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Abstract

'I

The rateof turbulence-inducedenergyexchangeW'0 betweenspeciesis

computed in theframeworkof thequasilinearand gBL transporttheories.

and the relationshipbetween thesetwo similartheoriesis therebyeluci-
s

dated.For both theories,generalformalexpressionsfor_V0aredeveloped,

and thenappliedtothetrappedelectronmode forillustration.The general

expressionsfor$'_'0inthe two theoriesareformallycloselyrelated,but can

yieldpredictionsof verydifferentmagnitudeinconcreteapplications.The

factthatquasilineartheoryisnotvalidforsaturatedsteady-stateturbulence

givesrisetocertainpecllliaritiesinitspredictionsforthisnormalexperimen-

talsituation,suchaspermittingenergytoflowfromthecoolertothehotter

species,eveninthelimitofthermalequilibrium,where real-spacegradients

vanish.The gBL th_ry may be viewed as a modificationof quasilinear

theoryto be validforsteady-stateturbulence,keepingextratermsdue to

" the self-consistent back reaction of particles on the fluctuations, which are

just such as to eliminate these peculiarities.
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I. Introduction
,|

This paper investigates the relationship between quasilinear (ql) the-

ory 1-3 and the more recent 'generalized Balescu-Lenard' (gBL) transport

theory, 6,v two philosophically and formally similar theories with, however,

significantly differing physical content. We focus chiefly on the prediction

from the two theories of the rate I,_z0of turbulent energy exchange between

species. This calculation, of potential significance in its own right, s'9 also

serves as a useful vehicle by which to show new features of the gBL theory.

both over qi theory, as well as beyond those applications of the gBL theory

already made.

Quasilinear theory forms an important element in the overall structure

of plasma theory -- the simplest statistical theory describing the self- °

consistent interaction of plasma particles and waves, possessing the appro-
o

priate set of conservation laws, and an H-theorem (for the particles). As

such, the theory consists of two portions, one describing the time evolution

of the particle phase-averaged distribution, and the other the evolution of

the waves. In its numerous applications to problems of turbulent transport,

it is the ql equation for the particle evolution which is focussed upon, pro-

viding a simple, e×pUcit prescription for computing the particle transport

coefficients for any given spectrum of waves, which are implicitly assumed

to evolve according to the ql wave equation.

This implicit assumption presents a difficulty for the relevance of ql the-

ory to experimental plasmas, however, since it is valid only either during the

early, linear growth stage, or for very particular, 'quasilinearly flattened' ,

distributions, for which all the modes have been linearly stabilized. The

l
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first case does not pertain to the normal experimental situation, however,

• in which the wave spectrum may usually be characterized as near a quasi-

steady 'saturated' state, in which nonlinear effects neglected in ql theory are

large enough to balance the linear ones. And the second case does not nor-

mally pertain either, since these nonlinear effects, rather than ql flattening,

probably play a crucial role in establishing the saturation. Schematically,

, writing the distribution function f = fo + 6f as tile sum of an ensemble-

averaged plus a fluctuating part, the averaged and fluctuating parts of the

Vlasov equation are

ofo/at = -o. (6E f) - -o.r (-1)

g-16f -- -6E.Ofo-_(6E.O6f) __g-l(6f(a) q-6f(i)), (2)

b

where g is the propagator along unperturbed trajectories, and O is a momentum-

space gradient. For an unmagnetized plasma, g-1 _ c9/c9t + v. _7, and

O --. ec)/0p, with e and p = Mv the particle charge and momentum, re-

spectively. 6f(c) is the phase coherent part of 6f, coming from the linear

term on the right side of Eq.(2), and _Sf(i) is the 'incoherent noise' portion, 4

arising from the nonlinear term there. Transport is described by F, the aver-

aged flux in momentum space, and is evaluated by solving Eq.(2) for 6f, and

inserting it into the definition of F in Eq.(1). This yields two parts for the

" flux, F = F D . F F. Quasilinear theory neglects the nonlinear term _f(i) and

so drops the corresponding contribution FF to F, keeping only the diffusive

portion r D -" -D. al0 arising from 6f(c). However, for fully-developed

turbulence, this nonlinearly-derived term is in general comparable with the

• coherent term kept, and moreover, its structure is just such as to permit it

to assume the role in maintaining conservation laws for steady-state turbu-

P
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fenceperformedby thetime-varyingwave amplitudesinqltheory.4,sNow,

insteadofenergy(forexample)beingtransferredtoor from a givensp,_cies

sl (abbreviatedto simplyi hereafter)from each plasma mode a as in ql

theory,fora steady-statespectrum,mode a onlymediatestheexchangeof

energyfrom speciesI tosome otherspecies2,but does not change inam-

plitude,similarto theusualpictureforthe standardBalescu-Lenard(BL)

operator.

The gBL theorysa"may be viewed,on theone hand,as a modification

of ql theoryto be validforsteady-statespectra,and,on the other,as an '

analyticallymanageabletheoryobtainedfrom fullyturbulentforms4'I°for

r by making a simplifyingapproximation(the'pseudothermalansatz's)on

the exactform forrr,which retainsallthe appropriateconservationlaws
d

and the H-theorem. In thisappro.'dmation,rF has the form (Fr0),with

F the 'dynamicfriction,'representing,analogousto the BL operator,the

effectson testparticles(or'macroparficles,'i.e.,phase-spacegranulations)

oftheself-consistent(turbulent)fluctuationswhich theythemselvesdrive.

