ETLEN S s s et ety b,

. (g;vited talk presented at the Conference on The (p,n) Reaction and the Nucleon-
Nucleon Force, Telluride, Colorado, March 29-31, 1979) ‘ 1

- MASTER

C e FE - TTQORLE - -

~———————————NOTICE
This report was prepared a3 an account 9‘ work
sponsored by the United States Government. Neither the
United States nor the United States Depulmefn:h ql‘
. any of thelr employees, nor any of their
o, o their employees, makes
any warranty- eXpress of implicd, or assumes any legal
1 Liabllity or responsibility for the accuracy, :ompleur:en
THE ROLE OF THE N-P INTERACTION IN MICROSCOPIC D e tnes af any & i, it o
- process disclosed, or represents that its use woul
infringe privately owned rights,

CALCULATIONS OF COLLECTIVE MOTION

J. B. McGrory
QOak Ridge National Laboratory*

Oak Ridge, Tennessze 37830

A topic of longstanding interest in nuclear structure’ theory
has been the microscopic theory of collective nuclear behavior.
There is now a large body of evidence that nuclear shell-model
calculations! can reproduce rotational behavior which is observed
in light nuclei, particularly in the sd shell. In the last few
years, there has been great interest in the so-called interacting
boson model? (IBM), which has been able to describe both rota-
tional and vibrational behavior in medium and heavy nuclei. As
I'11l discuss further below, the IBM is a truncation scheme for
shell-model calculations. Au intrinsic assumption of the model is
that the shell model is capable of describing observed collective
pPhenomena. One question then is what are the key ingredients in a
shell-model calculation which lead to rotational features? There
have been several papers3~7 in recent years on this question, and
in msst of them, it is suggested that the neutron-proton inter-
action plays a decisive role in shell-model descriptions of rota-
tional behavior. It is the purpose of this talk to summarize
these argumznts on the importance of n-p interaction.

By nuclear shell model, I mea.. a mixed-configuration shell
model. An underlying single-particle potential is assumed. All
low-lying orbits up to a specific orbit are assumed to be com-
pletely filled to form an inert J=0 core. A small set of valence
orbits above the core orbits is included in the active model space.
All orbits above these valence orbits are explicitly excluded from

*
Research sponsored by the Division of Physical Research, Dept. of
Energy, under contract W-7405-eng-26 with the Union Carbide Corp.

By nctaptance of this article, the putlisher or
reciplent acknowledges the U.S, Govarnmeant's
DISTRIBUTION & Ty TOCUSNTNT IC LRLITTRD right to retain a non - exclusiva, royalty - free
f%’ ficense in 2nd to any sopyright covering the
{ - Brticle, s




the calculation. Shell-model states are formed by constructing
states ¢f a relatively few particles in these valence orbits and
diagonalizing an effective residual Hamiltonian in the valence
space. The usual assumption is that the effective Hamiltonian is
the sum of a one-body and a two-body operatcr. One can write the
Hamiltonian in an n-p formalism in an obvious notation

= + + +H_.
H Hp—core + Hn—core th Bpp Hpn

The question of interest here is what role do these various terms
play in determining whether or mot a nucleus is deformed and ex-
hibits rotational features? 1T use as an operational definition of
a rotational nucleus one which exhibits one or more bands of states
where the excitation energies have a J(J+1) spacing as a function
of J, and which are mutually connected by very strong B(E2)'s, and
which are not connected to the remaining states in the space by
strong B(E2)'s.

