson or normal distributions, as
discussed below.

Poj Distribution:
p(Ask) = A¢™ /K1l [A = np >0, k=0 tow] .

Used to approximate the binomial distribution when n >> 1 and 0 < p

<< 1, as discussed in Sec. 7.2. Then, the binomial is very

agsymmetric. Often A is not large in situations where this

approximation s useful. This is a discrete, infinite

distribution. Comparison with the binomial is meaningless for

k > n. A need not be an integer.

" | Distributions:

p(g.A;x) = expf{-(x - A)2/202]/(21r02)1/2

[-e < x < +0, A = np, ol = np(1l - p)]

Used to approximate the binomial distribution when n >> 1 and p is
unrestricted. It is an especially good approximation when the
binomial is nearly symmetric (p ~ 0.5). This is a continuous,
infinite distribution. Direct comparison with the binomial is made
only for X = k (k = 0 to n). Comparison is meaningless for x < 0

or X > n. When n << 1 but n is so large that a2 2 A and A >> 1,
then the normal distribution (with ¢ = A) is a reasonably good
approximation to the corresponding Poisson distribution as well as
to the binomial, particularly for x in the vicinity of A.
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1t is not a straightforward matter to prove that a binomial distribution
can be approximated by a Gaussian for large n, so we avoid the details and
simply accept this result as fact. The essence of this result is embodied in
the following famous theorem (De Moivre-Laplace) which is stated here without
proof{:

Theurem: ([De Moivre-laplace Theorem]

Let a and b be two non-negative integers with a < b, and let n and p be
parameters of the binomial distribution p(n,p;k). Then for large n,

b
Z p(n,pik) =» [2 p(1.0;x)dx,
k=a

where p(1.0;x) is the standard normal distribution, while

1/2

a = (a - np - 1/2)/[np(1 - p)]

]

and

B = (b-np+1/2)/[np1 - p)1Y/2.

Very crudely speaking, what this theorem states is that the sum of the
areas of contiguous histogram segments, representing discrete binomial
probabilities, approximately equals the area under the corresponding
continuous Gaussian curve spanning the same region. While it has been
stressed that n should be large for the binomial to be represented well by
the corresponding Gaussian app. ~ximation from Tahle 7.5, it is remarkable how
good this approximation becomes, even for relatively small n, when p= 1/2.
This is demonstrated in the following example.

Example 7.17

Refer to Table 7.6 for values of the binomial distribution
p(n.p;k) for n = 10 and p = 1/2, and of the corresponding normal

distribution p(o,A;x) for ¢ = (2.5)1/2 and A = 5. The agreement
is quite pgood. To demonstrate the validity of the De Moivre-
Laplace theorem, we first consider

4
Z p(10,0.5;k) ~ 0.3662.
k=2

tThen consider
14.
1.

The difference is only ~ 1%. This example 1is illustrated
graphically in Fig. 7.7. The shaded area represents the integral,

while the assoclated histogram rectangles represent components of
the discrete sum.

[S13N )]

dx{exp[-(x - 5)2/5)(57) 12} ~ 0.3622.
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Table 7.6 A Comparison of Binomial and Normal Distributions®

Biuomialb Nurmalc Difference
k p(n,pik) pl@.A:x) (%)
0 9.77(-4) 1.70(~-3) +74.0
1 9.77(-3) 1.03(-2) + 5.4
2 4.39(-2) 4.17(-2) - 5.0
3 0.117 0.113 - 3.4
4 0.205 0.207 + 1.0
5 0.246 0.252 + 2.4
6 0.205 0.207 + 1.0
T 0.117 0.113 - 3.4
8 4.39(-2) 4.17(-2) - 5.0
9 9.77(-3) 1.03(-2) + 5.4
10 9.77(-4) 1.70(-3) +74.0

Acalculations performed using n = 10, p = 0.5, A = 3.0

02 = np(l - p) = 2.5,
Po(n.pik) = anpk(l -k,

p(0.a:x) = expl-(x - A)2/20%1/(2m0%)12, with x

I
o
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Probability Density

Figure 7.7: Graphical demonstration of the DeMoivre-Laplace Theorem for the
special case discussed in Example 7.17.
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The following example presents a special case in which the corresponding
binomial, Poisson, and Gaussian distributions yield very nearly equal values
aver a narrow range.

Example 7.18
Let n - 100000 and p = 0.01, Therefore, A = np = 1000 and
02 = npfl p) = 990 = 1000. Table 7.7 contains values for
equivalent hinomial, Poissun, and Gaussian distributions. The

differences belween these three distributions are smaller than 1%
over the indicated limited range.

We alluded previously Lo the fact that normal distributions derive much
of their importance from the fact that they seem to describe (at least
approximately) a great many random phenomena observed in Nature and in every
day life., even though there is no a priori reason Lo expect that this should
be the case. One interesting clue as to why this aclually happeas may be
found by considering an extremely important theorem of statistics known as
the Cen.ral Limit Theorem. This theorem is stated in a variety of ways in
textbooks, and it has been found to apply under even quite weak assumptions.
Below we state a version of this theorem which, while nut the strongest or
most general statement of the concept one could make, is perhaps Lhe easiest
Lo anderstand and demonsirate:

ITheorem: {Central Limil Theorem]

Suppuse that a particular random property can be described by the random
variable x. Suppose that we sample this random variable from a very
large population in which X is distributed about an expected value A
with standard deviation ¢. Now consider an experiment which is repeated
m times. For gach of the m repetitions, we sample x randomly froa the
population n times, independently, and then consider the random variable
z, given by

It
2 = Z xi.
i=1
This procedure yields a sequence of values 2, (k = 1,m). As m and u

'k
become large, it turns oul that the random variable 2z becomes very
nearly distributed as a Gaussian with expected value
A' = nA

and slandard devialion

o' = on1/2.
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Table 7.7 A Comparison of Equivalenl Binomial, Poisson and Normal

. . . a
Distributions

Biuumiulb Poissun® Normuld
k p(n.p:k) pl(Ak) p({o.A;x)
990 0.01211 0.01206 0.01200
993 0.01222 0.01217 0.01211
992 0.01232 0.01227 0.01222
993 0.01241 0.01235 0.01231
994 0.01249 0.01243 0.01239
995 0.01255 0.01249 0.01246
996 0.01260 0.01254 0.01252
997 0.01264 0.01258 0.01256
998 0.01267 0.01260 0.01259
999 0.01268 0.01262 0.01261
1000 0.01268 0.01262 0.01262
1001 0.01267 0.01260 0.01261
1002 0.01264 0.01258 0.01259
1003 0.01260 0.01254 0.01256
1004 0.01255 0.01249 0.01252
1005 0.01249 0.01243 0.01246
1006 0.01241 0.01235 0.01239
1007 0.01233 0.01227 0.01231
1008 0.01223 0.01217 0.01222
1009 0.01212 0.01206 0.01211
4] 0.01194 0.01200

1010 .01200

a Density funclions are computed with the following parametlers:
n = 100000, p = 0.01, A = np = 1000.0.

b . _ k.. . n-Kk
plu,p;k) = C"kp (1 p)

“plaik) = ANe T ke

i
‘ p{o.A:x) = expl-(x - A)2/202]/(2n02)1/2. with 02 = A= up(l - p}

for p << 1 and x = k.
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The larger n and m become, the better the representation by a Gaussian
distribution. In practice, n need not be too large, but m needs to be rather
sizable to obtain a reasonable Gaussian-like distribution. Also, we note
that for fixed o and A

' /A) ~ n V2,

s0 this Gaussian becomes wmore sharply peaked as n increases.

Proof of the theurem is beyond the level of the present treatment, so we
merely accept it. This is, indeed, a remarkable thecrem with profound
consequences. What it says., in essence, is thal sums of random variables
tend to be normally distributed regardless of the nature of the distribution
of the individual components. In the preceding statement of the Central
Limit Theorem it was assumed that each component of the sum was identically
distributed. However, more general statements of this theorem relax this
condition and allow the component random variables to be distribuled
arbitrarily. The only requirement jis that the individual probability
distributions be well-behaved. In particular they must be normalized and
possess well-defined mean values and variances.