Certainimportantresultsofthisworkcanbe givenand discussedwithout

gettingintothe formaldetailsof the action-angleformalism,in terms of

which the gBL theoryisconvenientlydescribed,but which isa somewhat

nonstandardformalframework.Such resultsarepresentedinSec.II.There.

itwillbe seen thatthe gBL expressionw_BL for_V0 isformallyclosely

relatedtotheqlexpressiont_.gl,but theretentionofrF yieldsan additional

antisymmetrizingterm [cf.Eq.(7)],whichcan make thepredictionsforthe

actualsizeofW0 from thetwo theoriesverydifferent.To proceedfurther,in

Sec. III we introduce the necessary formalism, and then prove and expand °

, upon the general results stated in Secs. I and II. The focus of this paper
q
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isinterspeciesenergyexchange,and energyconservation.Formallyparallel

o to the energy conservationtheorems in both theories,alsointroducedin

Sec.II,aretheorems forconservationof angularmomentum pc. Because

thetimerateofchangeofp( governstheradialparticlefluxesF, statements

on therelationbetweenthefluxesrqland rgBL analogoustothosebetween

i#¢-_tand _F_BL can be made. For example,as discussedin Sec.IV, the

neglectofrF by qltheoryresultsina test-particleexpressionforr,where

the collisionoperatorisnon-momentum-conserving.As iswellknown in

the specialcaseof neoclassicaltransportofions,thisfluxismuch larger

than thatfrom theself-consistentcalculation,which usesthe momentum-
I

conserving(gBL) operatorin whichrF isretained.

Earlierapplicationss'7of the gBL theoryto turbulenttransporthave
&

made useoffairlycrude,genericmodels forthe turbulentspectrum.This

hasmade lessclearthecomparisonbetweenpredictionsfromthattheoryand

qltheory,whose normalapplicationto transportproblemsconsiderssome

specificsetofplasmamodes ofpotentialsignificanceforturbulenttransport.

To remedy thisdeficiency,in Sec.IV, explicitformsareobtainedfor_'_'0

forboth the qland gBL theories,forthe (collisionless)trapped electron

mode (TEM). From this'template'problem,thefurtherapplicationofthe

gBL theory'to othermodes ofinterestshouldbe as directasforqltheory.

Within the context of this application, it will be concretely shown that while

formally similar, the gBL prediction for W0 can be smaller than, comparab!e

to, or larger than the ql prediction, depending upon plasma parameters.

The fact that ql theory is not really applicable to the saturated phase of

• spectral development results in certain oddities in the ql prediction for t_'_t.

One of these is that contrary to what one might expect intuitively, and finds

$
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for classical (collisional) interspecies exchange, ql theory does r_ot predict

that energy "runs downhill," i.e., that it is transferred from the hotter to

the cooler species, even for a uniform MaxweUian distribution .to = .tM,

but rather work is done on species 1 in proportion to its contribution to

the growth rate (or to the dissipative part A_(_oll ) of its susceptibility) of

the fluctuations [cf.Eq.(10)]. As wiU be seen in Sec. IV, the additional

antisymmetrizing term on the right side of Eq.(?) present in the gBL theory

causes that theory to predict turbulently as well as collisionally-exchanged

energy to run downhill, in the equilibrium limit .to -- f,v/.

A related oddity of ql theory, sufficiently independent of formal details

that it can be discussed in Sec. II, concerns the nature of its II-theorem.

While the ql conservation laws for momentum and energy both involve a

sum over contributions from both the particles and the waves, the ql H-

theorem involves only the particle contribution Sp to the rate of change S

of entropy for the total system, and, moreover, the ql expression for the

wave cov.tribution S_, in general is of indefinite sign. In contrast, while the

gBL theory also possesses the conservation laws, H-theorem, and Onsager

relations s'6 there are only particle contributions to any of these.

In Sec. V, we conclude with some discussion summarizing what has been

accomplished in the foregoing sections, indicating some of the limitations of

the ql and the gBL theories, and pointing to possible directions for improve-

ment of the gBL theory.

q
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II. Some General Results

e
The general relationship between the rates 1)¢(1) =_ (6E. 15.i(1)) of tur-

bulent energy exchange in the gBL and ql theories is sufficiently simple

[cf.Eq.(7)] that one can write it out at the outset, and prove and clarify it

in the later more detailed development. The total energy in species 1 is

given by W(1) =_ f dSzlH(zl)f(z_), with H(z) = Ilo(z) + h(z) the particle

Hamiltonian at phase point z, and f(z) the distribution function, f may

be solved for in powers of the field amplitude ¢, f = f0 + ]'1 + f2, plus

higher--order terms, which are neglected. H0 is the unperturbed, and h is

the perturbing, part of H. In the gBL theory as well as ql theory, one has

W = Wo -_-W2, where changes in Wo(1) ="f d6zlilo(zl)fo(zl) represent ir-

reversible (resonant) work done on species 1, while W2, defined analogously

to W0, describes the nonresonant particle 'sloshing' energy, and is normally

• grouped with the total wave energy Wu,. 3 The ql expression for }Vo for

species 1 may be written

(3)
Q

where l¢[2(a) is the fluctuation spectrum, labelled by mode index a. [For

definiteness, one useful model e for the parameters characterizing the plasma

modes is a ---- (k, ra), with wavevector k, and mode localization radius r_.

The precise definition of mode amplitude ¢ will be specified in Sec. IV.]

A_(w[1) is the contribution from species 1 to the dissipative part A"(,.') of

the dielectric function A_(_) = A'_(0a)+iA_(w) = 1+Ez A_(wll), evaluated

for mode a. Similar to Ref. 6, l_ra = f dxll_(x)l 2 is a normaiiz;ng factor,

with I_(x) the ('normaLized) electric field for mode a.

