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Abstract

A mechanical device has been developed which dissipates mechanical
energy simply and reliably, without generating debris. The device basically
consists of a stack of thin flat metal layers, forming a flexible plate, and a
mechanical spring to buffer the impact of the moving object. Equations
have been developed which allow the design of such devices for particular
applications.

Summary

Miniature mechanisms often suffer from excess kinetic energy in moving parts, causing
undesirable rebounds, mechanical damage, and debris generation. A simple mechanical
device has been developed which can dissipate this kinetic energy without generating
debris. The major challenge in utilizing this device is in reducing its volume to an
acceptable size. A series of tests coupled with a theoretical analysis has produced a
mathematical model which allows an engineer to analytically evaluate various designs to
find an optimum configuration.

The tests measured the bounce height of a metal ball dropped onto a laminated plate,
impacting an intermediate metal spring. The decay time for the vibration set up in the
plate was also measured.

In 1941 Clarence Zener (of Zener diode fame) analyzed the impact of a sphere against an
infinitely large thin flat plate and showed that the plate acted as a viscous damper, or
dashpot. The local deformation due to contact stresses in the sphere and the plate acted
as a nonlinear spring. The resulting differential equation could be numerically evaluated
and showed that the sphere separated from the plate when the plate reached its maximum
deflection, giving the sphere some predictable rebound velocity. After the rebound, the
plate would presumably vibrate and dissipate its energy in internal damping before the
sphere would impact it again. )

This report considers a small plate with a linear spring. It accounts for the energy which
is reflected from the edges of the plate and returns to the impact point and for the velocity
of the flexural waves which are set up in the plate. The bounce height as a fraction of the
drop height is predicted analytically. The decay time of the plate vibrations is not
analyzed.

The theoretical bounce heights agree well with the measured values, indicating that the
analysis can be applied to an actual mechanism.







Discussion

Scope and Purpose

The purpose of this project is to tie together the experimental results and a theoretical
model of the flat plate device in order to allow an engineer to design such a device for a
given application. The kinetic energy which is to be dissipated can be either in the form
of linear or rotary motion.

Prior Work

The development of the flat plate device was started as part of the "posigrade cam"
redesign effort for a safety “stronglink”. That redesign effort was cancelled in 1986, but
the development of the flat plate device was continued with a project called "Thin Flat
Plates as Mechanical Stops." Additional drop tests of metal balls were conducted and
the theory advanced. A copy of the final report of this study is included in Appendix A.

An attempt to use finite element analysis to gain an understanding of the behavior of the
flat plate was made in another study, "FEA for Flexural Vibration of Beams." In spite of
the title, the analysis progressed to the impact of a mass with the center of a flat plate.
The analysis was only partially completed, and it was not obvious how the results could
be interpreted usefully.

The development of the flat plate device was continued in the project, "Dead Mechanism
Stop Using Thin Flat Plate." As part of this project, a mechanical stop for a module drive
arm of another assembly using a flat plate was built and tested. This effort was
premature and performed no better than the existing stop. The theory of the device
was, however, improved and still appeared to be promising. Another device, involving
simpler physics, was built but wasn't tested. In this device, the flat plate served only to
dissipate the energy of the impact after the initial rebound. A copy of the final report of
this study is.included in Appendix B.

Activity
General

. In mechanism design, it is generally good practice to have a significant margin between
the applied force or torque and the static resisting force or torque in order to ensure




reliable operation. This results in an excess of kinetic energy at the end of the stroke,
causing an undesirable rebound, surface wear and even peeling, and debris generation.
No device is presently available for cleanly and reliably dissipating this energy in such a
way that there is only a small rebound.

In 1986, a redesign effort for a safety device was cancelled, at least partly because we
were unable to retard the return of the output switch from its enabled position without
quickly destroying the pallet and gear involved. In researching the topic of impacts and
coefficients of restitution, we found a reference in a book called Impact to an article
written by Clarence Zener in 1941 on the ability of thin flat plates to absorb the impact of
a sphere with virtually no bounce.1, 2 Zener developed a theory for infinitely large
plates which seemed to explain the phenomenon and which seemed to present a
solution to our problem--if we could find a way to reduce the plate to a reasonable size.

Several short-term PDOs followed, each of which has advanced the understanding of
this energy-absorbing device. As a result, we now seem to be in a position where we
can evaluate analytically whether this type of device can be made small enough to do a
given job in a given volume. An invention disclosure has been filed on the flat plate
device.

Many mechanisms involve rotary, rather than linear, motion; and it may not be obvious

that a ball dropping onto a flat plate is mechanically equivalent to a rotating arm striking
a similar flat plate. This equivalence will be discussed in more detail in Appendix C, and
it is the basis for the bulk of the experimental work done on the flat plate device to date.

Zener's article contains three things which are useful in our analysis. He shows that a
large thin flat plate has the property that the velocity of the plate in the vicinity of the
impact is proportional to the force applied, the same as that shown by viscéus damping.
He gives an expression for the inverse of that proportionality constant in terms of the
plate material and geometry. He also gives an expression that relates the wavelength of
a flexural wave in a flat plate to the frequency of the wave. These expressions will be
shown later, but with some changes in nomenclature from his article.

N

Analysis of Infinite Plate

In Zener's analysis, the sphere and the flat plate are locally deformed due to contact
stresses. These deformations serve as a nonlinear spring. We have replaced the
nonlinear spring with a linear spring, both to simplify the analysis and to make the spring
rate independent of the geometries of the ball and the plate. Figure 1a shows a
simplified sketch of the elements of the flat plate device during the time the ball is in

" contact with the spring. Figure 1b shows a schematic diagram of these elements during
the impact process. The plate is shown as a dashpot, since its only significant
characteristic is that of a viscous damper. Figure 2 shows a free-body diagram of the
three elements involved. The spring is assumed to have negligible mass, so the same
force acts on all three elements. We can, therefore, write the following three equations:

10
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b. SCHEMATIC DIAGRAM

Figure 1. Elements of the Flat Plate Device During Impact
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F=-Myp

F = K(yo-¥p)
F = (1/a) yp.

Letx = yp - yp = deflection of the spring
SOX = ¥p - Yp,

and X = i - Y.

Then, (1/0) ¥p = KX,

soyp = Kax,

and jp = Kax.

Also, K x = -M yp, so yp = (-K x/M).
Therefore, X = ¥ - Jp = (-K /M) - K a%,

or X+ (Ka)x + (KIM)x = 0.

J. P. Den Hartog shows how to solve the equationm X + ¢ X +kx = 0 (Reference 3).
The equation was derived for a dashpot in parallel with a spring, both attached between
ground and a mass, but we can apply his method of solution to our differential equation,
which has the dashpot in series with the spring. ,
Assume x = est,

SO X = s est,

and X = s2est.

Then, s2est + (K a) s est + (K/M) est = Q,

or[s2 + (Ka)s + (K/M)] est = Q.

Therefore, s2 + (Ka) s + (K/M) = 0, since est = 0,

13




and

~Kat v Ea)?-4&/M

where s is s with the + sign and s is s with the - sign.
Then, the general solution for x is

s.t syt
_ 1 2
x—Cle +02e ,

where Cq and Gy are arbitrary constants which are, in general, complex numbers.

We are interested in the cése when (K o/2)2 is less than (K/M) since we want x to return to
zero in some finite time. For our case, the expression inside the radical will therefore be
negative and we will have to use complex numbers.

A transition in response will occur when the square root term just equals zero, or
(K a/2)2 = K/M,

or (K2 o2 /4) = K/M,

ord = (K22 M)/K = KM a2.

LetA = \/ KMaZ=a \/ K M. The transition in response will then occur when A = 2.
Since the factor, 2, has no dimensions, A must also be dimensionless. We can check this
by plugging in the dimensions for a, K, and M:

A = (in/ Ibf sec) \j (Ibf/in) (Ibf sec2/in) = 1 (dimensionless).

The units used in this report are discussed in Appendix D.

14



It will be helpful later to express various quantities in terms of A, but for now we will
continue to use K, M, and a.

Writing the expression for sq 2 using complex notation,

et \/ (5)- -(5)"

where

=1

Let

Thensio = - (K@2) % jqg.
Per Euler's equation, ei® = cos 6 + j sin 6
and e-i® = ei(-6) = cos(-0) + j sin(-8) = cos(0) - j sin(B),

SO

Kat Kat

=Ce 2 eth+Cze 2 giat

__Kat
— 2 jqt —jqt
=e (Cle’ ‘ +Cye )

_Kut

=e 2 [C1 (cos qt + jsinqgt) + Cz(cosqt — jsinqd]

15



Kat

=e 2 [(C1 + Cz) cosqt + (iC1 —jCZ) sin qt].

Since C1 and C» are arbitrary constants, (C1 + C2) and (jCq - jCp) are also arbitrary
constants, so we can let

C1 +02 =H
and
Jj C1" jC 9= L
Therefore,
Kat

x=e 2 (H cos gt + Isin qd).

Now we can apply what we know about the beginning and the end of the impact process.
At the beginning, the ball is falling at some velocity, call it vg, and the spring hasn’t been
compressed at all.

So,att=0: x=% =0,F=0,¥ = ¥o0 = V0. ¥p = 0, ¥b = ¥p = 0, and

X=X = )‘lb-yp =vp-0=vp

We will take the end of the impact process to be the time when the spring is just no longer
compressed, so the ball will just be losing contact with the spring. We will call the velocity
of the ball at this time v;.

So,att=# x=x=0,F =0,y = v, ¥p = Kax = Ka(d) = 0, and
X=X=Vp-¥p = V-0 = v

We can use these equations to find the constants | and J.

Xp = 0 = €0 [H cos(0) + Isin{0)] = H; so,H = 0.

Therefore,

_Kat
x=e 2 Isingt
and

16



_Kut Kat

Ka 5
z=1I|ge 2 cosqt+(——2—e 2 sinqt>
_Kat <
=Ie 2 (qoosqt— —22sinqt>.
So,
Ka
s 0 —_—— - - — .
xO—Ie [qcos(O) 2 sin (0) —Iq—vo,
and
I=(volq) .
Therefore,
_Kat
x=—oe 2 singt
and
Kat
. % ‘T( Ka )
rxr=—e qcosqt — — sinqt
q 2
_Kat
=vy,e 2 (cosqt——sinqt)
SO
_Kutf
Y 2
= 0 -—; e sznqtf.
Therefore, sin gty = 0, since
_Kutf
L 2
0
—e = 0;
q
S0, qfs = n,
and = n/q.

