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The two generic models for the description of nuclear phenomena are the

microscopic shell model and the collective model. The successes of both are

well documented. In the lower half of the s-d shell there are a number of

nuclei whose spectra contain states which appear to constitute rotational

bands. For these nuclei, complete shell-model calculations are possible in

which a 0 core is assumed, and valtnce particles are restricted to the

0s,ld shell. These calculations reproduce the observed rotational features.

Thus, the rotational behavior is produced by the motion of only the valence

particles. The particles in the ' 0 core enter only through the single-

particle energies and the renormalization of the residual one-body (effective

charges) and two-body interaction. Recently, Iachello and Arima have pro-

posed an interacting boson model (IBM) which is applicable in the transi-

tional and deformed region, which appears capable of describing both rota-

tions and vibrationSf and which implicitly assumes that this collective be-

havior can be generated by the motion of relatively few valence r.ucleons.

In this brief report I would like to^discuss two independent investigations

which illustrates that there appear to be interesting collective features in

some f-p shell nuclei which are
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generated from the motion of valence nuclei, and that the structure of the

states in question is consistent with the philosophy of th._ IBM. Finally, I

will discuss some further investigations of shell-model wave functions in

the s-d shell and light f-p shell nuclei which also offer some support to

che IBM model. I should stress the preliminary nature of these results.

Most of what I'll discuss is mostly suggestive and demands much more detailed

investigation.

The first calculations I'd like to discuss are shell-model calculations

in the mass region around A = 50-60. The states of principle interest are

the so-called YRAST levels in these nuclei; i.e., the lowest state of each J

2 ' 48
in a given spectrum. The model is an often-used one. An inert Ca core

is assumed, protons are restricted to the f7yo shell, and neutrons occupy the

P V 2 ' f5/2' a n d Pl/2 o r b i t s* Single neutron energies suggested by the ob-

49
served Ca spectrum are used. The two-body interaction is taken from the

literature from studies of the Ni isotopes and the N=29 nuclei. A similar

model with a somewhat different and more accurate interaction has been used

by Horie and Ogawa in other studies in this region. I have calculated the

spectra of isotopes of Ti, V, Cr, Mn, Fe, and Co with from 2-9 neutrons.

2
The N=30 isotopes of these nuclei were studied some years ago with this model

with a high degrf.e of success. Recently the model has been used by Mateja

et a_l. to study the Mn(t,p) Mn reaction. The calculated two-particle

strengths very accurately mirror experiment, including considerable L-mixing

in a number of transitions. More recently, Nathan e_£ EQ. have studied the

high-spin states in a number of these nuclei in (heavy ion, xn) reactions.

In general, the predicted spectra are in reasonable agreement with the spectra

suggested by experiment. There is a tendency for the calculated levels to

be too high with respect to experiment by 200-300 keV. This is the case for



all the N=30 nuclei. The consistent defect in the N=30 nuclei is largely

corrected by the Horie-Ogawa interaction. The main point is that the theory-

experiment agreement is good enough in enough cases to have a high degree of

confidence in the calculations, and, in particular, to discuss properties of

levels for which experimental analogs are not yet known.

I'd like to point first to a rather consistent feature in ,nany of the

-calculated s;pectra. In Figs. 1 and 2, the calculated spectra for ' Cr,

5 6' 5 8 > 6 0Fe, 5 5 > 5 7Mn, and 57'59Fe are shown. There is a doublet structure

of the YRAST levels which becomes more pronounced as the number of neutrons

is increased. For the odd nuclei, this structure is suggestive of some of

the spectra resulting from the aligned coupling schemes introduced by

Stephens and Simon to account for backbending phenomena in heavier nuclei.

I have developed a backber.rling plot for the YRAST levels of Fe. The

result is shown in Fig. 3. The familiar S-shaped curve is clearly evidenced.