0
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From the gBL theory, one may decompose the total fluctuation spectrum

I¢[_(a) into a sum over the portions 1¢12(a,2) driven by each species 2, [cf. t

Eq.(24)]

l,_12(a)= _ I,_12(a,2). (4)
2

Using Eq.(4)in Eq.(3), we may corrtespondingly decompose 1_+(1):

2

where

+9°_(_"Ii)l_12(a2) (+)_v_'(il2)= 2_o 4_

The gBL expression for the work done on species 1 may then be expressed

analogously to Eq.(5), with the relation between I_0(ll2)in the two theories

simply given by

w_mg(i[2)= W¢_'(112)-Wo¢(211). (7) .

The difference between the gBL and ql predictions for energy exchange is

seen to come from the second term on the right side of Eq.(7), which arises

from the dynamic friction F, absent in ql theory. From the antisymmetry of

W_ BL in Eq.(7)it is apparent that }_'_BL(I[2)+ IQ_BL(2[1)= O, i.e., that

work done by species 2 on species 1 is minus that done by 1 on 2, and that

therefore irt the gBL theory interspecies energy exchange conserves particle

energy:

_ }+qsL(1)-___Z l+'gsL(_12)=0. (S)
1 1,2

In ql theory, under the quasineutrality approximation, one finds an ex-

pression which looks analogous, s but whose physical content is rather differ-

ent, since in that theory there is an additional subsystem which may gain
II
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or loseenergy,namely thewaves:

' _ _v_'(_)=_ ¢v_t(_)+_ ¢¢_'(_)=0. (9)
1 1 1

The term _I $4zqt(I)hereisthe time derivativeof thewave energyIVw =

Y_=W=. (Ifquasineutralityisnot _sumed, the fieldcontributionto IFw

must alsoappearhere,making more explicitthatwave energyisnecessary

forenergy conservationinql theory.)Using I_ l = _=2"y=W=, the stan-
i! -

dard expressionsforthe mode growth rateVa - -ua = -Aa/Aa (where

_, -- 0Aa/0wl_o),and the energy in mode a, W. = wa/=, with /= -

_oA=I_12(=)/(4_)th_w_ve_ction,on'_finds

q_ N"A"("°)I;12(a). (lO)w_"=1:I.v_(I)==21:_o 4,
1 a

' Using this and Eq.(3) yields Eq.(9).

On the other hand, in the gBL theory l)v'2 = 0 = l,Fw, since the wave

spectrum is at steady state. However, summing Eq.(7) over species 2 to

assess the significance of the second, dynamic-friction term on the right

side tkere, one finds

N"_('"°) 1_12(_,1). (II)
Q

Sumndng this over species 1 yields just _Vq' in the quasilinear equation

Eq.(lO). That is, as indicated in Sec. I, the dynamic friction term in the

gBL theory assumes the role played by the wave subsystem .in preserving

the conservation laws.

Zq.(9) may be written IV#' + I.Vwqt - E1 $'V(_'(1)Jr"Za I'Vq' = 0. Thus,

- as noted in the Introduction, as opposed to the gBL law (8) for energy

conservation, the ql law must include the rate of change Ww of wave energy

f
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in order to conserve energy. As may be readily shown from the e::pressions
Q

introduced in Sec. III, a similar statement holds for conservation of angular

momentum p(. For the gBL theory one has, analogous to Eq.(8),

= p  L( i2)=0,
' 1 1,2

ftore which follows the property of intrinsic ambipolarity 6

e_r(1)= _-'_e_r(l[2)=o,
1 1,2

where Po(l) =_ f d6zp_O_fo(1) is the irreversible rate of change of angular

momentum of species 1, and _F(1) is the corresponding radial particle flux.

In contrast, in ql theory, while total particle angular momentum is conserved

within the quasineutral approximation, _]1 pqt(1) -- _-.x f d6zxP¢Otf(1) = O, *

the reversible part of this is the wave momentum Pw = _a Pa, with P_ =

nI_. Thus:
J

1 a

analogous to Eq.(9). Thus, ambipolarity of the irreversible particle fluxes

(which are what are the usual quantity of interest in transport calculations)

does not hold within ql theory, unless ali modes have 7a = 0.

For the corresponding H-theorems in the two theories, however, the same

structural comparison does not hold. Using Eq.(16), and Eq.(17) or Eq,(18)

in the usual definitions Sp - _1S(1) "- - _]x d/dt f d6zlf0(1)ln f0(1) for

the particle contribution to S, and S_. = _ S. = d/dt _ In I_ for the wave

contribution, Sp in both the gBL s'6 and ql theories are positive definite

expressions, Sw = 0 in the gBL theory, but St. "- _. 27. in ql theory has

indefinite sign. Thus, while the gBL H-theorem has a form parallelling that
Q
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of the gBL conservation laws, a ql H-theorem exists only if S_t is dropped.

_. As indicatedin Sec.I,thispecu_arityof tl_eform of the ql H-theorem

arisesfrom thefactthat thewavesinqltheoryaxenotinequ_brium, znd

moreoverthattheirtime evolutioninvolvesriostatistic__g, so that

one shouldnotexpecttheirentropytoincrease,ingenera.

