
Ml: \sii

RELATIONS BETWEEN THE SIMULTANEOUS AND SEQUENTIAL
TRANSFER OF TWO NUCLEONS*

G. R. Satchler
Oak Ridge National Laboratory
Oak Ridge, TN 37830, U.S.A.

CO:;F-O 20'K0—5

UBC2 013452

Talk to be presented at the Fifth Argentine Nuclear Physics Workshop,
April 12-18, 1982, Chapadmalal, Argentina

By ULCtioiancQ o ' Um, urm-ie, rn*
publisher or recipient acknowieag
the U.S. Government's riqhT ID
retain a nonexclusive, royalty-Ire?
license in and lo jnv copynqhi
covering thp article

Research sponsored by the Division of Basic Energy Sciences, U.S. Department of
Energy, under contract W-7405-eng-26 with the Union Carbide Corporation.

DISTRIBUTION OF THIS DOCi/MENr 15 UNLIMITED



RELATIONS BETWEEN THE SIMULTANEOUS AND SEQUENTIAL
TRANSFER OF TWO NUCLEONS*'t

G. R. Satchler
Oak Ridge National Laboratory
Oak Ridge, TN 37830, U.S.A.

1. Introduction

The transfer of two nucleons between projectile and target in a direct or

peripheral reaction such as (p,t) or (160,ll*C) may occur in one-step or two-

steps. These we refer to as 'simultaneous' and 'sequential' transfers, re-

spectively. In the former, the interaction acts once and both nucleons are

transferred. In the latter, the interaction acts once to transfer one nucleon,

the system then pronagaates in one or more intermediate states and is followed

by a second action of the interaction to transfer the second nucleon. This pro-

cess may be symbolized for the above examples as (p,d;d,t) ana ( 1 60, l bN; 1 5N, l HC).

implying the intermediate formation of a deuteron or- the nucleus 1 5N. (Of

course, the intermediate system may exist in more than one state of excitation.)

In terms of a perturbation theory expansion, such as the distorted-wave Born

series, simultaneous transfer is possible in first order while sequential trans-

fer requires second order. This is illustrated in Fig. 1. We are accustomed,

perhaps, to thinking that a first-order process is more likely than a second-

order one. However, a closer examination can prepare us for the possibility

that this may not be so. The nuclear forces are predominantly two-body in
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character; hence, in first-order (Fig. la) only one of the two nucleons experi-

ences an interaction. The possibility of finding that the other nucleon has al-

so transferred arises only because its state within the projectile is not or-

thogonal to the state in the target into which it transfers. This process

corresponds to a kind of quantum-mechanical tunneling from the projectile to the

target.1 However, in the two-step process (Fig. lb) each nucleon is trans-

ferred under the direct influence of an interaction with the target; intuitive-

ly, this might seem more plajcible. It requires an explicit calculation to de-

termine which process is most likely in a given case, and su^h calculations are

often beset with uncertainties. Nonetheless, it seems clear that the one-step

and two-step amplitudes are frequently comparable in magnitude for light-ion

reactions2 while the two-step may dominate in reactions with heavy ions.3 (The

existence of strong Q-window effects, especially with heavy ions,4 mav enhance

the sequential process when there is a large mismatch between the entrance and

exit channels. The gap may be bridged more easily in two steps, with the inter-

action acting twice.) Consequently, it is not safe to ignore the existence of

sequential transfer. However, one of the main reasons for studying two-nucleon

transfers is to learn about the two-nucleon overlaps (existence and extent of

pairinq correlations, etc.). So we wish to know if this information is still

available when the reaction proceeds by two, sequential, one-nucleon transfers.

Our purpose here is to gain some insight into the relationship between the two

amplitudes by using a simple approximate form of the theory. For sin^licity, we

shall discuss a light-ion reaction and, to be specific, we choost the (t,p)

reaction (or the inverse (p,t) reaction). Similar considerations apply to other

reactions.



2. The (t,p) or (p,t) Reaction

Apparently contradictory evidence exists for the relative importance of the

two-step or sequential-transfer mechanism in (t,p) or (p,t) reactions. Indeed,

the results of a confusing variety of sophisticated calculations are available,

each of which treats properly some, but not all, aspects of these transitions.