I would first like to discuss briefly the role of the single-
particle spectrum in the generation of rotations in shell-model
calculations. One of the most extensive applications1 of the shell
models has been to the sd shell ruclei, i.e. nuclei with A = 17-39.
There, it is assumed that the first 16 particles form an inert core
and valence particles occupy the 0dg/, 1sy/o, and Od3/p orbits.
The low-lying states of 20Ne in this model are described as two
neutrons and two protons in these three valence orbits. 1In 20ne
there is 2 well-known ground-state rotational band. The energies
and relative B(E2)'s of theue states are well reproduced by a con-
ventional shell-model calculation. ““Ti is the fp shell analog - f
20Ne in that in the usual model it is 2 neutrons and 2 protons out-
side of “0Ca. The observad spectrum does not exhibit nearly so
pronounced a rctational spectrum as does 20Ne. What is the differ-
ence? Here, it seems to be the one-body spin-orbit splitting which
is the decisive factor. BSome insight into what is going on can be
derived from a simple Hartree-Fock argument.3 A rotational band
of states is formed by the projections from a single intrinsic state
with a large quadrupole deformation. The state for two r.eutrons
and two protons with a large quadrupole moment is formed when the
particles are put in single-particle orbits with a large quadrupole
deformation. The single-particle state with the largest quadrupcle
moment in a finite shell-model space can be found by diagonalizing
the single-particle quadrupole operator. In the sd shell, that
wave function is 0.82 d, - 0.58 s, (d, is the state with £ = 2, and
So 1s the state with £ = 0.) There is more d than s state in this
orbit. One might thus suspect that if the single-particle spectrum
were such that the d states were much higher in energy than the s
states, no strong deformations would occur. But in fact the dg/,
crbit is about 1 MeV below the s1/2 orbit, sc the single-particle



spectrum is favorable for forming large deformations. The situa-
tion is rather different in the fp sheil. 1In the fv shell, the-
single-particle state with the largest quadrupoie moment is

0.78 p, - 0.63 f,. But the single-particle spectrum has the f£;,,
orbit below the p3;» orbit by 2 MeV, so the single-particle spectrum
does not favor rotations. As an experiment, the spectrum of **Ti
was calculatedd in a shell model with a “0Ca core and four particles
in the fp shell. The Kuo-Brown fp shell interaction® was used for
the effective two-body residual interaction. Calculations were made
with several different single-~particle spectra. The results are
shown in Fig. 1. Here, column two shows the realistic shell-model
calculation of the states in the ground-state band of 20Ne where

the energy of the J=2% state is normalized to one MeV. The third
column shows a similar calculation for “*%Ti, using the experimentally
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Fig. i. Calculated spectra of ground-state bands in 20Ne and “U%Ti.
The first column shows a rigid rotor J(J+l1) spectrum when
the energy of the 2% states is normalized to 1.0 MeV.
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observed single-particle energies. The fourth column shows the same
calculation, but using a different set of single-particle erergies,
in this case with the p3;, and p;,,; orbits degenerate and 2 MeV be-
low the degenerate f7,, and fg5,, orbits. 1In this case, if our
hueristic arguments are valid, the resulting ground-state band
should become significantly more "rotational”. This is indeed the
case. A similar pattern appears when one considers calculated B(E2)
values. In Table 1, the calculatzd B(E2) values in 447§ between
members of the ground-state band are shown. An added effective
charge of 0.5e has been used for both neutrons and+prot ns. In
Table 1, absolute B(E2) values are shown for, the 2; -+ 01 transition
and the B(E2) values relative to this 2; -+ 0; transition are shown
for the transitions. Also shown in this table =re the relative

. B(E2) values of the adiabatic rotational model (¢ﬂ « Dﬁ% xg ().
From Table 1 we see that lowering the p orbits relative to the f
orbits gives a 50% enhancement of the B(E2) values, and a somewhat
more rotational behavior for the excited states. Thus, we see that
the one-body spin-orbit interaction can play a significant role in
generating deformations.

Now let me go on to the two-body part of the effective inter-
action. The role of the T=0 part of the n~p interaction in the
generation of deformation has a lengthy history. The strongest
components of the nucleon-nucleon force are the (J=0,T=1) pairing
matrix element and the (J=1,T=0) interaction which interacts only
in neutron-proton states. For identical particles, the strong
pairing matrix element leads to spherical behavior, so there would
be little deformation if the n~p iInceraction were not strong. A

Table 1. Calculated B(E2)-values in 20Ne and “%#Ti. In all calcu-
lations, an added effective charge of 0.5e is used for
both neutrons and protons. The ground-state transitions
are given in units of e2fm". All transitions to excited
states are expressed relative to the B(E2);.p. "he last
column shows relative B(E2)-values in adiabatic rota-
tional model.