The Central Limit Theorem can be understood and appreciated through the
following example:

Example 7.19

Envision a very large collection of cylindrical metal disks
(foils). All the foils are made of the same material and have the
same diameter. However, they differ in thickness. We assume that
each foil belongs to one of three distinct categories based on
thickness. One third of the foils are 0.01 em thick, another
third are 0.02 cm thick, while the rest are 0.03 cm thick. We
suppose, for present purposes, that all foils belonging to a
particular category are so identified.

Now consider the hypothetical exercise in which we make
samples to irradiate in some experiment. We fabricate each sample
by stacking and gluing together ten foils (n = 10) selected at
random from an essentially inexhaustible supply. Each of the ten
foils is selected independently and the samples themselves are
independently fabricated. We fabricate a total of m of these

samples and ask how the resulting sample thicknesses are
distributed.

For simplicity, we suppuse that the disk thickness x can
assume only the values x = 1,2, and 3. The probability
distribution p(x) is completely characterized by the values p(1) =
p(2) = p(3) = 1/3. According to the definitions given in Ex. 4.5
of Sec. 4.3, the expected value of foil thickness, which we
designate as <x>, is given by

<x> = Z xp(x) = (1) (1/3) + 12) (1/3) + 3 (1/3) = 2.
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This is the average value since. p(x) is a uniform distribution.
The variance in x is given by

0? = Zix - <x>)2p(x)
2 2 2, oy
= {1 -2)7(1/3) + (2 - 2) (1/3) + (3 - 2)°(1/3) = 2/3.
.. . 1/2 =
Thus, the standard deviation is o = (2/3) ~ 0.8165. The

thicknesses of samples formed by stacking ten randomly-selected
foils are represented by the random variable

where each Xy is distributed as indicated above.

In this example we simulate the experiment described above on
a microcomputer using a random pumber generatgr. This represents
a particular application of the powerful Mopte-Carlo Method which
will be discussed in later volumes of this series. We simulate
the random selection of individual foils from the popuiation by
generating a real random number R in range 0 < R < 1 with a
computer. If 0 < R € 1/3, we assume x = 1, If 1/3 < R £ 2/3, we
assume x = 2. Finally, if 2/3 < R ¢ 1, we assume x = 3. It is
clear that z can assume any integer value in the range 10 ¢ z ¢
30, but no others. The simulation process is as follows: Using
the computer we "fabricate” m samples. For each sample, we record
the resulting thickness z, and by the Monte-Carlo procedure
generate the array of numbers N(z) for z = 10,11,...30. N(z) is
the number of samples, out of a total of m, which are found to
have thickness z. Since

30
Z N(z) = m,
2=10

the nrnormalized distribution we desire is just p(m;z), where
p(m:z) = N(z)/m (z = 10,11,...30). The results of three distinct
simulation exercises of this nature, for m = 10, 100 and 1000,

respectively, are plotted in Fig. 17.8. The particular
distribution for m = 1000 is compared with the Gaussian
distribution p(o',A';z), with A' = 20 and o' = (10)1/%0 =
(10)1/2(0.8165) = 2.582. It is clearly demonstrated that p{(m;z)

becomes very well approximated by p(o,A';:2) as m gets rather
large. Remember that the distributions p(m;z) are discrete and
finite, while p(o.A:z) is countinuwous and infinite. It is
understood, then, that comparison with a continuous Gaussian is
meaningless where p(m;z) is undefined.

148



<31

12-

Probability Density

N N I

Probability Density

m = 100

Probability Density

m = 1000

Figure 7.8:

Graphical demonstration of the Central Limit Theorem for the
special case discussed in Example 7.19.
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The outcome of this computer simulation excited me greatly
when I first did the calculations, and it has left me with a deep
and lasting respect for the beauty and power of statistical
analysis. I hupe that the reader will be similarly impressed. It
seems to me that the fundamental meaning of nuclear data
uncertainty is clearly demonstrated in a very convincing fashion
via this simple exercise.

In view of the preceding example, it is not hard to visualize why random
variables that describe the linear dimensjons of like macroscopic objects
tend to be Gaussian-distributed for large populations. Macroscopic physical
objects can be considered to be built up from many smaller components, each
of which is distributed in its own way. When we consider the composite
‘object, the Central Limit Theorem tells us that we need not be concerned with
how these various components are distributed (so long as the distributions
are physically reasonable), because this composite will be well described by
a Gaussian. This very powerful result makes the job of statistical analysis
much simpler. Once the mathematical form of the underlying distribution is
known, the only remaining task is that of estimating its parameters. We
shall see in a later report of this series that this is achieved using
various sampling procedures and random variable statistics called gstimators
(as defined in Sec. 3.3).

We saw in Sec. 7.2 that the Poisson distribution is strictly univariate.
However, in Sec. 7.1 it was indicated that the wunivariate binomial
distribution has a multivariate equivalent known as the multinomial

distribution. Gaussian distributions can also be multivariate. We now
examine a few features of these more complicated multivariate pormal
distributions.

Using compact matrix notation, the general form for an n-dimensional
Gaussian is

n/2

p(V.A:%) = exp(-(1/2)(% - M)* V& - M1/7((2zm™?[dec (913}, (7.16)

X represents the random variable array (xl....xn). a point in n-dimensional

random variable space. A represents the expected value of x with respect Lo

this distribution, and it is the array (Al....An). V is an n X n symmetric,

nop-singular, posjtive-definjte matrix called the variapce-covarjance matrix
(or simply covariance matrjx for short) of this distribution. The diagonal
elements Vij (i = 1,n) are yarjances, while the off-diagonal elements ij

(i # j = 1,n) are called covariances. To be consistent with the univariant

case, we express the variances Vii in terms of standard deviation a1 by vji =
2 -
ai . There exists a related matrix C called the correlation matrix. Its

elements are given by the formula
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172 R
Cij (VlleJ) (i.] 1.n) . (7.17)

The quantity det(V) is the determinanti of the matrix V. If det(V) # 0, then

the inverse ﬁ_l exists and V is non-singular. The superscript "+" designates
transposition. The matrix product

Q, = (x -0 Vix - 1) (7.18)

is known as a ge aliz . ~der n. We shall discusy these
matters in far greatel detail in future reports of this series.

Multivariate Gaussians share many properties in common with usivariate
Gaussians. We shall avoid consideration of these, since many of them are
chvious. One feature of multivariate Gaussians which has no counterpart in

the univariate case is embodied in the following theorem which is offered
without proof:

Theorem:

The random variables X, and xj (i # j = 1,n) are mutually independent
0 (i#* j=1,n). Then

H

if, and only if Vv,

=
.

AGK) = p[(vij)l/a.hi;xi].
i

<;»

b

n M=

1

with p[(Vii)I/Z.Ai:xi] given by Eq. (7.12).

Rather than dwelling further on general properties of multivariate
Gaussians, we will examine the special case of bivariate Gaussians. Some of
their features can be readily demonstrated graphically.

From Egqg. (7.17), it is evident that the correlation matrix C is

characterized by a single parameter p = C12 = C21 for the bivariate case. p
in this special case is called the gorrelation coefficient. Thus, we can
wrile the bivariate equivalent of Eq. (7.16) as
plo, .0, A, A Xy ) = exp( Q /2)/[2noc ° (1 - )1/2] (7.19)
1'92: %1%y P :
with

2,2
=[xy - A))7/e) - 2p(xy - A )Xy - A)/0.0, + (x

2,2, 2
%2 - Aa) /02]/(] -p ).

2

(7.20)
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The parameter p can span the range -1 < p < -1 however, we run into
difficulty if p = t 1, accvording to Egs. (7.19) and (7.20). We will see
what this means shortly, but, for the present, assume that p # ti. pz >0

for all (xl,xz). S0
LT PEPTLPELREPY

defines a surface which blankets Lhe entire plane defined by Ky @ 0. The

random variables Xy and Xy are defined with respect to a Cartesian coordinate
system in this plane, and xa represents probability density. Now consider a

plane xa = ¢ (constanl), with

2.1/2

0 <u< 1/[2"019a(1 - L) 1.

‘the set of all points (xl.xz) for which xa = ¢ is of interest. Since x3 is

constant, Q2 must also be constant. In fact, if x3 = ¢, then

o . _ 2.1/2
Q2—c = 2hﬂh90f2u P) 1.