III. Formal Calculation

We now in,troducethenecessaryformalm;tchinery,and developthe the-

oreticalbasisfortherelationsquotedin the previoussection,and further

resultsyet to he obtained.Our discussionof the action-angleformalism

and theexpressionsfortheqland gBL theorywithinitis_ntendedmainly

to adequatelydefinequantitiesintheform_ism. 'Thereaderisreferredto

earlierwork forelaborationinthedevelopmentoftheaction__ngleformal-

ism and qltheory,tlthegBL collisionoperator,s,12and forthedevelopment

from thisoperatorofthegBL transportthec_ry,sJ

The essenceof the action-an'gleformalis_aa originatedin Ref.II is

choosinga coordinatesystemtomake themat:hematic_lmanipulationsneeded

in solvingthe Vlasov-Maxwellsystem as simpleand generalas possible.

For particles,thismeans the reparametriz_ttionof the phase poin__ of

a particlefrom the more directlyphysical_set(r,p)of reM-spaceposi-

tionr and itsconjugatemomentum p to IIhesetJ - (JI,J2,J3) of the

invariantactionsof the unperturbedmotion,and theirconjugateangles

8 - (81,8=,8_).(Forunmagnetizedplasmas,,thistransformationisjustthe

identitymap.) The unperturbedHamiltonianH0 isthenindependentof8,

ii



H(z,t) = H0(J) + h(8, J,t), simplifying Hamilton's equations:
J

# = 0jH = n(J)+0h, (14)

3 = -o_oh(z, t) = -i _ lh(1, J, t)exp(il. 8), (15)
1

where ooj _= oo/o0J denotes a gradient in J space (and similarly for 00),

li(J) - oOjHo = (fl_, f_2, f_3) is the unperturbed rate of change of 8, and

1 =_ (I1,12,13) is a three-component vector index, specifying the Fourier

harmonic. The Fourier ampUtudes h(1,J) of the perturbing Hamiltonian

h(z, t) are the "coupling coefficients," which play a central role in the t_eory.

As exemplified in Eq.(15), Fourier transforming with respect to 8 converts

08 into the algebraic ii, and so makes derivatives go 1 (or integrations) along

unperturbed particle orbits simple, go I -- /(1. f_- w), permitting a ready

perturbative solution of the Vla.sov equation, just as in the unmagnetized

case.

For waves, the 'right' choice of representation employed _n Ref. 11 is

expressing fields as a sum over the plasma normal modes a. This permits a

formal solution of the Maxwell equations, making the results of the formal-

ism valid for fields in fully inhomogeneous geometries. In the simplest case.

vi=., a homogeneous, unmagnetized plasma, the spatial dependence of rbe

natural basis set for both particles and waves is the same, -,, e×p ik. r. Tl_,is

degeneracy makes the coupling coefficients h(ll,JIla) of eigenmode a -- k

especially simple, h(1, Jla -- k) <x 6(1- k), causing the gBL operator [given

by the right side of Eq.(i6) and Eq.(18)] to reduce to the standard BL

operator. 5

With these definitions, the equation for the evolution of .to(l) within

12



both the qland gBL theoriesis

_,A(1)= -0j_.r(1). (16)

Forqltheoryone has11

-r(1) = D¢(1).o0j_fo(1) (17)

__ _ _2_r6(11. al -w,,){h(llla)[21111 .Oj,fo(1),
a 11

where 121 -- 12(J_), and we denote h(1, Jla ) by the shorthand h(lla ). In the

gBL theory, one finds instead r(1) = -D(1). 0j_f0(1)+ F(1)f0(I), where

both D(1) and F(1) individua.lly, and so r(1) as a whole, may be written as

a sum over contributions from interactions of species 1 with species 2, e.g..

r(1) = r(l12). (Henceforth, unless unclear from context, we suppress

the superscript on gBL quantities.) r(1 2) is given by

11,12

with kernel
1

Q(1,2)=Q(2,1)= _2_r6(ll .121-12.f_2)147rc_(1,21a) 2, (19)

and with a(1,21a ) = h(llla)h'(121a)/[lf]'_,A=(w)]{_=l_.f_, measuring the effec-

tiveness of mode a in coupling particles 1 and 2. Here. h(..la)is the coupling

coefficient due to the normalized fields l_=(x), so that a(1,21a ) as defined

is independent of the particular normalization chosen. Consistent with the

results quoted in Sec. II, we choose h so that the mode amplitudes ¢ appear

explicitly,h(lll'a)= _(a)h(llla)= ¢(a)e_(lla). The diffusiveportionis

theterm in111tinEQ.(IS),and thefrictionalportionistheterm in1112.fin

Eqs.(1T) and (19), a factor of 2, accompanying the _'_() there, was omitted
9
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in Refs.5and 6.] The general formalism isfullyelectromagnetic.As sug-

gested by ti,_e forms chosen above for h, henceforth, for simplicity, we shall

restrict ourselves to electrostatic fluctuations, h(zl, t) = el¢[r(zl), tj.

Comparing Dql(1) in (17) with the gBL expression for D(ll2) or D(1)

read from Eqs.(18) arid (19), one notes the replacements _o_ by w2 -= 12. f_a

in the &function, _ _ Y'_'_=,I,f d6z2/0(2) in the summations, and h(llla) --

4_r(_(1,21a ) for the coapling amplitudes. Thus, in the gBL theory, each

iecrement d_z2 of phase space of species 2 contributes to the overall spectrum

appearing in D ql, driving fluctuations over a range of frequencies w=(l_, J=).

We make this more explicit in Eq.(24).

Finally, from the action-angle expression for the nonlocal susceptibility

tensor 11 A(x,x',_oll ) for species 1, one has 5

_V_:(wll) = /dxdx'l_-_(x). _"(x,x',wll ) • l_,,(x')
(20)

= -4_"_ / ,_._-_(l_._ - _)I_,(hl_)12h.aj_/o(1/.

