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Abstract

The longlengthand relativelysmallcrosssectionalareaoftheroboticarmsenvi-
sionedforuseinsideoftheundergroundnuclearwastestoragetankswillrequire
thecontrolofflexiblestructures.This willbecome an importantproblemin
thecharacterizationand remediationofthesetanks.W_ aredevelopingcontrol

strategiestoactivelydamp residualvibrationsinflexibleroboticarms caused
by highspeedmotionand abruptexternalforces.A planar,two-linkflexible
arm iscurrentlybeingusedtotestthesecontrolstrategies.Inthispaper,two
methodsofcontrolarediscussed.The firstisa minimum-timecontrolapproach

whichutilizesa finiteelementmodel and an optimizationprogram.Thesetools

plantllemotor torqueprofilesnecessaryforthetipofthearm to move along

a straightline,inminimum time,withinthe motors'torqueconstraints,and
end ina quiescentstate.To accountformodelingerrorsinthefiniteelement

model,errorsinjointangles,velocities,and linkcurvaturesareadded to the
optimaltorquetrajectory.LinearquadraticGaussian(LQG) regulatordesign
theoryisusedtodeterminethefeedbackgains.The secondmethod ofcontrolis
a teleoperatedjoystickcontrollerwhichusesaninputshapingtechniquetoalter
thecommands ofthejoysticksoastoreducetheresidualvibrationofthefunda-

mentalmodes. Approximatingthesystemaslinear,thenaturalfrequencyand
dampingratioareestimatedon-lineforthecompletesystem,whichincludesthe
structureplusa lowerlevelproportionalderivativecontroller.An inputshap-

ingfilter is determine from the estimated natural frequency, estimated damping
ratio, and the desired transfer function of the system.

Introduction

The control of flexible robot manipulators may be an important issue in the
waste characterization and remediation of underground storage tanks. In one
po3sible scenario, a long slender robotic arm would be lowered through a 12 inch
diameter access port and required to span the interior of a 40 feet deep by 75 feet
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diameter tank. During the waste characterization phase, tile robot arm must bew

able to accurately position sensing instruments within the tanks while avoiding
obstacles such as thermocouple trees and cooling pipes. For core sampling, the
arm must come into contact with the waste surface and exert a force on a coring
pipe. During the remediation stage, the robot will need to carry and accurately
position waste removal equipment on or near the waste surface. Remediation
techniques such as high pressure water and air jets will require that the arm be
able to maintain a specified height above the surface and counteract the forces
exerted by the jets. In these applications, the robot arm is expected to exhibit
substantial flexible characteristics because of the relatively smaU cross sectional
area of the arm in comparison to its length and its large payload.

While many researchers have looked at the modeling and control of a single

link flexible structure, only recent!y has progress been made in the control of
multiple flexible links. Some of the first work assumed a v,ear perfect model
of the structure existed. Bayo [1] developed a computed torque control scheme
which computes the desired joint torques based on a frequency domain represen-
tation of the finite element model of the structure. Christia:a [2] and Singer [3]
demonstrated that an input shaping method may be used to alter a joystick com-
mand so that vibration in the arm is reduced. An underdamped, second order
model of the system is assumed, and the natural frequency and damping ratio
of the closed loop system must first be determined from off-line measurements
before the shaping filter can be applied. To compensate for modeling errors,
Yurkovich and Tzes [4] developed a self-tuning controller wl:.tichuses accelerom-
eter feedback for system identification and control. Previously, we developed a
feedforward control scheme [5] to perform straight line, minimum-time motions
with a flexible two-link arm. An off-line, optimization program computed an
optimal torque trajectory based on a finite element model of the arm, the motor
torque limits, the desired tip path, and a quiescent end point position. Errors
in joint angles, velocities, and link curvatures (from strain gages) were added to
the optimal torque trajectory to account for modeling errors. At that time, the
feedback gains were determined empirically.

