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Three-Dimensional Magnetospheric Equilibrium with Isotropic Pressure
By

C. Z. Cheng

Princeton Plasma Physics Laboratory
Princeton University
P. O. Box 451, Princeton, New Jersey 08543

Abstract

In the absence of the toroidal flux, two coupled quasi two-dimensional elliptic equilibrium
equations have been derived to describe self-consistent three-dimensional static magnetospheric
equilibria with isotropic pressure in an optimal (y,o.,)) flux coordinate system, where V is the
magnetic flux function, ¥ is a generalized poloidal angle, o = ¢ — d(y,0,X), ¢ is the toroidal angle,
S(y,0,%) is periodic in ¢, and the magnetic field is represented as B= Vy x Va. A three-
dimensional magnetospheric equilibrium code, the MAG-3D code, has been developed by
employing an iterative metric method. The main difference between the three-dimensional and the
two-dimensional axisymmetric solutions is that the field-aligned current and the toroidal magnetic
field are finite for the three-dimensional case, but vanish for the two-dimensional axisymmetric
case. With the same boundary flux surface shape, the two-dimensional axisymmetric results
[Cheng, 1992] are similar to the three-dimensional magnetoshere at each local time cross section.
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Introduction

The problem of computing self-consistent high-p (B = 2P/B2, where P is the plasma
pressure and B is the magnetic field intensity), static magnetospheric equilibria has attracted much
attention from the early days of space physics research [Akasofu and Chapman, 1961]. Numerical
as well as analytical solutions of general high-p (B 2 1) axisymmetric magnetospheric equilibria
with anisotropic pressures has been performed [Cheng, 1992] by integrating the Grad-Shafranov
equation with prescribed boundary flux shapes. Numerical studies have been performed to
examine the effects of plasma B, pressure anisotropy, and boundary condition on the axisymmetric
magnetospheric equilibrium. The results agree very well qualitatively with satellite observations of
the ring current distribution and the magnetic field intensity within about 10 Rg. This successful
method is now extended to study three-dimensional high-p magnetospheric equilibria.

An intrinsic feature of the three-dimensional magnetospheric structure is the existence of
Birkeland currents, which are field-aligned currents linking the Earth's polar ionosphere with more
distant magnetospheric plasma. Observations [lijima and Potemra, 1976a,b] indicate that near
Earth they flow in broad sheets, roughly aligned with the aurora oval. Those sheets form two
large current systems, region 1 entering on the morning side of the polar cap and flowing out on
the afternoonside, and region 2 further equatorward but with opposite polaritics. At noon and
midnight the current systems overlap in complicated ways, and during substorms region 1 on the
nightside is reenforced by a "substorm wedge", which covers a limited sector in longitude. It is
now generally considered that the region 2 currents originate from particle drift motion in the
closed field line region [Schindler and Bim, 1978] where the plasma convective flow is slow in
comparison with the thermal speeds. The sources of the region 1 currents are less clear and are
still being actively debated: on the dayside they come from open field lines, and on the nightside
they could come from the plasma sheet. Mathematical expressions for obtaining the field-aligned
currents have been derived [Vasylinuas, 1970; Heinemann and Pontius, 1990; Birmingham,
1992]. However, quantitative studies of the self-consistent field-aligned currents have not been
performed due to the lack of self-consistent three-dimensional magnetospheric equilibrium
solutions.

The purpose of this paper is to provide numerical equilibrium solutions of the self-
consistent three-dimensional magnetic field and current structure of the magnetosphere with
isotropic pressure. By assuming that the toroidal flux is zero (or, equivalently, no average toroidal
magnetic field over the toroidal direction), the three-dimensional magnetospheric equilibrium
equations can be reduced to two coupled quasi two-dimensional equations in an optimal flux




coordinate system. A three-dimensional magnetospheric equilibrium code, the MAG-3D code, has
been developed by employing an iterative metric method subject to boundary conditions of . and y
on the computational domain surrounded by the specified shapes of the inner and outer flux
surfaces [Cheng, 1992]. Equations describing the current system are presented. The main
difference between the three-dimensional and the two-dimensional axisymmetric solutions is that
the field-aligned current and the toroidal magnetic field are finite for the three-dimensional case, but
vanish for the two-dimensional axisymmetric case. The flux surfaces of the three-dimensional
magnetoshere at each local time cross section are similar to the previous two-dimensional
axisymmetric results [Cheng, 1992] with the same boundary flux surface shapes.

