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Abstract Shell-model calculations of charge radius
differences in the Pb isotopes are discussed. Core
quadrupole oscillations are found to be significant
factors in the calculations. Existing data on the
2 1 0Pb isotope shift and the B(E2) strengths in 210Pb
are shown to be inconsistent. Ground-state correla-
tion effects in light nuclei (i.e., 0 and Ca isotopes)
introduce odd-even staggering effects and other quali-
tative features in agreement with existing data.

INTRODUCTION

At this conference we have heard about a number of beauti-

ful experiments which produce extremely precise measure-

ments of nuclear sizes, as extracted from isotope shift

measurements. An obvious question is what can we learn

from such measurements. Historically, there are two

distinct classes of nuclear models. One is the collective

model, wherein the nucleus is treated as some sort of

liquid which can assume a shape, rotate, vibrate, etc.

Bill Myers has discussed here the application of such

*Research sponsored by the Division of Basic Energy
Sciences, U.S. Department of Energy, under contract
W-7405-eng-26 with the Union. Carbide Corporation.
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models to calculations of nuclear radii. The other class

of nuclear models is the microscopic model, where the

nucleus is treated as an assembly of discrete particles,

neutrons and protons, interacting through two-body forces.

I would like to review here how calculations of nuclear

sizes in a microscopic picture have been carried out. The

liquid drop models have been rather successful as a means

of calculating nuclear radii, so one can ask whether there

is anything to be learned from microscopic calculations.

Most microscopic calculations of nuclear sizes have been

made in the framework of either spherical or deformed

state Hartree-Fock theory. Such calculations yield rela-

tively accurate tingle-particle wave functions which re-

sult from admixing orbits with the same orbital angular

momentum but differing numbers of modas. They do not

treat effects of many particle-hole ftates at low energy,

i.e., low-energy surface effects. The calculations are

complicated by formal problems for non-closed-shell sys-

tems and for odd-mass nuclei. All these factors may be

importint when dealing with a series of isotopes over a

rather narrow mass range. I will discuss primarily micro-

scopic shell-model calculations which can, in principle,

overcome the problems inherent in the Hartree-Fock ap-

proach. I hope to show that such calculations can teach

us something about the residual shell-model interaction

between nucleons, and they may also provide a sensitive

test of nuclear wave functions. I will first discuss some

recent shell-model calculations of isotope shifts in the

Pb isotopes.1 These calculations are probably the most

"fundamental" microscopic calculations of a series of iso-

tope shifts that have been made, in ways which I'll define

below. They also serves to show how a straightforward
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calculation of isotope shifts proceeds. I'll review the

microscopic calculations of Sorensen and collaborators,2

in particular how they treated quadrupole effects, and I

will discuss quadrupole effects in the Fb region. All

these calculations are for relatively heavy nuclei, where

the data are most accurate. The best shell-model calcula-

tions are for light nuclei (where the data are less accu-

rate) . I will next review some recent calculations of

isotope shifts in the light nuclei by Brown, Massen, and

Hodgson.3 These calculations suggest the Isotope shift

measurements may indeed provide tests of shell-model wave

functions.

SHELL-MODEL CALCULATIONS OF ISOTOPE SHIFTS

In this section, I will describe, briefly, a straightfor-

ward mixed configuration shell-model calculation1 of iso-

tope shifts in the isotopes of 200-208pl)# JJ^ first s t e p

is to calculate eigenvectors for the ground states of the

Pb isotopes. The sh^ll-model space includes the lowest

six single-hole states in the 2 0 8Pb core (i.e., pj/2»

P3/2» f5/2> f7/2» h9/2» h13/2)« F o r a g*ven 208-npb iso-

tope, all n-hole configurations allowed by the Pauli prin-

ciple are included. The space is truncated in that only

states where the sum of the seniorities of the particles

in each orbit is < 2. This truncation has been checked

for 201*Pb and is found to be extremely accurate, particu-

larly for the ground states which concern us here. In

this model space we diagonalize an effective one-body plus

two-body interaction. The interaction is a modification

of the Kuo-Herling "realistic" interaction1* constructed

for this space from the Hamada-Johnston nudeon-nucleon
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potential. Many properties of the Pb isotopes are suc-

cessfully described5 by this calculation. Given the

eigenvectors for each ground state, we want to calculate

the mean square charge radius of the ground state, i.e.

