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l. Project Summary

Under the grant, the applicant has developed a method of identifying poloidal and
toroidal modes active in tokamak plasmas. Except complicated situations the method has
shown to work well. Even with the limited applications, the advantage from the method is
significant and even crucial. The method can be used to identify

(1) responsible coherent modes such as MHD or Resistive modes activity in plasma
(2) onset of instabilities

and can be used to
(3) plasma controls.

The method has been applied to the DIII-D tokamak experimental data, and some
results are presented in this report. We also present how the method can be used to plasma
controls.

Il. Identification and Significance of the Problem
Characterization of coherent MHD waves in the plasma is crucial to understand MHD
activity and to prevent undesired events. For this reason mode characterization of a tokamak
plasma has long been pursued but the complexity of the toroidicity and plasma shaping makes
it difficult. Toroidal mode identification[1] is relatively simple since tokamak equilibria have
toroidal symmetry. However, toroidicity and shaping distorts the poloidal mode structure such
that the usual Fourier Decomposition will generate unnecessarily many components. This is
especially true for strongly shaped as well as high beta discharges. The applicant has developed
a method[2] of identifying poloidal, as well as toroidal, modes in this complex situation
utilizing the singular value decomposition (SVD) technique in conjunction with various
numerical codes, in particular the VACUUM code[3]. This method has been applied to a
number of tokamak discharges and found to work reasonably well.
The SVD method[4] has been commonly used in signal processing in engineering. For
a series of signals it provides a way of reducing noise by maximizing covariance of the signals
over a time window[5]. With synchronized signals at various locations one can obtain both the
coherent spatial structure and time evolution in the signal. Greene and Kim[6,7] have also
utilized the SVD technique to examine the dynamics governed by ordinary differential
equations. Several years ago Nardon applied the method to teasing modes and Sawtooth mode
analysis[8]. The SVD analysis represents a set of space and time data, or toroidal and poloidal
magnetic fluctuation data, in terms of the smallest possible time- and space- bases vectors.
Therefore we can store only the coherent modes that are significant. This can reduce the storage




data by an order of magnitude easily. The space-vectors are often refered as eigenvectors and
time-vectors as principal components.

An SVD eigenvector may consist of many poloidal modes, especially in high beta
plasmas. There has been an increasing need of identifying poloidal modes of the SVD
eigenvectors, and the energy distribution in the poloidal modes. For instance, the understading
and control of neoclassical tearing mode depends on the modal components of 2/1 or 3/2 [9].
Identification of the onset of 3/2 mode is crucial for the control of the modes.

We have developed a method to identify poloidal modes from a SVD eigenvector
utilizing various numerical codes. Following a brief description of the SVD method in the next
section, we present our poloidal analysis method, examples applied to DIII-D tokamak
experimental data, followed by future application of the method.

lll. The Singular Value Decomposition Method

A rectangular matrix, or a singular matrix, M does not have a proper inverse.
However, a matrix Q exists such that MQ and QM are both symmetric with QMQ=Q and
MQOM=M. The matrix Q is called the pseudo-inverse of M . Here we consider a real matrix
M. Then the matrices MM and MTMare real and symmetric, their eigenvalues form a
complete orthonormal basis. Furthermore, their eigenvalues are the same. The square root of
these eigenvalues are called the singular values of M. If U is the matrix whose column
vectors are the normalized eigenvectors of MM T, and V is the matrix whose column vectors
are the normalized eigenvectors of M Tpm , then the factorization of

M=UsvT (1)

is called the singular value decomposition, while the diagonal elements of matrix §
Sl] = Si6ij (2)

with s; 20 are called the singular values of M. Conventionally the singular values are stored
in descending order. The eigenvectors of MM T which are the column vectors of U, are called
the Principal Components(PCs) of M. The PCs are also proportional to the projection of M
along V or the product of US . If M is a pxq matrix with (p>q), then U is a pxg matrix with
UTU=I and UUT=], and V is a gxq unitary matrix.

IV. The Application of SVD to tokamak data analysis.




A pertinent question is why is this SVD method relevant to identifying modes in

experimental data? First consider a set of p synchronized signals from g Mirnov coils on a
poloidal plane. One can then construct a matrix M as follows, with f;(;) being the

magnetic amplitude at time # from j-th coil,

(file) - fa®))

M=

1 . ) .
— : .. : 3
e (3)

Kfl(tp) oo fq(tp)
where +/pq is a normalization introduced for convenience.

As is indicated earlier the SVD, Eq.1, represents a rectangular matrix M with the
eigenvectors and eigenvalues of M Taf and MMT. First consider MTM. The elements of
the matrix MTM are the time average of the product of signals at different positions with an
additional factor of 1/g.

MT M), =l(i ff,-(tk)f,-(tk)J for ij=lg )
g\ P k=1
is a covariance of signals at the i-th and j-th coils. Thus, the matrix M ™ is a space-
covariance matrix of M. The eigenvector corresponding to the maximum eigenvalue of the
covariance matrix, the first PC of M, is the vector along which the space-covariance is
maximized. Similarly mmT represents the spatial average of the product of signals at

different times, with an additional factor of 1/p. The covariance of the signals at i-th and j-th
time is:

1{1 4
(MMT)ij=%Miijk=;(;k2_nlfk(ti)fk(tj)] for i,j=L...p (5)

Again the eigenvector of MM Tcorresponding to the maximum eigenvalue represents the
vector along which the time-covariance is maximized. Utilizing Eq.1 one can prove that




MMy =suTYUsVTYW=8*V and MMTU=@WsVTYVSUTYU=US* (6)

Thus the singular values of M are the squares of the eigenvalues of M M or MMT.

