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Abstract

In this paper we derive a time evolution equation for internal kink oscillations
which is valid for both stable and unstable plasma regimes, and incorporates the
nonlinear response of an energetic particle population. A linear analysis reveals a
parallel between (i) the time evolution of the spatial derivative of the internal kink
radial displacement and (ii) the time evolution of the perturbed particle distribution
function in the field of an electrostatic wave (Landau problem). We show that
diamagnetic drift effects make the asymptotic decay of internal kink perturbations in
a stable plasma algebraic rather than exponential. However, under certain conditions
the stable root of the dispersion relation can dominate the response of the on-axis
displacement for a significant period of time. The form of the evolution equation
naturally allows one to include a nonlinear, fully toroidal treatment of energetic
particles into the theory of internal kink oscillations.
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I. Introduction

Two important instabilities of axisymmetric, current-carrying toroidal plasmas
- sawtooth relaxations {1] and fishbone oscillations [2] — are associated with the
instability of internal kink modes. These are waves with toroidal mode number
n = 1 and dominant poloidal mode number m = 1, such that the radial displacement
is nearly constant in the central plasma region where the safety factor is less than
unity; i.e., where g(r) < 1. This radial displacement rapidly drops to zero in a
narrow layer centered at the ¢ = 1 surface.

Sawteeth are MHD events determined by properties of the bulk plasma, which
occur in both Ohmic and auxiliary-heated plasma discharges. Fishbones, however,
involve the resonant interaction of the MHD response with a fast ion population,
and are commonly observed in present tokamak experiments when the plasma is
heated by neutral beam injection and/or by ion cyclotron radio frequency waves.
There is also the possibility that fishbones may be excited by fusion-product alpha
particles.

This paper addresses two aspects of the theory of the internal kink; namely (i) the
derivation of a new, compact evolution equation for the internal kink including the
nonlinear dynamics of fast ions, and (ii) an elucidation of the detailed structure of
internal kink oscillations for stable as well as unstable plasma parameters.

In standard linear MHD theory, the radial profile of the internal kink displacement
is readily obtained for unstable conditions; i.e., when the associated potential energy
functional, W, is negative. The situation is similar when the energy functional is
generalized to include kinetic effects due to fast ions. In this case a normal mode
is found when the system is unstable [3-4]. However, in the stable case the usual
normal mode solution appears to fail. Nonetheless, we show that the stable root of
the dispersion relation is physically significant.

In the first part of this work we derive a reduced evolution equation for the fishbone
instability in the limit that the background plasma behaves as a linear internal kink.
In the background response we include diamagnetic effects associated with thermal
ions, so that the reduced equation is applicable to the full range of collisionless
fishbone instability regimes discussed in the literature, both when diamagnetic terms
are important {3}, and when they are not [4]. However, this evolution equation
does not take into account the effect of fluid nonlinearities, and as a consequence,
represents only a first step towards a complete nonlinear theory of the fishbone
instability.

A detailed mathematical analysis of the reduced equation, which takes the form
of an initial value problem for the on-axis plasma displacement, then enables us to
extend the standard linear theory to include the description of stable eigenmodes
by means of an appropriate analytic continuation. In doing so, we show that the
internal kink response is in fact a general type of collective plasma oscillation which
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has both a physical and mathematical similarity to Landau’s description of electron
plasma oscillations {5].

The paper is organized in the following way. In Sec. II, we derive an integral
equation for the on-axis kink displacement, and then compute the long-time asymp-
totic response of the solution in Sec. III. Sec. IV presents an explicit calculation of
the time-dependent radial profile for the case where diamagnetic and fast ion effects
are negligible. A general connection with the mathematical structure of the Landau
problem is made in Sec. V. Finally, in Sec. VI, we give a summary of the most impor-
tant results. Two Appendices are included, and outline the essential mathematical
steps required to justify results quoted in the main body of the paper.
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I1. Reduced Equation of Motion

We begin by writing the collisionless equation of motion for the bulk plasma dis-
placement §:

1., .
pDy & = E (63 X B+jx0B)—Vépeore = V - §Ppot , (1)

where p is the mass density and D, is a differential operator that describes the
effect of inertia and finite Larmor radius. -j and Jj are the equilibrium and perturbed
plasma currents, B and 6B are the equilibrium and perturbed magnetic fields, and
0pcore 18 the perturbed (isotropic) plasma. pressure. The quantities §j, B and dpcore
are taken to be linear in §. The only nonlinear term which we retain in this analysis
is connected with §IPyq, ~ the perturbed hot particle pressure tensor.