17
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Also,

Kat
. .2 ( , _Ka t)
=y e cos gt P sin gt
Kan

Ka
p—vg 2 — h
=y, e a <oos(n)—2qszn(u)>

Kan
- 2q
=y, e (-1-0)
Kan
- 2q
- vo e
- vf.
Therefore,
Kan
- 2¢q
Uf = UO e

We are interested in the final kinetic energy of the ball, as a fraction of its initial kinetic
energy.

Therefore, let

_ finalkineticenergy of the ball
1= initial kinetic energy of the ball

2 Kan
=1/2va (vf>2=e— .
1/2 Mo} o

18



Since, in a constant gravity, velocity is proportional to the square root of height,

_ bounce height
" drop height

= relative bounce height when energy reflected from the edges of the plate is not
considered.

The above expressibn for n can be simpliffed .considera{bly by introdﬁcing the
dimensionless variable, A.

Recall that

and A = \[KMa2=a \’ K M.

Therefore,
Kan _ Kan
q \ ®M) - (Ka/2)?
Kan

\ EIM)(K a“K o) - (K> a®)/4]

Kan
&Ko) y WMEd) - (1/4)

I

\I an® - w4

19



_ 2nl
422’
a function only of A.
In order to clean up the expression a little, we can let p = 4-72,
Then (Kan/q) = (2nA/p),
and
_2md
n=e "

We can see that n is a function only of A, so Ais obviously an important parameter in the
problem. We can therefore eliminate one of the other parameters. The best candidate for
elimination seems to be the spring constant, K. We can rather freely select any value for
the spring constant in order to get the desired value for A, given the values of M and a.
From the definition of A, we can see that K = A2/ (M a2). We will use this expression to
eliminate K from our equations. We will also eliminate g, except where it is muitiplied by a
time variable: (Kan/q) = (2n\/ ), '

so q = (Kau)/2A
= (A2/M a2) (a p/2h)
=@Ap/(2Ma)
(Ka)/2 = (Aq)/p
and (K a) / 2q = (Mp).
Therefore,

Kat

x=—e sinqt

20



sin gt,

and

Kat

i=v e 2 [cosqt = (Ka /2 q)singt]

_Aagt

=v e F [cosqt— (A/p)singt].

There are two more quantities that we should be able to calculate in order to design an
actual flat plate device, the maximum deflections of the spring and the flat plate, in order
to ensure that they don’t bottom out against something. The spring deflection will also
give us the force, since we must know the spring rate in order to work the problem.

First, we will find the time, t4, at which the spring deflection, x, is a maximum, which means
that we must set the derivative of x with respect to time equal to zero:

Ath

:'c=0=v0e B [costh—(}x/p)sinth].

This requires that cos gty = (A / p) sin gty,
since

).th

So, tan gty = (W/A),
qtx = tan -1 (u/A),

or ty = (1/q) tan -1 (W/A).

21




Also,

Therefore,

22



and Fy = maximum force applied in the impact process

= K Xy
Ath
22 Mav, -
— — B
_— e
Mad? A
Agt
Avo -—=
= —0¢ B
a

To find the maximum plate deflection, ypy, we note that § = aF = aK x. Thus, the time
derivative of the plate deflection goes to zero when the spring deflection, x, goes to zero,
which is at the end of the impact process at the time, t;. We will have to integrate x over
the entire contact duration to find ypy.

=a e Y singtdt -
Ma®Jlo Am
2) Yy [t _dat
= e Y singtdt.
- 0

23




From a standard table of integrals:4

e [a sin(bx) — b cos(bx)]

J €™ [sin (bx)ldx =

a® +b?
So,a=-(Aq)u),b =qg,andx =t
Therefore,
_Aat A ]
¢ _dat e P (——fsinqt-—qcosqt)
J e P singtdt= > 3
0 A%g 2
R -
Agt ¢

i A
ge P (— ;sinqt— cosqt)

qz(%+1> 1,

B
Aqt ¢
(- g o
e — —sinqgt — cosqgt
_ B
= 2
q( +1>
422 Jdo
i

Agt .
T(ohy
e — —sinqgt— cosqt

___'(2;?) (p4 )

4 -2

24



Agt

<2Ma>(u2 _T( A ):|‘
= —) e — —singt— cosqt) -
Ap 4 B 0

Agt

M T A ¢
=( 2(;.11) e Y (—;sinqt—cosqt) :lo

Therefore,

Agt
y = e - —singt— cosqt
2 n 0

Agt

ik A A . ¢
=Mau0e B | — —singt— cosqgt
B 0

Agt

- A
=May|e B (-— — sinqt — cosqt)—l(-—O -1)
n

Aqt
.._p_ A
e — —singt— cosqt) +1
B

=M(1v0

Aqt

A
=Mavo[1-e B (—sinqt+ cosqt)]
2}
and

Aqtf

1—e— B (-A—sinqt + oosqt)].

Ype = Mav0

25




Ay

Since t = n/q, then g = n,

and .
_m A
y =Mav |1-¢ ll(—sinn+ cosn>
bx 0 . B
_m
=Mauo{1——e B [0+(.—1)]}
_m
=Mavo(1+e< L )
Since
_2nA
n

n=e )

then ypx = M avg (1 +,’ n).

Note that the expressions for the maximum plate and spring deflections are based on the
assumption that there is no energy reflected from the edges of the flat plate. If reflected
energy affects the impact, the maximum deflections of the plate and the spring will no
doubt be greater than calculated. However, we will see later that we will want to avoid
such designs anyway.

Zener's article has an expression for a in terms of the plate material and geometry. Using
his equation, our nomenclature, and the definition of the plate modulus, D:

1 3p 3 3 R 1 1
a= — -_— P —4 s
4ph2 E 16ph4 E 16ph4 12D 8./ phD 81’ mD

26
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where D = plate modulus,

h = plate thickness,
E' = E/(1-v2),

E = modulus of elasticity of the plate material,

v = Poisson’s ratio of the plate material,

density of the plate material, and

p

m = mass per unit plan-view area of the plate

=ph

Analysis of Finite Plate

In order to account for the energy reflected from the edges of the plate, we will make a
number of simplifying assumptions. We will assume that the impact process is unaffected
by any reflected energy until time, t, when the impact is just over for the infinite plate. We
will compute the relative bounce height as discussed for the infinite plate and also a new
one for the finite plate and use whichever one gives the greater rebound. We will assume
that energy is conserved during the impact process, so any energy lost by the ball, which
isn’t in the spring, will be in the plate. Therefore, we can compute the energy in the plate
at any time in the impact process.

We will show that the flexural wave velocity at which energy is propagated across the plate
varies with the wavelength such that the velocity decreases with increasing wavelength. In
fact, the velocity will be infinite at a zero wavelength. We will also show that the
wavelength will be zero at the beginning of the impact process and will increase with time.
We will find the total distance traveled by this wave. This will give us a total travel time for
the energy wave to leave the impact point, be reflected one or more times, and arrive
back at the impact point. We can think of these flexural waves as continually leaving the
impact point. As time goes on, more energy is absorbed by the plate, the wavelength
increases, and the wave velocity decreases There will be some time t,, during the impact
process when the wave can leave the impact point and just get back at the time, t;, when
the impact process will be over. We will assume that the total energy absorbed by the
plate up to the time, t,, will instantaneously become the energy of the ball at time, t;, with
the ball moving in the rebound direction.

27



Now we will form a new ratio of energies in a form which can be determined from the
differential equation we solved. We will use a new symbol, g, for this ratio since it is
calculated assuming that the energy in the reflected wave is the only thing affecting the
impact process. Y will be the relative bounce height if it is greater than n.

Let

energy intheplateattime, t,

'qj:

initial kinetic energy of the ball
a (Ubo - Ubu) - U,
UbO
Ubu su
=] - - , Where Ub0 = initial kinetic energy of the ball
Ubo Ubo

U = kinetic energy of the ball at time, t,

M3, 2
T2

5’bu = firsttime derivative of Y attime, tu

U = potential energy of the spring at time, t

su
Kx 2
u
2

28



x, = deflection of the spring at time t,.

Therefore,
ib 2 Kz?
yg=1-——-
002 M v02

=1- -
v02 Ma? Mv02
e (B (e )
Y Ma Yy ’

Now we need to be able to find y, for any given time. . Since X = y;, - ¥p, then,

Yy

5"*'5',,

_Agt N
=y e B (cosqt— - sinqt) +Kax
n

2
B A
=v.e (cosqt—-smqt)+ —_—ax
B Md®

Aqt

A A2 2May, -22E
=pe ¥ (cosqt——sinqt)+ — 0, ® singt
0 n Ma Ap




Therefore,

and

Also,

Therefore,

30

Agt 21v _Aqt

=y,e B (cosqt— - sinqt) +
R

e ¥ singt
R
Agqt
o (conget
=yge cosqt +— singt|.
n
3 )th
b T Ta A
—=e P (cosqt-i-—smqt)
Y B
5 Aqtu
b B A
— = B (oosqt +—singt >
vo u p u
lqtu
Axu A 2Muv0 -
= : B
= e singt
Muv0 Muv0 Ap Ty
. _Aqtu
=-¢ F sinqtu.
B
2Aqtu 2thu
- A 9 -
p=1-e P (cosqt + - singt )2—(—)29 B sinqt
u 11 u 11 u
2thu

A 2
=1-e V¥ [(cosqt + - singt >2 + (- sinqt >2] .
u p u 11 u




We note that @ approaches zero as t, approaches zero.

We must find an estimate for the wave velocity of the flexural wave in the plate. Modifying

Zener's expression to use our own nomenclature:

m_(2_“>2‘/ D
“\A hp!’
where

w=2nf,

f = frequency of a repeating flexural wave, and

A = wavelength of a repeating flexural wave.

It may not be obvious at first, but this is an exceedingly powerful equation. It is able to
relate the deflection of the center of the plate, as a function of time, to the flexural wave
action all over the plate.

For any repeating wave, the period T = 1/f
= 2n/w
sow = 2n/T.