However, Eq. (7.20}) (for Q2 constant) is the general equation for an ellipse
in terps of xl and xz. Thus, planes of constant protabiiity intercept the

bivariate Gaussian probability surface in a series of ellipses which are

centered about xl = Al and X, = Az. as shown in Fig. 7.9(a). We note in
passing, without proof, that any plane perpendicular to the (xl.xa) plane,
and passing through X, = Al and X, = Aa. slices the bivariate Gaussian

surface into a univariate Gaussian profile, as shown in Fig. 7.9(a). Thus a
bivariate probability distribution is "mound-ljke"” with simple vertical
univariate Gaussian profiles and elliptical horizontal profiles.

For constant probability p = Xy = C, the corresponding (xl.xa) ellipse

cen be fitted intu a reclungle centered about &y = Al and Ry = Aa with a side
of length 01 = 2pc1 in the X, direction and !2 = 2paa in the X, direction (B
is a pnonnegative constant which depends upon the probability p = x3 = ¢), as

shown in Fig. 7.9(b).

Suppuse that we keep o, and o_ fixed in maenilude, but consider the

1 2
family of bivariate normal distributions generated by merely varying the
correlation coefficient. The family of ellipses which is generated by

varying p uvver the range -1 < p < +1, for the expressiun
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2, 2 _ _ - 2, 2 - i
[(x —:\1) /sy 2p(x1 :\1)()(2 Al)/ala + (xz Az) /a.7} constant,

1 2 2

is known as the covariance elljpse familv or ellipses of covarjance. The
shapes and orientations of the ellipses depend upon p, al, and az. as shown
in Filg. 7.9(¢c and d). When Xy and X, are independently distributed, p = 0.
Then the axes of the ellipses are parallel to the coordinate axes.
Otherwise, the ellipses are tilted. However, by suitable transformation of
the random variables (via formation of linear combinations of the original
variables), it is possible Lo find an grthogonal, indep~ndent set of
equivalent variables, thereby eliminating this tilt. For these bivariate
distributions, this amounts to rotation of the (xl.xz) coordinates. When

@& = 1, the ellipses degenerate into lines, as shown in Fig. 7.9(c and d).

it g = 1, Xy and X, are fully correlated and do not have dislinct
distributions. In fact, Xy is always proportional to Xy If p=-1, Xy and
X, are Lully anticorrelated and do not have distinct distributions. Then X,

is always praoportional to -x In either case, the notion of a bivariate

1
distribution for these two random variables becomes meaningless, and this is
reflected by the fact that Egqs. (7.19) and (7.20) are then undefined.

154



8. BAYES' THEOREM AND APPLICATIONS

Bayes' theorem (or Bayeg' Rule as it is commonly called) is stated and
proved in Chap. 5. The notion of statistical inference is also introduced
there, and the role of Bayes' theorem in this area of statistical theory is
mentioned briefly. Furthermore, it is hinted in Chap. 5 that difficulties
and controversies are associated with the issue of statistical inference in
general, and with Bayes' Rule in particular. In this chapter we proceed Lo
investigate this matter further. The intent here is for the reader Lo gain
some insight intu the function of Bayes' Rule in applications, and to acquire
an appreciation for the subtleties of statistical inference in a wider sense,
The reader is forewarned that this topic is so broad that it amounts to no
less than ap entire field of professional specialization. We will touch upon
it again in later reports of this series, but will succeed in doing lillle
more than just "scratching the surface.” Debates over the interpretation of
several important theorems of statistical inference, particularly in the
field of applied statistics, have led to a dichotomy of statisticians into
two distinct categories: classicgl statisticians and Bavesjan stgtisticians.
It is my intent to provide the reader with enough iasight into this issue so
that he will at least recognize and appreciate the twu distinct philosophies
involved. I do not care to promote one view point at the expense of others,
but, as was mentioned in Chapter 5, I strongly suspect that the reader will
be led to share my opinion that the process of nuclear-data developmenl, as
it is currently practiced, is essentially Bayesian in nature.

We begin by demonstrating Bayes' Rule, as embodied in Eq. 5.9, through
two simple examples:
n 8.1

Consider lwo indistinguishable containers, each hoiding five
samples that are to be ured in a neutron-activation experiment.

The samrles are either iron (Fe) or copper (Cu). However, they
are physically similar in the sense that they are all disks which
have nearly the same diameter, thickness, and weight. If an

investigator were "blind," and thus were not able to distinguish
Lhe Fe from the Cu samples by their visual appearance, he might
i.deed not be able to distinguish them on the basis of his

qualitative sense of “feel” alone. All that the blind
investigator is presumed to know is that Lhere are some of each
type present. The information available to us, but not te our

blind investigator, is that contuiner 1 has 3 Fe samples and 2 Cu
samples, while container 2 has 1 Fe sample and 4 Cu samples. This
state of affairs is illustrated schematically in Fig. 8.1.

Conzider the foullowing process: The blind investigator flirst
selects a conlainer at random, and Lhen from it he selects a
single sample at random. We choose Lo puse, and then to answer,

two quesilons about this process:

First Question: What is the probabilily that the selecled sample
will be Fe?
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Figure 8.1: Illustration of details from Exampie 8.1.
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Referring to Chap. 5, we recognize that this question can be
answered by applying Eq. (5.8). namely, the rule of total
probability. In accordance with Lhe notion ¢f Fig. 8.1,

I= (A1 x I) + (A2 x I).

Then,
P(I) = P(A1 x I) + P(A2 x 1),

since

From Eq. 5.2, we have that

P(A1 x [) = P(I/AI)P(AI)
and
P(A2 X I) = P(I/AZ,P(AZ).

So,
P(I) = P(I/AI)P(AI) + P(I/Aa)P(Aa).

which is a statement of the rule of total probability, re-derived
here in order to remind the reader of the concepts invelved. The
total probability for I is therefore a weighted average of the two
conditional probabilities P(I/Al) and P(I/Az). with P(Al) and

P(AZ) serving as the weighting factors. It is very evident in

this simple situation that

P(Al) = P(A,) = 1/2,

2)
P(I/Al) = 3/5

and
P(I/Aa) = 1/5.

Consequently,
P(I) = (1/2)(3/5) +~ (1/2)(1/3) = 2/5 (40%)

is the answer Lo our first question. We note in passing that the
probability of selecting an Fe sample just equals the relative
frequency of Fe samples in the entire collection of 10 samples,
regardless of their distribution among the containers. The reason
for this is that Lhe selection of a container was conducted in an
unbiased manner.

Second Question: Given that an Fe sample was selected, what is the
probability that it came from Container 1?

The reader who has been carefully following the concepts and
examples presenled in this report should immedialely sense thal a
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new element of logic is involved in this question, Previously,
the reader has been asked to consider the prediction of
probability for a certain event occurring, given a particular set
uf  circumstances, Now we are uasked to speculate about the
circumstances themselves, given a particular outcome for a random
procedure. Clearly, this problem forces us into pursuing a line
of reasoning which proceeds from effect backward toward cause,
rather than from cause forward toward effect, namely, logical
inference rather than logical deduction. Bayes' Rule provides us
with 4 formal algorithm for answering the question thus posed.
What we seek is the conditional probability P(AI/I). Bayes'

formula, namely, Eq. (5.9). states that

2
P(Al/l) = P(I/Al)P(Al)/[kilp(I/Ak)P(Ak)]

= P(I/AI)P(AI)/P(I).

Since we indeed possess knowledge of all the parameters appearing
on the right-hand side of this equation from the preceding
deliberations, we can calculate P(Al/l). Thus

P(AI/I) = (3/5)(1/2)/(2/8) = 3/4 (75%).

This dnswer makes a lot of sense, in view of our extensive
knowiedge of the facts in this situation. Actually, we have not
learned much about the problem that we could not have already
surmised from a casual glance at Fig. 8.1,

Consider, instead, what might be the outcome if our blind
investigator had been called upon to answer this question. He
executes the procedure of this example and is told that he has
selected an Fe sample, but not which container was picked.

As this example is formulated, the blind investigator knows
that there are two indistinguishable containers, each holding five
physically similar samples of two types, but he does not know how
many of Lhe samples in all are Fe our how they are distributed
among the containers. In order to apply Bayes' Rule, he is forced
Lo speculate on the input parameters. For this particular
situation, he tias good reason to ascume that

P(Al) = P(Az) = 1/2,

because even though he is blind he can arrange to select a
tontainer at random. However, he does not have enough information
available to cumpute either P(I/Al) or P(I/Az). Forced to

speculate on the matter, he proceeds to argue along the following
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subjective lines: Because it makes good sense to store like
samples together in the same container, he presumes that there
exist 5 Fe and 5 Cu samples, and that they are segregated. Then
he is faced with the following possibilities: either i)

P(I/Al) = 1 and P(I/Az) =0,

or i}
P(I/Al) = 0 and P(I/Aa) = 1.

