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Monochromatized synchrotron radiation near the photoionization

tireshold was used to produce the [2p3/2) vacancy state in atomic Xe.

Deexcitation of the state through L3—M4M5(]G4) Auger-electron
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emission

was measured. The 5d spectator-electron Auger satellite was observed.

The satellite energy exhiL.ts lirnear dispersion. The observed width of

the ]G diagram line decreases by -40% when the exciting photon enargy

reaches the vicinity of the Xe L3 binding energy. This radiafionless

process can thus be construed as the Auger analog of the x-ray rescnant

Paman effact. The 16 diagram line is shifted by -+3 eV due to post-

collision interaction; this shift varies with excitation energy.
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The discovery of x-ray resonant Raman scattering]'3 suggests the

existence of an analogous radiationless process. UHe have employed synchrotronii: _
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radiation to ionize the L3 shell of Xe near threshold, and have examined the .
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subsequent deexcitation through L3-M4 5”4 5 Auger transitions.

The experiment was performed cn a focussed x-ray beam at the Stanford I

Synchrotron Radiation Laboratory. A doubly curvad gold-coated mirror situated , .-
Vi

11.5 m from the source condensed 2.5 mrad of synchrotron radiation onto the .73~
target gas jet. The radiation was monochromatized'hy two germanium crystals
‘arranged in the parallel, (111) symmetric.configuration. The experiment was °
performed at 3.1-GeV electron-beam energy and 60 mA mean current, yielding a
photon flux of -5x10]0 photons/sec through a 2x4-rm aperture upstream of the
target. The ful) width at half-maximum (FHHI1) of the incident x-ray spectrum:
at the JYe L3 edge (4786 eY) was ~2.5 eV, mainly due to the vertical angular
divergence o7 the source.

The target consisted of a gas jet formad by a glass capillsry (0.1-mm i.d.);
the jet intersected the x-ray beam at right angles in the horizontal plane. lhe
pressure in the interaction rcgion vas calculated to ke -0.1 Torr, yieldin
a background pressure in the vessel of 5x10"% Torr. o

The photoelectrons were analyzed by a commercial double-pass cylindrical
mirror analyzer with its symrmetry axis in the vertical plans. The spectrometer
energy resolution was -2.5 eV FHHM. The stability of the overall system (x-ray
monochromator and electiron spectrometer) was checked frgquent]y by measuring
the position and width of the Xe L3 photoelectron peak (Fig. 1), which was
4 of the

5.4 eV wide (FHHM), corresponding to a Yoigt-function convolution

-3.0-eV wide 293/2 hole-state Lorentzian with the 2.5-eV spectrometer transmission

function and the 2.5-eV wide incident spectrum.



The immadiate vicinity of the L3—MﬁM5(]GA) Auger-electron line was
scanned. This line arises from the deexcitation of -187 of all 2p3/2

vacancies (Fig. 2). When the Xe atoms are ionized with photons well (-100 eV)
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above the L3 binding energy, thne measured IG-]ine spectrum has a Lorentziqn -

shape of ~6.1 eV FUHM. As the incident phaton energy i< lowered to and below |

threshold, the ]G diagram line is observed to éhift to higher energy. Above

-the diagram line, a spectator satellite appears (Fig. 3) that persists even

affer the intensity of the diagram line has vanished some 5 eV bg]ow threshoid.
In Fig. 4(a), the measurad Xe Ly absorption edge is ana]yzeq in terms

of thé 2p3/2-e1ectron transition probability to the continqum and to unoccupied

bound 6s, 5d, 6d, an< 7d states.5 |

Auger energies are plotted in Fig. 4(b) against incident photon energy..

The ~+3-eV shift of the 'G diagram line, near threshold, is presumed to be :‘ft"‘
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due to post-collision interaction (PCI).6 Mo theory of PCI below threshold
exists to.date to our knowledge, whence the energy dependence of the effect
must await explanation. The 5d spectator-electron sate]iite exhibits.the
characteristic Raman 1ine$r dispersion,2 while the eipected diéperéion of the
-diagram line is masked by the PCI. The 5d satellite is shifted by 9 eV¥ when
the atom is excited at the centfoid energy of the 2p3/2»5d transition. The
theéretica] prediction for this shift is 7.2 eV, from a calculation with our
relativistic re]axed-orPita]'Auger-enérgy code.7 In addition to the 5d
satellite, a 6d specfator-electron satellite is observed in an Auger spectrum
excited at hv=4787.8 eV. It is reasonable to assume the same dispersion for
the 6d satellite as for the 5d satellite, because the width of both transition-

probability functions is governed by the Ls-ho]e width. Ve then deduce a
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3.5-eV shift of the 6d satellite with respect to the L

G diagram 1in2 (without
PCI) at the centroid of the 2p,,,~6d transition probability [Fig. 4(b)],

in agreemani with a theoretical shift of 3.3 eV calculated with the relativistic
Augar-energy code.7 N

The measured width of the ]G diagram line is plotted in Fig. 4(c) as a
function of exciting photon energy. The data indicate a narrowing by ~40%
bf the Auger diagram line when the [2p3/2] hole state is excited at thresheld.
This effect is analogous to the narrowing below lifetime width observed in

x-ray resonant Raman scattering.z Thé width of the 5d séte]]ite line, by
contrast, remains constant at (511) ev ovef *h- 'qtiré excitation-energy
range covered.by these experimenfs. Unresolved multiplet splitting is
expected to account for the broadening of this']ingf'
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Ficure Captions

FIG. 1. Xenon L3 photoelectron spectrum.

FIG. 2. The Xe L3"”4,5M4,5 Auger spectrum, calculated ab initio

with Dirac-Hartree-Slater wave functions, in intermediate coupling.
FIG. 3. The Xe Ly-t,H.('6,) Auger Tine, from atoms excited -100 eV

above threshold (top), and from atoms excited 2.0 eV below threshold (bottom).

1

In the latter spectrum, the 6 diagram line is accompanied on the high-energy

. side by the 6d spectator-electron satellite. The Lorentzian fits are

2

characterized by x° = <1. _
FIG. 4. (a) Measurasd Xe L3 absorption edge, decomposed accordihg to

Ref. 4. (b) Energies of the L3-M4M5(]G4) Auger line and its satellites.

Near threshold, the ]G diagram line is shifted by post-collision interﬁctioa.
(PCI). The satellites are shifted due to screening by 5d and 6d spectator
electrons, respectively; their 2nargies exhibit 1inear (Raman)(dispe?sion;

(c) Width qf the measured ]G diagram-line spectrum, as a funét%on.of

excitation energy.
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