20Ne blpg bbpy Rotational
Experimental Single- ¢ < e
Particle Energies
Ji Jf
é 2 0 248 116 179 1.0
§ 4 2 1.24 1.4 1.4 1.4
; 6 4 1.01 1.2 1.4 1.6
; 8 6 0.65 0.9 1.2 1.6
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good example of this is a comparison of the 20Nz and 200 spectra.
Both systems are four particles in the (sd) shell. In this model
the spectrum of 200 is independent of the n-p interaction. 29Ne

has two neutrons and two protomns, so it is a function of both the
n-p and the p-; interaction. The spectra are quite different as
seen in Fig. 2.. As discussed above, 2%Ne is quite rotational, while
200 has no rotational aspects., Federman and Pittgls have recently
discussed some aspects of the rqle of the n-p interaction in the
development of deformations in nuclei. They made some of the argu-
ments discussed here on the importance of the n-p interaction. They
argue that for the n-p interaction to play a major role, there must
be good overlap of the single—particle wave functions. If the
single-particle functions are labeled by a principle quantum number
n and an orbital angular momentum quantum number £, then there will
be a good overlap if n; = ny and %) = 25. This implies that defor-
mations will occur when neutrons and protons are filling single-
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particle orbits with approximately equal quantum numbers n and 2.
As an example. they discuss nuclei around thegBBSr core. The -
single-particle spectrum there is shown in Fig. 3. For the Mo
isotopes, four protoms are in the py/, and ggs, orbit. Their
arguments would suggest that when the g7/2 neutron orbit starts to
fi1l (i.e. when 14 peutrons are added), deformation effects should
set in because the n-p interaction becomes strong. This, in fact,
is two neutrons away from where there is experimental evidence for
deformation. They make similar arguments in the rare-earth and

. actinide regions. Finally, Federman and Pittel argue that these
strong correlations can come from the short-ranged Sl neutron-
proton interaction.

I Lkave made some explicit studies of the role of the n~p inter-
action ::: forming deformation. I have made nuclear shell-model
calculations of some nuclei in an n-p formalism in which it is easy
to see the importance of n-p correlations. Let me outline here the
procedure for the calculations. In an obvious notation, the resid-
ual shell-model interaction can be written

i=H +H +H +8H +H =EBZ2+g248 .
n-core  p-core nn  pp pPn  n P Pn
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Fig. 3. Observed order of single-particle states near 88Sr core.
- Only half of single-particle strength for the 1h;;/»
neutron orbit has been seen, so its position is more un-
certain than other orbits.




If, initially, we ignore Hgn, then these eigenstates of H can be
written as a direct product of eigenstates of H% 2 and H%+2 i,6.

J
i h|
> >
o3> = > g
where
142y 3, - 31,
w21 = gl
1+2, 1 i1
H > =E >,
¥ {1
If all the eigenstates of 142 and H%+2 are included in this direct

product space, a complete (n,p) space is generated. Thus, for 20Ne,
ve can expand the wave functions in terms of eigenstates: of 180 and
18Ne, A1l the correlations of the n-n and p-p interactions are in
the 180 and !8Ne wave functioms. I have made a series of calcula-
tions of 20Ne in which I successively include fewer and fewer eigen-
states of the 18Ne and 180 spectrum. If I include only the lowest
J=0+, 2+, and 4" eigenstates of the neutron and proton systems, I
obtain the spectrum as shcwn in Fig. 4. The observed spectrum and
the spectrum calculated in the complete (sd)“* space are also shown
in Fig. 4. Calculated and observed B(E2) values for transitions
within the ground-state bands are shown there also for all three
spectra. The calculation with only three eigenstates reproduces
the exact calculation quite well. The comparison of the spectrum
which results when no n-p interaction is included and the spectrum
which results f£rom the complete-space diagonalization shows there
are large effects due to the n-p interaction. This is even more
transparent when one analyzes the wave functions, as is done in
Table 2. Here the wave functions of the ground-state rotational
band are ezpressed as couplings of the aigenstates of 189 and 18Ne.
If the n-p interaction were relatively weak, the ground state, J=0T
state would be dominated by the (180, J=0% ) x (18Ne J=0t ) state. In
fact, the state formed by .coupling the two J=2% states is comparable
to the GT x 0 coupiing in the small space calculation. In the
exact wave function, the 2, x ZT state 1z sctually the largest one.
Thus, the n-p interactior. leads to a highly correlated wave func~-
tion in a case where a clear rotational band exists.