It is convenient to decompose the n = 1 displacement into a sum over complex
poloidal components, £™, according to

gr,t) =Y €M (nt)eile ™)y cc., (2)

where ¢ and 8 are the poloidal and toroidal angles respectively, and r is a radial flux
coordinate. Since only the radial component of £ () will arise in subsequent calcula-
tions, we will denote this simply by £. The limiting form of the radial displacement
is the familiar internal kink step function

£lrt) — { PO Hrsm @

where r; is the radius of the ¢ = 1 surface. This form of the displacement re-
quires that €; = r /Ry < 1, where Ry is the major radius. We also assume that
1 —¢g(0) > 0. From the equation of motion, Eq. (1), one can then employ standard

techniques to derive an equation for the radial displacement £ in a narrow layer
about r = r;. '

24; [r“'B?, (%D“ + kf) -}r f(r,t)] =0. (4)

The time-derivative operator which appears above is

82 . 0 1  dpeore
= == i here w,; = — —— £2¢
Dot ot +w ot Where  wei 71 PWei dr ]r=r1 (5)
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is the ion diamagnetic frequency and wy; is the ion-cyclotron frequency. In Eq. (4),
By is the magnetic field on axis, M is an ion inertia enhancement factor [6] (which
can be greater than unity for low frequency modes), va = By/+4mp is the Alfvén
speed and k, is the parallel wavenumber. Eq. (4) can be integrated once in r to give

2 a
<-§T—2 + iQ.-éa; + xz) 7 &(z,7) = S(‘r) , (6)
where we have introduced the layer variable £ = (r — r;)/r;, the normalized time
T = wat, and the normalized frequency 2. = w.j/wa such that wa = vA.s/\/_HRo
(for definiteness, we specify Q2. > 0). The paralle] wavevector has been expanded in
the usual way according to k, = sz/R, with s = d(Inq)/d(Inr) the magnetic shear.
The function S(7) is an integration constant which depends only on the on-axis
displacement, £o(7) = {(—oc, 7). It can be shown that

5(r) = =2 go(r) - ~ Al (7

T

where the coeflicient Ay is directly related to the minimized MHD potential energy
[7-8]

2  dWwmap

|§0(t)|2)\HE—(SEIBO)2 R (8)

In S(7), the quantity Ak[€o]() represents the fast particle dynamics. The square
brackets indicate that Ay is a time-dependent functional of the on-axis displacement,
£0(7). One can also define Ak in terms of an equivalent fast particle energy, 6W ot
- which, unlike §Wyp, is not in general a self-adjoint form:

6 (Axll(r) = - D ©

An explicit form for §W e, which is readily found in the literature [9], is
1 ) .
Whot =5 [ T (mvll + pB) o k- £, (10)

where T' = d®z d3v is the phase space volume element, x = b - Vb is the magnetic
curvature vector, b = B/B, and u is the magnetic moment. In Eq. (10), 6f = f— fo
is the deviation of the full, nonlinear energetic particle distribution, f, from its
equilibrium value, fg.

The task which remains is to find a solution of the layer equation, Eq. (6), which
satisfies the boundary conditions £(z,7) — £o(7) as z — —o0, and £(z,7) = 0 as
z — oo. In order to reduce the problem to a single equation for £,(7), we first solve
Eq. (6) for 8¢/0z subject to the initial conditions
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Ze@n)], 0 =F@) »  2itlmn),=6k) ; O

where F(z) and G(z) are localized functions of z such that
o X o0 .
| wF@ =6, [ a6@=-40. (12)
—00 -

The solution of the Eq. (6), subject to the initial conditions, Eq, (12), is

a&g; 7) _ gmitur2 { F(z) cos(X7) 4+ [2% Fls) + G(z)] sin(;(f)}
’ X =] e 0D
_ %/0 dr' [Augo(r') + Ak(7") sﬁ‘l{%"{_ﬂe-m.(f—f vz