Substituting for w in the above expression:

or
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For an infinite train of sine waves, A = cp T, where ¢y is known as the phase velocity.
Unfortunately, we only have part of a single wave and it is only somewhat sinusoidal.
Luckily, the mathematicians and physicists have figured out that our wave can be treated
as a group of sine waves with frequencies that differ only slightly from each other and that
the energy in the group is carried at a group velocity, cg, which can be fairly easily
determined. In the book /mpact, referenced earlier, we find cg = cp - A (dcp/dA).1
Bringing back our earlier equation for A in terms of T, after squaring both sides:

D A [D
A2=2nT‘/-—=2n— =,
m c m

P
S0,
2 D
A=—“‘/ =,
[+ m
p
or,
2n [D D _,
c = — - =2n — A
p A m m
Therefore,
de, . D ,__2u [D
—_—==20n — = —— -,
dA m A2 m
and
( 2n D) 2n D
¢c =¢ ~A|l—-— —}=c + - —=c¢c +c¢ =2¢
A2 m A m p
Therefore,

We now need some reasonable way to estimate the period of the flexural wave we are
concerned about. We can see the general shape of the plate deflection vs time curve by
noting that the time derivative of the plate deflection is proportional to the spring deflection,
x, which is zero at the beginning and end of the impact process. The plate deflection vs
time is therefore an S-shaped curve, as shown in Figure 3. (Figure 3 was actually
calculated for the conditions of the medium spring rate.) The inflection point-of the curve
will be at the time, t;, when xis a maximum. Up to the inflection point, we could
consider the curve to be part of some other curve with a different amplitude. In particular,
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Figure 3. Determination of Effective Sine Wave of Impact

* this second curve could be considered.to be a sine wave with a period four times as long
as the time of contact, t,, up to that condition. We can consider this to be the effective
sine wave of the impact.

Therefore, T = 4,

A=‘/8nt
u
4 4
(A) A VS% D 21 D
c = —_— e — = _— —— -—
4 4¢ 2t 2t m t m
u u u u

We can consider that the last little bit of the energy that we are concerned about is put into
the plate at a time, t,;, and will travel with a velocity, cg. The time available before the end
of the impact is (t; - t), so the distance traveled, L;, by this last little bit of energy is:

Lf = cg (k- tu). When we have found L¢, we will be able to find t, and then y.

: S
e

and
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We note that the group wave velocity, cg, increases with decreasing t,, approaching
infinity as t, approaches zero. This result is obviously erroneous, but we can accept it
because it makes our calculations easier and will only make our results somewhat more
conservative. We also noted earlier that y approaches zero as t; approaches zero.
Thus, we conclude that some small amount of energy always reflects from the edges of
the flat plate and affects the impact process. As long as this amount of energy,
represented by w, is less than that represented by n, we will simply ignore the energy
contained in the reflected waves. It might seem that these two energies should be
additive, which could double the relative bounce height. It would take considerably more
analysis to see which assumption is better, but we will use the first one and compare the
theoretical results with the experimental results. We can also note that reflected energy
will take some amount of time to be pumped into the ball, but we are conservatively
assuming an instantaneous reaction.

We will also make the conservative assumption that the wave will reflect from a straight
edge of the plate as if it were reflected from the point nearest the contact point. This will
avoid all of the work involved in integrating the energy flow over the included angle of the
edge relative to the contact point and also avoid the problem that we don’t know how the
wave would reflect from an oblique boundary. If all of the edges of a square plate are
supported, the waves will return to the contact point when they have traveled a distance
equal to the length of one side, half on the way out and half on the way back. In that case,
our calculated vaiue for L had better not be greater than the length of a side of the plate.
However, if two of the sides are supported and two are free, the first return of the waves
will essentially cancel and we can allow L; to be twice as great as the length of a side of
the plate, as discussed below.

Sears and Zemansky show schematically the reflections of a single pulse in a taut string
from a fixed and from a free end.5 They argue that the reflection process can be
visualized as an actual pulse and a virtual pulse approaching each other from opposite
sides of the end of the string, as shown in Figure 4a. The pulse shapes shown are
arbitrary. Where the actual and virtual pulses interact, their displacements are added
algebraically. The virtual pulse continues on into the string and becomes a new actual
pulse, while the original actual pulse continues on into the virtual extension of the string
and we can forget about it. For the fixed end, the displacement of the end of the string
must always be zero, so the virtual pulse must be inverted from the actual pulse.

Figure 4b shows the pulses after the reflections from the free and the fixed ends, with the
pulses now on opposite sides of the string. When they interact at the center of the string,
their displacements add to zero, canceling each other out, as shown in Figure 4c. The
pulses then continue on to the ends of the string (Figure 4d) and are again reflected
(Figure 4e). This time the reflected pulses are on the same side of the string. Now when
the pulses interact at the center of the string, their displacements add to double the total
displacement (Figure 4f). We can imagine similar pulses, reflections, and cancellations to
be set up when a ball impacts a thin flat plate, so the concept of cancellation of first
reflections with free and fixed edges seems reasonable, although not proven.
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If some edges of the flat plate are appreciably further from the impact point than other
edges, the wave reflections from the further edges may arrive back at the impact point too
late to affect the rebound. We could then modify g to account only for the energy
reflected from the nearer edges by ratioing it by the included angles. We will ignore that
complication and will always take L; to be equal to twice the length of a side of the square
flat plate.

SO-Lf = 21s, where Is is the length of the side of the square flat plate,

or
/2 4,D
I
2 ls=cg(tf—'tu)— Tu- ; (tf—tu)
4
2 ()
= I —_ - .
m \/Tu' u
Therefore, :
4
e V3= (&-y7)
21 D~ \/7; u/)’
Let
21s *
m
B‘\p'n- D
and
Y= tu.
Then
¢
i—v=ﬁ,
or
y2+[3y—-tf=0.
So,
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since y must be a positive quantity.
Also, ty = y2.

Thus, for any test condition, we will be able to calculate a value for t,. The vaiue for t, will
give us a value for y:

2Aqtu

=1- B A 2 2., 2
p=1-e cosqt + —singt + sin gt .
u p u p u

We can consider what happens if we make a plate of a given thickness too small in the
plan-view dimensions: the plate will no longer be “thin,” it will no longer store the input
energy in flexural waves, and the plate will no longer act as a viscous damper.

What if we use a laminated plate? Only two pertinent parameters, cg and a, depend on
the properties of the plate. Let's see what happens to these parameters when the plate is
laminated.

Assume that the plate is made up of N identical layers, each of thickness, h. Then:

mass per unit plan-view area of an individual layer,

m;
= ph,

D; = plate modulus of an individual layer,

ER
T2
Cgi = group velocity of an individual layer,
4
_Lfm 2
B t m,’
u 1
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and o = « of an individual layer,

84/ m.D. .

It is obvious that the masses per unit plan-view area of the individual layers must be
added to get the mass per unit plan-view area of the laminated plate. The plate modulus
is similar to the stiffness for a beam, and again the values for the individual layers must be
added to get the value for the plate. The group velocities for the individual layers are all
equal, so are obviously the same as that of the entire laminated plate. Recalling that

F = (1/a) yp, we see that the term 1/a acts like a viscous damping coefficient, so the
inverses of the o; terms must be added to get the inverse of a for the plate.

Therefore, we have for the laminated plate:

m=Nm;=Nph,

4 4 4
2n i 20 DIN 21 D
c =c¢c.= — _—— B — —_— = — -,
g8 & ¢ m. t mIN t m
u 13 u u
and
1 1
Z=N=-
a a.
13
or
1 1 1

a.
o=
N

8N \[m,D, =8\[(Nmi)(NDi) - symD

We see that we can write the equations for both cg and a of the laminated plate in terms of
the m and the D of the laminated plate, giving the same equations we had for the singie-
layer plate earlier. We just have to remember that both m and D now have an N term in
them.
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For the above equations, we have assumed that each of the individual layers is
independent of all of the others. This would not be the case if the layers could touch each
other. Not only would there be friction between the layers which would cause mutual
moments, but even without friction the layers could not take on their proper shapes. A gap
between adjoining layers would allow the outer bend radius of one plate to be larger than
the inner bend radius of the adjoining plate. We can estimate the size of the required gap
once we have found the maximum deflection of the plate and the wavelength of the flexural
wave. Since first reflections of the wave will cancel and second reflections will add, we
should double the calculated maximum plate deflection. The gap required has been
calculated several ways for typical conditions, and the required gap was found to be only
about 0.2% of the thickness of an individual layer of the laminated plate. This value
seems to be negligible and the gap can just be sufficient to account for the flatness of the
plates. Gaps of 1% to 5% of the thickness of each layer would seem to be adequate.

In precision mechanisms, such as the stronglinks, the gaps will help to prevent the
generation of debris, both from the operation of the mechanism and from such
environments as mechanical shock and vibration.

When the volume of space available for the flat plate is extremely limited and debris
generation is not a major concern, a laminated plate without gaps might be able to be
made smaller than one with gaps because of the energy dissipated by the friction.
However, variations in the friction coefficient would probably also cause variations in the
rebound.

Discussion of Theoretical Results

We will put off a discussion of the theoretical results until we have applied them to the
conditions actually tested. At that point, we should be able to tie the various concepts and
equations into a coherent picture of the behavior of the flat plate device.

Device Tested

Figure 5 shows a sketch of the flat plate assembly which was tested. Each of the ten
layers was 0.0138 in. thick and 1.17 in. on a side, not including the 0.090 in. on each end
to act as the fixed-end support. The layers were made of 17-7 PH stainless steel in the
annealed condition. The assembly was initially intended to be brazed in such a way that
the 17-7 material would end up in the TH1050 hardened condition. In order to speed up
the completion of the job, because of the imminent retirement of the author, the
assembly was not brazed and the plate material was inadvertently left in the annealed
condition. The stresses in the plate must be rather small, since there was no visible
damage to the assembly from the testing. The layers were spaced 0.006 in. apart,
because that spacer material was available and it was thick enough to be easy to handle.
The wedge-shaped pieces at each end allowed the assembly to be held together with
friction.
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The initial box-shaped spring had a theoretical spring rate of 2690 Ibf/in., based on an
approximate analysis. The spring shape was chosen in order to present a relatively flat
surface for the dropping ball to impact and to load the center of the laminated flat plate.
The 0.0097-in.-thick spring material was 17-7 PH stainless steel in the TH1050 hardened
condition. The spring was 0.265 in. wide, 0.265 in. long as measured from center to
center of the vertical walls, and 0.090 in. high from center to center of the horizontal
portions.

