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Optimal Control of Nonlinear Nuclear Reactors.
Carlos March-Leuba and Rafael B. Perez (The University of
Tennessee).

This paper presents a new formulation of a class of nonlinear

optimal control problems as a solution of a system of

differential equations with initial conditions. An application

to the control of a nonlinear nuclear reactor is shown.

Pontryagin's theorem1 has been successfully applied to the

problem of designing control systems that are optiirum in the

sense that they minimize a given cost function.2 Rosztoczy et

al.3 showed how the "maximum principle" can be used to optimize

control-rod movement during transients in a nonlinear nuclear

reactor by using a point kinetics reactor model with

temperature feedback proportional to the flux. The problem was

formulated in a way that demanded the solution of four coupled

first-order nonlinear differential equations with initial

conditions for the flux and final conditions for the adjoint.

This particular set of boundary conditions required an

iterative numerical solution of the equations that did not

apply easily to real-time applications.

This paper presents a new formulation of the problem that

allows on-line solution for the control by transforming it to

an initial value problem.

The equations describing a nuclear reactor with temperature

feedback can be expressed as



dn/dt = (pn - ongn2 - j9n)/A + Ac (1)

dc/dt = £n/A - Ac (2)

where n is the relative neutron density, no the initial

density, c is the normalized precursors concentration, p is the

control (rod-reactivity), a is the temperature feedback, A is

the neutron generation time, and 0 and A are the delayed-

neutron fraction and decay constant.

Given a demand, d(t), we want to find the control, p(t), such

that n(t) follows that demand and, at the same time, the amount

of control used is minimized in some sense. The formulation of

the problem is not unique. The approach taken in this work has

been to minimize a cost function, J, defined as

J = 1/2 rT [ (d(t)-n(t))2 Q + (p-«n0d(t))
2 R ] dt (3)

Jto

where Q and R are positive weighting parameters which can be

interpreted as time constants of the system when the original

equations are written in adimensional fashion. When the system

is not in equilibrium, J is greater than zero and dJ/dto is

less than zero; thus, J can be considered as a Liapunov

function. This fact guaranties that the equilibrium reached

using this control will be stable.



Let's define a modified cost function as

fJ = J - fT p + (dx/dt - f(x,t)) dt , (4)
to

where the vector expression dx/dt = f(x,t) represents the

system of equations, (1) and (2), and p is a two dimensional

adjoint. Then, taking variations in Eq. (4), a set of four

first-order differential equations is obtained for x = (n, c)

and p = (pi, P2) as well as a condition that relates the

control variable, p(t), to the state variables and adjoints

dn/dt = P!n2/RA2 + anon(d-n)/A - pn/A + Ac (5)

dc/dt = /3n/A - Ac (6)

dp!/dt = np!2/RA2 -(d-2n)«n0Pi/A + (p 2~PiWA - (d-n)Q (7)

dp2/dt = A(p2-Pi) (8)

where the control has been substituted for

p = p^n/RA + anQd (9)

The variational calculation yields as boundary condition that

the adjoint, p, at final time be zero. This boundary condition

makes the solution rather difficult. Thus, the approach taken

in this work has been to realize that if, at the beginning of

the transient, steady state conditions for demand and state

variables were satisfied, then p must be zero at the initial

time. In this way, the equations can be solved as an initial
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value problem. These extra constraints allow to solve the

problem easily making "on-line" solutions possible.

Figure 1. shows the result of a computer simulation of this

technique. The solid line represents the demand and the

circles correspond to the actual neutron density.

In summary, optimal control techniques can be applied to

nuclear reactors. Control constraints, nonlinearities and

multivariate control problems can be handled by using

variational techniques. The results presented in this paper

show that depending on the formulation of the cost function,

the solution of the system of equations car be clearly

simplified.
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Figure 1. Response of the reactor to the optimal control.
The solid line represents the demand and the
circles the normalized neutron density-
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