He applies Bayes' theorem as follows:

Possibility (i}:

L]
-

P(AI/I) (1)(1/2)/(1/2)

Possibility (ii):

(0)(1/2)/(1/2)

]
<

P(Al/l)

Since the predictions are so different, he decides to hedge by
averaging these two possibilities, thereby suggesting that

P(Alil) = 1/2 (50%).

Actually his result, though at variance with the truth as we know
it, is not too very far removed from it. In actual fact, he was
merely fortunate, because it is obvious that he jus* did not have
enough factual information available to him to cope with the
problem in a meaningful way. For example, his speculation that
there were equal numbers of Fe and Cu samples, and that they were
segregated, bear little resemblance to reality.

The lesson to be learned from this example is that although Bayes' Rule
is a completely valid mathematical result, its application is subject to
question when the available (a priori) input information is speculative.

Next, we apply Bayes' Rule to an example involving radioactivity:

Example 8.2

Consider Fig. 8.2. We suppose that the indicated detector
responds to indistinguishable radiation from two physically

distinct, weak radioactive sources with emission strengths S1 and

52. respectively. For example, these sources might each decay via

positron emission, with the detector responding explicitly to the
corresponding 0.511-MeV  annihilation-radiation photons. We
(urther assume that the efficiencies for detection of the photons
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Figure 8.2: Schematic diagram of the experiment from Example 8.2.
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from Source 1 and Source 2 are €, and ‘2' respectively. Since the

emission rates from these sources are taken to be low, we shall
make the assumption that the likelihood of two photons (one from
each source) being detected within the required signal-processing
time is negligible. Define the following events:

A1 = emission of a photon from Source 1,
A2 = emission of a photon from Source 2,
B = detector records a count,

The question that we wish to ask is the following: Given that the
detector has recorded a count (event B has occurred), what is the
probability that the photon that produced the count originated
from Source 1? We can solve <this problem using Bayes' Rule.
Formally, the answer is

2
P(AI/B) = P(B/Al)p(Al)/[kilp(B/Ak)p(Ak)]'

The probabilities P(Al) and P(Az) are proportional to the

respective source strengths. Thus,

P(Al) a s1

and

P(Az) a 52.
The conditional probabilities P(B/Al) and P(B/Aa), i.e., the
likelihood factors, are proportional to the respective
efficiencies. Thus,

P(B/Al) a e,

and
P(B/Az) ae

2
Combining these results, we obtain

P(AI/B) = elsl/(els1 + 6282)

from Bayes' Rule. To add life to this example, let us assume that

S1 = IOS2 and el = 2e2. Then,

P(AI/B) = (2)(10)e252/[(2)(10)e252 + ezsz] = 20/21 (95.2%).
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we can derive the probability thal B was caused by a photon from
Source 2 by a completely symmetrical development, namely,

P(Aa/B) = 6252/[(2)(10)6 + 6282] = 1/21 (4.8%).

2%z

This sort of analysis is quite useful in correcting the
results of a radivactivity measurement for background effects. In
such a situation, Source 1 is considered to be the primary source
(foreground) while Source 2 represents the background source. Now

if Source 1 is a point source, computation of €, may be a

manageable task. If Source 2 is background radiation, ity
distribution in space may not be known, and thus €, may not bhe

calculable. A key point is that Bayes' Rule in this instance
requires only that the product (eS) be known for each source,

since (eS)1 = 6151 and (eS)2 = easa. Furthermore, since the

delector count rates R1 and Ra for each source are equivalent to

(e.S)1 and (eS)a. respectively, the information required for the

application of Bayes' theorem is directly measurable! In
practice, we measure (R1 + Ra). namely, the deteclor counl rate

with both sources present (foreground plus background), and the
background rate R, when Source 1 is removed. Then, in terms of

2
measurable quantities, Bayes' Rule states
P(A;/B) = R/(R + Ry)) = [(R; +Ry) - Ry)/(R +Ry).

So, we see that the well-known procedure for correcting
radivactivity data for background effects originates from the
notion of Bayesian statistical iuference.

1L is evidentl from these examples that use of Bayes' Rule demands that
one become comfortable with the notion of backward or inductive reasoniag,
and pussess a willingness to employ subjective information as a basis for
statistical inference, In the field of nuclear data these are relatively
familiar conditions, since there is rarely enough informalion at hand to be
able to make predictions concerning nuclear parameters with a great degree of
certainty. Complete [aith in the process of learning Lhrough experience is
thus implicil in this procedure. One must possess some confidence in Lhe
notion that, even though experience and subjective intuition may appear to
form an uncertain foundation for the building of rigorous knowledge,
uncertaiaty associated with this subjectivity will gradually be dispelled as
factual information is accumulated through sound experimenlal procedure. An
example which ought to instill a degree of confidence in the reader
concerning this approach is presented later in this chapter.

Recall from Chap. 5 that Bayes' theorem is formally based upon a
collection of events Ai (i = 1,n) which form a partition of the entire event
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space E. These Ai are mutually exclusive and exhauslive. The manifestation

of this condition in the domain of rualistic applications is that all
possible hypotheses or causes for an observed event must be taken ianlo
consideration, and they must indeed be distinct. In addition to considering
all reasonable hypotheses, we must be in possession of tenable a priori
estimates of the probabilities for validity of each of these hypotheses. It
is then required to determine the conditional probabilities (likelihood
factors) that the event, which in fact has actually been observed, might have
been caused by each of Lhe hypotheses under consideration. These stringent
denands of Bayes' Rule often exceed what can be realistically met for many
intended applications. The main problem thal generally emerges is usually
nat one of calculating likelihood factors, but rather one of estimating the a
priori probabilities of the varjous hypotheses.

Since a priori probabilities must often be subjectively sstimated, there
have indeed been instances of abuse and distorted reasoning associated wilh
the application of Bayes' Rule, with the consequence that for many years it
suffered from discredil in the eyes of numerous slalisticlaus. While quile a
few statisticians continue to view with considerable skeplicism the methiods
which this theorem suggests, it has enjoyed a certain resurgence of
popularity in recent years. In the imperfect world in which we live, prudent
application of Bayes' Rule clearly provides us wilh a powerful tool for
merging speculative information with factual knowledge, in order to advance
our understanding of a particular situation. One approach which has come Lo
be accepted rather widely as being a legimate one is that ir which a priori
probabililies and likelihood factors required for the applica..on of Bayes'
Rule are derived from mathematical thearies that appear to offer promising
possibilities for explanation of the phenomena in question. An important
criterion for a theory to be considered as reasonable and practical is that
it offer clearly defined algorithms for calculation of tLhe likelihoads
associated with phenomena which have actually been observed.
Experimentation, in concert with Bayesian analysis of the data, permils us to
refine our understanding of the issue al hand--rejecting Lheories which
appear to be at odds with observation while reinforcing tLhose which are found
to be consistent with reality. The a posteriori probabilities in this
context represent an amalgamation of Lheory and experiment in Lhe sense Lhat
the hypotheses for which theory and experiment are most consistenl are
favored by greater a posteriori probability Lhan are Lhose for which Lheory
and experiment are al odds. Acceptance of this philosophical approach to
inductive reasoning does not appear to be at odds with generally accepled
methods of scientific investigation.

Bayesian analysis is certainly not the only method used in inductive
reasoning. It is not our intent to dwell at length on this matter, but it is
worthwhile to mention here another method that is based on what is known as
the Pripciple of Maximum Likeljihood. This principle states that when
confronted with an exhaustive set of several hypotheses which might have
caused a particular observed effecl, we select as correcl, unequivocably, the
single hypothesis which is most likely to have produced that effect. This
approach te inductive reasoning would appear Lu be less conservative than
Bayesian reasoning because it seems to be inconsislent with the normal
learning process, namely, that knowledge is acquired, and confidence in Lhe
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validity of certaim hypotheses relative to other possible ones is developed
in gradual steps. While the Principle of Maximum Likelihood obviously offers
logical expedirncy, there would appear to be an attendent risk of prematurely
forming rigid conclusions which might well be prone to bias. This risk could
be significant when the observations are subject to considerable variance or
possible systematic effects, as is often the case in nuclear-data research.
We will encounter Lhe Principle of Maximum Likelihood in other contexts in a
later report in this series, and there we will learn that it does have a
valid place in certain aspects of statistical theory. In fact, in some
instances the application of this principle leads to results which arve
consistent with the Bayesian approach. For these reasons, the reader should
not be led to regard the Principle of Maximum Likelihood as unworthy of
further consideration.