Three-Dimensional Magnetospheric Equilibrium Equations and Current System

If the plasma convection in the magnetosphere is small, the static magnetospheric
equilibrium with isotropic pressure is described in the rationalized EMU unit by the system of
equations: the force balance equation:f x B = VP, V x B = j, and VeB = 0, where P is the
plasma pressure. If the three-dimensional magnetospheric equilibrium has nested magnetic
surfaces, the magnetic field can be expressed in a straight field line (y,0,%) flux coordinate as B=
Vy x Va, where y is the magnetic flux function, = { — q(y)x, £ = — (y,0,%),  is a
generalized poloidal angle, ¢ is the toroidal angle in the cylindrical (R,$,Z) coordinate, and
8(y,,%) is periodic in both  and ¢ so that BeV{ / BeVy = q(y). The intersection of surfaces of
constant ¥ and o defines the magnetic field line. The Jacobian is given by J = (VyxV{eVy )L
The flux coordinate system is in general not orthogonal because VyeVy = 0, VyeV{ = 0, and

V{eVy # 0. Within a magnetic surface the poloidal flux is ¥ = (1/2%) J’ d’x §0Vx = 2ny, and

the toroidal flux is @ = (1/2x) f d3x §0VC. We will choose q(y) = 0 so that ¢ = and @ =0.

Then, o is a cyclic function with a period of 2x for all constant  surfaces. This property allows
to reduce the general three-dimensional equilibrium equations to quasi two-dimensional equations
in the flux coordinate system, and thus greatly simplfies the computational complexity.

Since BeVP = 0, the pressure is constant along the ficld line. If the particle drift surfaces
coincide with the constant y surfaces, P is a function of y only. The ﬁxV\p component of the
force balance equation gives the radial current density,

J oVy = Ve [(Vy)2 Vo — (VaeVy)Vy] = 0, (1)




which is a two-dimensional elliptic equation on each constant y surface. Note that in the two-
dimensional axisymmetric limit, Eq.(1) is trivially satisfied by o = ¢. The Vy component of the
momentum equation gives the ring current and the generalized Grad-Shafranov equation,

JoVa = Ve [(VaeVy) Va — (V)2 Vy] = dP/dv, @

which is a two-dimensional elliptic equation on each constant o surface. Note that in general
Egs.(1) and (2) are three-dimensional equations. However, by choosing the (y,a.,)) coordinate
system we have reduced the dimensionality of Eqs. (1) and (2) from three-dimensional differential
equations to quasi two-dimensional differential equations. Equations (1) and (2) form a coupled
set of equations that determine o and vy, and can be solved by specifing o and y on the
computational boundary as well as the functional form of P(y).

From the charge neutrality condition, VeJ =0, the field-aligned current density equation
can be computed from

BeV (JyB) = 2x x B e VP/B2= VB2x§  VP/B*, 3)

where Jj is the field-aligned current density, 1; =be Vb is the magnetic field curvature, and b is
a unit vector along a magnetic field line. The field-aligned current density can be obtained by
integrating Eq. (3) along the field line. The right hand sides of Eq. (3) represent the source of the
field-aligned current density which originates from the particle guiding-center VB and curvature
drifts across the pressure gradient. For axisymmetric case, 1; x B is in the V¢ direction, the right
hand side of Eq. (3) is zero, and hence J;= 0 everywhere.

Alternatively, the current density can be expressed in a differential form [Shafranov, 1968;
Heinemann and Pontius, 1990] and is given by

J =VV xVP+gB=Vyx[gVa- (dP/dy)VV], (4)

where g]_i is the force free current, V is periodic in o and satisfies the magnetic differential
equation, BeVV = 1, which is obtained by substituting Eq. (4) into Eq. (2). From V{f =0, BeV
g =0 and g is a field line constant. Since VeJ = 0 and jOV\V = (), the current density can be
written in the general form J= Vv x [G(y)Va + T(y)Vy + VA(y,a,x)] [Shafranov, 1968],
where A is periodic in both o and %, and from Eq.(4) we show that g = g(y). Note that g vanishes




if there is a north-south or east-west symmetry. In the (y,a,)) flux coordinate system dV = ds/B
=ddy = d3x/(d\pda), where ds is the element of arc length along the magnetic field line. Thus, V
has the physical meaning of the magnetic flux tube volume per unit flux. The magnetic differential
equation can be integrated to give V(y,a,X) = Vy(y,0,X) + Vo(y,0), where Vo(y,a) is an

integration constant along the field line, and Vs(y,a,x) = | Jdy is an indefinite integral along the

field line.