This paper describes current work at Sandia National Laboratories on the
control of a two-link flexible robotic arm test platform (see Figure 1). We
have developed control techniques to minimize the flexible behaviors of high
aspect ratio robotic arms during noncontact motions. Development continues
on teleoperated as well as autonomous techniques of control.

Two methods of control are disc,lssed in this paper. In Section 2, we provide a
rigorous analysis of the feedforward controller in [5] by determining the feedback
gains using linear quadratic Gaussian (LQG) regulator theory [6]. Section 3
describes a teleoperated control approach where the joystick input is modified
by a filter which is based on the estimated natural frequency and damping ratio
of the system and the desired response of the system. Finally, in Section 4, we
summarize our results and discuss future work in this area.
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• Minimum-Time Trajectory Control

The objective of the control approacll in this section is to control the tip position

of the two-link flexible robot arm along a straight line between two points in

minimum time subject to motor torque limits and a quiescent end point state. In

this paper, a quiescent end point state will refer to having no residual vibration
of the arm at the end of the desired robot motion. Before the maneuver is

performed, an optimization program which utilizes a physics based finite element

model of the flexible arm generates the optimal joint torque trajectories. During

the maneuver, the torque trajectories are used as a i'eedforward term while the

errors in the joint angles, velocities, and the curvature measurements (from

strain gages) are used as feedback _erms. A gain scheduling approach is used
for the feedback terms with the gains determined off-line using a LQG regulator

design. This is a viable method for highly repetitive tasks since the optimization

program would only be performed once.

The finite element model of the flexible arm is an essential part of the op-

timization control approach. The dynamics of flexible arms can be derived in

continuous time and space via Hamilton's principle; however, the resulting non-

linear integro-partial differential equations are unwieldy to deal with directly. To

simplify the problem, an "assumed modes method" in which the flexure variables

are expanded as a series of mode shapes can be used to reduce the dynamics

to a set of nonlinear ordinary differential equations [7][8]. Others have found

finite element models to be an accurate alternative approach. In this paper, a

finite element model [9] is used to obtain a set of nonlinear ordinary differential

equations.

In the finite element model of our two-link flexible arm, the structure was

divided into 9 elements and 2 hinge joints. Figure 1 shows the Sandia two-link

manipulator, and Figure 2 illustrates the geometry of the structure. The first

node corresponds to the first joint or hub of the manipulator. The second node

corresponds to the outer edge of the first bracket. The next three elements

represent the first link divided into three equal segments with each segment

having its own strain gage. The next three nodes correspond to the second

bracket, second joint, and third bracket. Finally, the last three elements are the

second link divided into three equal segments, again with each segment having

its own strain gage. The brackets are modeled as very stiff links with large

stiffness terms E1 (Young's modulus times the area moment of inertia). The

motion of the manipulator is assumed to take place entirely within the horizontal

plane.

The dynamic equations of the finite-element model can be compactly written

in the following form

M(O)O + C(O)O 2 + K(O)I, = [_u (1)

where 0 is a column vector containing the angular positions of the 11 finite

element nodes, and u = [rl r_]r is the external torque vector where rl and
r2 are the applied torques at the joints. The term 02 is an l lxl vector where

each element is the square of di. The mass matrix is M(O) = [3_Ii,jcos(Oi - 0j)],

i = 1,..., 11, j = 1,..., 11, the centrifugal matrix is C(O)= [M_,jsin(O_- 0j)],

3



i = 1,..., 11, j = 1,..., 11, and the stiffness matrix is K (0) = [--Kijsin(0i-03)],
i = 1,..., 11, j = 1,..., 11. The Mi,j and Ki.j in these equations are the mass
and stiffness constants which are derived from the finite-element model (see [9])
and remain unchanged for a given structure (i.e., these elements do not depend
on joint angles and link curvatures). The symbol I1 refers to a column vector
of 11 ones. The matrix/_ 1_an l lx2 matrix whose purpose is to transform the
2xl control vector u into the 1lxl angular position space. It is defined as

I 0 0 0 0 0 0 0 0 0 0 "T/?= 0 0 0 0 0 -1 1 0 0 0 0: (2)

The reader should note that the Oiare absolute angles in the inertial coordinate
system. Because of this absolute referencing, Eq. (1) does not contain Coriolis
terms (0i0j, i # j).

