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1. THRESHOLD ANOMALIES

1.1 A Brief Review

The term " th re sho ld anomaly" (TA) r e f e r s to the r a p i d , l o c a l i z e d

v a r i a t i o n of the heavy-ion o p t i c a l p o t e n t i a l U(E) = V(E) + iW(E) with

energy E at low energ ies in the v i c i n i t y of the top of the Coulomb b a r -

r i e r . (The corresponding Fe rmi - su r f ace anomaly for nucleons ) has been

known for a long t i m e . ) The main f e a t u r e s a re tha t the s t r e n g t h of the

imaginary potential, in the surface region to which the elastic scat-

tering is sensitive, increases rapidly as the energy rises above the

Coulomb barrier and then saturates at a more-or-less constant value,

while at the same time the real, attractive potential in the same

region decreases rapidly and then remains more-or-less constant. The

behavior of.the absorptive potential W(E) is easy to understand because

the Coulomb barrier effectively closes the nonelastic channels at the

lower energies, but increasing the energy above the barrier allows ab-

sorption to take place. Hence the word "threshold". The term

"anomaly" applies to the real potential V(E), whose behavior was unex-

pected. Figure 1 shows the canonical example.2)

A number of other cases have been seen; Fig. 2 is a recent exam-

ple. ' However, obtaining similar data for heavy systems remains an

experimental challenge because of resolution problems.

The above explanation for W(E) implies that the bahavior seen is a

coupled-channels (CC) effect, and this has been confirmed4'5^ by
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Fig. 1. Optical potential strengths.2)

extensive, explicit CC calculations for 1 60 + 2 0 8Pb which reproduce the

observed elastic scattering (Figs. 3 and 4 ) . Effective real potential

corrections ("polarization potentials") have been extracted from these

calculations (Fig. 5) and agree with the "anomaly" in Fig. 1. In this

case, couplings to inelastic and transfer channels are of comparable

importance. Qualitatively, the collision happens "suddenly" at high

energies and mainly results in absorption from the elastic channel,

whereas at energies near and below the barrier the processes are more

adiabatic (virtual excitations) and give a real polarization potential.

Such CC calculations are complicated and specific to each system.

A more general, but more implicit, approach includes all the CC disper-

sive effects "exactly" by using a dispersion relation1.6) between V(E)

and W(E). This ensures that, if the absorption varies in the way just

described, there will be a corresponding anomaly in the real potential.

Thus it should be a universal phenomenon.
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Fig. 2. Potentials strengths for 160 + 14ltSm
elastic scattering and fusion.3)
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Fig. 3. Couplings for 160 + 208Pb.'4)



Fig. 4. Elastic scat-
tering from CC calcula-
tions. "•>
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1.2 Dispersion Relations
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1-2.1 Elastic scattering. Although dispersion relations have a long

history,7) Feshbach8) seems to have been the first to point out their

application to relate the real and imaginary parts of the optical po-

tential as derived from the analytic properties of the propagators that

appear in his reaction theory. Later, this relation was derived9) in a

time-dependent framework as a consequence of causality: a scattered

wave cannot be emitted before the arrival of the incident wave. The
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two derivations are equivalent.

If the real potential is written V(E) = V + AV(E), where V is

o o

independent of E (but may be nonlocal) and AV has been called a dynami

cal polar iza t ion poten t ia l , then the dispersion relat ion (DR) is

where P denotes principal value . (There is a complementary r e l a t i on in

which AV and W are interchanged.) We see immediately that if U is com-

plex (W * 0 ) , then V must depend upon E. Further, any local ized rapid

increase in | W(E) (where W <. 0 ) , such as we have postulated near the

Coulomb b a r r i e r , must be accompanied by an a t t r a c t i v e contr ibut ion to

AV localized in that same energy region. Since the absorption de-

scribed by W(E) arises from couplings to nonelas t ic channels, we see

that AV(E) a r i ses from the same source. The curves in Figs. 1 and 2

were obtained from such a DR, with the W(E) represented by s t r a i g h t -

l ine segments.6) An important feature is that | AV(E) j begins to de-

crease again as the energy is lowered fur ther . There are some ind ica -

tions of th is from analyses of d a t a 1 0 - 1 1 ) (Fig, 6), but i t is d i f f i c u l t

- 0 6 -

o
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Fig. 6. Real (a) and Imaginary (b) potent ia l
s t r eng ths 1 0 ) for 160 + 6 0Ni.
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Co deduce optical potentials (especially the real parts) at such low

energies from elastic scattering alone. More indirect evidence may

come from studying fusion ' and reaction ' cross sections (Figs. 7 and

8).