Having assembled these earlier results, we now turn to consideration of

}}'0. Using Eq.(16) and integrating by parts with respect to J1, one finds,

for both theories,

Using the ql expression (17) in Eq.(21), one finds

__'oqI(1) = 2 _ wa(4_)-l[--47r _ / d6zl_'_(Wl - _o)lh(l_l,-,)l:l_,Oa,£(_)],
a Ii

where wl -- lt . fit. Noting from Eq.(20) that the term in square brackets

here is N=' "" " "_(_,o11) - No_=(w=l1)lehl=(a),demonstrates expression (3)

14
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Similarly,forthegBL counterpart,usingEqs.(I8)and (19)in Eq.(21),

_, we obtain

_ f c% f _z_,,_x6(w,_w=)14r_,(1,21a)l_

x(ll.Oj_ - 12"cOj2)fo(1)/o(2) (22)

f i4rh(12la) l2 -_A"(_I1) (1_2)

where Eq.(20) has again been used, and we have made use of the fact that

the di-function sets _1 equal to _za. The second term (1 ,--, 2) in the final

form herearisesfromrr.

Comparing Eq.(22)withtheqlform(3),onenotesthattheresult(7)has

aJmostbeenreached,but notquiteyet,becausethew_ dependenceinEq.(3)

has been replaced,as noted followingEq.(19),by a sum _12 f dSz2over

contributionstofluctuationsdrivenatfrequencyw2 = 12•122.Ifone further

assumesthatthedielectricresponseinthedenominatorin (22)producesa

spectrumsharplypeakedaboutw2 = wa,asoneexpectsfora weaklycoupled

thermalplasma,or one supportingweak turbulence,writing

iA_(w2)1-2.=_1/(IA.I,21.,.I)_-,5(_2-_.o), ('23)

Eq.(22) yields (7), with the identification

i 4rh(121a)12t<_12(a,2)= _ :--2fo(2)N'_A<,(_) (24)12

"" _[_ d6z2/o(2) 4rh(121 a) 2
l_ _7<,_ i,.'<,1

With the same identification, DgBL(1) from Eq.(18) and (I9) reduces to

- Dqt(1) from Eq.(lY). Neither the ql nor gBL theories specify the magni-

tude IDfa)l2of the overall spectrum, which may be chosen to correspond to

• 15
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experimentalobservations.In conjunctionwith Eq.(4),Eq.(24)providesa

prescription for computing the relative sizes of the contributions I¢(a,2)12

to I¢(a)l 2, thus leaving only" the single set of amplitudes lC(a)[ 2 as external

to the theory.

With the narrow-width approximation (23) for the spectrum made in the

second form of Eq.(24), _V0(l12) in Eq.(22) acquires a noteworthy symmetric

character, reflecting the symmetry between the emittor and absorber of

fluctuations in the gBL (or BL) collision operator:

_v0(ll2) = 2 i_£_j21v_l<(r_(w_- w,,)4rlh(121a)12))2 (25)

×((-r,5(w, - w=)4rlh(l_la)lUlt.0j, Inf0(1)))x- (1 ,- 2),

where((..)) ---Elfd6_fo... In th_ factor ((..))1 =/q.,A_([1) here one recog-

nizes the response of the scattered species in (20), while in the quite similar

factor ((..))2 = '¢,(a, 2)one sees the spectrum 1_12(a,2)= 4_r/(It_o_£o21,,=13_'

from the scattering species, given in Eq.(24).

IV. Application of the General Formalism

A. Specialization to Toroidal Geometry

In the abstract forms we have dealt With thus far, the formalism applies

equally well to any geometry where the unperturbed motion is integrab[e,

including uniform, unmagnetized plasmas, magnetized slabs, and _xisvm-

metric tori. In the last case, of principal interest here, the specialization

is (Ji,J2, J3) -- (Jg,Jb, J¢ =- pc), with Jg the gyroact.ion (equal to ?,'[c/_.

times the usual magnetic moment _), Jb the bounce-action, and p<, the

toroidal angular momentum. (_ is the toroidal azimuth, which, aloag with
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poloidal azimuth 8 and a minor-radial variable r, constant on a flux surface,

- parametrize real space..) The transformation from the mathematically con-

venient variables J to a more physical set is discussed in Refs. 11,6,13 and

14. Briefly, for magnetized plasmas and tori in particular, certain combina-

tions of the J; retain a velocity-like character, while others acquire a spatial

one, specifying the particle 'banana center' rb(J), the average mino," radial

value about which a particle moves in the course of a bounce (or transit)

time. For example, for trapped particles, rb is a function of pe alone, while

Jb is vil-like, and Ja is vi-like.

For definiteness, we choose for a model of the mode structure the eikonal

form s

_(xla) = ¢(rla)expiOa(x), (26)

with wave phase Oa(x) - lfr dr' k,(r') + rnO + n(], and with modulating

. envelope lp(ria ), localizing the mode about r = ra, with mode width ws.

For g](,'la) we take the simplified form ¢(rla ) = ¢(a)s(w_/2, r- ra), where

s(x, y) is a step-like localizing function, defined as

i (=> lyl)
s(z, y) - - (27)

0 (z < lyl).

While obviously simplified, this model captures features one expects for a

set of modes comprising plasma turbulence, including a locally wavelike

character, radially loculized, and constituting a complete, orthogonal basis

set. Within this model, one has IY_ = k2V,, with Va _- (27rr_)(2_'R)w_

the volume of the shell around r = ra within which mode a is [ocal.ized.

Assuming the banana width Pb of the particles is less than localization width

17



w_,, the coupling coefficients for the model are given by 8

h(ll ) = e¢(l[.)= (2s)

G(lla) = di(l¢- n)J,,(za)Jl,(zb)exp-ix_.

