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SHELL-MODEL ORIGINS OF CO TIVE EFFEZCTS IN LIGHT-
AND MEDIUM-WEIGHT NUCLEI
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The two generic models for the description of nuclear phenomena are the
microscopic shell model and the collective model. The successes of both are
well documented. In the lower half of the s—-d shell there are a number of
nuclel whose spectra contain states which appear to constitute rotatiomal
bands. For these nuclei, complete shell-model calculations are possible in
which a 160 core is assumed, and valence particles are restricted to the
0s,1d shell. These calculations reproduce the observed rotational features.
Thus, the rotational behavior is produced by the motion of only the valence
particles. The particles in the 160 core enter only through the single-
particle energies and the renormalization of the residual one-body (effective
charges) and two-body interaction. Recently, Iachello and Arima have pro-
posedl an interacting boson model (IBM) which is applicable in thke transi-
tional and deformed region, which appears capable of describing both rota-
tions and vibrations, and which implicitly assumes that this collective be-
havior can be generated by the motion of relatively few valence nucleons.

In this brief report I would like to/discuss two independent investigations

which illustrates that there appear to be interesting collective features in

some f-p shell nuclei which are
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generated from the motion of valence nuclei, and that the structure of the
states in question is consistent with the philosophy of th. IBM. Finally, I
will discuss some further investigations of shell-model wave functions in

the s~d shell and light f-p shell nuclei which also offer some support to

vhe IBM model. I should stress the preliminary nature of these results.

Most of what I'1l discuss is mostly suggestive and demands much more detailed
investigation.

The first calculations I'd like to discuss are shell-model calculations
in the mass region around A = 50~60. The states of principle interest are
the so-called YRAST levels in these nuclei; i.e., the lowest state of each J
in a given spectrum. The model2 is éﬁ often-used one. An inert 48Ca core
is assumed, protons are restricted to the f7/2 shell, and neutrons occupy the
p3/2’ f5/2’ and pl/2 orbits. Single neutron energies suggested by the ob-
served 49Ca spectrum are used. The two~body interaction is taken from the
literature from studies of the Ni isotopes and the N=29 nuclei. A similar
model with a somewhat different and more accurate interaction has been used
by Horie and Ogawa in other studies3in this region. I have calculated the
spectra of isotopes of Ti, V, Cr, Mn, Fe, and Co with from 2-9 neutrons.

The N=30 isotopes of these nuclei were studied2 some years ago with this model
with a high degree of success. Recently the model has been used4 by Mateja
et al. to study the 55Mn(t,p)57Mn reaction. The calculated two-particle
strengths very accurately mirror experiment, including conmsiderable L-mixing
in a number of transitions. More recently, Nathan gg_gl.s have studied the
high-spin states in a number of these nuclei in (heavy ion, xn) reactions.

In general, the predicted spectra are in reasonable agreement with the spectra
suggested by experiment. There is a tendency for the calculated levels to

be too high with respect to experiment by 200-300 keV, This is the case for
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.calculated spectra. In Figs. L and 2, the calculated spectra for

all the N=30 nuclei. The consistent defect in the N=30 nuclei is largely
corrected by the Horie-Ogawa interaction. The main point is that the theory-
experiment agreement is good enough in encugh cases to have a high degree of
confidence in the calculations, and, in particular, to discuss properties of
levels for which experimental analogs are not yet known.

I'd 1ike to point first to a rather consistent feature in :any of the

54,56Cr

56,58,60Fe 55,57Mn

, , and 57’59F

e are shown, There is a doublet structure
of the YRAST levels which becomes more pronounced as the number of neutrons
is increased. For the odd nuclei, this structure is suggestive of some of
the spectra resulting from the aligned coupling sehemes6 introduced by
Stephens and Simon to account for backbending phenomena in heavier nuclei.
I have developed a backberding plot for the YRAST levels of 60Fe. The
result is shown in Fig. 3. The familiar S-shaped curve is clearly evidenced.
Similar curves for 56Fe and 58Fe, not shown here, do not have this smooth
behavior. I have looked at the quadrupole operator observables for these
three nuclei. In Table 1 the quadrupole moments and B(E2)-values for YRAST
states with even J for 56Fe, 58Fe, and 60Fe are showm. For 56Fe, the shape
of the nucleus starts oblate, goes prolate at the 6+, and returns to oblate