A second spring of the same type of material had a theoretical spring rate of 10,660 Ibf/in.
The thickness was increased to 0.0138 in., the length was reduced to 0.222 in., and the
height was increased to 0.094 in.

In order to further increase the spring rate, the top free edges of the second spring were
rolled over and supported, resulting in the third spring. .

The ball to be dropped was held by a vacuum into a shallow inverted cone, centered over
the flat plate assembly. The plumbing between the cone and the vacuum pump was
partially vented so the ball would release quickly when the vacuum pump was turned off.
The cone was a fixed height above the box-shaped spring of the flat plate assembly, so
the drop height varied somewhat with the size of the ball. The drop height was taken as

hg = 4.00 - 1.03 dp,
where

hg

height of the drop, and

dp = diameter of the ball.

The bounce height was determined from the time between the first and second impacts of
the ball with the spring and was taken as

= 48.23 {2,
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where

hp = height of the bounce,

t

g = local acceleration of gravity at the Kansas City Division

time of the bounce, and

32.152 ft/sec?2

385.82 in./sec2.

The impacts for the bounce time were measured with an accelerometer, a charge
amplifier, and a Visicorder with a chart speed of 40 in./sec. For some of the tests, a high-
speed video system with dual cameras was used to ensure that the balls impacted near
the center of the spring and that the second impact was with the spring, not the flat plate.

The balls were made of 440C stainless steel material and were available in a range of
sizes from 3/32in. to 1 1/16 in.

Test Results

The spring rates of the box-shaped springs were measured with an Instron load tester.
Because the spring rates of the springs were relatively high, the results had to be
corrected for the spring rates of the fixture. The corrected spring rates of the springs
were taken as

1
K= ,
_r 1t
Kmeas Kfix

where Kqmeas = measured value of the spring rate of the spring and the fixture in series

and Kjx = measured value of the spring rate of the fixture only.

The spring rates of the fixture were particularly difficult to measure accurately and had
fairly large effects on the corrected spring rates, so the spring rates may be significantly in
error. The spring rate results are shown in Table 1.
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Table 1. Spring Rate Results

Spring Kmeas Kiix K
(Ibf/in.) (Ibf/in.) (Ibf/in.)
#1 1730 12,540 2010
#2 5128 15,170 7750
#3 4656 10,526 8350

The effectiveness of the flat plate assembly in reducing the kinetic energy of the dropped
ball is given by the measured relative bounce height, hy,

where

__ heightof the bounce
rm "~ height of the drop

Sl P

The coefficient of restitution is just the square root of the relative bounce height, but
doesn’t seem to have any particular engineering significance in this problem and has not
been computed.

The other significant parameter which is available from the recording of the impacts is the
decay time, ty, for the initial impact. We have arbitrarily chosen to define the decay time
as that required for the amplitude of the trace to decay to 10% of its maximum amplitude.
If the decay time isn’t appreciably less than the bounce time, the plate could have enough
residual energy that the second bounce of the bail could be greater than the first bounce.
In an actual device, of course, the restoring force for the moving object will not likely be
due to the acceleration of gravity so the bounce time will be greatly different from those
measured in these experiments, even for the same relative bounce height. In that case,
the bounce time would be determined by the kinetics of the system and could be
calculated or measured.

~ The test results are tabulated in Tables 2, 3, and 4 for the low, medium, and high values,
respectively, of the spring rate at various ball diameters.
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Theoretical Results

The equations we developed earlier can be used to find theoretical relative bounce height
results for the same conditions as for the test results. We noted earlier that some amount
of energy will always be reflected from the edges of the flat plate in time to affect the
impact process, but we would ignore that energy until the energy represented by y was
greater than that represented by n. Also, we will always take L; to be equal to twice the
length of a side of the square flat plate, Is.

So2s = 2(1.17in.) = 2.34 in., and

2.34 4 rm
U= V5 -

We can then find vy, t,, and .

Earlier equations also give us a value for n at those same test conditions. We then take
the relative bounce height, hp/hg, to be the greater of n and y. These resulits are also
tabulated in Tables 2, 3, and 4 for the three values of the spring rate. n, y, and hyy, are
plotted against ball diameter for the low, medium, and high spring rates, respectively, in
Figures 6, 7, and 8.

For these calculations, we have taken the density of the ball as 0.28 lbm/in.3, or
0.000725 Ibf sec?/in.4,

so M = 0.0003796 dy3 lbf sec?/in.
Also E = 29 x 106 Ibf/in.2 and v = 0.3, so E' = 31.87 x 106 Ibf/in.2.

p = 0.276 Ibm/in.3 = 0.000715 Ibf sec?/in.4.

Discussion of Results

The greatest range of ball sizes was covered with the low spring rate. The results are
shown in Figure 6. The curves for n and y intersect at a relative bounce height of 0.173
and a ball diameter of about 0.551 in. The minimum measured value for the relative
bounce height was 0.1835, at a ball diameter of 0.5000 in., indicating a fairly good
theoretical prediction. It doesn’t appear to be necessary to double the theoretical relative
bounce heights, indicating that the reflected energy is not additive with that energy in the
plate which is covered by Zener's theory.

For ball diameters from 0.5 in. down to about 0.25 in., the value for n matches that of hyy
rather well; but below that they diverge quickly. For the small ball sizes, the spring itself
may act as a thin flat plate, causing a reduced bounce. The data in this region is of only
academic interest, since we are trying to predict the behavior of the flat plate device when
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Figure 6. Theoretical and Measured Relative Bounce Heights for Low Spring Rate

the reflected energy is just starting to affect the impact process, in order to minimize the
plate size.

For ball diameters from 0.5 in. up to about 0.7 in., hyy, increases like y, but much faster.
This may be because the plate is able to catch up to the rebounding ball, causing an
increased bounce. These results warn us to stay out of the region where reflected energy
has a significant effect on the impact.

The overall reduction in relative bounce heights for ball diameters above 0.7 in. may be
due to localized plastic deformation of the plate material, since it was not hardened, even
though there was no evidence of damage to the plate. .Also, for diameters of 0.7500 in.
and greater, t, is greater than t,. Referring to Figure 3, we can see that the effective sine
wave of the impact will not be a very good approximation, so our estimate of the energy
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wave velocity will not be very good. The data in this region is interesting but mainly serves
to indicate the end of the region of design application.

The results for the medium spring rate are shown in Figure 7. A much smaller range of
ball diameter was chosen as the most interesting region for engineering applications. The
intersection of the n and y curves indicates a minimum relative bounce height of 0.065 at
a ball diameter of 0.461 in., compared with the measured minimum of 0.04443 with a
0.4375 in. bail. The overall correlation between theory and experiment seems to be pretty
good, although again the measured values increase considerably faster than the
theoretical values for the larger balls.

The high spring rate resuits, shown in Figure 8, show less of a correlation with theory.
This may be due to problems in accurately measuring the spring rate of the box-shaped

-
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spring when it is nearly as high as the spring rate of the test fixture, or perhaps even
higher.

Predictions From the Theory

The theory we have developed seems to adequately predict the minimum relative bounce
height and the ball diameter at which it will occur. We can then use the theory to make
some predictions which are inherent in the theory but not obvious from the equations.

The driving force for continuing the development of the flat plate device has been the
desire to make it small enough to be useful in miniature mechanisms, such as the
stronglinks. We are now ready to predict how small they can get. We will assume a
square flat plate and will ignore the small gaps between the laminations when we find the
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total thickness of the plate. We will-also assume that first reflections from the edges of the
plate cancel and the twice-reflected energy wave just arrives back at the impact point at
the end of the contact time, so the length of a side of the plate is half of the total distance
the energy wave has traveled.

In other words, the minimum relative bounce height will be realized when n = y.

Since

andp = 4-2A2,

then n is a function only of . Therefore, when we select a value for the minimum relative
bounce height, we have defined a value for A, and therefore also for y. We will not
actually solve for A in terms of n, but it could be done either algebraically or numerically.

Since A = «a \/ K M, we can always pick a spring rate, K, for any values of M and « that
will give the required value for A.

We know that Lg = cg (t - t),

OQQ

1]
ki
)
s

and

o
43]
o

Both ¢q and a depend on m and D, but in different ways. 'We can clarify the analysis by
eliminating a, even though it has been useful as an element (which could be interpreted as
the inverse of a damping coefficient) and as a shorthand way of referring to the plate
properties of m and D.

Expressing the time to the end of the impact process, ¥, in terms of m and D:

_2Man_ 2Mn

; _ oM
- ZMan : .
M au(symp) AP
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y is also equal to the minimum relative bounce height and we can use this value to find {:

2Aqtu

A 2
g=1—e ¥ [(cosqtu+ —sinqtu>2—(—sinqtu>2] .
B B

Since

4}xmeD
M b

I
q:—:
b

we can see that, for a given value of the minimum relative bounce height, t, depends only
onm, D, and M, since A and ¢ are already implied. We could numerically determine t,
but we are more interested in the form of the expression for t, than in a value.

Therefore, let8, = gt

so

216

u
- A 2
g=1l-e F [(cos(') + - sin@ )2-—(-—sin9 >2]
u p u p u

Oy is then a dimensionless parameter which is completely determined by a value for the
minimum relative bounce height, independent of m, D, and M,

SO

Therefore,
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Then,
L SHApD( oy M )
f 6,M \4ip,/[mD 4Ap . mD
8nApD( M >( )
= n—0
GuM 4Apn4/mD u
- (oo
- 26 Apm \©
M
- Vzenx (n_eu)v_’
u p m
independent of D.

Let S = plan-view area of the flat plate

= (s.ejxpxu— eu)2(%> '

Also let M, = mass of the flat plate

=mS
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independent of both m and D!

We can therefore conclude that the mass of the flat plate depends only on the mass of the
impacting balil and the chosen value for the minimum relative bounce height.