Fig. 7. Elastic scat-
tering at 157° (LH)
and reaction cross
sections (RH) for

>

I 0-

0 8-

S 0.6-

1 6 0 2 0 8 Pb.
)
1 2 >

0.2-

0.0

\ *

-10

72 74 76 78 80 82 84 86

Now V Q and W, hence AV, are generally nonlocal,
8) but in practice

model potentials are taken to be local equivalents to these. Conse-

quently, such models will include some "spurious" energy dependence

that arises from modeling the nonlocality (= momentum dependence) of

the more fundamental potentials. Such a spurious E-dependence should

not be included in the DR integral (1). This distinction is made rou-

tinely in treatments of nucleon potentials,1) but for heavier ions it

is usually assumed that the nonlocality correction Is small and can be

ignored (but see6) for some discussion).

The DR (1) is obeyed by the potential at each position r,. It will

also be obeyed by any moment, such as the volume integral, which may be

better determined by the scattering data.6)
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Fig. 8. Potential strengths (real:
N; imaginary: W) from data in Fig.
7.12) Curves are from the DR.
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1.2.2 Nonelastic scattering. Nonelastic scattering may be treated as

a limited coupled-channels problem where the one-channel optical poten-

tial is replaced by a potential matrix U_ (E). Arguments parallel to

those that led to Eq. (1) show 1 3) that each element of this matrix

satisfies a corresponding DR, where now the imaginary parts W o (E)
pa

account for the loss of flux out of the explicitly coupled set of chan-

nels into all other open nonelastic channels. Since the effective num-

ber of the latter that contribute will also increase with energy at the

low energies, we may anticipate a threchold anomaly (perhaps reduced in

magnitude) for the real parts of the off-diagonal coupling potentials

which parallels that for the diagonal optical potential.

Inelastic scattering to a 2 + or 3" state is particularly useful

because interference with Coulomb excitation provides a sensitive indi-

cator of the hadronic interaction in this energy region.11*'*-') If the

excitation is collective, it is thought appropriate to obtain the

coupling interaction by deforming the ground-state optical potential.

If this prescription is followed, it ensures that the coupling strength

follows the elastic TA. This has been tested in at least two cases,



160 + 208pblii-16) a n d 160 + 92Zr-17) The o v e r a l l T A b e h a v l o r i s con-

firmed in the former case (Fig. 9); possibly the inelastic anomaly Is

even stronger than the elast ic one. Preliminary analysis17) of the

Zr data shows that an anomaly is present, and also suggests the

possible importance of coupling to transfer channels.

It has also been established that projectile polarization, or

multistep coupling effects, are important for transfer reactions in-

duced by 170 + 208Pb in this energy region. 1 2 ' 1 8 ) In this case, the

dominant intermediate step is the excitation of 170 to its l /2 + , 0.87

MeV state . I t may not be profitable to try to express this as an

energy-dependent effective interaction which is exhibiting a TA,

although i t may be thought of in that way.

Of course, the prime example of a TA for nonelastic reactions is

the enhancement of near- and sub-barrier fusion.19) This may be repre-

sented in optical model terms, as we now discuss.

70 80 90 100 110 70 80 90 100 110

ab
E, , (MeV)
"lab

Fig. 9. Transition potentials for 160 + 208Pb (3~) excitation.16)
Dotted line shows variation for the elastic potential (Fig. 1).
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2. OPTICAL MODEL FOR FUSION

2. 1 Int. ruiuction

It is now well known that sub-barrier fusion cross sections are

strongly enhanced over what is expected from simple penetraf'on of a

conventional Coulomb barrier. ) A popular way to explain this anomaly

is by invoking the couplings to nonelastic channels; this can be re-

garded as introducing a distribution of barriers, one or more of which

are lower than the uncoupled one and hence enhance the penetra-

tion. 1 9~ 2 2) Clearly, the fusion anomaly is another aspect of the TA

seen in elastic and inelastic scattering, so we are led to examine a

one-channel optical model description of fusion. Qualitatively, we can

expect the increased attraction of the real nuclear potential in the

barrier region to lower the barrier and ease fusion, and this motivated

the first work.

We also note that a critical test of any model of heavy-ion fusion

is that it reproduce correctly the spin distribution of the compound

system. 23,24,27) This £s equivalent, if we neglect any target or pro-

jectile spin, to the partial wave distribution a (L), where

0p(E) = I oF(E;L). (2)
LJ

2.2 The Barrier Penetration Model (BPM)

The BPM assumes that fusion will occur after penetration of a con-

ventional Coulomb barrier;19^ this Is equivalent to the reaction cross

section for an optical potential whose imaginary part Is confined to

radii inside the barrier but which is strong enough to absorb all the

flux that penetrates to the interior. (Sometimes an ingoing-wave boun-

dary condition is used19) instead of an imaginary potential.) In

actual applications, the (real) nuclear potential was taken to be inde-

pendent of energy and frequently it was identified with the real part

of the optical potential obtained at higher energy. It is by compari-

son with this model that sub-barrier fusion is said to be enhanced.