An important problem of statistical inference is that of predicting .Lhe
future outcomes from a sequence of random trials, given that a certain
history of outcomes has been compiled for previous trials of identical
nature. We limit consideration to sampling procedures where the outcomes can
be categorized simply as either “success” or "failure,” i.e., Bernoulli
trials. This problem can be formally posed and answered in the form of a
theorem:

Theorem: [Laplace's General Rule of Succession]

Given that n random trials have been performed with respect to an
essentially infinite population, and that all of these have been
successful (event A), the probability that the next n' trials will also
be successful (eveanl B) is given by Lhe farmula:

P(B/A) = (n + 1)/(n + n' + 1). (8.1)

Proof of this theorem begins with the rule of total probability and
ultimately involves approximation of certain disc.<te sums by definite
integrals, an approximation that is well justified for large populations.
The proof is given in Parzen (Par 60) and will not be repeated here.

A special case of this theorem is that for which n' = 1:
Theorem: [Laplace's Special Rule of Succession]

Given thal n random trials have been performed with respect to an
essentially infinite population, and that all of these have been
successful (event A), the probability that the very next trial will also
be successful (event B) is given by the formula

P(B/A) = (n + 1)/(n + 2). (8.2)

The. latter result generally is referred to simply as Laplace'
Succession, a law which has garnered considerable notoriety in the annals of
statistical history. Laplace himself was aware aof the potential for abuse
which it afforded. In jest, he once was gquoted as using this theorem to
"prove” that there was a finite probability (in fact, 1 part in 182614) that
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the sun would pot rise on the following day based on recorded observations
that the sun had risen faithfully oun each day during the preceding 5000
years!

As with all exercises in inductive reasoning, one can Lrust the
predictions of Laplace's Rule (in the statistical semse) only to the extent
that the process to which it is applied is random, with a legitimate range of
possible outcomes. For example, in the case of Laplage's paradox, the rising
of the sun is not governed by stalistics (insofar as we are aware), and the
event thut the sun does nut rise on a particular day is not just improbable,
it is inconceivable! We know this to be the case based on knowledge which
transcends the mere fact that the sun has been observed tuv rise each day
during a period of 5000 years of recorded history.

We will now provide two further examples of Lhe use of Laplace's Rule of

Succession. From these it is hoped that the reader can "Infer” where the
hazards lie. The first example demonstrates proper use uf Lhe rule:

Exanple 8.3

A research laboratory stocks a sizable supply of a
particular transistor which is commonly used in applications in

that lab. This transistor is often replaced in the circuitry
where it is fouad. The purchased transistors were randomly
selected from a very large population, the manufacturer's
inventory. The laboratory in question has had no previous

experience with this vendor. It is anticipated that there will be
some defective transistors in the lot, but no data to this effect
are available a priori to the lab. Some time after the initial
puchase, it is noted that the lasli 8 transistors used in the lab
were good ones. What is the probability, based on the lab's
experience, that the next transistor selected will also be good?
Laplace's Law of Sucucession provides the answer 9/10 (90%). While
there might be reason to expect the probability to be higaer
(otherwise the vendor would have a bad reputation), this result js
not unreasonable, as a conservative choice. The validity is
supported by the fact that the trials were performed at random
from a large population, and that both success and failure were
physically possible outcomes. Finally, the ninth trial is
performed under the same circumstances as the previous eighl.

The next example demonstrates improper use of Laplace's Rule of
Succession:

Example 8.4
A scientist wishes an a particular day to perform a certain

measurement outdoors using a temporary setup which is intolerant
of rainy conditiouns. For example, he might wish to set up an



unprotected scintillation detector at a long distance from a
neutron source in order to measure a certain spectrum by
time-of-flight with exceptionally good vresolution. 0q Lhe
previous eight days it did not rain. What is the probability that
on the ninth day it will not rain? Laplace's Rule of Succession
provides the answer 9/10 {90%). Common sense tells us that this
is absurd! In order to have a reasgnable chance of success In
predicting the weather on a given day, one musl scientifically
apalyze a great deal of information (e.g.. the time of year, the
climatic history of the region over an extended period of time,
the current weather conditions in neighboring regions, etc.).
Anyoue who relies on Laplace's Rule of Successlion to predict ihe
weather is being naive.

The preceding considerations lead to a statement of what could aptly be
called the mentg]l Principle o lie babj ) : Before
applying any theorem, particularly in the realm of statistical inference, bhe
certain that the conditions under which the theorem ls being applled are
exactly those upon which the theorem is predicated, and, furthermore, that
these conditions will continue to hold well into the future period in which
one is attempting to make a prediction.

it has been indicated previously that Bayes' Theorem is &n important
concept of applied statistics because it offers an algorithm for combining
vold and new information in a manner that builds knowledge, i.e., it
formalizes the learning process. We now outline in more detail how the
Bayesian learning process proceeds, and ultimately democnstrate it with a very
detailed example.

The Bayesian method offers its greatest potential when viewed as an
iterative process., This process is outlined formally in Table 8.1. The
reader should study this table carefully and, in particular, should keep in
mind a very important caveat regarding the issue of "confidence.” Implicit
in the application of the process described in Table 8.1 are two distinct
notions of confidence. First, there is the idea of confidence that
hypothesis Ak is the rorrect one, After m trials, the confidence levels for

the various Ak are properly reflected in the corresponding probabililies
Pm(Ak)' as indicated in the table. However, there is another Lype of

confidence with which one should be familiar. That is the "confidence” that
occurrence of an event B will provide us with a strong indication as to which
hypothesis is correct. This latter form of confidence is measured by
P(B/Ak). i.e., the likelihood factors. For example, if P(B/Aj) 2 1 and

P(B/Ak) ®« 0 for k = 1,n (excluding j), then the observance of B strongly

enhances our confidence that Aj is the correct hypothesis.

Those who work iu the field of nuclear data will appreciate the
following manifestation of this issue: One desires Lo Kknow a particular
cross section o, which is assumed to have a precise and unchanging value,
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Table 8.1 Bayesian "Learning” by Iterative Application of Rayes' Rule.

Step 1:

Estabhlish a mutually exclusive ard exhaustive set of
hypotheses Ak (k = 1,n).

For each Ak' develop an a priori probability Po(Ak) that the
hypothesis is correct, based on the best available rational
knowledge. If there is no a priori reason to favor one
hypothesis over another, then assume Po(Ak) = 1/n (Bayes'

Postulate) in order to aveid bias.

Perform the first random trial. Event B1 occurs. Calculate
all the likelihoods P(Bl/Ak) (k = 1,n). 1t is assumed that
a requisite rfeature of each hypothesis Ak is that it provide

an algorithm for calculating such likelihoods! Calculate
all the a posteriori probabilities by means of Bayes' Rule,

n

Pl(Ak/Bl) = P(Bl/Ak)Pu(Ak)/[iilp(Bl/Ai)Pu(Ai)] (k = 1,n)
Replace each a priorl probability Po(Ak) by the a posteriori
probability Pl(Ak/Bl)' i.e. let

P(A) = P, (A /B) (k=1.n).

Perform the second random trial. Event 82 OCCUrs .

Calculate all the likelihoods P(Bz/Ak) (k = 1,n).
Calculate all the a posteriori probabilities by means of
Bayes' Rule,

n
Pz(Ak/BZ) = P(BZ/AK)PI(AR)/[iilp(BZ/Ai)Pl(Ai)]'
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Table 8.1 (coni'd)

St

lo

Replace each a priori probability Pl(Ak) by the a posteriori
probability Pa(Ak/Ba). i.e., let

Pa(Ak) = Pa(Ak/Ba) (k = 1.n).

This iterative process is continued, with the results 83.84....Bm of the

successive random samplings incorporated into the learning process described
above.