<r2> - r2(1) £' p*(r)r2
(2.1)

where i sums over all proton coordinates, j sums over all

proton-active orbits, and n, is the proton occupation pro-

bability of the orbit j. The numbers we actually calcu-

late are

6 <r2> = <r 2> 2 0 8 p b - <r
2>208-npb •

(For linguistic simplicity, we often refer to 6 <rz> as

"isotope shift" in this talk.) In our model, the Pb iso-

topes differ from each other only in the number of neutron

holes. There are no proton holes, and the removal of a

neutron particle does not change the charge radius.

Therefore, one must resort to an effective operator

theory. There is a long history6 of the use of effective

quadrupole charges in shell model calculations. The argu-

ment ie that a neutron (or proton) in nature polarizes the

shell model closed core, or gives the core a quadrupole

shape. This deformed core can then radiate by E2 decay.

This core contribution is included by treating the neutron

as a "proton" with charge e . With this effective charge,
n

one can calculate E2 observables with amazing accuracy.

One must do the analogous thing for isotope shifts; i.e.,

one assumes in calculating isotope shifts that a given
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neutron orbit has an effective charge radius 6<r2> ,,

<j||(r2)]|j> f f, and then calculates

6(r2) - i I <jllr2ij>eff n . (2.2)

Because the mean-square radius operator is a cne-body sca-

lar operator, the only way the shell model many-particle

wave function enters the calculation is through the occu-

pation number, n,, of a given j orbit. If we use harmonic

oscillator single-particle wave functions and restrict the

model space to one complete oscillator shell, all single-

particle orbits have the same value of <r2>. Then Eq.

(2.1) becomes/? <r2>/Z, where 91 is the number of active

holes or particles, i.e. the change in the charge radius

is simply linear in the total number of holes (particles).

A particularly interesting facet of existing data on iso-

tope shifts for a series of isotopes is the so-called odd-

even staggering effect, i.e.

(6 <r*>Wl - 6 <r2>N) * \ [6 <r2>N+2 - 6 <r2>N].

- In shell models which involve only one active oscillator

shell, there is no possibility of any odd-even staggering

effect in the calculated mean square charge radii. The

only source of a non-linear effect in this simple one-body

picture is through differences in the values of <j|| r2| j>eff

It is unlikely that such effects will emerge from any

simple shell model involving only one type of particle.

The odd-even staggering effect will be discussed at more

length below.

To return to the Pb calculation, in order to proceed,

we need effective radial moments for the single-hole
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states in 207Pb. This problem was studied by Speth, Ring,

and Zamick.^ They calculated the "effective-neutron-

charge" radius in first-order perturbation theory. They

considered the change in the charge radius due to the

excitation of a proton particle hole pair in the z"8Pb

core, or diagrammatically

<j!!r2flj>eff - / * (2.3)

In (2-3) the bubble represents a proton particle-hole state

in 2 0 8Pb. Ring and Speth8 had reported on RPA calculations

of the state of 208Pb. In the calculation of the isotope

shift, i.e. in Eq. (2.3), they couple hole states to

eigenstates of 2"8Pb, as opposed to a simple hole-particle

perturbation theory calculation. Ring and Speth had

studied the states of 2 0 8Pb in a RPA calculation using the

Migdal parameterization of the hole particle interaction.

The particle-hole interaction was a density-dependent 6-

force interaction, with both spin and isospin dependences.

With each spin dependence, the force has the form

V(ri,r2) = 6(ri-r2)f(r) (2.5)

where

fex + ( fin" fex ) p ( R ) (2*6>

P(R) - fB.R w n (2.7)
(l + et

R RoJ/«)

The parameters of the force were originally selected to
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give a good description of the J * 2 +, 3~, 4 +, 5~ states

with no consideration of monopole properties. In Speth, e£

al.P the parameters were readjusted to fit the monopole

properties (i.e., EO transitions, nuclear radii, etc.). It

was found that the density dependence of the strength of the

(p,p) and (p,n) interactions were altered. As a result, the

previous good results were retained, but results for mono-

pole properties were significantly improved. For instance,

the change in the mean square radius for the ground state of
207Pb changed from .012 fm2 to 0.061 fm2, as compared with

the observed value of .076 fm2. Similar changes were found

for all the neutron hole states. The calculations also show

that there are significant variations of the effective

charge radii from one orbit to the next. These effective

neutron mean-square charge radii have been used to calculate

the change of the charge radii for the Pb isotopes. The re-

sults are compared with the experimental values1 for
2CI0Pb + ?08Pb in Fig. 1» The experimental data clearly ex-

hibit odd-even staggering.