In most applications the volume, V, of the flat plate will be more important than its mass:

M

V =%
Pop

=<sejxp>(“_ euﬂ%) '

We can therefore reduce the volume of the flat plate by increasihg the density of the flat
plate material. Unfortunately, only rather expensive or exotic materials, such as gold and
depleted uranium, have densities even twice that of the stainless steels.

There may be a better way to reduce the volume required for the flat plate. The
equivalence of the impact of a dropping ball and of a rotating object against the flat plate
device is shown in Appendix C. The analysis also shows that a lever can be used to
reduce the effective mass of an impacting object, which would aiso reduce the required
volume for the flat plate.

Of course, nothing is ever free, and the effective impact velocity is increased as the
effective mass is decreased. The impact velocity directly affects the deflections of the flat
plate and the spring, but more importantly affects the stresses in the flat plate. The
stresses haven’t been analyzed but would certainly increase as the impact velocity is
increased. The first indication of a stress problem would probably be fatigue damage to
the plate material.

Still, until there is an indication that the design of the flat plate is limited by material
stresses, it would be reasonable to use a lever to reduce the required volume for the flat
plate and then test for stress problems.

The concept of cancellation of first reflections from the edges of the plate is extended
somewhat in Appendix E. The design of a “virtual” pivot for a bellcrank mechanism is
also discussed. The bellcrank could turn the impact by 90 degrees, act as a lever to
reduce the effective mass of the impacting body, and replace the box-shaped spring.
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In Appendix F, dimensional analysis is applied to the flat plate device to show how small
devices can be scaled up to larger devices, or vice versa, in order to make them easier to test.

Accomplishments

The concepts and analyses presented in this paper should allow the design of a flat plate
device for dissipating excess kinetic energy in a given application. However, the stresses
produced in the flat plate won't be known so the life of the device will have to be determined by
testing.

Future Work

The spring rates for the two available versions of the box-shaped spring should be measured
again using a fixture whose spring rate is high enough that it can be ignored.

An effort should be made to estimate the stresses produced in the flat plate so the device can
be designed to have a good fatigue life.

The assembly should be brazed in order to demonstrate that such a technique is feasible for
production.
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Appendix A
Final Report, Thin Flat Plates as Mechanical Stops
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FINAL REPORT FOR "THIN FLAT PLATES AS MECHANICAL
STOPS" '

This project had its origin in the observation that a bearing
‘ball, say 1/4" in diameter, would have virtually no bounce,
when dropped onto something made of thin metal, such as a
desktop address index or an empty in-basket. The observation
was both puzzling and exciting. Puzzling because the sheet
metal would be expected to act like a spring and return the
ball at nearly its impact velocity — not stop it and hold it
like a very strong magnet. Exciting because there are so
many instances in mechanisms when we would like to kill
kinetic energy but just don't have a good way to do it.

At that time, my main concern was the "posigrade cam"
redesign, A number of related changes in a
return spring, a cam, and a switch rotor would result in a
significant improvement in the torque margin available to
drive the switch rotor to its enabled position and to return
it to its reset position. The big problem, never adequately
solved, was in dissipating the kinetic energy of the switch
rotor and cam when the return spring drove them back to the
reset position. A runaway escapement, similar to another used
successfully, . ’ was designed into the
cam gear. The escapement limited the angular velocity of the
cam and rotor during the reset operation to the desired
value. However, after only a few operations, the impacting
surfaces were greatly peened and abraded. 1In contrast, the
comparable surfaces in the earlier escapement had negligible
wear. The big difference between the two designs was that
each impact in the posigrade cam redesign had to dissipate
much more kinetic energy. In studying the earlier escapement,
we were not able to determine how the kinetic energy was
dissipated — it just was.

The observed ability of a piece of sheet metal to effectively
dissipate all of the kinetic energy of a moving ball seemed
to be applicable to the retarding mechanism of the posigrade
cam redesign. A book called "Impact" by Werner Goldsmith
discussed the very low coefficients of restitution measured
when steel spheres were dropped onto thin plates of glass or
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metal (pages 142-144). It gave a reference to an article by
Clarence Zener (apparently the Zener of the Zener diode)
titled "The Intrinsic Inelasticity of Large Plates" as pages
669-673 in Volume 59 of the Physical Review, April 15, 1841.
I am constantly amazed by the wealth of information in old
(meaning before I got into engineering) articles which isn't
easily available to today's engineers. Goldsmith's book, by
the way, is an excellent source of such references on the
general subject of impacts and nearly all of the references
seem to be available at the Linda Hall Technical Library.

Anyway, getting back to Zener's analysis, he derives an
equation which indicates that a large, thin flat plate,
during an impact, acts like a shock absorber in that the
velocity of the plate, near the area where the force is
applied, is proportional to the applied force. Of course,
under slow loading the deflection of the plate is
proportional to the applied force. The Hertzian contact
stresses in the area of contact between the sphere and the
plate result in a non-linear relationship between the local
deformation and the applied force; the applied force is
proportional to the three halves power of the local
deformation. For the resulting differential equation, which
must be solved numerically, Zener shows that the coefficient
of restitution depends only on a single dimensionless number
he calls the inelasticity parameter, A. Besides the material
properties of density, modulus of elasticity, and Poisson's
ratio, A\ depends weakly on the impact velocity and is
proportional to the square of the ratio of the radius of the
sphere to the thickness of the plate. The coefficient of
restitution decreases as A increases.

The coefficient of restitution is often defined as the ratio
of the reverse velocity of an object, after an impact, to the
forward velocity of the object before the impact. In most
mechanism applications, a better parameter is the ratio of
final kinetic energy of an object, after an impact, to its
initial kinetic energy; therefore to the square of the
coefficient of restitution. For an object falling with a
constant gravitational acceleration, the ratio of kinetic
energies is equal to the ratio of the height of the bounce to
the height.of the drop. According to Zener's analysis, a



value for A of 1.0 gives a bounce height which is only 3% of
the drop height. For typical engineering materials, such as
stainless steel, and typical impact velocities of 100 in/sec,
Zener's A only requires that the plate thickness be less than -
20% of the diameter of the impacting sphere. Unfortunately,
the whole analysis is based on the assumption that the plate
is large enough that the flexural waves set up in the plate
can't reflect back from the boundaries in time to affect the
impact.

Zener's analysis also allows us to predict the contact time
of the impact, which could be coupled with an estimate of a
flexural wave velocity to give us an idea of a plate size
which would satisfy the requirements of the analysis. His
prediction of contact time for the conditions discussed in
the previous paragraph is 100 microseconds times the diameter
of the sphere.

The only available value for the velocity of a flexural wave
having an unknown wave length is the velocity of a Rayleigh
wave., The related PDO . ", "FEA for Flexural Vibration of
Beams", may be able to predict wave velocities more
accurately. The Rayleigh wave is the maximum possible
velocity for a flexural wave in a given material and for
normal engineering materials, such as stainless steel, is
about 100,000 in/sec. The predicted distance the flexural
wave can travel during the contact time is therefore ten
times the diameter-of the impact sphere. For a circular
plate, this would be the diameter of the plate, since the
wave would reach the edge of the plate in half that time and
just return to the contact point in the other half. ‘

The impacting member of the posigrade cam retarding device
was not a sphere, however., It was basically a rectangular
bar, pivoted at its center. An equivalent mass can be
computed for such a rotating member by dividing its mass
moment of inertia by the square of the distance from its
center of rotation to its point of impact with the plate.
The equivalent mass can then be converted to the diameter of
a sphere having a mass equal to the equivalent mass. This
computation yielded a diameter of .16" for the equivalent
sphere. The angular velocity of the rotating member was
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converted to a linear velocity by multiplying by the distance
from its center of rotation to the impact point. This linear
velocity of 59 in/sec was the equivalent velocity of the
equivalent sphere. This velocity could be realized by
dropping the sphere from a distance of 4.5". Per Zener's
analysis, any plate thickness less than .031" would suffice,
but unless the plate could have a diameter of at least 1.55",
the theory couldn't predict a small bounce. For plates
thinner than .031", the contact time would increase and the
plate would probably have to be larger.

Unfortunately, we only had room for a rectangular plate of
.3" x 6", It also appeared that a plate .031" thick and .3"
wide would not act like a thin plate, but more like an anvil.
In order to get some experimental data, it seemed that it
might be quicker, cheaper, and more versatile to drop steel
balls against thin plates than to try to operate an actual
escapement device. There was also the practical problem of
measuring something like a coefficient of restitution. By
using dropping balls, we could measure the time between the
initial impact with the plate and the following impact and
compute the bounce height. The coefficient of restitution
could be found as the square root of the ratio of the bounce
height to the drop height. Actually, the bounce height ratio
itself seemed to be more meaningful and was used to evaluate
the data. A model 2226C Endevco accelerometer was used to
detect the impacts, which were recorded on a model 206
Nicolet digital oscilloscope or a model 1858 Honeywell
Visicorder. The latter was preferable as it gave a hard copy
of the data, which allowed the decay time of the plate
vibration to be determined later.

Another problem was the accuracy with which a .16" ball could
be dropped into a .3" x .6" plate. It seemed preferable to
drop larger balls onto larger, and thicker plates; then use
the theory of dimensional analysis to convert the data back
to represent actual sizes. Since the materials of the model
balls and plates would be essentially identical to the
materials of the actual escapement parts, the dimensional
analysis was very straightforward. We had only to note that
the velocity of sound, a pertinent parameter to the problem,
is a material property, and is therefore the same in the



model and the actual part. The ratio of model times to
actual times then had to equal the ratio of model lengths to
actual lengths, since velocity is length divided by time.
Therefore, the vibration decay times in the actual plate
would be less than in the model in the same proportion as the
actual length in the plate was to a corresponding model
length The coefficient of restitution, as a ratio of
veloc:tles, is already dxmen51onless and, therefore, the same
in the actual device as in the model.