for the 8" and 10+. For 58Fe, the nucleus is oblate up to the J=6" state,

6 .
0Fe, the shape transition occurs be-

and prolate for the 8+ and 10+. For
tween the J=4+ and J=6+ states. This shape transition is reflected in the
B(E2)-values. There is consistently a diminution of the B(¥2)~value where a
shape change occurs.

This leads to a rather neat model of the structure, 60Fe. The nucleus

displays a classie backbending behavior, and the backbending occurs as a re-

sult of the crossing of two rotational bands. This "collective” picture is
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not so clear in Fe or Fe. Thus, the collectivity appears as more neutrons

are added. Some preliminary results similar to these for 56Fe were reported
by Bendjaballah gE_gl.7 The measured lifetimes for states in 56Fe were
accounted for by the Horie-Ogawa calculations of 56Fe. In particular, the
lifetime of the first 6+ was much longer than for the lower-spin states.

These results are also consistent with the results of Sharma  who
studied the Fe isotopes in a Hartree-Fock~Bogolubov calculation. He found
that the prolate and oblate solutions lay close to each other in energy, as
is suggested by the band-crossing in the shell-model calculations.

It is worth noting that the B(E2)'s between the hizh-spin prolate states
in 6OFe are much stronger than in 58Fe. It would obviously be interesting
to verify this pattern.

Again, I stress the preliminary nature of these results, and that the
collective behavior is only suggestive. It does appear to be another ex-
ample where collective behavior is introduced in the motion of relatively
few valence nuclei.

This is a basic premise of the IBM, as will be discussed by Igal Talmi
later in this symposium. They attempt tc describe the %ransition from vibra-
tional to rotational behavior in one series of nuclzi as one goes from a closed
shell to the middle of the shell and on to the znd of the shell. Very crudely,
they say that the neutron (proton) states of valence nuclei can be constructed
from two basic two-particle "bosons'", a J=0 and a J=2 boson. Thus, four identical-
particle states result from coupling two of these bosons. The collective behavior
then evolves from the coupiing of these proton and neutron boson states
through the n~p interaction. Their picture of 56Fe would be that it results
from coupling two-proton hole "bosons" with J = 0 and J = 2 to two-neutron-—

particle bosons with J = 0 and J = 2, One might reasonably approximate these



bosons by the lowest J=O+ and J=2+ states in 54Fe and 58Ni, and say that the
2+ states in 56Fe are rixtures of the states 0+(54Fe) x 2+(58Ni), 2 (SAFe) x
0+(58Ni), and 2+(54Fe) x 2+(58Ni). Bhatt et al. did analyze the 56Fe wave
functions in a model identical to the one discussed above. They found that
the ground state band of 56Fe is indeed dominated by these three states.
For instance, the J=2+ state is more than 95% in these three states.
Several years ago, I developed some programs in collaboration with
L. B. Hubbard to carry out shell-model calculations in a truncated space,
where the truncation schieme was chosen on grounds very similar to the
foundations of the IBM model. Some of the calculations we did in the course
of developing the program are of interest with respect to the interacting
boson model, and I'd like to discuss them in the remainder of this report.
The effective residual shell model Hamiltonian can be written in neutron-
proton férmalism, in obvious uwtation,

H=H +H +H .
nil PP pn

In many shell model cases, it is possible to solve the shell-model calcula-

tion exactly for the neutrons and protons separately., Thus, the following

equations
I . |
nnlwn> Enlujn>
i, o iy,
H > =E >
PPIwP P]wP

define a complete set of states in the neutron and proton spaces separately.