<

where X (z) = 1/(€./2)% + z2. We then integrate 8¢/8z over all z to find
6olr) = Q)+ [ ar' Datolr') + A} o [Totr = 7] 0702 g

where

Q(r) = _e—iﬂ.'r/2/

de {F(a:)cos(X'r) + [%’-‘F(m) +G(a:)] Singfﬂ } . (15)

Eq. (14) is a nonlinear integral equation which determines the on-axis displace-
ment, £o(7). While it can be analyzed in the present form, it may also be convenient
to cast it into an alternate form such that the fast ion term appears outside the
" integral. This can be done by means of the transformation described in Appendix
A, with the result

Ilg)(r) = Axlgl(n) + o Q) (16)
N e N e s N
linear operator nonlinear source linear source due

from fast particles to initial conditions

where 7 is the linear integro-differential operator:

zigo = éotr)+ [ 2 3] )+ (F) [ areatrrx [Teir-m] - am)
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The kernel in Eq. (17) is K (z) = exp(—iz)Ji(z)/z. At each time step, the energetic
particle current Ak (7), defined in Eq. (9), must be computed by solving a kinetic
equation for f. The amplitude £o(7) can then be advanced in time according to
a suitable finite-differencing of Eq. (17). This scheme has been implemented in a
numerical code to calculate the fishbone response {10} where energetic particles are
treated nonlinearly. :
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IT1. Long-Time Limit of Linear Oscillations

We now discuss the asymptotic behavior of §y(7) for large 7 in the linear approx-
imation, i.e., when Ag is a linear functional of £;. We begin by taking the Laplace
transform of Eq. (14) for £y, and then using a known expression (6.611.1 of Ref. [11])
for the Laplace transform of the Bessel function

1

_/0 dr e"‘"Jo (ﬁT) = W .

After some rearrangement, we find

[s/w(w —0) - z'/\H] Llto) = Volw — ) L[Q] + iL[Ak] , (18)

where L is the integral operator

[e <]

ﬁlfg] = /0 dr e“"éo(T) . (19)

In the linear approximation, the fast particle term reduces to
L{AK] — Ax(w)L[éo) + 9(w) , 4 (20)
where g(w) is a term associated with the initial perturbation of the hot particle
distribution function, §f, which is not induced by &. In this paper, we simply set
g(w) = 0, which means that the response connected with g is ignored, although in
principle this response can be calculated as a seperate contribution to £, — in the
same manner as we calculate the contribution from Q(7). Also, the definition of Ak

is consistent with Ref. [12-13]. With this result, the transformed integral equation
becomes simply D(w)L[&] = Vw(w — 2. )L[Q], where D is the dispersion function

D(w) = Vw(w - Q) —i[Ag + kW) . (21)

The causality principle requires D(w) to be analytic in the upper half plane with
the branch of the square root determined by the condition

Imyww-2)>0 for Imw>0. (22)

The inverse transformation to the time domain gives the following integral repre-
sentation for the on-axis displacement:
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Im o

Original contour
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Branch cut
// @ Root of D
Deformed
contour T @ Pole of L(Q)

F16. 1. Structure of the complex w-plane showing the original Laplace inver-
sion contour, and the same contour deformed into a loop integral encircling
the branch cut connecting w = 0 and w = (2., and around the poles associated
with (i) a stable root of D(w), and (ii) a pole of L][@).

1 cotio miwr V@(w = 2.)L[Q) |
o(7) = 2—7r/:°o+iadwe B . (23)

The inversion integral requires o positive and chosen so that the contour lies above
all poles of the integrand (zeros of D(w) and poles of £L[Q]).

To evaluate £o(7) in the large-7 limit, it is convenient to close the contour in the
lower half-plane and shrink it around the branch cut and poles as indicated in Fig. 1.
Upon doing so, we can rewrite Eq. (23) as

—iwr VW(w = ) L[Q
50(7') f o€ (w)

. —iwnr Vwlw - Q.)L[Q (24)
—1 ; e Res [ D(w .