From Eq. (4) the field-aligned current density is given by Jj/B = —(dP/dy)(dV/da) +
(JBeVy x VP)/BZ+ g(y). For any two points 1 and 2 along the field line we have (Ji/B), —
(wB); = —(OP/w)(dU/30) + (JBeVy x VP), /B,> — (JBeVy x VP), /B,?, where U(y,0;1,2)

X2
= Vs(¥,0,%5) — Vs(W,0,X) = [ Jdy, and the subscripts 1 and 2 denote that the quantities are

21
evaluated at X and ),, respectively. For three-dimensional magnetospheric equilibria with north-

south symmetry, Jjj= ﬁxVx = 0 at the equator. Thus, the ficld-aligned current density at the
ionosphere can be expressed in terms of the equatorial quantities as [Vasylinuas, 1970;
Birmingham, 1992]

Jiy /B; =BoxVU(y,0e,i)eVP /B, + (JBeVy x VP); /B; 2, (5)

,where the subscripts e and i denote that the quantities are evaluated at the equator and the
ionosphere, respectively, and the gradients, VU and VP, are taken at the equator. As pointed out

by Birmingham [1992] the second term is missing in the expression given by Vasyliunas [1970],
and it is much smaller than the first term by a factor of L™® if we choose y =s. Note that if there is

an east-west symmetry, J is zero in the noon-midnight meridian plane.

From Eq. (4) we have JJ #Vy = —(dP/dy)(0V/oay) if there is no force free current. Since
2%

V is period in a, j dodj oVy = 0 and the total net poloidal current across a constant Y, surface,
0

Ip = (1/21t)f d’x J oV, is zero. Therefore, there is no net poloidal current into the planetary

ionosphere in the absence of the force free current.

Numerical Results from the MAG-3D Code




Equations (1) and (2) can be cast into inverse equilibrium equations in terms of a flux
coordinate (y,o,)) system [Cheng, 1992]. A three-dimensional magnetospheric equilibrium code,
the MAG-3D code, has been developed based on an iterative metric method for solving the coupled
set of nonlinear inverse equilibrium equations. If we choose ds/dy = J B = F(y,a), we have an

equal arc length coordinate system. The numerical grid on which finite differences are evaluated is
tied to the equilibrium solution itself in such a way that grid points automatically accumulate in
regions of step gradients, thus yielding accurate solutions of high B magnetospheric equilibria. An
iterative metric method is used to solve for the discrete rectangular coordinate [x(y,0L,%),y(W,0,X),
z(y,o,%)] of constant y and a surfaces such that the finite-differenced inverse equilibrium
equations based on these points are satisfied to a small tolerance. The MAG-3D code is the first
self-consistent three-dimensional magnetospheric equilibrium code.

In the paper we consider a fixed boundary problem. The computational domain is bounded
by (1) an outer boundary with flux y =y, and with its shape specified to take into account the

effect of the solar wind and the interplanetary magnetic field, (2) an inner boundary with y =y,
which is mainly determined by the dipole magnetic field, and (3) the Earth's surfaces between y;,
and vy, curves. The boundary condition on the Earth's surface is & = ¢. In the computational
domain, a (p,c,)) flux coordinate is chosen with 0 < < n,0<a < 2rn,and 0 <p < 1, where y
= y(p) is chosen such that uniform p grids give optimal equatorial radial grids for the
computational purpose. The equatorial dipole magnetic field intensity is Bp at R = R,. The
magnetic flux is chosen to be Yy =— Bp Ro3,/ Rpax at the outer magnetic surface and yi, =— Bp
Ro>/ Ryin at the inner magnetic surface. In a right-handed (r,$,0) spherical coordinate system
with 0 = —nt/2, 0, =/2 corresponding to the south pole, the equator, and the north pole,
respectively, the shape of the outer flux surface is specified by choosing Wou = — Bp Ro3 cos26 /1
+ [Bc (r - Rg) cos? 26+ Bs (r - Rg)? sin? 36] cos ¢, and the inner flux surface shape is specified
by choosing a dipole field surface, Vi, = — Bp Ro® cos20 /1. Note that B¢ and Bg determine the
outer flux surface shape which has a significant effect on the magnetospheric equilibrium. For B¢
> 0 and Bg < 0, the outer flux boundary is compressed on the dayside due to solar wind pressure,
and resembles a stretched tail-like surface on the nightside. The pressure profile is chosen to be
P(y) =P, [ (w2~ WA [ (W —yNY [ 7+ v)/(y2 — y)I*. The following numerical results
are obtained with Ry = 6.6Rg, Rpin = 2RE, Rpax = 10Rg, Y=2,v =2, Bp = 1, W1 = Wi, and W3
= Wou. These parameters are reasonable to model the basic features of the magnetospheric

equilibria.