Among these aspects are: (i) the use of a realistic tHton wavefunction and the

associated realistic inceraction;5"8 (ii) an exact treatment of the finite-range

of the interactions (as opposed to use of a zero-range approximation), in both

the one-step5"9 and the two-step8"11 amplitudes; (iii) accounting for the non-

orthogonality correction to the two-step term,2'9'11'12 which tends to cancel

the one-step amplitude;12"14 (iv) allowing the intermediate n-p system of the

two-step process to exist in continuum states, both spin-singlet and triplet, as

well as in the bound, triplet deuteron ground state12'15 (sometimes this is

called the 'deuteron break-up effect'). In addition, there is a sensitivity of

the results to the optical potentials employed, and a particular sensitivity of

the cross section magnitudes to the nuclear wavefunctions used to construct the

two-nucleon overlaps.6-7

In view of the complexity of the theoretical description of this transfer

process, the agreement with measured cross sections obtained by calculations

which only include some of these aspects must be viewed with some caution. In

this situation it is valuable to have an understanding of any general, albeit

approximate, features that the amplitudes may possess, independent of these

details, which may illuminate the results of more detailed calculations.

The point of the present paper is to use a closure approximation to the

second-order distorted-wave-Born expression for the two-step amplitude in order

to exhibit the similarities and differences in comparison to the one-step



amplitude, especially with regard to the selection rules for spin-transfer.

This is by no means a rew approach.3 '16 I t has been used to explain why

simultaneous and sequential processes tend to y ie ld similar angular d i s t r i bu -

t ions and to depend upon the nuclear structure involved in the same way.

Schaeffer and Bertsch16 indicated schematically tha t , i f the important inter-

mediate states had simi lar energies, the i r Green functions could be replaced by

an average one and closure applied to the nuclear states. This results in the

nuclear overlaps for sequential transfer being the same as those for simulta-

neous transfer, with the same selection rules. A closer examination of the spin

angular momenta involved modifies the conclusion about the selection rules a

l i t t l e . For example, in the two-nucleon transfer ( t ,p) reaction, i f the n-p

system or 'deuteron' associated with the intermediate states of the two-step

amplitude appears in spin-singlet or sp in - t r ip le t states with equal weight, th_j

selection rules for one- and two-step are ident ica l . However, constraining i t

to be in a t r i p l e t state only (such as the common assumption that i t is the phy-

sical deuteron ground state) acts as a s p i n - f i l t e r and determines that the two

neutrons are transferred with a part icular mixture of tota l spin S = 0 or 1.

This mixture w i l l d i f f e r from that for the one-step term. In th is way, inc lu-

sion of singlet deuterons could completely change the results for vector ana-

lyzing powers and might modify conclusions that have been drawn from measure-

ments of these quant i t ies. I t is su f f i c ien t , for our purpose, to consider the

f i r s t and second-order distorted-wave Born amplitudes and to make various

simpli fying assumptions such as zero-range. While these may have large effects

upon the magnitude of the amplitudes, they do not. affect the underlying

structure.



2.1. One-Step Amplitudes

The t r i ton wavefunction can be decomposed into components in which the two

neutrons have a definite total spin S (where S = 0 or 1),

• = I ^(spins) <|.J(space). (1)
7 m t S 7 m t

Then, aside from uninteresting multiplicative constants, the first-order DWBA or

one-step amplitude for the A(t,p)B reaction is a sum of components,

T ( S ) = | dRdrdp xJ'^RpKj mpiBl(j,S)j tnt;A)V(r,p)^(r,p)x{
+)(Rt], (2)

for each value of the total spin S of the two transferred neutrons. The spatial

coordinates are defined in Fig. 2. The x and xt are the usual distorted waves.

The round brackets denote integration over the internal coordinates of nucleus A

and the spin coordinates of the proton and two neutrons; this factor remains a
c

function of the spatial coordinates rj and r2 of the two neutrons. Also, 4^ is

the spatial part of the triton internal state as defined in Eq. (1). The trans-

fer interaction V is taken to be the post form, V _-U „ = V „ + (V .-U „ ) ,

with U _, being the optical potential for the outgoing proton, and with the usual
pb

assumption that (V .-U R) may be neglected. Then

V = V p , 2 n = V p n i + V p n z = v u p - I r l j + v U e + } r l ; . ( 3 )

In general, V depends on the spins, but since i t cannot change the spin S of the

transferred neutrons,17 i t is sufficient for our purpose to treat i t as

spin-independent.