After m independent trials have been performed, each hypothesis Ak is
found to have a probability Pm(Ak) which represents the best estimate of the
probability that Ak iz the correct hypothesis. At no stage of this process

is any legitimate hypothesis explicitly rejected. However, the experience
gained from observation (learning) leads to <ontinuous refinement of our
confidence in the various hypotheses, with ultimate downgrading of those
hypotheses that are at odds with the observations Bl' 2""Bm’ and
enhancement of confidence in others that seem to be consistent with our
observations.

If m is small, then the initial estimates PO(Ak) of the probabilities
can be expected to have a noticeable impact on the final Pm(Ak). For larger

m, the effects of the initial estimates will be "washed ocut” by the bulk of
new evidence. The number of iterations required to wash out the effects of
the a priori estimates will depend largely on the nature of the likelihood
factors. It is in these factors that one finds quantitative indication of
the “precision” or "reliability"” of the various obsérvations BI'BZ""Bm' In
othzr words, the likelihood factors reflect the uncertainties associated with
these observations. Since observations (measurements) are demanding of
resources (time, manpower, and money), it Is essential that this process
embody reasonable hypotheses {(theories) and observational procedures
(experiments) which are reliable (accurate) and carefully designed to test
the hypotheses under consideration.

v
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although it is not known to us with any precision at the outset, Nuclear
mode]l calculations provide us with a range of possible values for o, and an
associated probability density function po(o). Repeated experimenlation

ought to lead us to the position where we can state with a certain level of
confidence that o must lie in the range <0> - & ¢ 0 ¢ <a> + 40. However,
the number of experiments which have to be performed in order to achieve the
desired level of accuracy depends strongly on the precision of the
experimental process (sharpness of the likelihood factors), which ought to be
reflected in the vaviance of the accumulated experimental vesulls,

We proceed now to demonstrate, by means of a rather lengthy example,
what has been said above regarding the Bayesjan learning process, as
sumnarized in Table 8.1.

Exampie 8.5

Consider a hypothetical situation in which a certain
physical parameter has a precise integer value designated by <k>.
In this example we assume that a hypothetical investigator does
not know what <k> is, even though we do know that in fact <k> = 5.
What our investigalor does kncw, however, is that <k> might be any
integer between 0 and 20. Furthermore, we suppose Lhat when our
hypothetical investigator performs random experiments in order to
gather information relevant to the determination of <k>, he will
observe various values k between 0 and 20 according to the Poisson
probabi ity law

ke‘5/k!.

p(5:;k) =5
i.e., the value k = 5 is the expected value, but the values
actually observed in the course of repeated sampling will scatter
considerably around k = 5. Our investigator does not kiow,
however, that the method he uses to conduct the sampling (the
"megsurement” procedure) is governed by this particular law.
Nevertheless, he needs to make assumptions concerning the a priori
probabilities, and he also requires rules for calculating
likelihoods. The hypotkesis Ak in this example corresponds to the

statement that <k> = k. Several possible choices for the a priori
probabilities PO(Ak) which the investigator might make are

considered in this example as distinct cases. The investigator
chooses to employ Puisson distributions for the calculation of
likelihoods. The sampling process yields a sequence of integers
kl‘k2""kN' all in the range 0 to 20. OQur investigator chooses

ta calculate likelihouds according to the formula

K.
P(k,/k) = k ‘e k/ki! for i = 1,N and k = 1,20,

The Poissor [ormuia duves not apply when k = 0. Instead, it is
assumed that P(kj/O) = 1 |if ki = 0, and 0 if ki > 0. This
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assumption is consistent with the Poisson probability law in the
limit of very small k.

A microucomputer with a random number generator is employed
to simulate, by Lhe Monte-Carlo method, the process of sampling
integers from 0 to 20. Four different cases are treated, each
corresponding to a different sel of a priori assumplions. for
each case, seven distinct simulated procedures are conducted,
These procedures correspond to N = 1, 5, 10, 20, 50, 100, and 1000
observations (experiments), respectively. Each experiment is
conducted "independ..tly” of all others, at least to the extent to
which the various random numbers produced by the generator are
truly independent.

First, we examine how well the Munte-Carlo method of
sampling integers at random from 0 to 20 performs. The results of
this analysis are plotted in Fig. 8.3. It is seen that after N =
100 obhservations, Lhe accumulaled results of sampling are
distributed very nearly like the Poisson distribution p(5;k},
thereby assuriog that the simulation process is satisfactory.

Cage 1:

Our hypothetical investigator has no a priori information
regarding <k> other than the range of possibilities, 0 to 20. He
therefore employs Bayes' Postulate, assigning equal value
PO(Ak) = 0.0476 (k = 0,20) to each probability, as shown in Fig.

8.4. The first procedure with N = 1 (a single experiment)
produced k1 = 4, and the couclusions indicated in Fig. 8.4. When

Bayes' Postulate is applied, the a posteriori probabllities are
dominated by the likelihoods when a single experiment is
performed. Thus, for N = 1,

P(k) « P(kllk).

The second procedure involved five experiments. The first
experiment produced k1 = 4, coincidentally, the same value as did

the flirst prozedure. It is seen, after four more experiments,
that the final outcome appears to have been influenced
considerably by the result of the first experiment. Procedures
involving larger numbers of experiments N produce distributions
P(k)} which are more and more sharply peaked around <k> = 5. This
Bayesian procedure does seem to converge on the value <k> = 5,
with increasing confidence, as N ecomes large. Our investigator
measures his confidence <that <k> = 5 by calculating the
probability that <k> # 5, i.e., P(<k> # 5). The results are given
in Fig. 8.4, and they are self-evident. The reader may be
surprised that it requires so many trials to refine the knowledge
ot <k>. This 1is true because the "measurement” process, as
considered in this example, is nut a very precise one,.
Furthermore, the likelihoods reflect & similar lack of
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Figure 8.3: Normalized distributions P(k) of outcomes ‘rom random sampling by Monte-Carlo of integers k between
0 and 20 from a population which is distributed according to the Paisson distribution p{5;k} =
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selectivity, It is a well-known rule of experimental science that
a few high guality measurements are more valuable than a host of
experiments with low precision. Accordingly, any experimenter who
is planning a measurement should be aware of the level of accuracy
that will be necessary in order for the measurement to have an
impact on the issue at hand.

Lage 2:

Here, it is assumed by our investigator a priori that <k> is
most likely to be 6, but that there is an associated Gaugsian
uncertainty distribution, with standard deviation § = 1. Since
the allowed values of k are integers, the mormal distribution must
be interpreted accordingly. In reality, it is a distribution that
is applicable only to continuous random variables. This is a more
realistic situation, not unlike circumstances often encountered in
the field of nuclear data. This a priori knowledge of the
parameter in question is much more definitive than the situation
represented in Case 1 (a nearly total absence of knowledge
requiring application of Bayes' Postulate). We suppose that our
investigator is led to this assumption either by examination of an
existing prior data base or by consideration of a theoretical
model. The results of various sets of experiments are summarized
in Fig. 8.5. Two points ought to be made regarding this case:
First, it still takes quite a few trials N to refine the knowledge
of <k>, even though the a priori assumption was not too distant
from the truth. Again, this reflects the lack of “"precision" of
the "measurement” process. Another more puzzling result is that
the final outcome for the experiment with N = 100 trials is less
favorable than that for N = 50! The reader should keep in mind
that these two sets of trials are distinct. Statistical artifacts
of this nuature also appear in the simulation exercises of Case 3
and Case 4, below. Whether such occurrences are encountered in
realistic situations is a matter we are not prepared to explore at
this point in the development of thLis subject.

§ﬂ§§ a H
In this case, the a priori assumption is that <k> is most

likely to be 5, with a Gaussian-like uncertainty distribution of
small width (standard deviation 0 = 0.5). The results of this

exercise are summarized in Fig. 8.6. Here, it is very evident
that the knowledge of <k> is dominated by the a priori
distribution through many experiments. The results of these

experiments do not conflict with the a priori assumption, yet they
do very little to refine the knowledge of <k> until N is quite
large, since the “measurement" precision is rather poor. This
case clearly illustrates the important point that once a physical
quantity is known rather well, a few additional measurements are
of little value unless they are very accurate ones.
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Pesults of Bayesian analyses of the simulated-measurement

exercises described in Case 3 of Example 8.5,
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Case 4:

Finally, the power of the Bayesian learning process Lo
overcome the effect of an erroneous a priori assumption is tested.
Referring to Fig. 8.7, it is assumed, a priori, that <k> = 8, with
a Gaussian-like uncertainty distribution of width characterized by
the standard deviation 0 = 1. From Fig. 8.7, it is evident that
the "measured" results ultimately overwhelm the initial wrong
assumption, but it takes many experiments. Thus, if knowledge of
a physical quantity is in error at the outset, and this
discrepancy is compounded by according too high a confidence level
Lo the a priori assumed valu:, then a few wore measurements of
modest quality simply won't have enough impact to overcome initjal
prejudices, at least nol in the Bayesian context.