This model is efficient from a computational point of view since it only re-.
quires one evaluation of the mass and stiffness elements Mid and Ki,j. It also has
proven to be quite accurate in modeling the behavior of the actual manipulator'.
The experimental results in [5] show that the fundamental modal frequencies of
the finite-element model closely approximate those of the experimental appa-
ratus (approx. 20 Hz and 8 Hz for the first and second links respectively). In
addition, the torque, angular velocity, and joint position profiles obtained by the
model closely approximate those of the experimental structure for corresponding
maneuvers.

The optimization problem can be formally stated as follows [10]

• minimize J = tf

• with respect to the finite-element model, the actuator torque limits, and
initial conditions

• subject to
• ...(ts) (ti) o

o
fo' [y.,,(t)- dt o

KE(tf) = 0 . (3)

..SE(tI) i O
Ojointl(t]) i 0

. o

In Eq. (3), x and y are the Cartesian coordinates of the tip of the second link or
of the slSecified straight line trajectory, and t/ is the time it takes to complete
the slew. The first two constraints assure the arm reaches the specified final
tip position. The third constraint is an equality tracking constraint that keeps
the tip position on the specified line. The next two constraints require the
final kinetic and strain energies to be zero (i.e., final position at rest). The
last two constraints force the final joint accelerations to be zero. The actua,tor
torque limits were taken into account by limiting the torque values to 80% of
the physical limits. This allowed room for additional feedback to be applied to
the motors.



• The optimizing program itself is a recursive quadratic programming algo-
rithm and has been implemented on a CRAY X-MP at Sandia. It uses the
aforementioned finite-element model to obtain the optimal torque profiles and
the corresponding angular position and velocity values for all 11 elements at
each sampling instant along the trajectory. The minimum time found by the
algorithm to perform the slew in Figure 3 was 2.058 seconds. The resulting
torque profile is shown in Figure 4.

Ideally, this torque profile would perform the desired motion if the experimen-
tal apparatus had the same physical parameters as the model. Unfortu_lately,
modeling errors always exist. As shown in Figure 3, some error in the end point
position was measured in our experiment when the optimal torque profile was
applied without any feedback. To compensate for these modeling errors, a feed-
forward control scheme was implemented as shown in Figure 5. The feedback
gains were determined using LQG regulator theory.

In order to apply LQG regulator theory, the dynamics in Eq. (1) must be put
into state space form and then linearized about the desired trajectory. The state
variables are chosen to be the 11 nodal positions and the 11 nodal velocities:

xi=0i,i=l,...,ll, xi+lz=di,i=l,...,ll (4)

where xi are the new state variables. Rewriting Eq. (1) in state space form,

xi z12 0 0

zll z22 0 0
... = ... + ... (5)
X12

, i M(z)-_S(x) M(z) -_[3

L z22

or more compactly
= f(z) + g(x)u. (6)

The matrix M(x) is simply the matrix M(O) with the Oi's replaced with tt_e

appropriately numbered states xi. The control vector u is as described earlier,
and the matrix S(x) is the matrix S(O,O) = -C(0)t_ 2- K(O)I1 with 0 and 0
replaced by the state vector z.

The state space described in Eq. (6) is a 22nd order nonlinear ordinary
differential equation. To perform the linearization about a trajectory point, we
let Az represent the perturbation in the state x about the ,,perating point _',
and Au represent the perturbation in the control input u ab(_ut the operating
point ft:

x=5:+Ax and u=_+Au. (7)

These operating points 5 and 72are those from the off-line optimization in Eq.(3).
Truncating second and higher order terms, we obtain the follow'ng linearized
model

(0, )A2 = _ I,:=_,+-_z "=_ _ Az + g(_c)Au = AAx + BAu, (8)
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where Az represents deviations from the desired trajectory which we drive to
zero.