C £ CO

Similar curves for Fe and Fe, not shown here, do not have this smooth

behavior. I have looked at the quadrupole operator observables for these

three nuclei. In Table 1 the quadrupole moments and B(E2)-values for YRAST

states with even J for Fe, Fe, and Fe are shown. For Fe, the shape

of the nucleus starts oblate, goes prolate at the 6 , and returns to oblate

for the 8 and 10 . For Fe, the nucleus is oblate up to the J=6 state,

and prolate for the 8 and 10 . For Fe, the shape transition occurs be-

tween the J=4 and J=6 states. This shape transition is reflected in the

B(E2)-values. There is consistently a diminution of the B(E2)-value where a

shape change occurs.

This leads to a rather neat model of the structure, Fe. The nucleus

displays a classic backbending behavior, and the backbending occurs as a re-

sult of the crossing of two rotational bands. This "collective" picture is



not so clear in Fe or Fe. Thus, the collectivity appears as more neutrons

are added. Some preliminary results similar to these for Fe were reported

by Bendjaballah et^ al_. The measured lifetimes for states in Fe were

accounted for by the Horie-Ogawa calculations of Fe. In particular, the

lifetime of the first 6 was much longer than for the lower-spin states.

Q

These results are also consistent with the results of Sharma who

studied the Fe isotopes in a Hartree-Fock-Bogolubov calculation. He found

that the prolate and oblate solutions lay close to each other in energy, as

is suggested by the band-crossing in the shell-model calculations.

It is worth noting that the B(E2)'s between the high-spin prolate states

in Fe are much stronger than in Fe. It would obviously be interesting

to verify this pattern.

Again, I stress the preliminary nature of these results, and that the

collective behavior is only suggestive. It does appear to be another ex-

ample where collective behavior is introduced in the motion of relatively

few valence nuclei.

This is a basic premise of the IBM, as will be discussed by Igal Talmi

later in this symposium. They attempt to describe the transition from vibra-

tional to rotational behavior in one series of nuclei as one goes from a closed

shell to the middle of the shell and on to the end of the shell. Very crudely,

they say that the neutron (proton) states of valence nuclei can be constructed

from two basic two-particle "bosons", a J=0 and a J=2 boson. Thus, four identical-

particle states result from coupling two of these bosons. The collective behavior

then evolves from the coupling of these proton and neutron boson states

through the n-p interaction. Their picture of Fe would be that it results

from coupling two-proton hole "bosons" with J = 0 and J = 2 to two-neutron-

particle bosons with J = 0 and J = 2. One might reasonably approximate these



bosons by the lowest J=0 and J=2 states in Fe and Ni, and say that the

2 + states in 55Fe are rixtures of the states 0+(54Fe) x 2+(58Ni), 2+(5AFe) *

0+(58Ni), and 2+(54Fe) x 2+(58Ni). Bhatt et_ al. did analyze the 56Fe wave

functions in a model identical to the one discussed above. They found that

the ground state band of Fe is indeed dominated by these three states.

For instance, the J=2 state is more than 95% in these three states.

Several years ago, I developed some programs in collaboration with

L. B. Hubbard to carry out shell-model calculations in a truncated space,

where the truncation scheme was chosen on grounds very similar to the

foundations of tha IBM model. Some of the calculations we did in the course

of developing the program are of interest with respect to the interacting

boson model, and I'd like to discuss them in the remainder of this report.

The effective residual shell model Hamiltonian can be written in neutron-

proton formalism, in obvious notation,

H = H + H + H .
nn pp pn

In many shell model cases, it is possible to solve the shell-model calcula-

tion exactly for the neutrons and protons separately. Thus, the following

equations

H |i|)i> = Z'\^>
nn' n n ' n

PP' P P' P

define a complete set of states in the neutron and proton spaces separately.