W=EWwn

The first term is the loop integral which encircles the branch cut connecting the
branch points at w = 0 and w = 1., while the second represents the contributions
which arise from the poles of £[{Q]/D(w). To simplify the discussion, we assume
that the singularities of £[Q]/D(w) are poles. In the general case, however, a more
complicated analytic structure is possible.
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F1G. 2. Location of the zeros of D(w) for the limiting cases of small and large
.. In the small-Q2, case, when the plasma is MHD stable (Ayg < 0) and Ak
is small, a single root lies in the lower half plane. This mode is eventually
destabilized as Ak increases in magnitude. In the large-Q. case, two roots
exist on the real axis for Ax = 0. The root near w = £2, is destabilized by
fast ions while the root near w = 0 is stabilized. The dotted curves indicate
the path of each root as fast ion pressure increases.

The semicircular branch cut in Fig. 1 is convenient to simultaneously treat two
important limiting cases: that of small €2,, when diamagnetic effects play a minor
role; and that of large (1., such that the MHD drive from positive Ay is stabilized
by diamagnetic effects. These two cases correspond to two qualitatively different
regimes of the fishbone instability. In the first regime, for which 2, <« Ay and the
plasma is MHD stable (Ay < 0), the root of D(w) occurs at w ~ €, /2 + Ay for zero
fast ion pressure, as shown in Fig. 2. As the fast ion pressure increases from zero,
the root moves upward and eventually crosses the real axis — indicating the onset of
the fishbone instability. In the second regime, where diamagnetic effects are strong
enough to stabilize the internal kink (0 < Ag < €2,/2), one finds two roots on the
real axis in the absence of fast ions. The root which sits close to w = . is the
diamagnetic fishbone root, and is destablized by a fast ion population (since for low
frequencies, we typically have Re Ak, Im Ax < 0). This is also illustrated in Fig. 2.

An asymptotic evaluation of the loop integral in Eq. (24), detailed in Appendix B,
shows that it generally decays in time as v=3/2 for nonzero §2.. The corresponding
contribution to the asymptotic form of £y(7) is
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£olr) ~ Yogs 727 4A©) + OTRIA@)] w8 oo, ()

where the factor A(w) is calculated in Appendix B.

When the system is linearly unstable, the exponentially growing contribution to
&o(7) from the eigenvalue w, with Imw, > 0 is the dominant one, although the
unstable root may be so close to the real axis that the transient contribution from
the branch cuts can compete with it over an extended period of time. In a stable
system, the cut contribution, Eq. (25), is the dominant one in the limit 7 — oo
since every pole, wy,, gives rise to an exponentially decaying term. However, under
certain conditions, the pole contributions may persist for long times. In order that
the first term on the right hand side of Eq. (24) reduce to the asymptotic form given
by Eq. (25), the condition ' '

2 < min {23, hn + Ak, 02} (26)

must be satisfied. Above, z¢ is the width of the initial profile (see also Sec. IV).
We then conclude that neither the stable eigenvalue nor the poles of £[Q] generally
determine the ultimate decay rate of £,(7), since the decay for nonzero 2, is a power
law rather than exponential. In the limit Q, — 0, the branch points merge and the
cut disappears. The decay then becomes exponential, with the rate determined by
the pole with the least negative imaginary part (see Fig. 1). A final exception occurs
when a pole with Imw,, = 0 exists. Then, it is apparent that the mode is marginally
stable and oscillatory with real frequency wy,.
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IV. Radial Displacement for Zero Diamagnetic Drift

In the limit §2, — 0, the branch cut contribution to Eq. (24) vanishes and the
decay rate becomes purely exponential. We can explicitly illustrate this property of
the solution for the simple case 2, = Ag = 0 by constructing an analytic solution
for £(z,7) given the specific initial profiles

0 |
F(z):-ff&—:f-——g;z);% and  G(z)=0. 27)

1.0

| Initial profile
0.8F
I

0.6+

8¢(x,t)/0x

-8 -4 0 4 8
X/ Ay

FiG. 3a. Profile of the radial derivative of the displacement for z; = 2.0 at
times 7 = {0,1,2,4]. In this case, the initial profile (dotted curve) evolves to
a narrower eigenmode profile. The latest time is shown as a solid curve.