The spin matrix element gives a Clebsch-Gordan coefficient expressing the

angular momentum coupling of the spins and Eq. (2) can be rewritten



(4)

where the function *<. is the spatial part of the overlap of the two nuclei, i.e.

the two-neutron form factor, corresponding to spin S,

*SM (Cl'Cz) = (B|SMS;A) 5 J •g(e A.r 1o 1,r2a 2)* AU A)* S H (ai,o2). (5)

I t is this two-nucleon overlap which embodies the nuclear structure information

about pairing, etc., that we wish to extract from measurements on two-nucleon

transfer reactions.

The predominant part of the tr i ton wavefunction is the symmetric S-state.

Within i t the neutrons have S = 0, and the space function *° is a function of

the single symmetric variable,

u2 = r12
2 + r23

2 + r132 = J- r* + 2PK (6)

Frequently, a zero-range approximation is used in which one sets

V^° s: D(r)6(p), (7)

so that the proton is assumed to be at the centre of mass of the two neutrons

and

T^}(S=0) « 6m m J xJ"
)(R')Ori':2)D(r)xj+)(R)dRdr, (8)

where R" = RA/(A-<2).

The importance of the mixed symmetry S'-state of the triton and of the D-

state have been stressed by Nagarajan, et al. 1 7 We consider here the S'-state



only. It is a sum of two terms, one with S = 1, one with S = 0. We ignore the

latter component, since it results in the same selection rules as the symmetric

S-state. The term with S = 1 has a spatial part of the form r«p g(u), so that

there is a contribution to the amplitude

n.rjjVr.p g(u) x|+)(R.t

(9)

One cannot make the zero range (P = 0) approximation on this term because of the

factor r»p. However, it is useful to consider the lowest-order no'i-vanishing

terms in an expansion of the distorted waves in powers of p;

xt
(+)(Rt) = x[

+)(R + J P ) - x{ + )(R) + j P - Y p x^ + )(R) + .... (10)

with a corresponding expansion for x ( R ' + P ) . Since from Eqs. (2) and (4), V

and g are even functions of p, we have

dp g(u)V r-p = 0, (11)

so that the lowest-order term appearing in the expansion of T.-,;'(S=l) contains

one factor of P*v"_x- If we define a function E according to

I do q(u)V r-pfp-V^y 1 = Ffr)r-Vr,-).
J ~ ~ ~ -.- -

then we can write

dRdr E(r)*™ (ri,r2j

(13)

Later we will show that the sequential transfer process generates amplitudes

very similar to Eqs. (8) and (13).



2.2. Two-Step Amplitudes and the Closure Approximation

In second-order DWBA, the transition amplitude T' ' for the two-step process

A(t,d;d,p)B, with intermediate nuclear states C, has a part r ' which is second

order in the interactions and a non-orthogonality correction term T' . The

f i r s t part has the form18

T B / P ' I f - f X ^ ' ^ C R p J C P . B l V p ^ | d . C ) G < + > ( R d . R 5 ) C d . C | v d n 2 l t . A ) x ( + ) ( R t )

where we ignore spins for the moment. Here Gr is the Green function for the

propagation of the intermediate deuteron d (relative to the intermediate nucleus

C) under the influence of an optical potential. If this optical potential were

neglected so that the propagation was in plane waves rather than distorted

waves, G~ would reduce to

GC (B'T) ~ exp(ikdsj/s, s = |R-R'i- (15)

(The wavenumber k. could be reinterpreted as the local value k.(]?) at the posi-

tion "R = —! R+R" [, thus introducing a 'local-energy' approximation3 for the

effects of the ODtical potential and the Coulomb field.) The quantities with

round brackets are the usual nuclear overlap functions, or 'form factors', tor

one-nucleon transfer. In the post-post interaction form that we have adopted,

the non-orthogonality term T has a similar form except for having the oppo-

site sign and for the omission of two scalar factors, the Green function Gr and

the interaction V. for the (t,d) step. It tends to cancel the one-step

amplitude.

The closure approximation consists of assuming that the intermediate states

4>r that contribute importantly in the >\pression for P ' are sufficiently close



together in excitation energy that the associated Green functions G,- can be

replaced by an average "Gr. We then assume that we have a complete set of states

4>r and use the completeness relation for the nuclear overlaps,

I(B|C)Gr(C|A) a Gf I (B|C)(C|A) (16a)

C L L C

= GC(B|A), (16b)

because of the closure relation

I|C)(C| = 1. (16c)

C

Despite the somewhat comif:".sed notat ion, comparison wHh Eq. (5) shows that th is

procedure resul ts in the appearsiv.~ of the same two-neutron overlap functions or
R A

form factors « ( r i , r 2 ) ss those which appear in the one-step amplitude (4) .