Because of the expense and time-consuming nature of real
physical experiments, it is quite unlikely that repetitlons N > 10
would be practical in most instances., In the analyses for Cases 1
through 4, we have seen demonstrations that final results can be
very sensitive to the initial assumptions and Lo the outcomes of
the first few trials, with convergence via Bayesian learning
assured only for large N. It would appear, then, that there is
such a thing as luck (both good and bad) in applied statistics.
To examine this notion., we consider Case 1 once again in the
following context: Five distinct computer procedures are
conducted, vach involving N = 10 experiments. The outcomes are
comr-ed in Table 8.2, in terms of the coafidence factors
P(<k - 4 5). The resuwlts are rather disturbing. Although there is
greater confidence that <k> = 5 after each set of experiwments than
existed before them, it is evident that a large variance exists in
the final confidence levels. In one of the procedures (the
fourth), the improvement in confidence is so miniscule that, for
all practical purposes, the "measurements” were conducted in vain.
The essence of the problem in this example is the fact that the
"measurements” are not very precise, so the "measurement” process
itself is not very selective, as reflected by the assumed
Poisson-derived likelihoods. The most important lesson to be
learned from this example, then, is that research effort should,
as a general rule, be carefully planned to offer good accuracy and
precision, and a high degree of selectivity with respect to the
physicul quantities under consideration! In the field of nuclear
data it is all too often apparent that thiy rule has been ignored!

Modern nuclear-data evaluation procedures have generally evolved from
either a Bayesian approach, or from the method of least gguares which is more
akin to the Principle <f Maximum Likelihood. Under certain conditions, both
of these approaches lead Lo the same formulas for combining new and old data,
as iy discussed by Peelle (Pee 82). The common result is most often referred
to as the Generaljzed Least-Syuares Method. We can pursue this issue no
further until the concept of least squares has been developed, and this is a
task for a future report in this series.
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Table 8.2 Comparison of five distinct computer procedures involving

. a
N = 10 experiments each

Pfﬁéédureuﬂ P10(<k> # 5)b
8t 0.470
2™ 0.437
ard 0.867
ath 0.937
50 G.448

% Refer to Ex. 8.5. A priori probabilities P (k) = 0.0476 (k = 0,20),

in accordance with Bayes' Postulate, as discussed for Case 1. Thus,
P0(<k> # 5) = 0.952 measures the a priori confidence level in the
assertion that <k> = 3.

l.

v F10(<k> # 5) measures the confidence that <k> = 5 after ten Monte-

Carlo experiments
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Earlier in this chapter, it was noted that statisticians tend Lo group
into two distinct categories, depending upon whether their philosophies
regarding statistical inference are classical c¢r Bayesian. It has been noted
that classical statisticians avoid use of subjective probabilities. Another
important difference in these two points of view has to do with the
interpretation of probability and other parameters of statistical analysis.
In the most general terms, classical statisticians interpret probability
strictly in the sense of relative frequency. On the other hand, Bayesians
view probability as a measure of rational degree of belief, For this reason,
classical statisticians cannot evaluate probability until there is knowledge
available on the structure of event space, while Bayesians are free to
speculate on, or to postulate a priori probabilities in the absence of
concrete factual evidence, Since these interpretations of probability are
quite different, it is clear that there Is room for controversy.
Furthermore, the two different approaches to statistical inference may very
well lead to distinct results In applications.

Often the same formulas are used by classical statisticians and
Bayesians, since these result from rigorous mathematical theorems that are
accepted by all statisticians. The differences lie in Interpretation of the
parameters used in these formulas. This state of affairs is clearly
demonstrated in Table 8.3, where Bayes' Rule is considered from these two
distinct perspectives.

The risks associated with use of subjective information in various
processes of statistical inference are amply illustrated above, but they
generally seem to be unavoidable in the field of nuclear data. The sentiment
that nuclear-data evaluaticn is part art and part science has been expressed
often in this community. I tend to agree with this contention. MHupefully,
the discussions in the present chapter will help to provide the reader with
some insight into which aspects of this discipline constitute “"art” and which
constitute "science”. The reader will have attained a considerable level of
sophistication if he understands these distinctions and can function
comfortably in spite of the apparently unavoidable ambiguities of this
discipline.
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Tab

Comparison cof classical and Bayesian
parameters of Bayes' Rule.

interpretations of the

: : —
Bayes' Rule: P(AR/B) = P(B/AR)P(AR)/[ z
) } i=

P(B/A,)P(A)]?

Parameter

Clagsical lnterpretationb

Bayesian Interpretatlonb

- e e v w e ws wm W w wm N7 W m e e mm em mm em = M e em ow ww EE W e o w W e Em am s e e

Relative frequency with which

event Ak occurs (conventicunal

probability)

A priori measure of the
rational degree of belief
that Ak is the correct
cause or hypothesis)

Relative frequency of
occurrence of B given that
Ak has cccurred (conditional
probability)

Likelihood that the cause

or hypothesis A, could

k
have produced occurrence

of B

P(Ak/B)

Relative frequency of
occurrence of Ak given that B
has occurred (conditjonal

probability

A posteriorl measure of
the rational degree of
belief that Ak is the

correct cause, or
hypothesis, after kpow-
ledge that B has
occurred is available

Both interpretations assume that random sampling is invclved in an event

space which exhausts the possibilities for the problem at hand.

180



ACKNOWLEDGEMENTS

1 am indebted to the many people who have sent me copies of their
papers. have made suggestions, and have brought to my attention importiant
material which I might have otherwise overlooked. The insight provided by
Dr. Francis Perey, through discussion and reference to his published papers
over ihe past several vyears, has been of great value to me. The
encouragement provided by Dr. Alan B. Smith and Dr. Andre Michaudon during
the course of this endeavor has been greatly appreciated. Without the
patient and persistent efforts of Marci Ambats and Phyllis Michaels, over a
three-year period and under difficult circumstances, it would have been
impossible tuv type, edit, and assemble the manuscript of this long report for
reproduction. Their indispensable services were rendered in a manner truly
above and beyond the normal call of duty.

This woark has been supported by the U.S. Department of Energy, Energy
Research Programs. undei Contract W-31-109-Eng-38.

181//,{( X



APPENDIX I: Notation

The notation used in this report is indicated below in order of
appearance in the text. Chapters and page numbers are indicated for the
convenience of the reader. Notational details which are of such common and
standard usage that there ig little possibility for confusion are not cited.

An attempt is made to maintain a reasonable degree of consistency in the
use of notation throughout this report; however, some departures are
inevitable and they should be clear from the context. In such instances, it
is my judgement that ths readers for whom this work is intended are not
likely to be confused as a consequence of these particular inconsistencies.

Chapter 1: Introduction

No notation is introduced.

Chapter 2: Events and Event Spaces

an Pg. (10): Binomial coefficient.

e .E (12): Events. In general, e denotes an elementary event
while E denotes the entire event space. Other

alphabetical letters (including Greek) are also
used, generally to designate compound events.

(el.ea....) (12): A collection of elementary events.

A¢E {13): Event A is contained by event E (a subset).

A1 L Aa (13): Event Al is not contained by event A2.

¢ (13): Null event or empty event space.

A1 + A2 (15): Union of events A1 and Aa.

i Ai (15): Union of collection of events typified by Ai'

A1 - A2 (15): Difference or relative complement of events A1 and
A2.

A1 x A2 (15): Product or intersectjon of events Al and Az.

z Aj (17): Product of a collection of events typified by Aj.

A (17): Complement of Event A.
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2 {23): Borel field.
z (24): Element of a Borel field.

w (30): Often used to designate the number of compound
events corresponding to a particular counting rule,

C . (36}: Multinomial coefficient.