Here, the G(l[a) are the "orbit-averaging" factors, measuring the fraction

of time along its orbit a particle sees a contribution from mode a oscilla-

tory at exp il. 0. Since G(I) appears only as ]G(I)I 2 in quantities of interest

here, the phase factor X,, is irrelevant. And because the G(l) are the Fourier

components of the eikonal factor exp i8,, in Eq.(26), by Parseval's theorem

they satisfy the important relation 1 = EIIG(I)1:2, generalizing the much-

used identity for Bessel functions 1 = _t J_(z). In Eq.(28), l_ - lb - cim,

Jt9 arises from the integration over gyrophase 09, and Jt; comes from the

analogous integration over bounce phase Ob. a is a trapping-state index.

equal to 0(1) for trapped(passing) particles, and zg = kips. The full ex-

pression 13'6 for zb is slightly more complicated than that for %, and defining

it fully introduces extra notation not needed here. For turbulent modes,

characterized by kll -._ 1/qR, ka. ,',.,p'_it, the essential physics is captured by'

approximating it as zb _- k.t.p_,.

We now use the model of Eqs. (26)-(28) in evaluating the earlier formal

expressions. For example, we consider the factors ((..)) in Eq.(25). In the

summation over 1 there, the factor 6(1_ - n) in G(1), a consequence of

a_xisymmetry, fixes lC to [_ = n. Jt(z) is appreciable only for Ill < z, and

falls off rapidly for larger l. Thus, if we in addition restrict ourselves to

modes in having frequency _ small compared with the ion gyrofrequency

f_a,, the resonance condition _a = a.,_. imposed by the delta-function in
w

18
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((..))2 is satisfied for nonnegligible values of Jt_(Zb), hence of G(I), only for

. Ig = rg -----0. This reduces the triple sum over 1 to a single sum over lb or

l_,. Additionally, for: _ulent modes, the range Alb ~ zb over which Jt'_ is

appreciable is small compared with m. Thus, one m_y approximate lb by

rb = am in the factor in ((..)) accompanying 6()lh(lla)l2, thus replacing 1 by

i = (t ,tb, tc) there.

Now adopting the local Maxwellian form for lo,

-' 71

fm(J) -= (21rMT)3/2 exp[-(Ho - eel)lT), (29)

where density n, radiM potel, tial _, and temperature T are functions of

rb(J), and M is the particle mass, the factor ii .0jl In lo(l)in ({.'.))1 is given

by 8

1.0j In f,_ = (w._ - i. f_)/T, (30)

where w./ = w.[1 + r/(u _ - 3)/2], with w. =_-kucT/(eBLn) the diamagnetic

drift frequency, 7"/=_din T/dln n, u =_v/us the particle velocity, normalized

to the thermal speed v_,k_ =--b× ..k, La 1 __-O ln no/Or, and w_ = nf_((a =

0) is the toroidal drift frequency.

• Using Eqs. (28) and (30), one finds

¢,(a,2) -: ((..})2 = V_4re_n2t3_,(w_12), _31)

w)lC(l=la)l=l);,=,;¢=,
lh2

where (..) = (Van) -x f_ dSzfo is the average over the shell Va, with fv_ ¢_z

the phase-space integration confined to V,. Similarly,

zV,,_'(w,,ll) - ((..)), = "v_4re_n_/T_[-o,,(_,ll)l, (32)

=
lbl
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w

and therefore,Eq.(25)yields

].].lbl,I_

T2

where use has been made of the factthat wl = w2 = wa, due to the 6-

functions.

In thehomogeneous limitwhere fm becomes a trueIVlaxwellianfM, w I

becomes negligible, and Eq.(33) reduces to _V0(112) = _, _(T{2 -1 -Tit )(..),

where (..) is positive definite, and may be read off from Eq.(33). Thus, for

Tt < T2, the gBL theory predicts l,V0(l[2) > 0, i.e., that energy will flow

'downhill,' from species 2 to species 1, as indicated in Sec. II. As noted there,

the ql prediction, obtained from Eq.(33) by dropping the two terms involving

T2, possesses no such property. We note that a similar, more general proof

of this may be given, without making the narrow-width appro_mation (23)

or the assumption of the mode model in Eqs. (26)-(28) made in this section.

The more specialized version has been given to make the forms appearing

more immediately resemble more conventional expressions occurring outside

the action-angle formalism, for example, expression (32) for/\"

B. Application to the Trapped Electron Mode

We now further specialize expression Eq.(25) or (33) to considering the

collisionless TEM (CTEM). This introduces additional simplifications in the

expressions going into r_'V0,serving as a illustrative example by which one

may more concretely compare the predictions of the ql and gBL theories,

Expression (25) thus far explicitly involves z3_(11), through the factor
w
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((..))i,and alsoimplicitlycallsforthefullsusceptibiUtyA,(II),through

wa. A,([I)isgivensimplybyll'smaking the replacement-Tr6(co-wl) ---'
l

(co-wl)-I inexpression(20)forA_(I1):

dezl--.--_1lh(llIa)1211.ajilo(1). (34)
l_ ta- wl

Followingthesame specializingstepsleadingfrom Eq.(20)toN.A" = ((..))_

in Zq.(32), one finds n.(coll ) = (kAD,)-2g,(coll), with AD, = (r,/41rn,e_) I/2

the Debye length of species I, and

-J., .j2o(,_)j?,(.b)). (35)
ga(tOll ) -" I -- _( _ O._¢Hq[-- (I -- O')UJdl-- [Ib_bl

Here,we haveconvertedtothemore familia:,physicalvariablesusingcol""

akll_l+ (I- a)codl+ l_flbl,with_I thebounce-averagedparallelvelocity,

and coa---ngt((a= 0)thetoroidaldriftfrequency.