In the shell-modF'l calculations, there is no evidence

for odd-even effects even though there are differences in

the radii of different single-particle orbits. The larg-

est change occurs near the closed shell. The ground state

of 207Pb in the shell model is a pure vpj/2"1 state. The

ground state of 2"^Pb is an admixed function of states of

the form (vj~2)J=0. All orbits have smaller values of

6(r2) than does the P1/2 orbit, so the average 6(r2) of
206Pb must be smaller than for (.VV\/Z~2)* This effect Is

seen in both theory and experiment, but the magnitude of the

effect is not in good agreement. The theory-experiment

agreement is quite good for the even isotopes, but this may

be only coincidental, as discussed below.
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FIGURE 1. Isotope shifts, 6 <r2> ^ b - 2 0 ^ , for the
lead isotopes. The points with squares and circles are
the calculated shifts which include contributions from
ground-state quadrupole fluctuations.
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These calculations represent a particularly simple il-

lustrativs example of a microscopic calculation of the mean

square charge radius. They introduce the way in which an

effective charge radius is used in the shell-model calcula-

tion. These calculations include only the results of

coupling in J=0+ core states, so they include only the

"monopole" effects. They are the closest thing to a first-

principles microscopic calculation that is available. The

results of Speth, ejt al.7 show that such calculations are

very sensitive to components of the residual nuclear-nuclear

force; in particular, the density dependence. The inclusion

of the monopole effects are crucial to pinning down the

nucleon-nucleon parameters.

Thompson^ has also calculated the isotope shift in the

even-A Pb isotopes in a slightly different microscopic ap-

proach. He performs a Hartree-Fock calculation using the

Skyrme VI force with a constraint. He uses the 2 0 7Pb

single-hole energies and performs a BCS calculation of the

ground sCates of 1 9 8~ 2 0 6Pb. This gives a set of occupation

probabilities for the valence hole orbits. He then defines

the density of the given Pb isotope in terms of these occu-

pation numbers The Hartr<.:e-Fock calculations implicitly

include, to all orders, the monopole effects that are

treated in perturbation theory of Speth, and no "effective"

neutron radii are needed. The BCS occupation numbers are an

approximation to the exact occupations which result from the

shell-model diagonalizations. Thompson's results are also

shown in Fig. 1. His results are again roughly linear with

particle number, with a distinctly different slope from the

results using Speth, eit al.'s matrix elements. Generally,

Thompson's results underestimate the shifts consistently.

As discussed below, this may be a positive result. In any
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case, we will see that the slope of this calculated monopole

result is very important.

It is obvious chat the exact structure of the shell-

wodel wave functions in a given model space is not criti-

cal in calculations of charge radii. The bulk of the

physics is in the determination of the effective single-

particle charge radii to be used in the calculation, or

equivalently how to estimate core-polarization effects for

calculations involving nuclei away from closed shells.

PHENOMENOLOGICAL DETERMINATION OF CORE-POLARIZATION
EFFECTS

The most extensive microscopic calculations of charge

radii were made some years ago by Uher and Sorensen,

They treated a large number of approximately spherical

nuclei in a model which combined phenomenology with

microscopy. The model starts in the same fashion as a

conventional shell-model calculation. An inert core is

assumed and protons and neutrons are distributed in a

finite set of single-particle orbit. A pairing plus

quadrupole-quadrupole residual interaction is used. In-

stead of an exact diagonalization of an effective i.ecidual

two-body interaction, they apply the techniques of BCS

theory to treat the pairing interaction, and they include

effects of a quadrupole-quadrupole interaction in the

quasi-particle random phase approximation. They include

core-polarization effects due to monopole and quadrupole

deformations by procedures described below.

The monopole core-polarization effects are introduced

in terms of "effective" radii for neutrons and protons.

The core is treated as a compressible fluid. The potential
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seen by valence particles due to the core particles is ap-

proximp1*"^. by a Woods-Saxon potential. A first-order theory

of the change in the valence wave function due to a compres-

slve change of the core is constructed, and the change in

the wave function Is parametrized in terme of derivatives of

the assumed Woods-Saxon parameters. The parameters are cho-

sen to fit the gross trends in the charge radii and then

used to calculate changes between isotopes of nearly equal

mass. It ir not my intention to describe the method here.