There does seem to be a paradox in the bounce time. We use
the bounce time, which must be scaled as the lengths are
scaled, to determine the velocity after the first impact, but
velocities don't have to be scaled. The resolution to the
seeming paradox is the recognition that the bounce time, and
also the drop height, are external to the problem. The
problem only involves the ball, which has a velocity before
impact and a different velocity after impact, and the plate
with its supports. The bounce time and the drop height are
only used to find the two velocities. Since acceleration is
length divided by the square of time, the model acceleration

of gravity would have vary as the length ratio divided by the ~

- square of. the length ratio, .or .inversely with the length . ..

ratio; The‘moon—mlght—then—be—a*good*plate—to—run—the—tests,
if we really cared to include the drop hEIth and the bounce

time in the. problem.r Fortunately, we don't, - coiii il m o s

A ball-dropping tower was constructed and located on an
isolation-mounted table. A ball was supported at one of
three heights by means of a vacuum. When the vacuum was
relieved, the ball dropped onto a plate. The time of the
release was completely unimportant, but any lateral velocity:
of the ball at the instant of the release would affect the
location of the impact point. We therefore went to some
effort to get rid of lateral vibrations of the tower.

The tests were successful, in that we were able to find a
location on a suitably-sized plate where the bounce height
was less than 10% of the drop height. Unfortunately, the
patient had died in the meantime. When the posigrade cam
redesign effort was ended, the development of the retard




mechanism was also. The plates used in these tests were
generally rectangular, with a length twice the width, and
made of 304 stainless steel in a cold-worked condition. The
variation in the ratio of bounce height to drop height, or
relative bounce height, was remarkable. Most plates showed
areas where the relative bounce heights were a third of the
value at the center of the plate and other areas with three
times the value at the center.

The problem of excess kinetic energy in mechanisms is rather
general, however. The Dual Stronglink Assembly (DSA), asafety
device, &lso suffers from this malady. 1In particular, the
solenoid and drive arm assemblies of the C module tend to get
an extra step of the pattern when the drive arm rebounds from
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its stop pin. To prevent this behavior, the pattern wheel
rotation is damped by preloading the mounting bearings. This
is effective, but not entirely desirable. Again, a thin flat
plate offered an alternative method for dissipating the
excess kinetic energy. Thus, this short term PDO was
proposed and authorized.

Whereas the effective diameter of the retard pallet was .16"
and there was room for a .3" x .6" plate, that of the C
module solenoid and drive arm assembly was .30", and there
was only room for a .2" x .6" plate. The allowed shape of
the plate wasn't even rectangular, but more of a hollow
semicircle. Taking the plate thickness as 20% of the ball
diameter, as indicated earlier, gives a plate thickness of
.060". A plate .060" thick x .2" wide doesn't seem to fit
the requirement of a "thin" plate. Therefore, it seemed
likely that the plate would have to be much less than .060"
thick.

The tests conducted as part of the present PDO utilized the
same ball-dropping tower indicated above. A better X-Y
indexing table was purchased in order to improve the
positioning of the plates. A variety of 440C stainless steel
balls, from 3/32" to 1 1/16" in diameter was also purchased.

The first plates to be tested were made of .031" and .062"
thick 17-7 PH stainless steel. The plates had square tops,
15" on a side, hopefully large enough that reflections from



the supports would not affect the impacts. A support was
formed by turning an edge down, then out, giving a flange
which could be bolted to a much heavier plate. One plate of
each thickness had supports on all four sides and one of each
thickness had only two opposite sides supported. The plates
wvere heat treated to TH1050 after forming.

For the .062" thick plates and a 3/32" diameter ball, the
relative bounce height was .66 with four supports and .69
with two supports vs. a theoretical value of .73. With a
3/16" ball, the respective relative bounce hEIthS dropped to
.26 and .24 vs. a theoretical value of .28, With a 3/8"

ball the three values were 0, 0, and .004, respectlvely.
Because of the decay time of the initial impact, relative
bounce heights less than .04 couldn t be measured and are
reported as zero.

For the .031" thick plates, a 3/32" ball represented the same
ratio of plate thickness to ball diameter as a 3/16" ball
with the .062" plates. The measured relative bounce heights
were .24 for both the two and the four support plates,
closely matching the comparable results with the .062"
plates. Likewise, the .031" plates with a 3/16" ball gave
the same results as the .062" plates with a 3/8" balls,
namely, no bounce.

The data from these tests show that Zener's theory on the
inelasticity of thin plates is quite accurate. The big
problem remaining is to get the plates small enough to be
useful in miniature mechanisms. To this end, the tests were
continued with larger balls, to see when the relative bounce
heights started to increase again. For the largest ball
available, 1 1/16" diameter, the relative bounce height
remained at zero for the .062" plates. For the .031" plate,
with four sides supported, the relative bounce height started
to increase with a 5/8" ball and increased to a value of .20
with a 1 1/16" ball. With two sides supported, the bounce
started to increase at a 3/4" ball and reached .07 with a 1
1/16" ball. These results deserve a comment, but an
explanation isn't available. Using the analogy of a wave
travelling along a taut string, it seems that a flexural wave
in a flat plate reflects differently from a free edge than
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from a fixed or simply supported edge. Consider the center
of a square flat plate, which has a free edge and an opposite
edge supported, as the center is suddenly deflected downward
by one unit of deflection. Consider one wave as it heads for
the free edge and another identical wave as it heads for the
opposite supported edge. When the wave reaches the free
edge, the free edge gets accelerated downwards, which results
in another downward-deflected wave travelling in the reverse
direction and adding to the deflection of the incoming wave,
giving two units of deflection. Wwhen the other
downward-deflected wave reaches the supported edge, the
support will not allow the edge to deflect, so the support
applies an upward force on the plate, which results in an
upward-deflected wave travelling in the reverse direction and
subtracting from the incoming wave, giving a net of zero
deflection. When the reflected waves reach the impact point,
they each return to one unit of deflection. 1If we continue
to follow the wave reflected from the free edge, it will
approach the supported edge with one unit of downward
deflection. The support causes the wave to reflect with a
net deflection of zero. If we continue to follow the wave
reflected from the supported edge, it will approach the free
edge with one unit of downward deflection. The wave
accelerates the free edge upwards, causing the wave to
reflect with a net deflection of zero. The two
doubly-reflected waves then approach the contact point, which
has one unit of deflection, and try to force the contact
point back to zero deflection. Therefore, only every second
reflection affects the impact process.

When all four edges are supported, the first reflection acts
just like the second reflection of the case above.

Therefore, every reflection affects the impact process. The
difference in behavior may be significant because of the
internal damping of the plate material. When only two edges
are supported, each element of the plate is flexed twice as
often as when all four edges are supported. This difference
in energy dissipation may relate to the lower relative bounce
height measured using the 1 1/16" ball. 1If so, the effect
may be exaggerated by using an alloy with a very high damping
capacity.



Nitinol, a shape memory alloy, is reported in the literature
to have a very high damping capacity. However, there doesn't
seem to be much information on the condition of the material
when it displays the high damping capacity. An associate

has_rolled _a_sample_ oi_N;t;nol,_yhlch_we_supplled+_to

.83" x 20" x ,017"., He will cut it into four equal parts to
try various heat treatments to try to obtain the high damping
capacity. We will try to utilize this material as part of
PDO 70983000, "Dead Mechanism Stop Using Thin Flat Plate".

The next step in our test program was to try smaller square
plates, 7.06" on a side, made of both 17-7 PH s.s. and of
beryllium copper (Be Cu) Alloy 25, heat treated to condition
AT after forming. For these tests, the accelerometer data
wvas recorder on Visicorder paper and the decay time of the
initial 1mpact was measured. The decay time was taken as the
time requlred for the acceleration signal to decay to 10% of
its maximum value. The decay times for these smaller plates
were generally short enough that they didn't interfere with
finding the bounce time. Consequently relative bounce
heights as low as .002 could be measured.

The Be Cu plates were generally not nearly as flat as the
17-7 plates, apparently getting warped when heat treated.

The relative bounce height data for the Be Cu plates averaged
more or less the same as the 17-7 plates, but the plots
against ball diameter had odd and inconsistent shapes. 1In
one case, an attempt was made to flatten a plate and the
resulting data was greatly different from the original data.
The decay time data for the Be Cu plates was more consistent
and averaged 70% greater than the corresponding 17-7 data.
The Be Cu results will not be discussed further.

The relative bounce height data for the smaller 17-7 plates
correlated well with that of the larger plates. The ana1y51s
of the data is rather complicated and must be reported in
detail at a later time. By forming dimensionless ratios and
cross-plottlng the results, it is apparent that the minimum
size for a square plate is realized when the plate thickness
just satisfies Zener's requlrements for a given relative
bounce height and ball diameter. For an actual ball diameter
of .30" and a desired relative bounce height of .10, the
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required plate would be 2.4" on a side and .075" thick, with
two opposite sides supported. This plate, obviously, would
be much larger than the .2" x .6" available space.

The decay time data for the smaller 17-7 plates was not
analyzed in any detail because of the unfavorable results on
plate size. The measured values ranged from 6 to 107
milliseconds. :

Another approach was much more successful, and seems to allow
part sizes which are applicable to the C module drive arm
stop. A virtually foolproof way of stopping a sphere with
only a slight bounce is to impact it against a larger,
stationary, sphere. Most of the kinetic energy is then
transferred to the second sphere. 1If this energy can be
dissipated before the second impact, we have the basis for a
simple and effective stop. The thin flat plates we have
studied seem to offer a good candidate for supporting the
stationary sphere since they seem to dissipate energy
quickly.

When the stationary sphere is struck, it will take on a
simple harmonic motion with the plate acting as the spring.
Then, if the reverse velocity of the first sphere after the
impact isn't great enough, the second sphere can catch up
with it and strike it again. The minimum reverse velocity of
the first sphere is realized when this second impact is just
avoided. It can be shown that this minimum reverse velocity
is 20% of the initial velocity, or a coefficient of
restitution of .20. The relative bounce height would be that
value squared, or .04, which seems acceptable as a dead stop.
This requires that the second sphere have a mass 50% greater
than the mass of the first (impacting) sphere.

For test purposes, the second sphere was changed to a
cylinder to get a flat surface for the impact and all sizes
were scaled up by a factor of three. Thus, a 1" diameter x
.729" long cylinder was mounted at the center of a .6" x 1.8"
flat plate made of .031" thick 17-7 PH s.s., heat treated to
TH1050 and supported by flanges along the .6" wide ends. A
.3" diameter x .02" thick washer between the cylinder and the
plate was used in order to allow the plate to flex more



normally. The results of the test were just as expected. A
3:1 scale-up of the .30" diameter sphere wasn't available but
7/8", 13/16", 3/4", and 11/16" balls were tested and the
measured relative bounce heights were all within 4% of the
predicted values. The relative bounce height for the 7/8"
ball was .065 and the decay time was 3.7 ms. When the decay
time is scaled down by a factor of three for the actual
device, it becomes 1.2 ms.