Clearly the first implication of the observed elastic TA is that

the strength of the potential used in the BPM should be allowed to be

energy dependent in the way found from elastic scattering,21*) and the
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first applications6^ seemed to support this conjecture by producing

cross section enhancements like those observed (Fig. 10). However, it

L Uwij H}- lm.1

Fig. 10. Fusion cross sections^)
from BPM with a fixed (N=l)
potential, and the E-dependent
potential from Fig. 1, N(E).

was realized2 4 '2 7) (by comparison with CC calculations) that this was

insufficient to reproduce the spin distributions (2) correctly and that

at least the changes in shape of the potential across the TA6^ must be

included. The discrepancy was small21*) for the case of Fig. 10, but

more dramatic examples can be found23*27) (Fig. 11).

Fig. 11. Spin distributions
2^) ^

Fig. 11. Spin di
calculated2^) for 1 2 2 Sn
at E c m = 107.5 MeV. Solid:
CC calculation; dashed:
uncoupled; dots: uncoupled,
with potential strength
increased to give same Op
as CC one.

e
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2.3 Formal Basis of the Optical Model

To proceed further, we need to examine the formal basis of the

optical model. It can be shown25"27) that the imaginary part, W, of

the optical potential U = V + iW that reproduces the elastic scattering

can be divided into a piece that accounts for the fusion (F), and the

remainder that describes the absorption into quasi-elastic (or direct,

D) channels,

W(E) = Wp(E) + WD(E). (3)

Then the absorption cross sections are given exactly as the expectation

values of the corresponding parts of W,

oA(F) = op(E) + oD(£) (4a)

(4b)

-(2/-nv) <x£+> | Wp(E) | XE
+)>, aQ = -(2/tfv)

where the distorted waves X- are generated by the full potential I!

and hence include the peripheral damping due to the direct reac-

t ions. 26>

The BPM is obtained by (i) confining W to radii smaller than the

Coulomb barrier, and ( i i ) neglecting W (and hence the peripheral dam-

ping) when generating the x,? • (Because of the la t te r condition, the

BPM gives an upper limit to a for a short-ranged W . ) 2 7 ' Since, by

definition, the potential U gives the elastic scattering, i ts real part

follows the TA.

In another approach2"' Udagawa and Tamura (UT) allowed Ŵ, to pro-

trude into the barrier, thus providing enhanced fusion cross sections

without the need for substantial changes ,in the real potential. This

feature also broadens the spin dis t r ibut ion. 2 6" 2 8 I n i t i a l l y , 2 6 ) W was

defined by using a sharp cut-off, so that W = W(r) for r < IL, and

WQ = W(r) for r > R^, where W(r) had a Woods-Saxon shape. Then IL, was

chosen to fit the fusion cross sections. In more recent work,2^>^' W

has been taken to have a volume (Woods-Saxon) shape (but with a sharp

surface) and W to have a surface (Woods-Saxon-derivative) shape, with

the parameters adjusted to fit simultaneously elastic and fusion data.
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A striking feature of either procedure is that large values of R. (or

the corresponding radius of W p) are obtained, values that put R, near

or beyond the radius of the top of the Coulomb barrier (typically R =

1.4(A}/ 3 + A*/ 3)). Clearly the BPM is inadequate for a Wp of this

form. We also note that, in the cases of 3 2S + 58>64Ni (Fig. 12), the

use of a large Rp did not eliminate the need for a TA in the real and

imaginary potential strengths30) (Fig. 13). (In these fits,30) r =

1.41 fm and rD = 1.5 fm, while a^, was chosen to be small, 0.1 to 0.3

fm. )

2.4 Where Does Fusion Occur?

The results26'28"30) of using the UT model imply that fusion is

E|Qt)= 88 MeV

93 Mev

i.o -

1.0

b
T3

98 MeV

102.5 MeV

108

01

0 01

52

too

100

10

Ni

60 65 70

Fig. 12. Simultaneous fi ts3 0)
to elastic and fusion data.

40 80 120

3cm(deq)
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Fig. 13. Real and
imaginary potential
strengths''") for
data in Fig. 12.
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initiated, rather suddenly, near or even beyond the top of the Coulomb

barrier (r ~ 1.4 to 1.5 fm) (Fig. 14), contrary to the philosophy be-

hind the BPM (r ~ 1.0 fm, s..y)-

Semi-phenomenological analyses22) of fusion for many systems,

based upon a distribution of potential barriers, find a strong correla-

tion of the enhancement with the separation energy of the least-bound

neutrons of the target and/or projectile. When this is expressed as

the distance of approach at which neutron flow between the ions may

occur freely, it supports the notion of fusion being initiated at large

radii. This work also suggests that the probability for fusion in-

creases slowly as the nuclei approach more closely, instead of occur-

ring rather abruptly as has been assumed in the UT optical model

studies.26) (This would correspond to using a larger diffuseness a^

for W than has been customary.)