The direct product space
= ot 3
Iwij> |¢n> x |¢p>
forms a complete space for the full shell model space. For example, in a

s-d shell-model calculation in which the 160 core is inert, and particles



are limited to the s—-d shell, the states in 2ONe can be expanded as linear
combinations of states in 180 coupled to states in 18Ne. There are 14 inde-
pendent two—particle states in 180 with fixed J in this model, so there are
at most 256 states in 2ONe in this representation for any given J. In some
cases, it may be possible to select a subset of states in the proton space
and a subset of states in che neutron space, such that the states in the
direct product space of these two subspaces form the dominant part of the
wave functions of the low-lying states in the coupled neutron-proton system.
The hop- is that it is possible to find a truncated space which is large
enough to adequately describe low-lying states, but small enough to lead to
a tractable calculation in those cases where the full shell-model calculation
is unreasonably large. We have developed programs to perform such calcula-
tions. As a first test of the program, we looked at some s-d shell and f-p
shell nuclei where the exact shell model diagonalization in the complete
space is possible, so that we could study the effects of space truncation.
In this talk, I'd like to present and discuss results for 2oNe and Ti.
The 20Ne calculation is the one described above. For 44Ti, an inert OCa
core is assumed, and the valence particles are restricted to the 0f-lp shell,
In both cases, Kuo-Brown matrix elements of the effective Hamiltonian were
used, but the types of results I'll discuss are unlikely to depend on the
choice of the interaction. The single-particle energies used were those sug-
gested by the spectra of l7O and AlCa. The complete shell-model calculations
were made with the Oak Ridge-Rochester shell model programs.

Figure 4 presents some results of energy level calculations for 20Ne.
The left-most spectrum is that resulting from tne complete (sd)4 calculation.

The numbers under each of the other spectra indicate the space truncation

used in the two-neutron and two-proton parts of the space. Thus, the



right-most spec:zcm is labeled 3 x 3. This means the lowest three states in
18, . + _+ +

0 (i.e., the lowest J=0 , 2 , and 4 states), and the same lowest three
states in }SNe were included in the model space. In the spectrum labeled
6 x 6, the lowest six states in each space were included in the calcuiation,
and so on. Figure 5 shows analogous results for 44Ti. The results for the
two calculations are very similar. To obtain a spectrum which is qualita-
tively similar to the spectrum of the exact calculation, it is uecessary only

. 2 s
to include the lowest two states of even J, i.e., in 0Ne, include the low-

est twoe J=0+, 2+, and 4+ states of 180 and 18Ne. The improvement which re-
sults from adding more states is mostly one of trimming up quantitative
agreement.

In Tables 2 and 3 the calculated B(E2)-values for transitions between
low-1lying states in 20Ne and haTi are presented. Effective charges Ep =
1.5e and e, = 0.5e have been used in both model spaces. Here again, the
qualitative structure of the transition strengths among low-lying states is

. . + + .
reproduced in the space with the two lowest J=0 , 2+, 4, etc. states in both

20Ne and 44Ti. The absolute strengths are surprisingly well accounted for by
the truncated calculations. A single small increase of the effective charge
would give rather accurate agreement with the exact calculations. For the
ground state band transitioms, the calculation in the smallest spaces really
account for the relative strength rather well, The same is not true for the
states outside the ground state band. In 20Ne in the 3 x 3 space, the cross-
over transition from the second 2+ to the ground state is almost as strong

as the transition to the second O+ state, In the exact calculations, the
cross—over transition 1s strongly suppressed. When the second J=O+, 2+, and

4+ states are included to produce the 6 x 6 results, the picture is dramatically

improved. Entirely analogous results exist for 44Ti. The qualitative

#



features of all the B(E2)'s shown in Table 3 for the complete space shell-
model calculations are reproduced in the 8 x 8 space.