Chapter 3: Random Variables and Their Functions

X.x (47): Random variable. Upper case alphabetical letters
(including Greek) are usually used to designate the
variable, while lower case symbols denote a specific
numerical value which that variable assumes. Often,
lower case symbols are used to designate either the
variable or values which it assumes. In the
framework of function theory, X designates a
function, events ¢ are operated upon by X to yield
values x according to the relationship x = X(e).

F, f (49): Vector arrays of random variables (functions}
(FI.FZ....Fn) and corresponding values
(fl.tz....fn). where f1 = Fi(e).

f_1 (51): Inverse function of f.

f(x) (54): Ugually designates a density function.

F(z) (54): Usually designates a distribution function. F and f
are related by F(z) = Z f(x) or [E” dx f(x).

X<z

Sometimes the terw "distribution” function is used
to designate a density function.

flz...n(xl.xz....xn):

(54): Joint density function of n random variables.
Fla...n(zl'zz""'zn)
(54): Joint distibution function of n random variables.
Chapter 4: Basic Concepts of Probability
P,.P(e) (59): Probability, e.g., P(e) is the probability of event
e. Sometimes, upper case "P" denotes probability

density and lower case "p” signifies probability.
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N.N(A)

M, M(A)

<k>

Chapter

P(B/A)

Chapter 6:
P(x<a), P(a)
p.p(x)
I{x,B)
P(x;8)

Pia. . .al¥p

P (@, ....

12...n" 1

Pla...n(A)

P(lexl)

Dl(xl)

det [...]

(66):

(72):

(74):

(79):

(94):
(94):
(95):

(956):

(96):

(98):

(98):

(100):

Actual number of events, e.g., N(A) denotes number
of elementary events associated with compound event
A. See "W", Chap. 2.

Measure of an event set, e.g., M(A) neasures the
"gize" of A. Used instead of "N" when space is

inf:nite.

Excepted value of k with respect to probabilities

P(k). <k> is the weighted average X kP(k),
inclusive of all possible k, such that £ P(k) = 1.
k

Conditional Probability and Independence

Conditional probability of event B, given thal event
A has cccurred.

Probability Distributions

Probabjlity distribution.
Probability density function.
An interval, namely, all x such that « { x ¢ 8.

P(B8) - P(x).
Joint probability density function.

Juint probabkility.
Joint probability that x e A.

Conditional probability density function.
p(xalxl) = plz(xx.xa)/pl(xl) if pl(xl) > 0,

Marginal dictribution of X For example,
y=T1 .4
PRy} = T dXgPyp (X Xp)

Jacobian or spin (vee context).

Determinant of the array in brackets.

185



Chapter 7:

Some Important Probabjlity Laws Governing the Frequency of

Occurrence of Random Events.

pln.p:k) (107):

p(n;pl....pr;kl....kr)

(108):
a:
plA:K) (122):
A (121):
pla.A:x) (133):
f(x) = p(1,0:0)

(134):
v (150):
p(V,A;x) (150):
v’ (150):
vl (151):
AB, A-B, AXx,

A-X.y Ax

Vi, (150)
¢ (150):
Qn (151):

Chapter 8:

Pn(Ak/Bm) (167):

Binomial probability.

Multinomial probability.
Cross section or standard deviation {(see context).
Poisson probabjility.

Often used to designate mean value for Poisson or
normal probability.

Nurmal (Gaussian) probability.

Standard normal (Guusslan) probability function.

A matrix. covariance

matrix.

Usually "V designates a

Multivariate Normal (Gaussian) probability.
Transpose of matrix V.

Inverse of matrix V.

Examples of matrix products.

th th

Element of matrix V located in the i row and j

column.

Usually designates a correlation matrix.

Quadratic form of order n.

Bayes' Theorem and Applications

Bayesian conditional {a posteriori) probability that
Ak is the correct hypothesis given that Bm has been
th

observed at the m
Rule.

iterative application of Bayes'

186



Pm~1(Ak) (167): Bayesian a pricri probability that Ak is the correct

hypothesis just prior to mth observation which
produces Bm.

P(<k> # i) (170): Probability that <k> # i, f.e., 1 - P(<k> = {).
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APPENDIX II: Impertant Formulas
Chapter 1: Introduction

No formulas
Chapter 2: Events and Event Spaces

[de Morgan Laws}:

Eqn. (2.10) Pg. (25) (A + B) = AX B

(2.11) (25) (AxB)=A+B
{Binomial Coefficient}]:

(2.21) (32) an = nl/(ki(n - k)!]
(Stirling's Approximations}:

(2.22) (32) k! = (2nk)t %K

(2.23) (33) en(kl) = (1/2)¢n(enk) + kénk - k
[Binomial Theorem}:

n n k_n-k
(2.25) (33) (al + aa) = kZ an aja,
=0
(2.390) (36) Cn‘klka"'kr = nl/[kl!kz!...kr!]

Multinomial Theorenm]:
(2.31) (36)
r

(zZ a))
=1

n k k k
=F Z ...2 C a, la, 2...a r
kl ka k u.klka...kr 1 2 r

r

for all kj such that kl + k2

Chapter 3: Random Variables and Their Functions

+...+ kK =n.
r

[Relationship between distribution function F12 n and joint density
function f12...n]:
(3.3) (54)
z, z, z,
F12...n(zl""zn) = f_wdx1 I-wdxa"‘f-wﬂxn f12...n(x1""xn)‘



Chapter 4: Baslic Concepts of Probability

{Poincare Law of Probability Addition]:

(4.6) (68) P(A + B) = P(A) + P(B) - P(A x B).

ter 5: Conditional Probability and Independence
(5.2) (79) P(B/A) = P(B x A)/P(A) if P(A) > 0.

(5.3) (79) P(B/A)P(A) = P(A/B)P(B) if P(A), P(B) > 0.
[Chain Rule]:

(3.9) (86) P(Ax B x C) = P(A)P(B/A)P(C/A x B).

{Poincare Law of Addition Probability]:

(5.7) (87) P(B + C/A) = P(B/A) + P(C/A) - P(B X C/A).

[Rule of Total Probabilityl]:
n
(5.8) (87) P(B) = Z P(B/Ai)P(Ai)'
i=1
[Bayes' Theorem]:

n
(5.9) (89) P(Ak/B) = P(B/Ak)P(Ak)/[ i

; P(B/AI)P(Ai)].

1
Chapter 6: Probability Distributions

{Probability Density Transformation Law]:

(6.17)  (102) py(i) = p, (x)/|J] where

1
ayllax1 ces ayllaxn

J = det

{ aynlax1 e ayn/axn
4
{Pearson's Formula}:

(6.18)  (103)  [1/p(x)1{dip(x)1/dx} = (d - x)/{a + bx + cxZ).
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Chapter 7: Some Important Probability Laws Governing the Frequency of
Occurrence of Random Events

{Binomial Probability Law]:

k -k
(7.3)  (107)  p(n,psk) = Cp (1 - p)°
[Multinomial Probability Law}:
(7.4) (108)
k., k k
; ;K K ...k ) =C p, b, Z.p "
PURIPy Ry oo Rpiltyrlip el ) = G iy kP P2 P
{Poisvon Probability Law]:
k -A
(7.8) (122) p(A;k) = Ae /k! for A > 0, k = 0, o,

[Interval Digtribution]:

R e—Rt dt.

(7.11) (130) dp
{Normal Probability Law]:

2,1/2

(7.12)  (133)  p(o.A:x) = exp [-(x - A)2/20%]/(2n0?)

(Standard Normal Distribution Function]:

(7.13)  (134)  f£(x) = p(1,0;x) = exp(-x2/2)/(em) /2.
{Multivariate Mormal Probability Law]:
(7.16) (150)

n/2 1/2}

p(V,A:x) = exp [-(1/2)(x - X)" ¥V 1(x - §)1/¢i2m)™2(det ()]

Relationship between correlation matrix C and covariance matrix V]:

. 1/2 .
(7.17)  (181) ¢ =V, (Vv )Y for 1§ = Lon.

Chapter 8. Bayes' Theorem and Applications

[Laplace's General Rule of Succ.ssion]:
(8.1) (164) P(B/A) = (n + 1)/(n + n' + 1).

[Laplace's Special Rule of Succession]:

(8.2) (164) P(B/A) = (n + 1)/(n + 2).
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