We return to the formal theory of the optical potential to put

this into context. The decomposition that led to (3) also shows W to

consist of two parts,25"27)

Wp(E) - (5)

The "bare" part, W ^ , is the imaginary potential that should appear in

an explicit (and complete!) CC calculation, and describes Lhe loss into
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fusion from those "direct" channels.

Customarily, it is W p that is taken to

have a short range (r ~ 1 fra) or is re-

placed by the ingol..g-wave condition in-

side the barrier. Then W is the

polarization contribution that results

when projecting from the CC onto the

elastic channel; it accounts for loss

from the elastic channel due to multi-

step fusion, i.e. fusion that occurs

after excitation into the quasielastic

channels. W describes the loss of flux

that is actually emitted into these

channels, and is expected to have a

surface-peaked form. The W term can

also be expected to be more peripheral,

10.0

•S. 10.0 -

10.0-

so that the sum W_ W

oF 10.0-

F oF pF

tend into the barrier region even if W

itself is confined to smaller radii.

This could account for the large R^

values extracted in the UT approach.

In general, then, the imaginary

optical potential should be composed of

three terms, W = W „ + W „ + V L , each
OF pF D

energy dependent and with different

radial shapes. There is no particular

reason why the effects of W should be

represented by simply assigning a larger

radius to W _, except a desire to econo-
oF

mize on parameters. (The work of Stelson22^ might suggest that a large

diffuseness a^ would be more appropriate. ) It is hoped that some

guidance may be obtained by examining the equivalent local potentials

constructed from the results of large CC calculations.1*'27^

Fig. 14- Probability ampli-
tude for fusion in UT model
with rp = 1.42 fin. Rg is
the top of the barrier. 26)
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2.5 Spin Distributions

Unfortunately, at these energies the fusion cross section and

elastic scattering alone are not very sensitive to such details. More

empirical information can be provided by measurements of the spin dis-

tributions, o (L). As an illustration, we consider an extreme exam-

ple32) in which W „ is given the same surface-peaked shape as W , and

W is confined inside the Coulomb barrier (r = 1.0 fm, a^ = 0.25 fm).

The potential parameters are chosen to fit the elastic data11) and the

strength of W adjusted to give (with W ) the fusion cross section.

(Ine W term has a radius parameter r = 1.5 fm and diffuseness a^ =

1.0 fin.) Figure 15 compares the resulting spin distribution with that

from a UT fit (with i- = 1.41 fm, a,, = 0.2 fm) to the same data.30)
F r

We see dramatic differences.
There are very few measurements of o (L) at near- or sub-barrier

energies. Those avail-

able31"33) are for

heavier systems. They

are broader than the BPM

predicts (e.g., Fig. 16),

and do not provide evi-

dence for the pronounced

structure, or the long

tail, that our model cal-

culation gives. This

tends to confirm that

taking W and W to have

the same shape is too ex-

treme; one would expect,

because of its multistep

nature, that the W

shape would be inter-

mediate between W and

oF

V

3

4.0

3.0

2.0

1.0

2.0

0.5

i—r

88MeV

POTENTIAL UT
<L> = 11.2
<L2> = 157

i—r

10 20 30 40 50 60 70 80

A1

Fig. 15. Spin distributions for
fusion from two potentials giving
equivalent fits to the elastic
data.34)
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Fig. 16. Spin distributions32) for
64 N 1 + 100Mo a(. 1 4 1 > 7 MeV_ Thick line:

measurements; thin line: CC calculations;

dash-dot line: couplings *1.5; dotted:

uncoupled.

Besides the full

0 (L) distribution, there 40 -

are some estimates19' '

of the moments <L >, n =

1 or 2, from "Y-ray multi-

plicities (n=l) or

fission angular distribu-

tions (n=2). Under cer-

tain conditions, °v(L)

tends to a limiting shape

(and the <L > tend to

constant values) at ener-

gies well below the bar-

rier top.36) (One of the

assumptions is that

fusion occurs after tun-

neling through a distribution of barriers; it is not clear what happens

if fusion is initiated outside the barriers.) This behavior has been

inferred from recent measurements37) on 12C + 128Te (Fig. 17). In this

case, CC calculations seem to be in agreement with the observations.

In other cases,32,35) r n e inferred <L > remain appreciably larger than

the predicted values as the energy is reduced (Fig. 18). The discrep-

ancy is removed for at least one case ) (Fig. 19) if the UT model is

used with the large fusion radius of r = 1.44 fm.
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Fig. 19. Values of
<L> deduced for

Dashed curve: UT
optical model;
dotted curve: BPH.
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