A final explicit example of the importance of the n-p inter-
action in prod.cing deformation is from recent work by Nair et al.®
They have performed major shell Hartree-Fock calculations of 20Ne
and 2%Mg. They do the calculstions with a pairing plus quadrupole
force. 1In one case, they use the full force, and a second case
they use only the1 p force, and in a third casc they use only the
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Fig. 4. Calculated spectra of 20Ne in various model spaces. A
realistic effective interaction is used in all cases. The
first column shows results in full (sd)“,T=0 space for
Yrast even-J states. The last colum:. shows the calculated
(sd)2,T=1 spectrum of Yrast even-J states. The next-to-
last column shows results of calculation where the states
in the last column are coupled to form 2n-2p states, but
with no meutren-proton interaction. The second column
shows results of diagcnal n—p interaction in space of
states formed by coupling the lowest three 130jstates to
the lowest l8Ne states. B(E2)~values in e2fm* are shown
for the 240 transiticms. B{(E2)-values for transitions to
excited states are shoun relative to the 20 transitionm.
The binding energies shown exclude (approximately) the
one~body contributions.

identical-particle force. They calculate the intrinsic quadrupole
moment »f tie Hartree-Fock solutions in these cases. The results
&re summarized in Table 3. The calculated intrinsic quadrupole
moment arises a;most completely from the n-p interaction.




Table 2. Structure of states in ground state rotational band of
20Ne in terms of state of form (Jp x Jn), where JP is- the
lowest eigenstate of 18Ne and J™ is same for 180. Note
that the admixtures of (Jp x J") and (Jn x JP) are equal,
and only one of them is showm.

(Jp X Jn)
0x0 0.69
0 x 2 -0.55
0 x4 0.44
2 %2 0.67 -0.42 -0.63
2 x4 0.31 0.31 -0.68
4 x 4 0.27 -0.16 -~0.16 0.25

Table 3. Intrinsic quadrupole moments of Hartree-Fock Bogoliubov
solutions for ground-state bands of 20Ne and 2“Mg.

Residual Force <Q> e fm?
2 ONe 2 liy_g
H + H + H 7.8 9.1
nn PP pn
H 7.7 8.9
pPn
H +H 0.1 0.1
nn PP

Thus, there is ample evidence that microscopic wave functions
which describe rotational behavior occur because of strong corre-
lations introduced by the neutron-proton interaction. Knowing this
is so is interesting, but how useful is the information? 1Is there
any way to use it to make microscopic calculations of transitiomal
and rotational nuclei? In an attempt to answer this, I would like
to go into a little more detail on the decomposition of the Hilbert
space into neutron states and oroton states. As I pointed out
above, one can generate a complete space by solving the pure proton
and pure neutron Hamiltonians separately, then coupling the re-
sulting eigenstates, and diagonalizing the neutron-proton inter-
action in that space. The matrices in the separate neutron and
proton spaces are much smaller than those in the total n-p space



because there are fewer particles, and because one must deal only
with states with maximum isospin. However, the resulting matrices
in the direct-rroduct (n,p) space are larger than necessary because
the isospin symmetry is lost in constructing the basis. " The
question then is, can one find a small encugh set of neutron and
proton eigenstates so that the resulting (n,p) space remains small,
but the overlap with exact low-lying wave functions is large? This
question was studied several years ago by Hecht et al. There, the
residual interaction was assumed tn be a surface-delta interaction
(VSDI) with equal strengths in the n-n, p-p, and n-p systems. If
one works in the direct product space defined above, the matrix
elements of V.=V