We adopt the standardtreatmentforelectrons.One has Zg,b---,O, so

. thatj2j2 ...,6(l_)inEq.(35).Takingtheusualorderingt_---co/I/¢.ilV,l<'(.i,

the nonadiabaticportionoftheelectronresponseisdominatedby trapped

particles'

g,,(_le)"" 1- P,(_-co'/_), ---,1 -ic_(_le), (36)
-- COde

where Ft "_ e1/2 is the fraction of trapped particles, (..lt is the average over

the trapped portion of the distribution, and

,_,,(,,,'1_)= - r, ((,,,- _.I°)_.6(,,,_,.,a.)), (37)

_- 2v/"_'F,( 1 _ _ P-,=,,,Ic_a,"

Here,/_ =- u2/2 - E/T,_d, = _deJ_, and for simplicity we have taken r}_.= 0

in the second form. Similarly, fla(le) in Eq.(31) becomes

;3,.,(_le)= Ft(rr6(w-_a,,)), (3,8)
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For Ions, the standard analytic ordering i_ that '_ -.mEi = to/Ikllvil "'

to/flbi _ 1, and in this case, the denominator in Eq.(35) does not change

greatly over the 1_range over which Jt_ Is appreciable, allowing one to per-

form the summation over 1_using the identity 1 = _ J_(z). This eliminates

the factor J b'leaving only J2o(zg). The dominant contribution for ions comes

from passing particles:

g°(toli) = 1- Fp( to '- tof'i J2o(zg)) p (39)
to - kll_l

to

with Fp-_ 1 the fraction of passing particles, (,.)p the average over the

2 2
passing portion of the distribution, bg =_k.t.pgi, Ao =- (J_(zg)) = Io(bg)e -bg,

and [1- W(_)] = _((¢- Ull)-I }, In the second form, we have assumed

,'li = 0 for simplicity. One has the limit [1- W(_ > 1)] _ 1 + _-2_

iI'VI(_), with Wt(_) = rC'_2s _ exp-_2/2. The term _-_, important for the

ion temperature gradient mode, to which most of the formulae developed

here also apply, may be neglected for the TEM. This yields

g,(toli) __ 1 - Fp(1 - to'---2i)Ao- i%(tola), (40)
to

where

_,(wli) = -Fp<(w-to.f,)r6(to -/,'ll,_l)J02(zg)>p (41)

~ Cr-'bFp( to'i_ - 1)Ao( exp -(_/2to

quite similar in form to %(le), but, roughly speaking, witl, (2/2 replacing

_' there. Similarly, ¢3_(li) is given by

_,_(a_li) = Fp(r6(w- kll_l)Jg(zg)> p (42)
,m
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i

exp -_2/2.

From quasineutrality, the TEM dispersion relation is then

o = g.(_ole)+ rg_(wli) (43)
02. e

- (_- i_o)+,-(1- Ao)-ho_,
a

where r - T_/Ti,a. = a.(le)+ ra.(li), we have set Fp to 1, and used

W.e = --rw,,i, Solving this for the real and imaginary parts of w = w. + i7.,

one finds

w,=w.eAo/[l+r(l-Ao)],7,=_w.,Ao/[l+r(l-Ao)] 2. (44)

With explicit expressions for al/necessary quantities, we can now write

out I_o for both the gBL and ql theories, for the TEM mode. Reinstating

the 'gBL' and 'ql' superscripts, for a 2-species plasma, for which I,_'_BL(1) --

. (_zgSL
"o (112), Eq.(25)or (33) yields

I_ogBL(1)= PiZo¢(ll2)-pV_t(2ll) (45)

[ 1¢12(_'1)-RoA"<I2]
I¢12(a'2)_A"(I1) )2 OJa

"/' 41r 4_" '

] 147re,e212 1 w. - w., w= - w-2[] -- I_o£o, ]72]_'_z_(l_)z°(12)(T, _; T),

where we have used Eqs. (31),(32), and -a,() __ (w_ -w.)fl_(), following

from the final forms in Eqs. (37),(38),(41), and (42). This may be compared

with the ql form,

}_/_I(i)= I'i/_I(i[2)+),i/J'(lll) (46)

--2_w_[ 1512(a2)/9_"(ll)+l$12(a'l)'4,T'47r g_.(ll)" ]
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One notesthat _z_BL and _,_lsharea common firstterm,towhichwe refer

by its argument (112), and each has a, different second term, (211) for the

12¢_sL, and (1[1) for I,V_t. Thus, which theory predicts a larger 12¢0depends

upon the relative sizes of these three terms, From Eqs. (37),(38),(41), and

(42), these stand in the proportion
,, _ t ,

/9.(1) Tlw.-w._ (:,

(112): (111)'.(2ll)'.'. 1 : Z_(2) : T2w. -co.1 i ::/:

The two ratios represented here are independent, so that I,V_st' in general

may be larger than, comparable to, or smaller than Ii/q/, depending upon

parameters. As one sees from Eqs, (38) and (42), the factors $_ in Eq,(45)

are essentially a measure of how many particles of that species resonate

with mode a, thus controlling how large the fluctuations of a driven by that

species are, as well as (through the close relation of a, to/3.) how readily

that species absorbs those fluctuations. Thus, for example, if parameters
i

were such that many electrons could resonate with the TEM spectrum, but

very few ions [/3_(le) >> _,(1i)], one would have the ordering I,_'qt(e) __

_t,_l(ele)>> _sL(e ) = _CO,sL(i)~ _i%¢(eli)~ _.i/_(ile)~ ¢¢0q,(i).For

similar reasons, an analogous situation holds for the orderings of particle

fluxes r(l12)in neoclassical ('nc') theory (or its gBL extension to turbulent

transportS'r), in which the momentum-preserving dynamic friction term in

the BL collision operator is kept, versus a similar, but cruder test-particle

('tp') calculation, where F is dropped. The corresponding ordering there is

r,p(i) __r',(ili) >'-r_(i) = r"'(e) ~ r'p(ile)~ rtP(eli) ~ r'p(e). Noting

that the neoclassical heat flux Q"_(1)/Tx is given by rtp(1) up to a factor of

order unity, this ordering contains some of the well-known important features

of neoclassical theory, including the property of intrinsic ambipolarity.
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V. Discussion

In the foregoi.ng sections, we have attempted to clarify the relationship

between the ql and gBL tra_tsport theories, by focussing chiefly on the calcu-

1,orion of turbulently-induced rate _V0 of interspecies energy exchange. The

ql theory is a useful and much-_sed theory, but possesses certain serious lim-

itations when applied to making statements about plasmas in their normal

experimental state, supporting near_y-3teady-state turbulence. The gBL

theory is a formahy quite similar theory, preserving the ql virtue of analytic

tractability, but which applies precisely for steady-state turbulence, lt has

been shown that _V0 in the two theories are formally very similar, but that

' when evaluated in specific applications, can have very different magnitudes,

for the same reasons as the particle and heat fluxes in neoclassical theory

can differ greatly from the corresponding test-particle predictions. Using the

. CTEM for illustration, explicit expressions have been developed for ISr0 in

the two theories, making these features concrete, as weil as showing how the

extra phase-space ftux FF restores to the gBL theory important properties

lost in ql theory.

From the considerations presented in Sec. I, it is clear that ql theory

applied to steady-state turbulence is deficient, dropping the flux F F, which

is of comparable size to the flux FD kept. It is not clear that the 'pseu_

dothermal'form forr F used by thegBL theoryisa good representationof

the form ofFF which would resultfrom a fullyturbulenttheory.However,

the pseudothermalform used doespreserveimportantpropertieswhich the

fullyturbulentrF must.and which qltheorysacrifices.

Assuming a thermalstructureforthe phase-spacefluxesdue to a fur-
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bulent spectrum occurs in the present work in two stages. First, in the

original pseudo therma/ ansatz giving rise to the form for rr in Eqs. (18) ,,

and (19), and further, in the 'narrow-line-width' approximation adopted in

Eq.(23), to which much, though not all, of the subsequent development has

been speci_zed. These pseudotherma/mssamptions have been used because

they fac_tate analytic progress, w_le preserving important features (such

as conservation laws, the It-theorem, and the 'downhill' flow of energy) one

knows a complete theory must possess. However, they also display further

properties, such as Onsager symmetries, s which intuition developed from

past experience inclines one to expect should be true, but which may turn

out not to be true for turbulent (as opposed to thermal) transport, is'is

One particular place where the current pseudothermal form of the gBL

operator is likely to need improvement is in the dependence of the spectrum

on the distribution f(2) of driving species 2. In the current form of the gBL

operator, the spectrum is computed, as for the standard BL operator, by

superposing the uncorrelated contributions from individual test particles of

species 2. This yields the undifferentiated f0 in both terms in the gBL form

(18), and leads to the relation _(a, 2) cx n2 in Eq.(31). Fully-turbulent,

but more abstract, collision operators 4'1° which have been developed dis-

play an analogous form, but with this discreteness-driven structure replaced

by a turbulent correlation function which appears formally, and the cal-

culation of which entails a formidable nonlinear calculation. Defining the

field operator _ by 4¢ = _,_f for any _f, one may formally express the

spectrum appearing in the turbulent operator as ([_¢12> = [A[-2_¢_ t (su-

perscript t here denotes transpose), where ¢(1,2) = (_/(0(1)_f(0(2)> is

the correlation of the incoherent, 'unshielded' portion of 4f introduced in

&,
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Sec.I.The discreteness-drivenform forC, from which the proportionality

of II_l2) or _ to f0 arises,and whose adoptionencapsulatesthe pseu-

dothermal a_usatz,isCd(1,2)- gf0(1)_(1- 2)gt. Using thisform in the

turbulentoperatoryieldsthe standardBL operator'fora uniform,unmag-

netizedplasma,4 and th_ gBL operator(18)forthe more generalrange

of configurationswhich itcovers.Arguing heuristicallythatin the turbu-

lentcase,ratherthan the spectrumbeingdrivenpredominantlyby uncor-

relatedtest particles, ([6¢[2)(2) oc lo(2), the spectrum is instead driven

by the density F0(2) of 'macroparticles' of species 2, suggests the replace-

ment f0 -" F0 in Cd above. (Of course, the explicit calculation of F0

would again entail the same difficult ,*urbulence problem.) Adopting this

new form yields an operator as in Eq.(18), but making the replacement

(11.0j I -12" 0]2)f0(1)f0(2)_ 11"Oj, fo(1)Fo(2)-12.i)j2Fo(1)fo(2)there.

Following the same manipulations as used for the current gBL operator, 5

it is easily shown that the new operator again conserves particles, angular

momentum, and energy. I-towever, it no longer possesses an H-theorem.

Thus, it would appear that this particular prescription for improving on the

current pseudothermal form of the gBL operator is insufficiently refined.
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