The direct product space

Uij> = |*n> * UP>

forms a complete space for the full shell model space. For example, in a

s-d shell-model calculation in which the 0 core is inert, and particles



20
are limited to the s-d shell, the states in Ne can be expanded as linear

1 Q TO

combinations of states in 0 coupled to states in Ne. There are 14 inde-

1 ft
pendent two-particle states in 0 with fixed J in this model, so there are

20
at most 256 states in Ne in this representation for any given J. In some

cases, it may be possible to select a subset of states in the proton space

and a subset of states in the neutron space, such that the states in the

direct product space of these two subspaces form the dominant part of the

wave functions of the low-lying states in the coupled neutron-proton system.

The hopj is that it is possible to find a truncated space which is large

enough to adequately describe low-lying states, but small enough to lead to

a tractable calculation in those cases where the full shell-model calculation

is unreasonably large. We have developed programs to perform such calcula-

tions. As a first test of the program, we looked at some s-d shell and f-p

shell nuclei where the exact shell model diagonalization in the complete

space is possible, so that we could study the effects of space truncation.

In this talk, I'd like to present and discuss results for Ne and Ti.

20 44 40

The Ne calculation is the one described above. For Ti, an inert Ca

core is assumed, and the valence particles are restricted to the Of-lp shell.

In both cases, Kuo-Brown matrix elements of the effective Hamiltonian were

used, but the types of results I'll discuss are unlikely to depend on the

choice of the interaction. The single-particle energies used were those sug-
17 41

gested by the spectra of 0 and Ca. The complete shell-model calculations

were made with the Oak Ridge-Rochester shell model programs.

20
Figure 4 presents some results of energy level calculations for Ne.

A
The left-most spectrum is that resulting from the complete (sd) calculation.

The numbers under each of the other spectra indicate the space truncation

used in the two-neutron and two-proton parts of the space. Thus, the



right-most spec-zcn is labeled 3 x 3. This means the lowest three states in

0 (i.e., the lowest J=0 , 2 , and 4 states), and the same lowest three

1 ft
states in Ne were included in the model space. In the spectrum labeled

6 x 6 , the lowest six states in each space were included in the calculation,

44
and so on. Figure 5 shows analogous results for Ti. The results for the

two calculations are very similar. To obtain a spectrum which is qualita-

tively similar to the spectrum of the exact calculation, it is -necessary only

20
to include the lowest two states of even J, i.e., in Ne, include the low-

I I i "1 Q I O

est two J=0 , 2 , and 4 states of 0 and Ne. The improvement which re-

sults from adding more states is mostly one of trimming up quantitative

agreement,

In Tables 2 and 3 the calculated B(E2)-values for transitions between
20 44

low-lying states in Ne and Ti are presented. Effective charges c =

1.5e and e = 0.5e have been used in both model spaces. Here again, the
n

qualitative structure of the transition strengths among low-lying states is

reproduced in the space with the two lowest J=0 , 2 , 4 , etc. states in both

20 44

Ne and Ti. The absolute strengths are surprisingly well accounted for by

the truncated calculations. A single small increase of the effective charge

would give rather accurate agreement with the exact calculations. For the

ground state band transitions, the calculation in the smallest spaces really

account for the relative strength rather well. The same is not true for the
20

states outside the ground state band. In Ne in the 3 x 3 space, the cross-

over transition from the second 2 to the ground state is almost as strong

as the transition to the second 0 state. In the exact calculations, the

cross-over transition is strongly suppressed. When the second J=0 , 2 , and

4 states are included to produce the 6 x 6 results, the picture is dramatically
44

improved. Entirely analogous results exist for Ti. The qualitative
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features of all the B(E2)'s shown in Table 3 for the complete space shell-

model calculations are reproduced in the 8 x 8 space.