Next,thestatesaretransformedintoamore measurableform.Inoursystem,

we havejointencodersand tachometerswhichmeasuretheangularpositionand
velocityofeachjointnodewithrespecttothepreviousnode.We alsohavestrain

gages on the links which measure the angular position of a node with respect
to the previous node. Since all position and velocity measurements of one node
are relative to the previous node, it is desirable to transform the state vector by
a 22x22 matrix T such that

1 ifi=j
Az = TAx where Ti,j = -1 if i = j - 1 = 2,3,...,11,13,14,...,22 (9)

0 otherwise

Using Az as the new state variable, Eq. (8) may be written as

Ai = TAT-_Az + TBAu = AAz +/)Au. (10)

The linear quadratic regulator portion of this problem is to minimize a
quadratic cost criterion

1

Jo°°(AzrQAz + Aur RAu)dt (11)J=g

with respect to the control vector Au subject to the system's dynamics in Eq.
(10). The choice of weighting matrices Q and R are up to the system designer.
The solution to this problem involves solving an Algebraic Riccati Equation [6]
for a matrix P

0 = ATP + PfI- P[_R-_[3TP + Q (12)

which results in the feedback equation

Au = -R-I [3TPAz . (13)

Thus, the optimal full state feedback gain matrix is K = .-R -I_TP.
Since we are unable to measure all of the states, a linear quadratic estimator

design is used to determine an estimator gain matrix L which produces a linear
quadratic Gaussian optimal estimate of Az from the measurements y. The
problem is formally stated as follows. Given a continuous-time system with
state and measurement equations

Ak - AAz +/)Au + Gw (14)

Ay - CAz + v (15)

and process and measurement noise .rr',,eansa.nd covariances

E[w] = E[v] =O, E[wwr]= W, E[vv T] = V, (16)

the optimal state estimate A} is found by integrating

A_ =/tA:_ + +/)Au + L[Ay - CA_?],, A,_(0) = 0 (17)
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where

L = SCTV -1 (18)

and S satisfies the Algebraic Riccati Equation

o = ,;_S+ PA T - scTv-Ics + GI'VGT . (19)

Similar to the linear quadratic gain in Eq. (13), Eq. (18) can be determined off-
line and the gains scheduled for on-line control. However, at present, we do not
have the on-line computing power to solve the integration in Eq. (17) in reM-
time; even the discrete version is computationally intensive. If the integration
in Eq.(17) is approximated in discrete time as

A_k _ A_k-1 + [AA_k_I + [_uk_l]At
+nk{Ayk- C[A;?k-, + (AA#k_, +/_Auk_,)At]} (20)

we can reduce Eq. (20) to
A ;_k_ LkAyk (21)

when the sampling time At is small and the previous estimated state A_k-1
reaches the desired state Azk_, = 0. Combining Eqs. (13) and (21), the ap-
proximate feedback gain at time k is KkLk.

The system software package MATLAB was used to determine the approxi-
mate feedback gain matrices KkLk for one hundred set points along the optimal
trajectory. At some points along the trajectory, the gains varied considerably.
When the set of gains was used to control the system, the results were less than
satisfactory. Although the arm did reach the desired end point, there was con-
siderable error in the tip position along the way. It appeared that some of the
larger scheduled gains produced unwanted effects. Again, we must remember
that these gains are computed from a model of the system, so the gains are
only as good as the model itself. In an attempt to reduce the sensitivity of
the feedback gains to modeling errors, a single gain matrix equal to the average
of the time sequence of matrices was used. Figure 3 shows the resulting tip
trajectory. The averaging process removed the abrupt changes in gains along
the path: Although further testing is necessary, we believe that an even better
solution would be to use a set of three or four gains which would be scheduled to
become active when major changes in the states occurred, e.g., when the applied
torque on joint 1 changed from-6 N-m to +6 N-m.