The cylinder tested, scaled down by a factor of three,
becomes .33" in diameter x .24" long, which is too large to
be useful. We can, however, strike a pivoted rod near its
pivot point to get a large equivalent mass from a small

" object, as noted earlier. Again using a scale-up by a factor
of three, a rod 1.25" long x .193" x ,193" was pivoted at
.173" from one end. The rod was attached to the center of
the .6" x 1.8" plate noted above, at a distance of .97" from
the pivot point. The rod was designed to act like a 1"
diameter x .729" long cylinder when impacted at .210" from
the pivot., When tested, the rod was impacted at .20" and
.22", giving values for relative bounce height of .105 and
.065 respectively. The measured decay times were 2.5 ms and
3.0 ms, respectively. When the rod is scaled down to actual
size, it is .42" long x .064" x .064", which seems to be a
reasonable size to fit into an actual unit.

This design appears feasible for an actual mechanism and will
be pursued further as T "Dead Mechanism
Stop Using Thin Flat Plate". Using an alloy with a high
damping capacity for the plate may also offer advantages.
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Final Report, Dead Mechanism Stop
Using Thin Flat Plate
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Final Report for Dead Mechanism Stop Using
Thin Flat Plate )

This PDO is a follow-on to the short term PDO s "Thin
Flat Plates as Mechanical Stops." The concepts developed in
that earlier PDO were developed further resulting in two dead
stop designs. The designs were sized to fit into existing C
module mechanisms of the Assembly to
act as drive arm stops.

One design was based on a mass and lever assembly which would
act as an effective mass just greater than the effective mass
of the rotating drive arm and solenoid assembly. The term
"effective mass" is used to indicate the mass in a linear
motion system which would be equivalent to the mass moment of
inertia of the rotational motion system. The required piece
parts for this design were fabricated but have not been
assembled and tested. In this design, the thin flat plate
would only act to dissipate the energy of the impact before
the slight rebound of the drive arm would result in a second
impact.

The other design utilized a thin flat plate in the sense
analyzed by Zener and discussed in the earlier PDO referenced
above. This design was actually built and tested. The
results were disappointing in that the rebound was essentially
identical with that of the normal C module stop pin.
Subsequent analysis indicated two problems with the design.
The plate was expected to act as a pivot for the part which
was contacted by the drive arm, but closer analysis indicated
that the plate would not be an effective pivot. The other
problem, as indicated by later analysis of the system assuming
a linear spring, was that the thin flat plate was too small.
This analysis, if supported by testing would be invaluable in
determining the properties of the plate and the spring rate of
the system to get only a very slight rebound in a given
situation. This analysis, coupled with the observation that a
rectangular plate with dual impacts could act as if it were
simply supported along its midline, indicates that an
effective dead stop would f£it into the C module.
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The concept of a simple, effective, and small dead stop based
on Zener's analysis still appears promising. Hopefully,
another short term PDO would succeed in demonstrating this
promise. -



Appendix C

Equivalenée of Impact of Linear and
Rotary Object With Flat Plate
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In order for the impact of a rotary object on a given flat plate device to have the same
effect as that of a dropping ball, it seems that three conditions must be met: the impact
must be essentially normal, the same three force equations must be satisfied, and the
initial condition must be the same. The geometry shown in Figure 1 satisfies the first
condition, as long the moment arm, r, is much greater than the maximum value of yp. In
other words, the rotor must move through only a small angie during the impact process.

MASS MOMENT OF INERTIA = J
ROTOR INITIAL CCW ANGULAR VELOCITY = Wo

\

SPRING /

Yb
/ | ] [ T
%
) / %
7 PLATE
Yy = VERTICAL DISPLACEMENT OF CONTACTING
POINT OF ROTOR FROM POSITION AT
INITIAL CONTACT

Figure 1. Simplified Sketch With Rotor in Place of Ball

From the geometry, we can see that

Yo =16,
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We will write the three force equations and the initial condition for the linear and rotary
impacts so we can easily compare them:

Impacting‘ball: Impacting rotor:
=-M7¥p Fr=-J8
F=-WJbi) =-Jrbm =-n
F = K(yb-Yp) F=K(r6-yp) = K(yp-Yp)
F = (1/0) ¥p F = (1/a) ¥p
Yoo =.vo ro = rwp = Ypo.

We see that we can make the two sets of equations identical by setting J2 = M
and r wg = vg. The flat plate device will then respond to the impact of the rotor just as it
would to the impact of a ball.

We can think of J/r2 as an effective mass for the rotor and r wg as its effective velocity (as
well as its actual linear velocity). We can also see that increasing the moment arm, r, of
the rotor decreases its effective mass and increases its effective velocity. These effects
may be useful in reducing the required size of the flat plate.

The effects of increasing the moment arm can be increased by inserting a lever between
the impacting object and the spring of the flat plate device. We could analyze the effect of
the lever with either an impacting ball or an impacting rotor. We will pick the latter since it

is-more applicable to-miniature-mechanisms:

Figure 2 shows such a lever added to the mechanism of Figure 1. From the
geometry, we can see that:
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Yp = VERTICAL DISPLACEMENT OF CONTACTING
POINT OF LEVER WITH SPRING, FROM
POSITION AT INITIAL CONTACT

{

7 Y

Figure 2. Simplified Sketch With Lever Added
so

and

or
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Let F = force between the spring and the lever
and F, = force between the rotor and the lever.
Then, using a force balance on the lever:

F r.= Fr r.

or

We will again write the three force equations and the initial condition for the linear and
rotary impacts so we can easily compare them:

Impacting ball: Impacting rotor with lever:

F=-M, Frr=-d8=F@gr)r

F=-WJBm(rirs) = -({rr62rg) = - (Jrr/r2 rs) (re/rs) (Vp/r)
= - (IIr2) (re/rs)2 :

F = Ki(yp-yp) F=K[(r{rs/r)8-yp)] = K(yp - yp)
F = (1) ¥p F = (1/a) yp

Yoo = Vo r (rs/re) é0 = 1 (rs/ry) Wo = Yoo-

We see that we can make the two sets of equations identical by setting:

{(zpn

s

and

r

r(-§>m =y
r /%" Y
R

The lever can therefore further reduce the effective mass of the impacting object, thus
further reducing the required plate size. Of course, we are also further increasing the
effective velocity of the impact.
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The box-shaped spring shown in Figure 2 is not a particularly simple device to design
and build. We can delete that spring by simply making the lever arm nearest to the flat
plate sufficiently flexible. We have analyzed the resulting mechanism to be sure of that
conclusion, but we can get there much quicker with a few simple arguments. Since we
have ignored the mass of the spring in our theory, it makes no difference whether the
spring is considered to be attached to the flat plate or to the lever, as long as it acts

" between the end of the lever and the flat plate. The rigid lever arm with a spring attached
to the end is mechanically equivalent to the flexible lever arm for small deflections.
Although it is not so obvious. the box-shaped spring could also be deleted by making the
other lever arm flexible, or making both arms flexible. The math would just get a litile
more complicated, and the results would be a little more difficult to interpret.
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Appendix D

Dimensions and Units

87







Whenever masses and forces occur in the same engineering problem, the dimensions
and units seem to get complicated. For this analysis, we have elected to eliminate the
units of mass, expressing any masses in terms of force and acceleration.

We have used (32.174 Ibm ft/Ibf sec2)(12 in./ft) = 386.09 Ibm in./Ibf sec? for the
conversion factor, so mass has the units of Ibf sec2/in. All dimensions are in terms of
pounds-force (Ibf), inches (in.), and seconds (sec), except for frequencies. For each
parameter, the dimension is shown enclosed in square brackets. For dimensionless
quantities, the dimension is shown as unity [1].

group velocity of a flexural wave, the velocity at which energy is propagated
[in./sec]

group velocity of an individual layer of a laminated plate [in./sec]

phase velocity of a repeating flexural wave, the velocity of an infinite train of sine
waves [in./sec]

first multiplier constant in the general solution for the deflection of the spring, x

fin.]

second multiplier constant in the general solution for the deflection of the spring,
X [in.]

diameter of the ball dropped in the test [in.]

plate modulus, a measure of the stiffness of the plate [lbf in.]
plate modulus of an individual layer of a laminated plate [Ibf in.]
base of natural logarithms, approximately 2.7183 [1]

modulus of elasiicity of the plate material [Ibf/in.2]

madified modulus of elasticity of the plate material, used when lateral
dimensional changes are restrained, as in a plate [Ibf/in.2]

frequency of a repeating flexural wave [Hz]

force applied between various elements of the flat plate device [lbf]
force between the rotor and the lever in Appendix C [Ibf]

maximum value of force [Ibf]

local acceleration of gravity at the Kansas City Division [in./sec?]
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thickness of the plate, if the plate has a single layer [in.]

thickness of an individual layer of the plate, if the plate has more than one layer

fin.]
height of the bounce of the ball [in.]
height of the drop of the ball [in.]

relative bounce height, the ratio of the height of the bounce to the height of the
drop [1]

measured relative bounce height [1]
constant used in replacing C1 and G [in.]
another constant used in replacing C4 and C» [in.]
F , used in expressing complex numbers [1]
mass moment of inertia of the rotating body in Appendix C [Ibf in secy]
spring rate of the linear spring element [Ibf/in.]
spring rate of the fixture when measuring K [Ibf/in.]

gross spring rate measured, before accounting for the spring rate of the fixture
[Ibf/in.]

distance traveled by the energy wave during the impact process [in'.]
length of the side of a square flat plate [in.]
mass per unit plan-view area of the plate [Ibf sec2/in.3]

mass per unit plan-view area of an individual layer of a laminated plate
[Ibf sec2/in.3]

mass of the ball which impacts the flat plate assembly [lbf sec2/in.]
mass of the flat plate [Ibf sec2/in.]

number of identical layers of a laminated plate [1]

variable used in solving the differential equatiqn of impact [sec-1]

rmoment arm of the rotating body in Appendix C [in.]