The beauty of the SVD is that the method separates spatial structure from the temporal
evolution, and thus simplifying the analysis. It should be clear by now that U is the matrix
that controls the time evolution and V is the matrix for spatial structure. The square of singular
values is a measure of energy content of the mode.

When a mode is purely sinusoidal, the SVD and the Fourier Decomposition are
essentially the same. Often, however, experimentally one observes coherent structures, but
not necessarily purely sinusoidal. For instance sawtooth modes, or short pulses would
require many Fourier modes to describe the structures. The SVD works with the amplitude of
the mode at each assigned space directly, and gives us coherent structures as a whole.
Furthermore toroidicity and shaping of the tokamak plasma experiments require new ways of
looking at the basis functions of the modes.

V. ldentification of poloidal modes

The SVD application to a spatial-time series data will separate time and spatial
eigenvectors in the order of coherency. In general symmetric and anti-symmetric pair of
eigenvectors are obtained since the plasma is rotating.

For each Principal Component, the experimental eigenvectors are decomposed into
those of numerically generated eigenvectors for various poloidal modes. Here experimental
vectors mean the spatial eigenvectors of the data matrix obtained via Singular Value
Decomposition. Numerically the eigenvectors for the signals at the wall location corresponding
to the (m,n) mode are obtained from the numerical code VACUUM. We introduce an (m,n)
mode perturbation on the g=m/m surface, and obtain magnetic fluctuations at Mirnov coil
locations at DIII-D, and obtain spatial eigenvectors. The following block diagram shows the
procedure of the analysis.
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Figure 1. Block diagram of mode analysis

1. From Mirnov data, calibrate data, then apply SVD as shown in the left hand side block
diagram.

2. Obtain spatial eigenvectors at Mirnov coil locations for each (m,n) mode using the
VACUUM code as shown on the right hand side block diagram. The VACUUM code
requires information of the equilibrium at the g=m/n surface and Pest coordinates on
that surface. Equilibrium information from the EFIT contains the g-surfaces, and the
MBA code will generate the Pest coordinate on each q surface.

3. We then compare the experimental eigenvectors to the VACUUM code generated
vectors. Each SVD analyzed spatial eigenvector can be represented in terms of the
VACUUM code generated spatial eigenvectors of various poloidal modes.

Here we present an example poloidal mode analysis[2,10] applied to DIII-D plasma discharge.
The DIII-D tokamak has 31 poloidal probes on one toroidal plane for poloidal mode structure
analysis. For the DIII-D shot #86145 during 2300-2310 msec discharge, the first two pairs of
principal components and the corresponding spatial eigenvectors are shown in figure 2a and 2b
respectively. SVD calculation of the Mirnov fluctuation data show that the first pair of principal
components contains 87% of the total fluctuation energy and with the second pair of
components included the energy was 99%. Note that there are a pair of principal components
for a rotation mode.




Meanwhile we can evalvate the expected eigenvectors of the Mirnov coil signals for each (fn,n)
mode, which are obtained from the VACUUM code. The VACUUM code generates vectors
for n=1 as shown in figure 3.
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Figure 2a. First two pairs of Principal Components for the DIII-D discharge during
2300 msec-2310 msec.
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Figure 2b. First two pairs of Eigenvectors(b) for the DIII-D discharge during
2300 msec-2310 msec.

All we have to do now is to decompose each spatial eigenvector in terms of the VACUUM
code generated vectors.

V" (experiment) = Y.¢,, ,V""" (vacuum — code)
p m,n
m

The coefficient C,, ,, can be obtained by inverting a rectangular matrix V™" This inversion

can be performed using singular value inversion technique. For the example case shown
above, we have the following coefficients for the first principal components for n=1 mode.
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Figure 3. Numerical vectors V™" for n=1 for the equilibria of the DIII-D discharge
during 2300 msec-2310 msec.

The poloidal mode energy contents is proportional to the sum of the squares of symmetric and
anti-symmetric components. The reconstructed experimental eigenvectors from these poloidal
components are shown in figure 4 for comparison.




Table I. The coefficient C,, , with n=1.

Mode m/n 171 2/1 3/1 4/1
symmetric 0.083 0.39 -0.035 -0.035
anti-symm. 0.061 041 -0.073 -0.050

ENG(%) 3% 94% 2% 1%

There are many calculations involved in this analysis. Most of the analysis, though can
be performed in advance if we know the equilibrium we will run. It is possible to reproduce a
similar equilibrium discharge and in such a case we only need to use SVD on the Mirnov data
in real time followed by a decomposition in terms of prepared numerical vectors. Today
equilibria can be obtained in real time. With a faster dedicated computer processor, and parallel
processing, it may be possible to compute all in real time in the near future. This will be part of
the Phase II work.
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Figure 4. Experimental eigenvectors and fitted vectors by summing over the poloidal
components in table L.




VI. Conclusions

The applicant has developed a method that can identify poloidal and toroidal modes
from a series of synchronized Mirnov data on a poloidal plane of a tokamak. Utilizing the SVD
method, and various codes, in particular, the VACUUM code, we can evaluate energy contents
of poloidal and toroidal modes active in the plasma, as evidenced from the examples given in
the text.

The developed method may play a significant role to the fusion community. Coherent
MHD instabilities in tokamak plasmas can lead to reduced performance or possible termination
of the plasma discharge. This becomes an even larger problem for future power plant-sized
tokamaks such as ITER. Identification and characterization of these instabilities in real time
offers the potential of reducing or eliminating their effects through an appropriate control
mechanism. Success of this proposal will provide a path to realize this control. The mode
identification method presented here will play a critical role in current plasma research and
development. The method for identifying coherent modes and the control algorithm can be used
at other plasma facilities nationwide and worldwide. The success of fusion energy will be of
great benefit to the nation and the world.
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