I have looked at the structure of some of the wave functions in Ne

44
and Ti. In Table 4, an analysis of the wave functions of the two lowest

+ 20
J=0 states in Ne is shown. In this table J and J refer to the J of the

two-particle states in the proton and neutron spaces separately. The sub-

scripts identify the proton or neutron states as the first, second, etc.

states of that spin. The a., is the admixture of each of these basis states

+ 20
in the first and second 0 state in Ne, respectively. Results are shown

for the 3 x 3, 6 x 6, and exact (14 x 14) spaces. The percentage figures at

the lower part of the table are the percent of the exact wave functions that

are in the states in the 3 x 3 and 6 x 6 spaces, respectively (i.e., 76% of

the exact 0 ground state wave function consists of states which involve only

the lowest J=0 , 2 , and 4 states in 0 and Ne). The figures labeled

overlap indicate how much the part of the exact wave function in the 3 x 3

and 6 x 6 spaces resemble, the corresponding eigenstates which result from

diagonalization in only the smaller space. Thus, if we consider only the

first three components in the exact wave function for the lowest J=0 space

20
in Ne, renormalize these "three component wave functions", and overlap it

with the lowest 0 state in the 3 x 3 space, the overlap is > 0.999. The

implications of this analysis are entirely consistent with the results of

the calculations of energies and E2 observablos. The 2 * 3 calculation gives

a reasonable description of the exact calculations. The case for the ex-

cited J=0 is a different story. Only 16% of the complete v.ive function of

this state is in the 3 x 3 space. The 6 x 6 wave function, however, is quite

similar to the 6 x 6 part of the complete wave functions, and 91% of the com-

plete wave function is in the 6 x 6 space.



It is interesting to note tne structure of the ground state wave func-

tion. Ones intuition might suggest the largest component in the Ne ground

18
state would be the state which results from coupling the ground states of 0

•I O

and Ne. In fact, in the complete shell model wave function, the largest

+ 18 18

amplitude is for the coupling of the lowest 2 states in 0 and Ne. This

results from the important role of the neutron-proton interaction in gener-

ating the collective nature of the neutron-proton systems. The strong ad-

mixture of the two 2 states can be shown to occur because of large 0 •*• 2
•to 1 n

matrix elements of the mass quadrupole operator in 0 and Ne. Thus, the

strong collectivity in Ne occurs because of a coherent mixing of strong

quadrupole collectivity in the separate neutron and proton spaces.

A similar analysis of the wave functions of the lowest J=0 states in
44

Ti is shown in Table 5. In this case, I have not done the complete space

calculation for Ti in this neutron-proton representation. Thus, in Table

5, a comparison is made of the lowest two J=0 in the 4 x 4 and 8 x 8 spaces.
20The general results are the same as in the case for Ne. The structure of

the wave function of the lowest J=0 state in the 4 > < 4 space is very similar

to the part of the 8 x 8 wave function that is in the 4 x 4 space. For the

second 0 state, only 20% of the 8 x 8 wave function is in the 4 x 4 space.
20 44

The IBM vaodel would treat the ground state bands of Ne and Ti as
mixtures of a J=0 and J=2 neutron "boson" to a J=0 and J=2 proton boson.

The results shown here offer some support to the assumptions of their model.

44 20These calculations show that the ground state band properties of Ti and Ne

20are rather well reproduced by the smallest calculations. In Ne, 93% of the

ground state 0 state consists of only the lowest 0 and 2 neutron and proton

44 + +
states. In Ti, 92% of the ground state is in the analogous 0 and 2 spaces.

+ 44
In the lowest 2 of Ti in the 4 x 4 model space, 82% of the wave function
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is involved in the 0 and 2 two-particle states.

+ 44
There is a disagreement for the lowest 4 state in Ti. Only 30% of

this function is in the 0 + 2 "boson" space. It is a possibility that the

spaces dealt with here are too small and simple, and that the IBM will be

better for the more complicated wave function. Calculations involving up to

four neutrons and protons are being started.