Numerical examples that illustrate qualitative equilibrium features of an isotropic pressure
magnetosphere with north-south as well as east-west symmetries are given . Figures 1 shows the



flux surfaces in the noon-midnight meridian plane. The computation is performed for P, = 0.6
with 65 flux surfaces and 65 poloidal angle grid points and 65 toroidal angle grid points. The
outer boundary flux shape is specified by B¢ = 0.7, Bg = —0.05 so that the outer flux surfaces are
compressed to R = 8.43Rg on the dayside and stretch out to R = 15.39REg on the nightside. The
solid lines correspond to the equilibrium constant  surfaces, and the dotted lines represent the
corresponding dipole magnetic flux surfaces. In the low beta region with L < 4 the flux surfaces
are similar to the dipole surfaces, but for L > 4 the flue surfaces are greatly distorted by the
combined effects of finite B and the boundary flux shape. The effect of finite P is to expand the
flux surface outward toward the lower magnetic field region. The effect of the outer flux shape is
to compress the flux surfaces inward on the dayside and to stretch the flux surfaces outward on the
nightside. Along the midnight equatorial line the pressure is peaked at R = 3.3Rg. But, the peak
beta is at R = 11.2Rg and is about 2.25. These three-dimensional results, as well as the radial
variation of the plasma pressure P, the plasma f, the toroidal ring current Jy, and the fractional
difference between the self-consistent magnetic field and dipole field, (B-Bp)/Bp, in the equatorial
plane, are similar to the two-dimensional axisymmetric results [Cheng, 1992] obtained with the
same boundary flux surface shape at each local time cross section.

The main difference between the three-dimensional and two-dimensional axisymmetric
results is that the field-aligned current and the toroidal magnetic field are finite for the three-
dimensional case, but vanish for the two-dimensional axisymmetric case. Fig. 2 shows a quadrant
of the outer (Y = ,,,,) flux surface with the magnetic field lines shown by the blue lines and the
constant toroidal angle lines shown by the red lines. On the noon-midnight meridian plane as well
as the equatorial plane the magnetic field does not have a toroidal component. Near the equatorial
plane on the northern hemisphere the magnetic field has a toroidal component pointing toward the
midnight direction on the nightside and pointing toward the noon direction on the dayside. From
Eq.(3) the toroidal magnetic field provides a magnetic drift across the pressure gradient and gives
rise to the field-aligned current. Figure 3 shows the constant field-aligned current density contours
over the northern polar region. The solid contour curves represent J;; > O and the dotted contour
curves represent Jj < 0. On the noon-midnight and equatorial planes, Jjj = 0. Thus, on the dusk
side of the Earth's northern polar ionosphere, the field-aligned current density is positive (flowing
into the ionosphere) for higher latitude flux surfaces where dP/dy < 0. The field-aligned current

localizes in the region between 60° and 70° latitudes, and its density is peaked at about 66° in
latitude and at 23:00 local time. The field-aligned current system is in the opposite direction on the
dawn side of the Earth northern pole. These are similar to the observed region 2 current [lijima
and Potemra, 1976a,b].




Discussion

. The MAG-3D code results presented in the paper represent the first self-consistent solution
of the three-dimensional magnetospheric equilibrium with isotropic pressure. A natural extension
is to consider the pressure anisotropy effect. In order to provide a more conclusive test of the
magnetospheric equilibrium calculations with satellite observations, detail information of ring
current particle distribution (pressure anisotropy) and better boundary conditions may be required.
For the information of particle distributions, issues related to the sources and composition of ring
current particles as well as energization and injection processes associated with the storm time ring
current formation need to be resolved. For the boundary conditions, we shall explore a more
complicated form of the outer flux surface such as empirical shapes from the magnetic field models
[Tsyganenko, 1987, 1989], which is obtained by considering all the major magnetospheric current
systems outside the magnetopause. To determine the outer magnetic flux surface (magnetopause)
self-consistently, the shape of the magnetopause will be determined iteratively as part of the
equilibrium solution by a force balance between the magnetic field and a steady solar wind with the
requirement that the normal component of the magnetic field vanish at the boundary.
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Figure Captions

Fig. 1  The constant W surfaces of a three-dimensional magnetospheric equilibrium with isotropic
pressure with P, = 0.6, B¢ = 0.7, B =—=0.05 in the noon-midnight meridian plane.
The solid lines correspond to the magnetic field lines and the dotted lines correspond to
the dipole field surfaces.

Fig. 2 A quadrant of the outer (y = ;) flux surface with same parameters as in Fig. 1. The
magnetic field lines (with the magnetic field pointing upward) are shown as blue lines and
the constant toroidal angle lines are shown as red lines.

Fig. 3 The field-aligned current density contours at the ionosphere boundary over the northern
pole with same parameters as in Fig. 1. The solid (dotted) contour curves represent field
aligned current density flowing into (out of) the ionosphere.
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