The monopole corrections are significant, but they are not

the major contribution to the qualitative variations of the

charge radii. The monopole corrections included by Sorensen

and Uher2 phenomenologically are comparable to the renor-

malization calculated by Speth, e£ a]^.7 microscopically.

The contributions due to quadrupole core deformation

play a more important role in the calculation of overall

qualitative features of the isotope shifts. To calculate

the quadrupole polarization, Uher and Sorensen assumed the

core to be an incompressible fluid whirh undergoes small

quadrupole oscillations around a spherical shape. As a re-

sult of the zero-point motion of this oscillation, the

r- :'.ius of the CGre is altered. The mean square radius of

the core is expressed in terms of a deformation parameter 3,

i.e.

(3.1)

= <R > + 6 <R2>
CO

where R is the radius of the liquid-drop core. In this
CO

same model, theri exists a sum rule for the B(E2)-values

from the ground srate to all excited core states, '..e.
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2

? B ( E 2 W
5 Z e <R2 >2

O CO B2 (3.2)

where i runs over all excited core states. Then the change

in the mean square radius of the core due to zero-point

quadrupole fluctuations can be written in terms of the

B(E2)-values between the ground state and all excited

states.

6 <r2> = — 1 — • - ~ — I B(E2) (3.3)
(Ze)2 5 <R2o> I

In order to determine the 6 <r^> due to zero-point fluctua-

tions, one must know the B(E2)-values in the core. The pre-

scription of Uher and Sorensen for this is as follows. The

total B(E2) values of the nucleus in question are calculated

in the valence space in the pairing plus quadrupole model

used to calculate the mean square radius. Effective E2

operators for the neutrons and protons are found to repro-

duce the observed B(E2) values. The B(E2) strength due to

the added effective charges is ascribed to the E2 transition

of the core state, i.e. all the E2 strength not explicitly

present in the shell-model calculation is assumed to arise

from the decay of the first 2"*" state of the core (it is as-

sumed all the ground state E2 strength goes to the first

J=2+ state). The deduced core B(E2)-value is used to calcu-

late « <r2> from Eq. (3.3).

Thus, Uher and Sorensen break up the calculation in two

parts — one part is the contribution of the valence par-

ticles where effective single-particle operators introduce

monopole core deformation effects, and a second part which

' explicitly introdv. ".es a change in radius due to a change in
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quadrupole deformation in the core, as reflected in observed

B(E2) strengths. There is reasonable agreement between

theory and experiment. For those cases where there are sig-

nificant deviations from simple uniformly charged spheres,

most of the deviation is accounted for by the zero-point

quadrupole motion of the core. For somewhat deformed

nuclei, there are significant changes in 6 <rz> due to prop-

erties or the valence particles, but still the largest con-

tribution is from the core.

The Uher-Sorensen calculations did not reproduce the

odd-even staggering. In two subsequent papers,2 it was

shown that there can be a blocking of ground-state quadra-

pole correlations by an odd particle quite analogous to the

blocking effect of the pairing model, and this blocking was

not adequately treated '.n the original work of Uher and

Sorensen. Sorensen showed, in particular, that this effect

emerged from an evaluation of <Q > in a simple j model

(where Q = e r2 Y ). Sorensen and Reehal2 found that by

performing non-perturbative calculations of <02>, the

ground-state expectation value of the square of the electric

quadrupole operator, and relating the change in <Q2> between

the even and odd system to a change in 6 , the ground-state

deformation, and thence to a change in 6 <rz>, they could

qualitatively reproduce odd—even staggering. The calcula-

tion of charge radii by Sorensen and co-workers are the most

extensive microscopic calculations in the literature. They

qualitatively reproduce the data and, in some cases, achieve

almost quantitative agreement. Many of the largest effects

arose from the inclusion of core effects in a phenomenologi-

cal way and reflect little of the microscopic structure of

the wave functions (with perhaps the exception of the odd-

even staggering).
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Let us return to the lead isotope shifts. The shell-