I have looked at the structure of some of the wave functions in 2ONe
and 44Ti. In Table 4, an analysis of the wave functions of the two lowest
J=0+ states in 2ONe is shown. In this table Jl and J2 refer to the J of the
two-particle states in the proton and neutron spaces separately. The sub-~-
scripts identify the proton or neutron states as the first, second, etc.
states of that spin. The aij is the admixture of each of these basis states
in the first and second 0+ state in ZONe, respectively. Results are shown
for the 3 x 3, 6 x 6, and exact (14 x 14) spaces. The percentage figures at
the lower part of the table are the percent of the exact wave functions that
are in the states in the 3 x 3 and 6 X 6 spaces, respectively (i.e., 76% of
the exact 0+ ground state wave function consists of states which involve only

Q

+, and 4+ states in 180 and 10Ne). The figures labeled

the lowest J=O+, 2
overlap indicate how much the part of the exact wave function in the 3 x 3
and 6 x 6 spaces resemble the curresponding eigenstates which result from
diagonalization in only the smaller space. Thus, if we consider only the
first three components in the exact wave function for the lowest J=0+ space
in 20Ne, renormalize these "three component wave functions', and overlap it
with the lowest 0+ state in the 3 x 3 space, the overlap is > 0.999. The
implicatijons of this analysis are entirely consistent with the results of

the calculations of energies and E2Z observables. The 2 x 3 calculation gives
a reasonable description of the exact calculations, The case for the ex-
cited J=0+ is a different story. Only 167% of the complete wave function of
this state is in the 3 x 3 space. The 6 x 6 wave function, however, is quite
similar to the 6 x 6 part of the complete wave functions, and 91% of the com~

plete wave function is in the 6 x 6 space.



It is interesting to note tne structure of the ground state wave func-
R s A . , 20
tion. Ones intuition might suggest the largest component in the ~ Ne ground

state would be the state which results from coupling the ground states of 180

18 . .
and ~ Ne. In fact, in the complete shell model wave function, the largest

. . + .18 18
amplitude is for the coupling of the lowest 2 states in = 0 and Ne. This
results from the important role of the neutron-proton interaction in gener-
ating the collective nature of the neutron-proton systems. The strong ad-

. + + L+

mixture of the two 2 states can be shown to occur because of large 0 -+ 2

. . 18 18
matrix elements of the mass quadrupole operator in 0 and Ne. Thus, the

.o .2 ‘s
strong collectivity in oNe occurs because of a coherent mixing of strong
quadrupole collectivity in the separate neutron and proton spaces.
. + .
A similar analysis of the wave functions of the lowest J=0 states in

44Ti is shown in Table 5. In this case, I have not done the complete space

calculation for 44’l‘i in this neutron-proton representation. Thus, in Tablie

5, a comparison is made of the lowest two J=0+ in the 4 x 4 and 8 x 8 spaces.
The general results are the same as in the case for 20Ne. The structure of
the wave function of the lowest J=0+ state in the 4 x 4 space is very similar
to the part of the 8 x 8 wave function that is in the 4 x 4 space. For the
second 0+ state, only 20% of the 8 x 8 wave function is in the 4 x 4 space.

The IBM wodel would treat the ground state bands of 20Ne and 44Ti as

mixtures of a J=0" ang J=2F neutron "boson" to a J=0+ and J=2* proton boson.
The results shown here offer some support to the assumptions of their model.
These calculations show that the ground state band properties of 44’l‘i and 20Ne
are rather well reproduced by the smallest calculations. 1In 2oNe, 937 of the
ground state 0+ state consists of only the lowest O+ and 2+ neutron and proton

states. In 44Ti, 92% of the ground state is in the analogous O+ and 2+ spaces.

44

In the lowest 2+ of " Ti ir the 4 x 4 model space, 82% of the wave function
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+ + ,
is involved in the 0 and 2 two-particle states.

+
There is a disagreement for the lowest 4 state in 44Ti. Only 30% of

+ +
this function is in the 0 + 2 '"boson" space. It is a possibility that the

spaces dealt with here are too small and simple, and that the IBM will be

better for the more complicated wave function. Calculations involving up to

four neutrons and protons are being started.
The calculations described here suggest that this approach might be a
useful truncation scheme for doing calculations where complete shell~

model calculations are intractable. These test cases involve neutromns and

protons in the same orbits which could maximize the effects of the neutron-

proton interaction. But the approach in a sense assumes the n-p interaction

is a perturbation. In cases of heavier nuclei, neutrons and protons are in

different orbits, and effects of an may be somewhat weaker, and this approach

may be better. Also these calculations in this scheme may be a useful com-

plement to the development of the IBM models.
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Table 1. EZz-Operator in Even Fe Isotopes
(e =1.2e, ¢ = 1.9e)
P n