np SDI

el LN e

_ . 1Kk
ap Vo >3 = 7B T WUIkeTR) <u [0 o>

« <l fobive> ¥ 333

where Qﬁ = Yﬁ(ﬂ), YK is the usual spherical harmonic, g a coupling
constant, and W a Racah coefficient. The justification for using
the surface~delta interaction is discussed by Hecht at al. This
form of the matrix elements does suggest a mearns for picking out
the important neutron and proton states. If one can find a set of
states 9! which is a subset of ¢ﬁ- the complete set of mneutron
states, and if for all the surface multipole operators, QK, the
matrix elements <¢;lpK|&ﬁ> for all Y} not in ' are zero, then
eigenstates involving ¢ are not coupled by the neutron-proton .
interaction to any of the other W%- If one can also find a set &
with similar properties, then the resultant direct product space
(¢ x ¢%) is completely uncoupled from the reet of the neutron-
proton space. The eigenvalues of Vhp in this space will yield
exact eigenstates of H. A space wnich approximately sa*isfies these
criteria was constructed by Hecht et al. They treated the problem
of four protons in the (fp) shell and six neutrons in the (sd)
shell, where all the single-particle orbits are degenerate. They
introduced the favored pair concept. If one diagonalizes Vgpr in
the space (sd)2, T = 1, the spectrum shown in the first column of
Fig. 5 results. Only three states have non-zero eigenvalues, with
J=20, 2, and 4 and J = 0. These three states are called favored
pair states. One can define creation opera:or for these states

+
where a; is the usual creation operator for a particle in the orbit
j. It is possible to create four-particle states for coupling

10
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Fig. 5. Calculated spectra of eigenvalucs of (sd)G,T=3 states,
where = surface delta interaction with unit strength in
n-n, p-p, and n-p channels and degenerate single-particle
energies. In full (sd)svT=3 space there are 142 states.

together two of these favored pair creation operators
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One can construct normalized states with good mixed seniority from
these states. These states created from favored pairs have many of
the properties we want for good truncation states. There are rela-
tively few of them, - 20, and the expectation value of H,, between
these states are almost exactly equal to eigenvalues in tge four-
particle (sd)*,T=2 space. Finally, one can make sum rule arguments
to show that these states are essentially uncoupled from the re-
mainder of the (sd)*,T=2 space. That is to say, the matrix elements
of the surface multipole operators between a favored pair stzte and
a non-favored pair state are found to be smzll. States of the
(sd)8,T=3 space can be constructed from three favored pair states.
Such states are found to have strong overlap with low-lying exact
six-particle eigenstates. The (fp)¢ and (fp)"* spaces have similar
properties. In that case there are four favored pair states with
J=0, 2, 4, and 6.

If we wanted to diagonalize a residual Hamiltonian in the full
space of (sd)® protons and (fp)“ neutrons, the resulting matrices
for a fixed-J value would be ~ €0,000. If we use those states con-
structed from favored vpairs, as discusced here, the matrices can
be reduced to less than 200. This ten-particle case has been
treated in trhis truncation scheme.? Some of the low-lying calcu-
lated eigenvalues are shown in Fig. 6. The relative R(E2)'s are
also shown, as are the B(E2) values calculated in the adiabatic
rotational model. There 1is a rather spectacular rotational spectrum
and striking agreement with the simple rotatiomal model for the
calculated B(E2) values. The resulting ground-state wave function
has strong neutron-proton correlations. Only 36% of the wave func-—
tion is comprised of J=0 seniority 0 neutron states coupled to
seniority 0 proton ststes. An additional 36% is composed of
neutrons coupled to J=2, seniority 2 and protoms coupled similarly.
This is an explicit example of 2 large shell-model calculation where
neutron and proton states separately are relatively spherical, but
the ccrrelated wave function is strongly deformed.