model calculations did not reproduce the odd-even stagger-

ing, and apparently fit the even-even shifts. The BCS-

Hartree-Fock calculations were closer to the shifts for tha

odd systems. Following the ideas of Sorenson, the contribu-

tions of quadrupole fluctuations to the change in the charge

radius between 2 0 8Pb and the lead isotopes with A = 200,

202, 204, 205, 206, and 207 have been calculated In a rather

simple prescription. (Similar calculations for 201,203pb

are not economically feasible.) B(E2)-values for all tran-

sitions from the ground states tc aTl excited states in the

shell-model space described have been carried out, Woods-

Saxon single-particle wave functions with the correct bind-

ing energies were used in the calculation. An effective

neutron charge of E =1.11 was found to reproduce the B(E2)

values for the 2^-0 transitions in 2Oh>2OSPb. This same ef-

fective charge was used in all B(E2) calculations. With

this effective charge, the sum of all B(E2)'s from the

ground state to all excited states was evaluated for

200,202,204,205,206,207pb> t 0 o b t a i n a v a l u e o f <Q>2 f o r all

the lead hole ground states. For the even systems,. ~ 75-802

of the calculated T: strength from the ground state is in

the first J=2+ state. For the odd nuclei, there is signifi-

cant splitting of strength for low-spin final states. For

high-spin final states which dominate the sum rule, again

75-80% of the E2 strength is in the lowest state. From the

calculated B(E2) sums, values of <f5̂ > and 5 <r^> were evalu-

ated. The results are summarized in Table 1. There are

several features evident in this table. The ground-state

fluctuations increase with particle number for the even

nuclei, although the increase is not linear with the number

of particles. The calculations for 204,202,200pj, a r e
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TABLE I Values of E B(E2>o+f, <B
2>, and 6 <r2> for the

Pb-Hole Isotopes.

A = 200

202

204

205

206

207

t B(E2) e2ftn'

2658

2204

1730

1046

1013

328

• <S2

.0027

.0023

.0018

.0011

.0010

.0003

6 <r2> fm2

0.033

0.027

0.021

0.013

0.012

0.004

in a truncation scheme described above. Thus, there is some

uncertainty in the calculations due to this truncation. In

the case of 2OI+Pb, where both the exact and the truncated

calculations are possible, there is a negligible difference

in the calculated B(E2)-values. It would be surprising if

this truncation effect is large in 2 0 2» 2 0 0Pb. There is def-

inite staggering in the 2 0 6 >?QS »201»Pb calculations for C2

and so there is some staggering in the calculated 6 <r2>

values. If one adds the 6 <r2> due to deformation to the

mcnopole shifts as calculated by Speth, et_ £l., the deforma-

tion contributions destroy the agreement for the even sys-

tems and worsen the agreement for the odds. This is shown

in Fig. 1. It is possible that a readjustment of the den-

sity dependence of the hole-particle forces could correct

this deficiency. This has not been done. The Thompson

Hartree-Fock result shows the theory-experiment de iation

increacas with decreasing mass. If the difference is due to

quadrupole fluctuations, then these fluctuations must in-

crease with decreasing mass. This trend is reproduced by

the shell-model calculations in Table I. The magnitude of
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the shift is too small for the lightest Isotopes. This may

reflect a breakdown of the spherical shell model for the Pb

hole isotopes near A = 200. But tne difference is very sen-

sitive to the slope of the mcnopole line. An Improved cal-

culation may decrease the required correction.

There are measurements of the isotope shift in 2*"Pb,

and the results are puzzling. At this meeting. Prof. Rebel

has reported a value of 6 <r2>2io-2O8
 = 0.218(0.15) fm2. If

6 <r2>2io-2O8 *s calculated using single-particle matrix

elements of Speth, ̂ t a]L. and Kuo-Herling matrix elements,

the resulting value is 0.160 fm2. In 206Pb, the total shift

is -0.122 fm2, and the comparable calculated value is

-0.116 fm2. The theory does give a significantly larger

shift in 210Pb than in 2 0 6Pb, but there remains a large dif-

ference between theory and experiment for *"Pb, ~ 0.05 fm .

The magnitude of this discrepancy depends on the accu-

racy with which the monopole contribution is calculated. If

the discrepancj' is ascribed to quidrupole fluctuations, and

we use the same prescription to relate these fluctuations

with B(E2) values, then the isotope sihift discrepancy im-

plies a B(E2) for the 2—0 in 2 1 0Pb«840. If we use the Kuo-

Herling wave functions for 2 1 0Pb, and if we use harmonic os-

cillator single-particle wave functions, the implied neutron

effective charge is 2.36e. If we had used harmonic oscilla-

tdr wave functions to calculate 2 0 6Pb B(E2) values, the ef-

fective charge for the 2-0 transition in 206Pb is 0.79e.