In the LQG design, the 10x22 observation matrix C was

1 if (i,j) = (1, 1), (5, 7) (joint angles)

Ci,j - 1 if (i,j) = (2, 3), (3, 4), (4, 5), (6, 9), (7,10), (8,11) (strain gages)
1 if (i,j)= (9,12),(10,18) (joint velocities)
0 otherwise

(22)
where i denotes the observation vector index and j denotes state vector index.
The state and input weighting matrices were

1000 ifi=j= 1,7 (joint angles)
Q_.j - 0.1 if i - j --- 12,18 (joint velocities) (23)

0 otherwise



and

[1000 0 ] (24)R = 0 1000 "

The state and measurement noise matrices were

Wi,j = { 0.01 if i = j0 otherwise (25)

and

_.I if i = j = 1, 5 (joint angles)

1000 if i = j = 2, 3, 4, 6, 7, 8 (strain gages) (26)
V= 5×106 ifi=j=9,10 (joint velocities)

0 otherwise

In this experiment, we chose the Q matrix and the V matrix so that the ma-
jority of our feedback came from the joint encoders and tachometers. However,
even with the matrices above, the gains corresponding to the strain gages were
non-zero. We did this for two reasons. First, the strain gages are slightly noisier
than the joint encoders and tachometers. Second, for the specified straight line
slew, the tip position of the arm was dependent more on the joint positions
than on the curvature of the links. We found that penalizing the link curvature
states often resulted in instability because the controller put to much emphasis
on the errors between the measured and modeled link curvatures. We believe

that the main problem was that the linearized model was not accurate enough
to properly drive the link curvature measurements to those determined by the
model. With improved parameter estimation, we would be able to put more
emphasis on these curvature states.

Teleoperated Control

The second method of control is an input shaping technique in which a joystick
input is convolved with a filter which shapes the input so as to cancel out
vibration modes. This filter is a function of the modal frequencies and damping
coefficients of the system, which change with the configuration of the arm and
the arm's payload. At Sandia, we are developing a technique to estimate the
modal frequencies and damping coefficients and update the filter in real time.
This will allow the robot to adjust to unknown payloads.

Currently, one strain gage on each link of the arm is used to measure the link's
curvature as a function of time. These two measurements are used to determine

the dominant mode of vibration on each link. The desired velocity of the joints
as commanded by the joystick are used as the input to the system. By taking the
FFT (Fast Fourier Transform) of both the output (strain gage measurements)
and the input (commaaded joint velocities) and dividing, the system's transfer
function can be determined. The FFT of each transfer function is fit to an

underdamued second order model using the Levenberg..Marquardt method [11].
The natural frequency and damping ratio determined from this nonlinear fit are
then used to adjust the system's control. Figure 6 shows a block diagram of the
control system. To improve robustness of the estimation process, the parameters



of the system will only be estimated when the excitation of the system is above
a certain threshold.

Two methods of input shaping are currently used to adjust the joystick
command being sent to a proportional-derivative joint angle controller. The
first method [3] uses the natural frequency and damping ratio to determi,e' the
magnitude and spacing of three impulse functions which form the inpu_t shaping
filter. The problem with this method is that the system response is delayed by
the period of natural vibration. Therefore, for a typical measured fre,quency of
natural vibration of 1 Hz, the delay is equal to one second. In many tightly
constrained teleoperated situations, this delay is unacceptable.

