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LIMIT CYCLES AND BIFURCATIONS IN NUCLEAR SYSTEMS

Pan G Cacuci, Jose March-Leuba, and Rafael B. Perez

Recent stabilicy testsl-3 have shown that Boiling Water Reactors
{BWRs) are susceptible to reactivity imnstabilities when operated at low-
flow conditions. When such instabilities occur, limit cycles are observed
in the measured process signals, indicating that these instabilities cause
a transition between a linear regime (normal operation) and a nonlinear
regime (unstable operation in the linear sense). The purpose of this paper
i{s to describe the phenomenological dynamical behavior of BWRs in the non-
linear regime Qnder deterministic and stochastic excitations.

It has been shown in Refs. 4-6 that the following equations underly
the simplest phenomenclogical model that retains the essential physical

processes controlling the dynamic behavior of a BWR:

dn(t) _ p(0)-B 2
ac nn(t) + e+ 0, (1)
de(r) _ B -
ac = An(t) Ac (2)
d
—%égl = aln(t) - azT(t) s (3)
2
d pa(t) dp (t) . (4)
— 4+ a,——— + a,p = kT(t) ,
dt2 3 dt 4T
p(t) = Pa(t) + DT(t) , ‘ (3)

where n(t) is the excess neutron density normalized to the steady state
neutron density; c(t) is the excess delayed neutron precursors concentra-
tion, also normalized to the steady state neutron density; T(t) is the
excess average fuel temperature; and pa(t) is the excess void reactiyiéy :

feedback



As detailed in Ref. 4, the parameters in Egs. (1)-(5) werc obtained by
tunctionally fitting the transfer function of the Vermont Yankee reactor
with operating conditions equivalent to those of the stability test 7N

{when a limit cvcle was experimentally observed)? to obtain:

25 04 Ks'l, a, = 0.23 s'l, a, = 2.25 s'l, a, = 6.82 5'2,

1 2 3 4

ko = -3.70 x 1073 k'1s72 p = -2.52 x 10°3 k"1, g = 0.0056,

a

A= 4.00 x 1077 s°1, A = 0.08 s°1.

The parameter k, which is proportional to the void reactivity coeffi-
cient and the fuel heat transfer coefficient, controls the gain of the
feedback and, thus, defines the linear stability of this reactor model.
This can be demonstrated by applying, at t=0%, a 10% step-perturbation to
n(t) in Eq. (3) and allowing the solution to converge freely tu its final
state. The numevrical solution of the model shows that limit cycles appear
when the feedback gain k is increased past a critical value ko.

In the linear region the stability of the nuclear system is quantified
in terms of an asymptotic decay ratio (DR)7; however, in the nonlinear
regime, the asymptotic DR is always equal to 1.0 due to the appearance of
limit cycles. Therefore, the DR is not a good descriptor of the reactor'’'s
dynamic state in this regime. As shown in Refs. 5 and 6, a better dynamic
descriptor in the nonlinear regime is the amplitude of the limit cycle
oscillations.

Thus, the stability of the amplitude of the oscillations hecomes the
main concern in the nonlinear regime, a fact that is highlighted in Fig. 1.
This figure shows the development of the limit cycle for three different
values of the feedback gain: (a) k=1.2, (b) k = 1.4, and (c) k ~ 1.5,
Note that in bcth cases (a) and (b) the amplitude eventually converges to a

final value, but in case (c) the amplitude describes an undamped periodic



oscillarion. Thus the amplitude of the limit cycle in case (c) has become
unstable and is following a new limit cycle of its own with twice the ori-
ginal period. This fact causes the original signal to periodically exhibit
two pulses of different magnitude. This process is customarily called a
"period-doubling bifurcation.”

Further increasing the feedback gain produces a cascade of period-
doubling bifurcations which leads to an aperiodic regime. As has been
detailed in Ref. 8, the transition to aperiodicity is governed by a set of
universal constants with values as predicted by Feigenbaum’s universality
theory.

To analyze the effects of nonlinearities on the BWR behavior under
stochastic (random) excitations (sources), the phenomenological model [cf.,
Egqs. (1)-(5)) was externally driven with a band-limited Gaussian white
noise, and the equations were solved numerically in the time domain. The
traces generated for n(t) were Fast-Fourier transformed to obtain power
spectral densities (PSDs).

Increasing the feedback gain k shows that as long as k<kO the power
oscillations increase in time and eventually reach a limit cycle, with an
enhancement of the harmonic components of the PSD as seen in Fig. 2. This
figure shows three PSDs for different values of k. 1In case (a) the model
is barely stable and only the fundamental peak is clearly discernible at
about 0.5 Hz. Case (b) represents a small amplitude limit cycle, for which
the value of k is only slightly above the critical value ko. Case (c)
corresponds to a fully developed large-amplitude limit cycle. The main
difference between the stable and the unstable PSDs is the appearance of
higher harmonics. These harmonics have a large magnitude, so they should

be measurable in real-life experiments even in the presence of measurement



and process noise,

In summary, this work provides a basis for scoping calculations to
determine the dynamic behavior - both linear and nonlinear - of BWRs.
Additional work is now unde%way to establish the feasibility of routine

operation of nuclear systems in the nonlinear (limit-cycle) regime.
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FIGURE CAPTIONS

Fig. 1. Development of an instability of the limit cycle amplitude.

Fig. 2. Power spectral densities before and after the development of
a limit cycle: (a) slightly stable, (b) slightly unstable, (c) fully
developed limit .cycle.
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