Consequently, provided the important intermediate states are su f f i c i en t l y

close for the approximation (16a) to be va l id , nuclear structure effects such as

pair ing corre lat ions w i l l manifest themselves in much the same way in one-step

or two-step processes. In th is way, one can understand how analyses of measured

cross sections using the theory for a one-step transfer alone may y ie ld useful

information on the re la t i ve behavior of spectroscopic factors for d i f fe rent sta-

tes and d i f fe ren t nuc le i , 1 9 even when the theory f a i l s to explain the absolute

magnitudes of the cross sections.

2.3. Further Comments on the Closure Approximation

One can easi ly construct model s i tuat ions in which the procedure (16) beco-

mes exact. For example, consider two-neutron t ransfer to a closed-shell target

in which the intermediate states ^_ are pure s ing le -par t i c le j - s ta tes and the

residual state ya has a pure j 2 conf igurat ion. Only one intermediate state can
D

contr ibute, namely the corresponding s ingle-par t ic le state in nucleus A+i with

the same j , and Eq. (16b) becomes exact.
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The expression (14) assumes a single intermediate state for the intermediate

particle c = a-1, in this case a deuteron, c = d. More generally, both inter-

mediate nuclei may be in more than one state and expressions like (14) need to

be supplemented by an additional sum over the states of c. In a heavy-ion re-

action, both c and C may be comparable and hence should be treated on the same

footing. This was done by Feng, et aj_.3 when they applied the closure approxi-

mation. The tendency has been to treat light-ion reactions differently, by

assuming that the intermediate light particle remains in its ground state. This

has been a matter of expediency; excited states of light ions are unbound and

thus introduce a continuum of intermediate > 3-body states which greatly in-

creases the complexity of the calculation. This has been done 1 2' 1 5 for the

intermediate 'deuteron' (i.e., n-p system) in (p,t) reactions.

The closure aporoximation (16) may be applied to the states of c, as well as

those of C, if the important contributions still come from a sufficiently narrow

band of energies (i.e. narrow enough that the Green function Gr does not vary

much). This results in the appearance of a second two-nucleon overlap or form

factor (b|a), which again is the same as that which occurs in the one-step

amplitude r . Then the nature of the intermediate nucleus c plays no role

and, for example, anguiar momentum selection rules are the samp for one-sten and

two-step transfer. It is plausible that this is approximately valid for heavy-

ion reactions3 where the important intermediate states are likely to be bound

states of moderate excitation energy. It is not so obvious for light-ion re-

actions. The explicit calculations12'15 for 48Ca(p,t) at 20 and 40 MeV includ-

ed the n-p scattering states, both singlet and triplet. Important contributions

came from the continuum states at 40 MeV, but the effect (or the cross section)

was small at 20 MeV. The intermediate spin-singlet state is always associated
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with continuum states of relative motion. Hence, the transition is dominated by

triplet intermediate states if the contribution of the continuum i<. negligible.

This constitutes a spin-filter through which the two-step process must pass and

introduces differences in the spin selection rules compared to the one-step

process. We return to this later. T.t is not clear from the results12'15 for 40

MeV, where the continuum j_s important, whether this Kind of spin selectivity is

still active.

2.4. Non-Orthogonality and the Second-Order Amplitude

If one introduces a truly complete set of intermediate states (for both

intermediate nuclei), it is easy to show 1 2' 1 4 that, in the post-post (or prior-

prior) interaction form of the amplitude, the non-orthogonality correction term

r ' becomes equal and opposite to the one-step amplitude J '. The two-step

~ (2)term r ' is then left as the lowest-order contribution to the transition. In

practice, however, it is not feasible to use a complete set. Formally, it im-

plias non-convergence of the Born series because of the mathematical difficul-

ties associated with the 3- and more-body states that appear when the intermedi-

ate states are unbound. One standard approach is to regard our calculations as

being done within a truncated model space, limited to 2-body channels, and with

effective interact IOPC. Inus, a complete set is ruled ou*_ from tne start..

Nonetheless, the tendency remains for T and , to interfere destructively,

sometimes quite strongly (see Refs. 9 and 12-15 for examples), and this enhances

the importance of the two-step process described by T' .