The second method of input shaping determines the filter based on the de-
sired transfer function of the system. Let us assume that the system is under-
damped (see Figure 7) and the measured transfer function of the system is

Aw 2

H(s) = s2 + 2_ws + w _ (27)

where A is the amplitude, w is the natural frequency, and 0 < _ < 1 is the
damping ratio. We would like the system to have a critically damped response
and the desired transfer function to be

Aw_ (28)
Hd(s) = (s + wd)2

where wd is the desired natural frequency as shown in Figure 8. Assumfilg a
linear time invariant system, we should get the desired response if the transfer
function of the filter is

F(_) = Hd(s) _w] (s_ + 2¢ws + w_)
H(s) w2 (s + wd)2 ' (29)

This results in the continous time domain filter

[_(t)+2(_ - _,)_-_ + (_ --2_ +_)t_-_] (30)f(t) = _-_

and discrete time domain filter

y(k)= -a,y(k- 1) - a_y(k- 9) + _0u(k) + bau(k- 1) + b_u(k- 2) (31)

where

al =--2e -_aT

a 2 -- e-2wdT

_o= (_')_[2(_ -.:_)T+ _] (32)
b_=" -(?)2[(w2-2(wwd+w_)T :-2((w-wd)T-2] e-wdT

=



By judicious choice of COd,the designer can specify the rise time of the system.
Figure 9 shows the step response of the filter for various choices of we. Note that
if cod> w then the initial output of the filter (and input to the system) will be
of greater magnitude than the original input. This maynot be desirable if the
system is already near a motor torque limit when the original step was applied.
In this case, the extra initial boost provided by the filter would be clipped by the
motor limits. Therefore, the trade-off of this filter is that a faster response than

the impulse filter [2][3] can be achieved provided that the motors can p_oduce
the necessary torque. It is up to the designer to choose wa so that motor torque
limits are not exceeded.

Initial experimental results of this teleoperation control approach are very
encouraging. Currently, we are able to perform the above procedure in a near
real-time mode that is transparent to the user. The arm is moved, input and
output data are collected, the FFTs are computed, the nonlinear fit is made,
and a single filter is setup for the duration of the arm's motion. Every ten
milliseconds, the input and output data are transferred via a VME bus from a
68030 board performing the control to an i860 board performing the FFTs and
nonlinear fit. The i860 board is capable of performing a 1024 point FFT in one
millisecond. After the nonlinear fit is performed, the natural frequency and the
damping ratio are transferred back to the control CPU. Our tests show that
we will be able to continually perform the system identification and update the
filter at better than a 10 Hz rate. This will allow the system to adaptively adjust
to changes in the natural frequency caused by payload variations, kinematic
changes, and external disturbances.

Conclusion

In summary, we have developed control technologies that will be useful in damp-
ing vibrations in high aspect ratio robotic manipulators. We first described an
autonomous method of noncontact motions in the form of a minimum-time tra-

jectory controller. An off-line optimization program generates a torque profile
according to a finite-element model of the arm. An LQG control design pro-
cedure is used te determine feedback gains which would allow the controller
to compensate for modeling errors. Our testing showed that reasonable per-

' . formance was obtained with this technique even with modeling errors. Future
work in this area will concentrate on performing the state estimation on-line
and improving the model of the system with an off-line, least squares parameter
identification scheme.

A teleop_rated method of control was also discussed. The system is identi-
fied by fitting the FFT of the transfer function to a second order model. The
parameters of the fit are used to determine an input shaping filter _Thich would
make the system perform according to the desired transfer function. Since the
identification is performed on-line, this method of control is robust to payload
variations. Future work in this area will focus on improving the on-line identi-
fication process and looking at the sensitivity of the filter to parameter errors.
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Figure 1. Sandia's two-link flexible robotic arm test platform.

12



" 11

" 10
9

8

1 2 3 4 5 6 7 8

e4

Figure 2. Geometry of finite-element model of the two-link
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Figure 3. Specified , open loop, and feeclforward control tip positions.
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Figure 4. Motor torque profdes determined by the off-line optimization.
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• Figure 7. Underdamped second order system response of system without input shaping.
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Figure 8. Desired critically damped second order response of system.
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Figure 9. Input shaping filter required to achieve the desired response.
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