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LIMIT CYCLES AND BIFURCATIONS IN NUCLEAR SYSTEMS

Dan G Cacuci, Jose March-Leuba, and Rafael B. Perez

Recent stability tests!"-* have shown that Boiling Water Reactors

(BWRs) are susceptible to reactivity instabilities when operated at low-

flow conditions. When such instabilities occur, limit cycles are observed

in the measured process signals, indicating that these instabilities cause

a transition between a linear regime (normal operation) and a nonlinear

regime (unstable operation in the linear sense). The purpose of this paper

is to describe the phenomenological dynamical behavior of BWRs in the non-

linear regime under deterministic and stochastic excitations.

It has been shown in Refs. 4-6 that the following equations underly

the simplest phenomenological model that retains the essential physical

processes controlling the dynamic behavior of a BWR:

+ ie + £ .

fro - * •
- a2T(t) , (3)

d2p (t) dp (t) (4)

— 2 - + ̂ —^~ + V a " kT(t) '
dt

p(t) - pa(t) + DT(t) , (5)

where n(t) is the excess neutron density normalized to the steady state

neutron density; c(t) is the excess delayed neutron precursors concentra-

tion, also normalized to the steady state neutron density; T(t) is the

excess average fuel temperature; and p (t) is the excess void reactivity .

feedback
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As detailed in Re f. 4, the parameters in Eqs. (l)-(5) wer^ obtained by

tune t iona 1 I v fitting the transfer function of the Vermont Yankee reactor

with operating conditions equivalent to those of the stability test 7N

(when a limit cvcle was experimentally observed)2 to obtain:

a - 25.04 Ks' 1, a. = 0.23 s'1, a. - 2.25 s"1, a. - 6.82 s"2,
1 2 3 4

kn - -3.70 x 10" 3 K ^ s " 2 , D - -2.52 x 10"5 K"1, /9 - 0.0056,

A =- 4.00 x 10 "5 s"1, \ - 0.08 s"1.

The parameter k, which is proportional to the void reactivity coeffi-

cient and the fuel heat transfer coefficient, controls the gain of the

feedback and, thus, defines the linear stability of this reactor model.

This can be demonstrated by applying, at t-0+, a 10% step-perturbation to

n(t) in Eq. (3) and allowing the solution to converge freely to its final

state. The numerical solution of the model shows that limit cycles appear

when the feedback gain k is increased past a critical value k

In the linear region the stability of the nuclear system is quantified

in terms of an asymptotic decay ratio (DR)^; however, in the nonlinear

regime, the asymptotic DR is always equal to 1.0 due to the appearance of

limit cycles. Therefore, the DR is not a good descriptor of the reactor's

dynamic state in this regime. As shown in Refs. 5 and 6, a better dynamic

descriptor in the nonlinear regime is the amplitude of the limit cycle

oscillations.

Thus, the stability of the amplitude of the oscillations becomes the

main concern in the nonlinear regime, a fact that is highlighted in Fig. 1.

This figure shows the development of the limit cycle for three different

values of the feedback gain: (a) k - 1.2, (b) k - 1.4, and (c) k - 1.5.

Note that in both cases (a) and (b) the amplitude eventually converges to a

final value, but in case (c) the amplitude describes an undamped periodic
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osci11 at ion. Thus the amplitude of the limit cycle in case (c) has become

unstable and is following a new limit cycle of its own with twice the ori-

ginal period. This fact causes the original signal to periodically exhibit

rwo pulses of different magnitude. This process is customarily called a

"period-doubling bifurcation."

Further increasing the feedback gain produces a cascade of period-

doubling bifurcations which leads to an aperiodic regime. As has been

detailed in Ref. 8, the transition to aperiodicity is governed by a set of

universal constants with values as predicted by Feigenbaum's universality

theory.

To analyze the effects of nonlinearities on the BWR behavior under

stochastic (random) excitations (sources), the phenomenological model [cf.,

Eqs. (l)-(5)] was externally driven with a band-limited Gaussian white

noise, and the equations were solved numerically in the time domain. The

traces generated for n(t) were Fast-Fourier transformed to obtain power

spectral densities (PSDs).

Increasing the feedback gain k shows that as long as k<kfi the power

oscillations increase in time and eventually reach a limit cycle, with an

enhancement of the harmonic components of the PSD as seen in Fig. 2. This

figure shows three PSDs for different values of k. In case (a) the model

is barely stable and only the fundamental peak is clearly discernible at

about 0.5 Hz. Case (b) represents a small amplitude limit cycle, for which

the value of k is only slightly above the critical value k_. Case (c)

corresponds to a fully developed large-amplitude limit cycle. The main

difference between the stable and the unstable PSDs is the appearance of

higher harmonics. These harmonics have a large magnitude, so they should

be measurable in real-life experiments even in the presence of measurement



h

and process noise.

In summary, this work provides a basis for scoping calculations to

determine, the dynamic behavior - both linear and nonlinear - of BWRs.

Additional work is now underway to establish the feasibility of routine

operation of nuclear systems in the nonlinear (limit-cycle) regime.
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FIGURE CAPTIONS

Fig. 1. Development of an instability of the limit cycle amplitude.

Fig. 2. Power spectral densities before and after the development of
a limit cycle: (a) slightly stable, (b) slightly unstable, (c) fully
developed limit-cycle.
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