The calculations described here suggest that this approach might be a

useful truncation scheme for doing calculations where complete shell-

model calculations are intractable. These test cases involve neutrons and

protons in the same orbits which could maximize the effects of the neutron-

proton interaction. But the approach in a sense assumes the n-p interaction

is a perturbation. In cases of heavier nuclei, neutrons and protons are in

different orbits, and effects of H may be somewhat weaker, and this approach
np

may be better. Also these calculations in this scheme may be a useful com-

plement to the development of the IBM models.
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Table 1. E2-0perator in Even Fe Isouopes

(e = 1.2e, E = 1.9e)

2

4

6

8

10

12

56Fe

-37

-43

56

-13

- 6

Q(efm )
58Fe

-41

-35

-35

74

38

6°F<

-45

-53

23

54

69

2-0

4-2

6-4

8-6

10-8

12-10

358

456

57

27

87

536

594

628

25

43

67

551

724

232

358

400

270
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Table 2. Calculated B(E2)-Vaiues for Selected E2-Transitions
20

Between Low-Lying States in Ne in Various Model Spaces

21

61

->o2

B(E2) e2fm4 (e = 1.5e, e = 0.5e)

Space 3 x 3

182

410

506

404

7.3

12.3

P
6 x 6

222

488

571

445

0.1

66

n
Full

241

537

635

529

0.4

81
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Table 3- Calculated B(E2)-Values for Selected E2-Transitions Between
44

Low-Lying States in Ti in Various Model Spaces

J.
x

y
81

-3
J

7,j

I

B(S2) e2fm4 (e =1.5e, en=0.5e)

•ace 4 x 4

69

83

65

60

0.1

60

5

1.2,

22

22

0.7

8 * 8

83

104

81

73

3.0

115

0.8

14

57

58

21

11 x 11

90

115

96

78

2.0

117

0.4

17

61

66

19

(fp)4

96

122

101

79

2.6

128

0.02

14

58

69

19



Table 4. Structure of Lowest Two J=0 States in Ne in Various Truncated Spaces, as Described in the Text

Jx J2 a±.O
 x 3) ai#(6 * 6) a±. Full a±.(3

 x 3) a±.(6 * 6) a±. Full

01 01 0.693 0.618 0.580 0.719 0.308 0.282

21 21 0.668 0.655 0.603 -0.669 -0.158 -0.175

4 4 0.269 0.250 0.240 -0.189 0.198 0.213

02 02 -0.122 -0.118

2 2Z2 Z2
4 2 4 2 0.100 0.121 0.100 0.103

0 (0 ) 02(01) 0.100 -0.456 -0.437

2 1 ( V 2 2 ( 2 1 ) °"13° °*129 -0.416 -0.377
4,(4,) 4O(4J 0.170 0.190 0.164 0.176

Overlap 0.999 0.986 .906 .998

% in full 76 88 16 91
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+ 44
Table 5. Structure of Lowest Two J=0 States in Ti in 4 x 4 and 8 x 8 Spaces.

The basis state 1<K * <JJ9, J=0> is described in Columns 1 or 2. Column 3 fjhows

the amplitude, a., for that basis state in the wave function. All amplitudes

are shown for the 4 x 4 wave functions. The amplitudes of the same 4 x 4 states

are listed in the 8 x 8 wave function, plus all amplitudes |a.j > 0.1. The last

two entries, % and overlap, are explained in the text.

h
a.., 4 x

X

.806

.520

.245

.142

•I
4 a . , 8 x 8

.760

.516

.251

.156

21 21
41 41
61 61

W VV
W W
VV 4^)
22 22

% (4 x 4) in (8 x 8) 93%

Overlap .9995

4 x 4

-.323

.786

- .440

- .288

8 x 8

- .163

.320

-.244

-.127

.237

-.549

.193

-.136

-.106

20%

.973
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FIGURE CAPTIONS

Figure 1. Calculated spectra of YRAST levels in odd-even nuclei.

Figure 2. Calculated spectra of YRAST levels in even-even nuclei.

Figure 3. Backbending plot of 2 + •* 12 + YRAST states in 6°Fe.

20
Figure 4. Spectra of Ne in various truncated spaces, as discussed in the

text.

44
Figure 5. Spectra of Ti in Various truncated spaces, as discussed in the

text.
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