One final note: the separation of the second-order amplitude T ' into

P ' and P' ' is artificial. Despite the intuitive appeal of interpreting

P as "the two-step process", one cannot physically distingu <.h these two

terms from each other (nor they from the first-order term T ) . This is
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(2)
emphasized by the lack of uniqueness in separating Tv ; into two parts; for

(2)
example, if we had chosen the prior-post interaction form for T , there would

be no r ' term and hence no possibility of the cancellation of V . This

lack of uniqueness also renders ambiguous even the conceptual division into one-

step and two-step. Only the total amplitude has direct physical meaning; its

breakdown into pieces is merely a consequence of the way we do calculations.

Nonetheless, the discussion of this paper can be valuable as an aid to under-

standing the results of those calculations.

2.5. Approximate Two-Step Amplitude for (t,p) Reactions

We now consider the amplitude (14) in more detail. At first, we only allow

ground-state (triplet) deuterons in the intermediate state. Further, for sim-

plicity, we adopt the zero-range approximation for each of the single-nucleon

transfers and only consider the dominant symmetric S-state for the triton.

Consequently, the spins of the two neutrons within the

triton are coupled to S = 0. Then Eq. (14) becomes

I D ( t , d ) D ( d , p ) d r )
Cm. ° ° J '

(17)
(±\ . A . , 1 (J.^

dr, ri, ~ r

where D (a,b) is the usual zero-range normalization constant for one-nucleon

transfer. The coordinates used are indicated in Fig. 2(b). Also, s . = 1 is the

spin of the deuteron.

The spin overlaps are evaluated by f i rs t recoupling the spins in the tr i ton

in terms of the resultants 5. of the spins of the proton and the f i rs t neutron.

Our assumption of a particular deuteron state ( t r ip le t , s, = 1) then selects the
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i . = 1 part of the triton. We then get

£ sd s b H) < s r Msm
Plj V

(18)

I f d r j d r a x < - > * {%$ _ n ) ( B | C ) G < + ) ( C | A ) x { + ) ( r 2 )
c

where S is the angular momentum transferred due to the spins of the two

neutrons. Although tnese spins were assumed to be originally coupled to zero

within the t r i ton , the 'sp in- f i l te r ' introduced by interposing a deuteron with

s. = 1 has resulted in the appearance of transfers with both S = 0 and i .

In order to simplify Eq. (18) further, we now make the closure approxima-

tion (16). Substituting the numerical values of the Racah coefficients in Eq.

(18), we f inal ly arrive at

TBA ~ I TBA ( S = 0 ) ' 2 TBA ( S = 1 ) ' ( 1 9

wi th

m „ . _ , _ , J (d ,p) d r i d r 2 x\~'[ri) O n ^li^r *t ( f t ) . (20a)
p t ; H

and

^ B A ) ( 1 ) = ^ i " Msmpli" m t > D
0 ( t » d ) D

0 ( d ' P ) f d : i d : 2 x j ' ^ r i ) * ^ {rltr2)Gc > : { + ) ( r 2 )

(20b)

A+l

where

A + l
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Next, introduce the coordinates of the separation of the two neutrons,and of

the i r CM relat ive to A,

A+?
r = D - r 2 . 2R = r j + ±+ r2

or

rf = R' + ~ r, r2 = R - 7 r.

Further, assume that G has a short range in the variable r, so that we may

approximate i t by ~G , the monopole part of Is, where

G = IAGx(r,R)PA(cose). (21)

Here © is the angle between r and R. Then the lowest-order term arising from an

expansion of the distorted waves in this range, like Eq. (10), should be a

reasonable approximation. It is

^ ^ 4+)(B) • (22)t Vt,d)Do(d,P) J Wl

Equation (22) is identical in form to Eq. (8), with D(r) there replaced by

Gf (r,R

plex. )

( r ,R) . (Note, however, that D(r) is usually assumed real , while ^ is com-

Similar approximations can be made for T I . ' ( 1 ) . Because of antisymmetry,

the overlap function *1 M must be an odd function of the variable r; therefore

the non-vanishing term of lowest-order in an expansion of the x's in powers of r

is

7M s m p }m t > DQ(t ,d)D0(d,p) j dRdr »JjJ (Cl , r2 )^(r ,R)

(23)

Equation (23), although not exactly the same as Eq. (13), is remarkably similar

in form.
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Clearly, a number of severe approximations have been made, so that the

results obtained are qualitative and suggestive, not quantitative and rigorous.