This model serves as 3 natural introduction to the now well-
knowri interacting boson model. The fundamental philoscphy of the
IBM and the model of Heckt et al. are quite similar, i.e. micro-
scopic shell models in terms of valence particles outside closed
shells will produce collective features, and the coupling of a
relatively frw selected proton and neutron gtates through a strong
p~-n interaction can reproduce much larger shell-model calculatioms.
The IBM makes other simplifying assumptions. Where Hecht et al.
constructed many particle neutron (proton) eigenstates from two-—
fermion favored pair reaction operators with J = 0, 2, (2jpax-1)
(Gpax 1s  of the orbit with the largest single-particle value) the
IBM uses only two two-particle creation operators, 1.e. cperators
analogous to the A};O and A};Z above. Further, they map the two-
fermion operators onto boson operators, st and d*. Their many-
particle states are constructed from various appropriate couplings
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Fig. 6. Spectrum of eigenstates in four-neutron, six-proton cal-
culation described in the text. The first column shows
all eigenvalues below 5.0 MeV plus selected high-spin
states up to 20 MeV. The remaining columns show same
states as members of collective bands where the band
structure is determined by the fact that states in band
are connected by strong B(E2) values.

of these §+ and &+ bosons. In this "boson" space an effective
Hamiltonian is used which has the following form

= 2.02
H=ZIc¢ (nTrd + nvd) + K Q7 Qv

13
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v

where n (v)d is the number operator for the proton (meutrom) d-
bosons

£ = energy spacing between s and d one~boson states, which is
treated as a parameter

+ + +
and Q12r(v) = (s d)1r(\:) t s)ﬂ(v) + Xﬂ(v) (4 d)ﬂ(v)

K,X are also treated as parameters.

The oné~boson part of this Hamiltonian generates a vibrational
spectrum in the identical particle space. If € = 0, the n-p boson-
boson interaction generates a pure rotational spectrum. Treating
£, K, and X as free parameters, the IBM is capable of reproducing
a, large body of data or vibrational nuclei, rotational nuclei, and
transitional nuclei. '

Calculations made in the model of Hecht et al. can provide
some check on the assumptions of the IBM. The model of Hecht does
not assume that the "favored pair" states are approximately bosons,

= nt
and ;i does not restrict the two-fermion states to J = 0' and
J = as the IBM does. The calculations of Hecht et al. certainly
demonstrate that rotational behavior can evolve from the diagonali-
zation in 2 relatively small shell-model space. They also provide
strong support for the assumption that only J=0t and J=2% pairs are
needed to describe this collective motion. 1In Table 4 an analysis
of the ground state in the ten-particle calculation described above
is given. We list there all components of the ground-state wave
function which have admixtures which are larger than 0.2 in magni-
tude. The states are identified by the proton eigenstate and the
neutron eigenstate which are coupled to form the given basis state.
In this J=0% wave function, 86% of the state is accounted for by
these "large" components. In all these large components, only
four proton (neutron) eigenstates are involved. The J = ot is the
seniority state, the J = 2t is a seniority 2 state, while the J=2%
and J=4t states are senlority 4 states constructed from coupling
two particle states with J = 2. Thus, all these components are
analogous to states which would be included in the IBM. In par-
ticular, perturbative theory would say that the J=4t senlority 2
state should be strongly admixed. But it is the seniority 4 state
formed from J=2% two-particle states which is the important one.
A similar feature exists for all the members of the ground-state
band in the ten—partlcle case, 1. e. the states are al. dominated
by states made up of J=0% and J=2% pairs.

In summary then, I have tried to illustrate the existing
picture of the important ingredients in the microscopic origins of
nuclear collectiva motion. I have stressed the importance of the
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Table 4. Decomposition of lowest J=0t and J=2% states in system of
four pseudo-fp neutrons and six pseudo-sd protons in terms
of states (J: x Jj). Only those admixtures > 0.2 are

shown. Jg labels the ith elgenstate in proton spectrum
with given J. J: is defined in an analogous fashion.

@ x 3 3= I=2
01 X 01 0.60

0y x 23 0.424
0 x 2, 0.216
2] x 0; 0.458
2, x 2, 0.594 0.266
2, x 2, 0.210 0.260
22 x 22 0.218

22 X 42 0.255
by x 23 0.275
by x &y 0.229

o
™~
[+]

~

13 86% 72%

one-body spin-orbit, the importance of the availability of single
neutron and single proton orbits with similar n and 2, and, in gen-
eral, the importance of the neutron-proton interaction in the de-
velopment ' of rotational behavior. Considerations such as those
discussed here have brought the muclear structure theory signifi-
cantly closer to a microscopic model of wide applicability in the

mass regime which might be characterized as transitional or de-
formed
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