S1
S2

$1,2

ty

moment arm of the lever in Appendix C which is nearest the rotating body [in.]
moment arm of the lever in Appendix C which is nearest the spring [in.]
variable used in solving the differential equation of the impact [sec-1]

value of s using the positive radical term [sec-1]

value of s using the negative radical term [sec-1]

values of s using + the radical term [sec-1]

plan-view area of the flat plate [in.2]

time, measured from the beginning of the impact procéss, when the ball first
makes contact with the spring [sec]

bounce time in the tests, the time between the first and second impacts of the
ball with the spring, used to determine the bounce height [sec]

decay time of the plate [sec]

time to the end of the impact process, when the spring is just no longer
compressed [sec]

time, in the impact process, until the flat plate has absorbed some fraction, y,
of the initial kinetic energy of the ball [sec]

time, in the impact process, until the spring deflection is a maximum [sec]
the period of a repeating flexural wave [sec]

kinetic energy of the ball at time, t, [Ibf in.]

initial kinetic energy of the ball [Ibf in.]

potential energy of the spring at time, t, [Ibf in.]

final velocity of the ball [in./sec]

initial velocity of the ball [in./sec]

volume of the flat plate [in.3]

deflection of the spring [in.]
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deflection of the spring at the end of the impact process, defihed to be equal to
zero {in.]

deflection of the spring at time, t, [in.]

maximum deflection of the spring [in.]

initial deflection of the spring, defined to be equal to zero [in.]

first derivative of the spring deflection, x, with respect to time [in./sec]
value of X at the end of the impact process [in./sec]

value of x when the spring has the maximum deflection [in./sec]

value of x at the beginning of the impact process [in./sec]

second derivative of the spririg deflection, x, with respect to time [in./sec?]

displacement of the ball (or other impacter) from its position at initial contact
with the spring [in.]

first derivative of y, with respect to time [in./sec]

first derivative of yp with respect to time at time, t, [in./sec]
value of yp at the beginning of the impact process [in./sec]
second derivative of yp with respect to time [in./sec?]

displacement of the center of the flat plate from its position at the beginning of
the impact proceéss [in.] ’

maximum value of yp [in.]
first derivative of yp, with respect to time [in./sec]
second derivative of yp, with respect to time [in./sec?]

property of a thin flat plate, shown by Zener to act as the inverse of a viscous
damping coefficient [in./Ibf sec]

a for an individual layer of a laminated plate [in./Ibf sec]

variable used in calculating the value of t, for a given test condition for a
square flat plate [sec0.5]
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another variable used in calculating the value of t, for a given test condition
[sec0.5]

relative bounce height when energy reflected from the edges of the plate is not
considered [1]

dimensionless real variable used in Euler’s equation [1]

angle of rotation of an object in Appendix C, from its position at the beginning of
the impact process [radians = 1]

qt [1]

first derivative of the angle of rotation, 0, of an object in Appendix C with respect
to time [radians/sec = sec-1]

value of 8 at the beginning of the impact process [radians/sec = sec-1]

second derivative of the angle of rotation, 8, of an object in Appendix C with
respect to time [radians/sec2 = sec-2]

dimensionless grouping of the elements of the impact problem [1]
wavelength of a repeating flexural wave [in.]
m [1]
Poisson’s ratio of the plate material [1]
3.14159..... 1]
density of the plate material [Ibf sec?/in.4]
maximum mechanical stress in the flat plate, in Appendix F [Ibf/in.2]

relative bounce height when only the energy reflected from the edges of the
plate is considered [1]

circular frequency of a repeating flexural wave [radians/sec = sec-1]

& = first derivative of the angle of rotation, 8, of an object in Appendix C with
respect to time [radians/sec = sec-1]

ég = first derivative of the angle of rotation, 6, of an object with respect to time
at the beginning of the impact process, in Appendix C [radians/sec =
sec-1]
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Appendix E

Flat Plates Which Cause Cancellation
of First Reflections From the Edges
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It seems that any regular polygon with an even number of sides would cause cancellation
of first reflections from the edges, as long as half of the edges were supported and half
were free and the impact occurred at the center of the plate. Each edge would then
subtend an equal angle of the flexural energy wave, and the reflection from each
supported edge would be equal and opposite to that from each free edge. Thus, with a
square plate, two adjacent sides could be supported or two opposite sides, but having the
supports on opposite sides seems to be mechanically better. There also doesn’t seem to
be a good mechanical reason to go to more than four sides.

An arrangement which may have some advantages is shown in Figure 1. Basically, two
square flat plates are joined together along a common side, and equal and opposite
impacts are delivered to the centers of the two plates. The flexural energy waves are not
reflected from the common edge, but each continues on into the other plate. The waves
are, however, equal and opposite so the net effect is identical (it seems) to having each
wave reflected from the common edge as if it were a supported edge. We can think of the
common edge as having a virtual support and can consider each square half of the plate
as if the other half weren’t there, each half of the plate impacted with half of the total mass.
We showed earlier that the required plan-view area for a flat plate is directly proportional
to the mass of the impacting object. Therefore, each half-mass would require a half-area
and the total area of the plate would be the same as if only a single square plate were
used.

The rectangular shape itself may be advantageous in some applications, but the concept
also allows a fairly simple way to apply the flat plate device to a miniature mechanism.
Figure -2 shows a sketch of a flat plate device which will be impacted by an arm of a
rotating device. The impact is simply shown as an arrow in the interests of clarity. The
structure between the impact and the flat plate serves as a pair of levers and a pair of
springs, delivering equal and opposite impacts to the two halves of the flat plate. The
levers reduce the effective mass of the impact, allowing a smaller flat plate; and the spring
rates of the arms are chosen to minimize the bounce.

The structure will pivot about the axis indicated, for the following reasons: The pivot point
must be located on the mid-plane of the flat plate because of the lateral rigidity of the flat
plate. Since each arm is connected to the center of each half-plate and each arm has the
same spring rate, the pivot point must also be located midway between the connections to
the flat plate, because of symmetry. The impact doesn’t have to occur directly above the
pivot point.
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Appendix F
Scaling the Flat Plate Device
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When we chose to test flat plate devices by dropping balls onto them, we decided it would
be too difficult to test the small flat plates which would be applicable to the miniature
mechanisms we were interested in. We therefore applied modeling principles to allow us
to use plates which were about three times larger in all dimensions. Of course, we also
used balls which were scaled up. In order to justify the modeling, we will walk through the
procedure and use the results in the application of our test data to a reduced-size flat
plate. “

We will basically follow-the discussion of dimensional analysis and modeling in Eshbach’s
handbook.6 We should first list all of the quantities which relate to the problem, but we
can significantly reduce the size of that list by deleting those which are defined in terms of
others. Since we are going to find that all quantities which have the same dimension will
scale the same, we can just select a representative length, velocity, force, etc. Also, any
dimensionless numbers, such as N and v, will have scale factors of one, so we won't list
them.

.Any problem in mechanics requires three fundamental units (which we have chosen to be
inches, seconds, and pounds-force), and this entitles us to arbitrarily scale any three of
our quantities, as long as they are dimensionally independent. We will select h as one of
the three because we want to scale the linear dimensions of the problem, say to half size.
We will also select E and p because they are the only material properties of the flat plate
which have dimensions. This allows us to keep the same materials for the reduced-size
flat plate as were used in our tests, by making their scaling factors unity.

The remaining quantities were chosen to be Fy, K, M, S, t, Upo, vo, Vp, ¥, Ox, and w; a
total of eleven. (The quantity, ok, may look unfamiliar, since we haven’t used it anywhere
in this report. We will take it to be the maximum mechanical stress in the flat plate, at
some unknown location and time.) We therefore have to form eleven independent
dimensionless groups of quantities. An easy way to ensure independence is to use a
single one of the eleven quantities in a given dimensionless group, along with one or more
of the quantities h, E, and p. We could set up equations involving exponents of units to
find these groups, but we can do it more easily by inspection. We find the following
dimensionless groups:

and

The next step is to replace each quantity in each of the above groups with the scaling
factor for that quantity, then set that new group equal to one. We will enclose each
quantity in parentheses to indicate the scale factor for that quantity.
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So far, we have set (h) = 0.5, (E) = 1,and (p) = 1.

Then,

F)
2~ 1
(E) (h°)
or

(F)=EE) = 1)0.5%=0.25.

We can skip a step for the rest and find:

&) = (B)(h) = (1)(0.5) = 0.5,
M = ()R =1)0.5)=0.125, .

S) = (% = (0.59 = 0.25,

o ‘/@1 ) T _
(tf) = (h) B = (0.5) J—l =0.5,

W,y = (B (kY= 1)(0.5%) = 0.125,

’(E’) ,1
= —_—= -=1,
vy © T

)= #3 = 0.5% = 0.125,

® __1 s
@Kk  @)0.5) ’

AL
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C)=®=1,

and

()=—v@ ‘/I=
@ Y@ 05 V1

Itis obvious from the above procedure that any length would have a scale factor of 0.5,
any velocity a scale factor of 1, etc., and that any dimensionless number would have a
scale factor of 1. .

These scale factor results are used in two different ways, depending on the quantity.

Some tell us how we must control the half-size tests and some predict results of the half-
size tests. For example, the v scale factor of 1 tells us that we must use the same initial
velocity for the ball in the half-size tests as we used in the full-size tests in order to be sure
the results will scale properly. The oy scale factor of 1 tells us that the maximum
mechanical stress in the half-size flat plate will be the same as that in the full-size flat
plate, even though we have no idea of what it might be.

There are some other interesting results. The decay time of the flat plate will only be half
as long, so we may have to use different recording equipment, or at least run the
Visicorder faster. The group velocity of the flexural wave will scale the same as the initial
velocity of the ball, even though they are entirely different kinds of physical processes.

One result warns us that we really can’t scale the entire test setup! Since yp has a scale
factor of 2, the local acceleration of gravity, g, must be twice as great for the half-size
tests as it was for the full-size tests. However, it doesn’t take us long to realize that we are
really only interested in the initial velocity of the ball, not the height it was dropped from.
We can then exclude the local acceleration of gravity from the problem we are modeling
and calculate the proper drop height for the half-size tests without referring to modeling
theory. The ratio of bounce height to drop height is dimensionless, so it will be the same
in the half-size tests as it was in the full-size tests.
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