Nevertheless, they are useful aids in understanding the roles played by the

simultaneous and sequential transfer amplitudes.

The remarkable similarity of Eqs. (8) and (22) for the S=0 amplitudes con-

firms a result frequently observed in numerical calculations, that sequential

transfer amplitudes tend to have the same dependence on angle as simultaneous

transfer amplitudes. They also tend to depend in the same way on nuclear bound-

state properties, so that relative spectroscopic factors obtained from analysis

of data based on the one-step DWBA are expected to be quite reliable, even when

sequential transfer amplitudes are cignificantly large. These points have also

been made earlier.7'16

The similarity of Eqs. (13) and (23) for the S=l amplitudes is also

interesting. These amplitudes have the same selection rules, the same dPDen-

dence on bound-state properties and, although not of exactly the same mathemati-

cal form, appear to be very much alike. As a result, including sequential

transfer amplitudes can be expected to have effects comparable to including the

mixed-symmetry S" state in an exact finite-range treatment of the first-order

amplitude. Both effects should influence the sensitive vector analyzing nower.

This injects some uncertainty into analyses based on the zero-range approxima-

tion, such as Ref. 20, although the calculations of the vector analyzing power

presented there are quite suggestive of the importance of sequential transfer.

It would be very interesting to compare the results of Ref. 20 with finite-range

calculations made, for example, with the computer programs used in Refs. 7 or 9.

2.6. Importance of the Deuteron Singlet State

Only one author has reported12'15 including the singlet state (s. = 0 in Eq.
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(18)) of the deuteron in the calculations of sequential transfer. A proper

treatment of the singlet-state is non-trivial since it lies in the continuum.

If assumed to be quasibound, it could be included without difficulty in the same

way as the bound triplet-state; however, it seems that this would be a poor

approximation.15 If the singlet continuum is treated properly, it is incon-

sistent to ignore the triplet continuum; indeed, the only reported ca'culations

of the 'break-up' effect12-15 do include both singlet and triplet contributions,

uranted that the problem is complicated, it is still illuminating to discuss the

consequences of the deuteron singlet states using a simplified approach.

Assume that the singlet and triplet intermediate n-p states contribute

equally and that they propagate in the same way (i.e. that G is the same for

both). For example, one might assume that the triplet deuteron ground-state and

the zero-energy XS resonance dominated, and neglect the differences between

their energies â 'i wavefunctions.

With this assumption, the total amplitude for sequential transfer is the

same as Eq. (17) except that there should also be a summation over s. = 0 and 1.

Since the Green functions for singlet and triplet deuteron propagation are

assumed to be the same, summation of the projector |SJM.)(S,M,| over s., M.

gives unity. As a result, the complete anslitude is eaual to Ti. (S-0) of Ec.

" (2)(20a). The coefficient of !„. (S=l) is identically zero. Similar results are

obtained for the non-orthogonality terms. The spin-transfer selection rules are

then exactly the same tor zero-range sequential transfer as for simultaneous

transfer with a totally symmetric S-state triton. If this model were correct,

including the sequential transfer amplitude could be expected to have little or

no effect on the vector analyzing power. The model is oversimplified; for

example, Hashimoto15 finds the triplet states to be more important than the
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singlet ones. Nonetheless, it serves as a warning that it may be impossible to

completely decipher the reaction mechanism problem unless the deuteron continuum

is properly included.

The following analogy is useful. The deuteron channel acts much like an

optical polaroid filter. In the triton wave function the neutron spins are

coupled to S = 0, which from recoupling we find is a linear combination of sd =

1 and 0. The assumption of a triplet deuteron filters out the s^ = 0 component,

and the resulting triton function, after filtration, is no longer pure S = 0; it

also contains S = 1 neutron components. If the singlet and triplet deuteron

states are included with equal weights, the filter is removed and only S = 0

neutron transfer is possible.

3. The (a,d) Reaction

A similar analysis has been made of the (a,d) reaction.21 Two sequential

processes are available here, (a,t;t,d) and (a,h;h,d) (where h = 3He). Only

s .=1 transfer is possible for the simultaneous transfer because of the zero spin

of the alpha. If we assume an S-state of maximum symmetry for the alpha, only

spin - Y states are allowed for the triton and he!ion. Thus, although they act

as spin - - 'spin filters', they impose no further constraint on the spin

transfer. The spin-transfer selection rules are the same for simultaneous and

sequential transfer. There could be, however, an isospin filtering effect which

would result from any difference in propagation of the t and h particles in

unsymmetric, charged nuclear matter (i.e. if they had different Green

functions .>.