Q(efmz)

g 56Fe 58Fe _6&%
2 =37 ~41 -45
4 ~43 =35 ~53
6 56 -35 23
8 -13 74 54

io -6 38 69

12 - -

A B(E2). (e*fn%)

i f i-f
2-0 358 536 551
4-2 456 594 724
6-4 57 628 232
8-6 27 25 358

10-8 87 43 400

12-10 67 270

!
1
g



Table 2.

Between Low~Lying States in

> 0

13

Calculated B(E2)-Values for Selected E2-Transitions

Space

B(E2) eZfm’ e, = L.5e,
3 x3 6 X 6
182 222
410 488
506 571
404 445
7.3 0.1
12.3 66

2ONe in Various Model Spaces

241
537
635
529
0.4

81
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Table 3. Calculated B{E2)-Values for Selected E2-Transitions Between

Low-Lying States in 44Ti in Various Model Spaces

J J B(E2) ezfm4 (cp=l.5e, En=0.58)

|-
h

Space 4 x4 8 x8 1lx11 (fp)”

21 Ol 69 83 90 96
41 21 83 104 115 122
61 41 65 81 96 101
8l 61 60 73 78 79
22 Ol 0.1 3.0 2.0 2.6
22 21 60 115 117 128
42 21 5 0.8 0.4 0.02
22 41 1.2, 14 17 14
42 41 22 57 . 61 58
42 22 22 58 66 69
42 61 0.7 21 19 19
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Table 4. Structure of Lowest Two J=0 States in 20Ne in Various Truncated Spaces, as Described in the Text

+ +
! %
X x
Jl J2 aij (3 x 3) aij (6 x 6) aiLFull aij(3 3) aij (6 % 6) a;ij Full
01 Ol 0.693 0.618 0.580 0.719 0.308 0.282
21 21 0.668 0.655 0.603 ~0.669 -0.158 -0.175
41 41 0.269 0.250 C.240 ~0.189 0.198 0.213
02 02 -0.122 -0.118
22 22
42 42 0.100 0.121 0.160 0.103
01(02) 02(01) 0.100 -0.456 -0.437
21(22) 22(21) 0.130 0.129 ~0.416 -0.377
by (4y) by (4)) 0.170 0.190 0.164 0.176
Overlap 0.999 0.986 .906 .998

Z in full 76 88 16 91
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Table 5. Structure of Lowest Two J=0+ States in 44Ti in 4 x 4 and 8 x 8 Spaces.
The basis state le X wz, J=0> is described in Columns 1 or 2. Column 3 shows
the amplitude, a., for that basis state in the wave function. All amplitudes
are shown for the 4 % 4 wave functions. The amplitudes of the same 4 x 4 states
are listed in the 8 x 8 wave function, plus all amplitudes [ai! > 0.1. The last

two entries, % and overlap, are explained in the text.

+ +
ke kel % %
a,, 4 x4 a;s 8 x 8 4 x 4 8 x 8
0, Ol . 806 .760 -.323 -.163
21 2l .520 .516 .786 .320
41 41 . 245 .251 -.440 -.244
6l 61 .142 .156 -.288 -.127
01<Ol) 02(02) .237
2

21(“2) 22(21) -.549
Gy by(4) .193
22 2, -.136
42 42 -.106

% (4 x 4) in (8 x 8) 93% 20%

Overlap .9995 .973
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FIGURE CAPTIONS
Figure 1. Calculated spectra of YRAST levels in odd-even nuclei.
Figure 2. Calculated spectra of YRAST levels in even-even nuclei.
Figure 3. Backbending plot of 2% » 12¥ YraST states in $0Fe.

20 . . R .
Figure 4. Spectra of Ne in various truncated spaces, as discussed in the

text.

4
Figure 5. Spectra of 4Ti in various truncated spaces, as discussed in the

text.
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