This choice satisfies the required constraint imposed by Eq. (12), and gives a “forc-
ing” function Q which decays exponentially in time at a rate proportional to the
initial profile width, zg:

Q(7) = £o(0) e™*°7 cos(a7) . (28)

Now, we introduce the dimensionless width 29 = z¢/Ay and then solve Eq. (14)
with @Q given in Eq. (27). The result is '
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08 T T

| IS | 1

¢ (x,t)/dx

| Initial profile | ]
—0.8 e ! a 1 i U ]

-8 -4 0 4 8
X/ Ky

FiG. 3b. Profile of the radial derivative of the displacement for z; = —2.0
(ie., A < 0) at times 7 = [0,1, 4, 8]. Here, the initial profile (dotted curve)
decays to an oscillatory structure, with the latest time shown as a solid curve.

— 60(0) 2z AHT
50(7’) —(12+(1+20)2 (1+ 0)6 (29)

+ (% + zo(1 + 2z0)) e~ 1202817 o5 (a7) + ge~ 20T sin(ar)] .

In the stable case, Ay < 0, there are two possible decay rates. When -1 < 2o < 0
(and taking zg strictly positive) the decay is exponential with oscillations at fre-
quency a, while for 25 < —1 the decay is purely exponential. Let us take the
solution further, but first simplify to the symmetric case ¢ = 0. Then the on-axis
displacement becomes

o(r) = £0(0) [

e T 4 zoe-lzo)\a *T]

14+ 2 (30)

Substituting this result into Eq. (13), and evaluating the time integrals explicitly,
yields the following expression for the radial profile:
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71'(1 + ZO) 35(2’7_) _ e HT ZOC—IZoAHIT
&O) 8z — 1+22 25 +2°
normal mode decaying transient
2%(z5 - 1)
(14 22)(28 + 22)

oscillating transient

(31)

sin(zAyT)
z

)

[cos(z)q;r) +

The interpretation of the above result is straightforward. The normal mode, or
collective, response is exponential in tirne and independent of the initial perturba-
tion. It grows/decays when Ay is positive/negative. For the unstable case, this term
quickly dominates the others and gives rise to the standard arctangent normal mode
solution for the internal kink, with a width determined by Ag (see Fig. 3a). The
second term is an exponential transient which always decays. The radial shape of
this transient can be wider (zp < 1) or narrower {z; > 1) than that of the collec-
tive response. The final term is a complicated oscillatory function which exhibits
nonseparable dependence on space and time (see Fig. 3b). When integrated over z,
the contribution to the on-axis displacement from this term decays exponentially in
time.

That these results are consistent with the frequency-space analysis of the previous
section can be seen by an explicit computation of the function £[Q]. Using the
causal z-space contour defined in Appendix B, it is easy to deduce

Q)= -9 (32)

w+ 1z

This indicates clearly that the pole of £[Q] is responsible for the second term in the
numerator of Eq. (29).

Although we have taken §2, = 0 in this section, it is true that when 2, is small
but nonzero, the above results apply when 7 < 1/12,.
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V. Connection with the Landau Problem

We now discuss a parallel between the linear internal kink problem and the Landau
damping problem for an electrostatic plasma wave [5]. The analogous quantities in
these two problems are, respectively, the radial profile of the displacement gradient
in the transition layer and the perturbed particle distribution function in velocity
space near the Landau resonance

SULPEN TR (33)

where the spatial profile of §f is sinusoidal. We note that both problems involve a
continuum of localized perturbations (local Alfvén modes for 9¢(r,t)/dr and Van
Kampen modes [14] for §f). We also note that, in the unstable system, both
B¢(r,t)/0r and §f (v,t) have a Lorentzian-type structure near the resonance point,
with the width of the resonance determined by the linear growth rate. The exponen-
tial time dependence factors out in the unstable case, since the dominant part of the
perturbation shapes into a collective eigenmode in either real space (for the internal
kink problem) or in velocity space (for the electrostatic problem). The magnitudes
of the on-axis displacement and the perturbed electrostatic potential, d¢, satisfy

&(t) = /d 6§(r ) and  d¢(t) x /dv of (v,t) (34)

respectively. These grow at a rate determined by the unstable eigenvalue.