By introducing similar zero-range and closure approximations, the one-step

and two-step amplitudes are reduced to the same forms as Eqs. (8) and (22) for
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the (t,p) reaction. Again, the two amplitudes are seen to depend upon nuclear

structure in the same way. The same two-nucleon overlap, analogous to Eq. (5),

appears in both. In particular, there does not appear any phase difference bet-

ween them that depends upon the spin of the residual nuclear state.

The latter point is especially relevant because cf some observations of the

Pittsburgh group22 on the 208Pb(a,d)210Bi reaction. Consider excitation of the

(g9/2h9/2) multiplet of states with J = 0,1,...9. Simple angular momentum
J

considerations, together with the tendency of (a,d) reactions to favor large

L-transfers, leads to the prediction that the one-step cross sections should

show a regular stepped pattern when plotted against J, with the rise at each

step increasing as J increases. DWBA calculations22 confirm this (see Fig.

3 a). The discussion of the present paper suggests that a similar pattern

should be seen for the two-step process by itself and again explicit calcula-

tions22 confirm this (Fig. 3(a)).

The measured cross sections22 show a rather different, saw-tooth pattern

(Fig. 3); the predicted steady rise with L transfer is observed; however, the

cross sections for the even-J members of the J=(L-1,L) pairs are larger than

those for the odd-J members. Coupled-channels calculations22 including direct

and sequential transfers reproduced these trends and seemed to indicate that the

saw-tooth pattern resulted from successively constructive and destructive inter-

ferences of direct and sequential amplitudes due to a J-dependence in their

relative phase. No such J-dependent phase factor appears in the present treat-

ment''', although it is able to account for the trends shown by the individual

"^Although a coupled reaction channels code was used, the calculations of Refs.
22 were made in such a way as to correspond exactly to the second-order
distorted-wave Born approximation discussed here, including the use of the
zero-range approximation. Further, the non-orthogonality correction T(N 0 ) was
not included. However, it is easy to see that this term, which tends to cancel
the one-step amplitude, has exactly the same structure. Consequently, no J-
dependent interference is expected from non-orthogonality corrections, either.
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one-step and two-step amplitudes in terms of the reaction dynamics and the LS-jj

transformation coefficients involved in the two-nucleon overlap factor.21 In-

deed, within our model, the integrand of the two-step amplitude differs from

that for the one-step only by the replacement of the l ight-ion overlap function

D(r) by 5 (r,R), the average of the tr i ton and hplion Green functions. The sym-

metric part of the two-nucleon overlap * ( r 2 , r 1 ) , from which any J-dependence

must arise, is common to both amplitudes.

Our analysis makes i t d i f f i cu l t for us to understand either the calculations

presented in Refs. 22 or the experimental data, which seem to be nicely ex-

plained by the coupled-channels calculations. Cross sections for
208Pb(3He,p)?10Bi show a similar behavior.23 The (3He,p) reaction differs irom

(a,d) in that S=l and S=0 transfer are both possible. However, nuclear struc-

ture factors make the S=0 contribution much smaller than that for S=l, so that,

except for kinematic effects, one should expect the two reactions to behave in a

very similar way.

Our approach differs from that using coupled channels in that we do not con-

sider intermediate states expl ic i t ly but make the closure approximation. How-

ever, with the assumption of a single (g9/2n9/2) configuration for the final

state in the 208Pb(a,d)210Bi case, the result of making the closure approxima-

tion yields the same result as restricting the intermediate states to be the
209Pb and 209Bi ground states, as was done in the coupled-channels calcula-

t ions.2 2
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Figure Captions

Fig. 1. (a) Simultaneous transfer, (b) sequential transfer. The wavy line

corresponds to one action of the projectile-target interaction.

Fig. 2. Coordinates used for (a) simultaneous, and (b) sequential transfer.

Fig. 3, Integrated cross sections, versus J, for the 208Pb(a,d)210Bi reaction

exciting the (hg/2gg/2J multiplet. (a) Individual one-step and two-
J

step cross section; (b) coherent sum of one-step and two-stsp; as re-

ported in Ref. 22.
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