To obtain an eigenvalue in the case of a stable system, it is necessary to deform the
integration contours in Eq. (33) into the complex plane. If this is not done, one will
come to the conclusion that an eigenmode does not exist. The accurate conclusion,
when analytic continuation via specification of a “causal coutour” is made, is that
the eigenmode does not exist on the real axes but rather in the complex r- and v-
planes. Such a causal contour for the internal kink is defined explicitly in Appendix
B.

Unlike the case for an unstable perturbation, the dominant component of a stable
perturbation, which is associated with the initial conditions and not the stable eigen-
value, cannot in general be factorized. This component evolves into an undulating
profile with ever decreasing scale in position (internal kink) or velocity (electrostatic
mode) - by consequence of phase mixing in the continuous spectrum. This phase
mixing causes damping of the integrated quantities in Eq. (33). For stable internal
kink perturbations this damping generally follows a power law for nonzero Q..
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VI. Summary

In this work we have studied the internal kink mode evolution problem by solving
an initial value problem for the plasma displacement. The solution, in the form
of a reduced integral equation for the on-axis displacement, is applicable to both
stable and unstable plasma conditions, and includes nonlinear currents produced
by energetic particles. In obtaining our reduced equation, we had to contend with
the common belief that the roots of the analytic dispersion relation are meaningful
only when the linear system is unstable. We have carefully analyzed the initial-
value problem to show rigorously that the stable roots of the dispersion relation
also have physical meaning. Indeed, when diamagnetic effects are negligible and the
spatial width of the initial perturbation is larger than the natural width of collective
modes, the root of the dispersion relation determines the dominant time-asymptotic
response of the on-axis displacement. In the general case for finite diamagnetic
frequency, a stable disturbance is shown to decay asymptotically as 7=3/2, although
the exponentially decaying collective mode can dominate for a long transient time
when its damping is weak. This feature suggests that if the effect of the energetic
particles changes in time so as to make the system stable (for example, through
flattening of the distribution function), the decay of the fishbone burst may be
slower than exponential.

The model we have developed is also sufficiently general to allow for computation
of the fast-ion dynamics in a fully toroidal manner - including arbitrary equilibrium
orbits. A numerical simulation code has also been developed to track the nonlinear
energetic particle dynamics [10], and results of this calculation will be presented in
a forthcoming publication.
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Appendix A: Alternative Form of the
Evolution Equation

In this appendix we outline the formal procedure which was used to derive Eqs. (16)
and (17) of the main text. Multiplying Eq. (18) by —i and inverting leaves

£ {[-ivelw =00 - A Lgo]} = £ {_;\/m.c[m} + Akl[&)(7) -

(A1)
The operator £L~* is the inverse Laplace transform,
1 wo+io .
L7f)= o= dwe™™" f(w) , (A2)
2n —oo+i0

with o > 0 chosen so that the contour lies above any singularities of the integrand.
Although the term associated with the source Q(r) can be worked out explicitly, it
is not necessary for the present purpose to do so. Instead, we simply define a new
source term

O(+) = —iL™? {\/w(w - 9.)5[@]} . (A3)

With this definition, we are left with Eq. (16) of the main text:

Iigo)r) = Axleoltr) + Q) , (16)
LS N, s’ N e’
linear operator nonlinear source linear source due

from fast particles to initial perturbation
such that
Tigo) = £ { [~iv/olw =) - 2] Llto)}
= = ubo(r) + L7 {~ivolw - )LL)} (44)

= - dgbolr) + /: dr'Z(r - )¢ (7)) .

The function Z(7) is just the inverse transform of the square root, namely

Z(r) = L1 [—i\/m] . (A5)

This can be computed analytically if we rewrite the square root as
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—ivVw(w - Q) =

o+ 2w), (46)

so that z(w) — 0 as w — oo. The first two terms on the right hand side of Eq. (A6)
are evidently the Laplace transform of a §-function and its derivative. To evaluate
the third term, we shrink the original contour around the branch cut [0,52,] that is
chosen to lie along the real axis. This gives

f e T z(w) =—zf e~ %" Vw(w - Q) - L)

N./2
emifeT/2 / dz cos(zr) V/(9./2)? — 22 (A7)
[}

* -m.f/le (9;') :

where Eq. 3.752.2 of Ref. [11] has been used to evaluate the integral. Finally, we
obtain

to) =l|m

‘:’1|

Z(r)=68(r - 0) + 39—5(7 - ).+ (%’1)21‘( [92"’] , (48)

where K (z) = exp(—iz)Ji(z)/z. These results give Z[{,] as written in Eq. (17) of
Section II.

The form of Eq. (A5) is also suggestive with regard to generalization of the time
evolution operator Z to cases which include a more detailed treatment of inner layer
physics. This generalization is conceptually straightforward. For example, when
resistivity, n, is included in the inner layer equations, a more complicated function
of frequency replaces the square root function:

Z(r) — L7 G, 9, m)] (49)

where G can be deduced from, for example, Eq. (70) of Ref. [13]. The net effect is
to make the kernel, K, in Eq. (A8) n-dependent.
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Appendix B: Laplace Transform of the Source

In this appendix, we indicate how to obtain the asymptotic expansion of the loop
integral in Eq. (24) in the limit 7 — oo. First an explicit expression for £[Q)] in terms
of the functions F and G is obtained by transforming Q(7) as defined in Eq. (15):

L£{Q] E/O dr e“7Q()

= __/ d:ll/ dr et(w—fl./2)-r [(

%)

5—
sinr x2+(Q /2)? ]
X

Vo2 + (2./2)°

(B1)

It 1s convenient to integrate by parts the term containing a partial time derivative.
The result is

oC [ : 2 2
L£[Q) = _/; dx/(, d,re‘i(w-’g./2)‘rH(x’w)SInTvm + (. /2) (B2)

V22 + (Q./2)°
where we have introduced the new profile function
H(z,w)=i(Q. - w)F(z) + G(z) . (B3)

Performing the 7-integration in Eq. (B2) gives a simple result valid for all w in the
upper-half plane:

£@=- [ arHE@ (B4)

oo wW( —w) + 22
When Im w becomes negative, we must remember to deform the contour off the real

z-axis to ensure causality, as shown in Fig. 4.

The large-t asymptotic expansion of £ in Eq. (24) is dominated by the endpoint
contributions at w = 0 and w = ., where at each endpoint a similar integral will
arise. The asymptotic behavior of each endpoint integral is

f dze ™ * "z ~ —\é—;, as T-00, (B5)
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Imx

Causal contour f

Contour for
Imw>0

F1G. 4. Structure of the complex z-plane showing the deformation of the real
z-axis integration contour required to ensure causality when the w-contour
falls in the lower-half w-plane. The poles are solutions of 2 = w(w—{2,); they
must remain on the same side of the integration contour to ensure causality.

where o is a small, positive number. In addition, we must expand Eq. (B4) in the
neighborhood of each branch point, and retain the terms which do not vanish as
w(). — w) — 0. This can be carried out directly by use of the separation

/°° dz H(r,w)

oo T ~w) ¥ 22

H(0,w) H(z,w) - H(0,w)
/d Q. —w) + 22 P/ dz w(Q —w)+22

(B6)

The first integral on the right hand side of this equation can be done explicitly.
The second is taken in the principle value sense and so remains finite in the limit
w(§l — w) = 0. The required expansion for £[Q] is thus

LjQ) ~ —THOw) _p [T dz0H o a—w)s0,  (BY)

Vwlw—Q.) —o0 T O

where an integration by parts has been used to simplify the principal value integral.
For illustrative purposes, it is useful to evaluate Eq. (B7) for the Lorentzian profile
of Sec. IV (with Q. = a = 0) to show that the result is identical to the first two
terms in the Taylor expansion of Eq. (32) as w — 0.
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Finally, when Eq. (B7) is substituted into Eq. (2¢)
butions are evaluated using Eq. (B5)
is reproduced below:

and the branch point contri-
» we arrive at Eq. (25) of the main text, which

&o(7) ~’73-_‘/§ (e—3m'/4.A(0) + e“<3"/4-“-*>A(n.)) : (22)

The function A(w) is defined as

_ /1 7H(0,w) 1 bt dz 8H(z,w)
Al) = \/;?F ([,\H + Ak (W) TN Tow@ Oz ) - (8§

o Z
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