(Note that in the previous calculations we used Woods-Saxon

single-particle wave functions. Relative B(E2) values are

not sensitive: to the difference between oscillator and

Woods-Saxon wave functions.) The isotope shift measurement

implies a much larger quadrupole fluctuation for 2lol'b than

for 206Pb. There are other measurements of B(E2) values in
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210Pb. The measured values are summarized in Table II. The

same B(E2) values have been calculated using Kuo-Herling

wave functions and oscillator wave functions. The neutron

effective charge needed to reproduce experiment is also

shown here.

TABLE II Measured B(E2)T T values in 210Pb. The ef-
i f

fective charge is the value to reproduce the measured
B(E2), using Kuo-Herling wave functions and oscillator
single-particle wave functions.

aRef.
bRef.
cRef.

Ji

2

4

6

8

10.

11.
12.

Jf

0

2

4

6

103a

413b

372C

63C

±

±

±

±

e2fm*

66

187

7

Effective

0.79

1.37

1.56

1.0

Charge (e)

± 0.14

± 0.24

± 0.06

The B(E2) value for the 2-0 transition is obtained from com-

paring cross sections for triton inelastic excitation of the

first J=2+ state in 2 0 6Pb and 2 1 0Pb. The remaining B(E2)

values are determined from decay widths. The experimental

values for the 2-0 transition are much weaker than the value

inferred by the isotope shift measurement. On the other

hand, the effective charges needed to reproduce the II(E2)

values for the transitions from the J=4+ and J=6+ staites are

much larger than the 2-0 based effective charge. A direct

measurement of the B(E2) values in 2 1 0Pb by Coulomb excita-

tion would be very helpful.

We have considered only quadrupole fluctuations here,
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and no consistent picture emerges. We have not considered

fluctuations of other multipoles. Further study of this ef-

fect is called for.

SEMI-SELF-CONSISTENT CALCULATIONS OF CHARGE RADII

Much of the effort in the area of isotope shifts involve

medium and heavy mass nuclei. More precise measurements are

available there. There is interesting, albeit less precise

data, on lighter systems. From a theory viewpoint, nore ex-

tensive shell-model calculations are available on lighter

systems. Recently, Brown, Massen, and Hodgson3 have studied

nuclear charge densities of light systems in a model which

is a hybrid of HartreeFock and shell-model calculations.

As discussed briefly above, the Hartree-Fock calculations

are the best microscopic calculations for determining accu-

rate single-particle wave functions, particularly insofar as

the shape of the wave function in the lead region is con-

cerned, but they do not include effects of low-lying multi-

particle, multihole excitations, and there are formal prob-

lems for non-closed-shell and odd nuclei. To determine the

single-particle wave functions, Brown, êt £l. use the con-

cept of a nuclear potential as did Sorensen and Uher,2 but

the potential is expressed as a function of the nuclear den-

sity, and self-consistency between the density and the po-

tential is imposed. To expand, the nuclear potential is

often expressed as

where f(r) is the usual Woods-Saxon form factor. Brown, et

al. try to improve this by replacing N, Z, and A by density
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dependences p.(r) - Pm(r) - P_(O and Pn - P (r) + p (r),i n p u n p

thus making the potential depend linearly on the particle

densities. The total nuclear densities are expressed as

(A-2)

vZaAx)
 2

where n and n are the occupation numbers of the partica-
« Po

lar orbit and U ..(r), (ff = p,n) are the radial wave func-
n£j

tione of single-particle eigenstates of the nuclear poten-

tial. Thus, finally

V(r) = [VoPo(r) + VoPo(r) - 2tz(vfpf(r)

(4.3)

c c

where F (r) = f(r)/po(r) and c and v refer to core and

valence contributions. Equations (4.2) and (4.3) are treat-

ed to sel' ̂ -consistency between V and p ... Brown, et al.3

nxj ~-~

deal with nuclei near 1 60 and **°Ca. The core and valence

parameters VQ and Vi are fixed by fitting the single-

particle binding energies in 170 and 2 2 0 , and in 41Ca and
I*8Ca> respectively. The occupation numbers are determined

from shell-model calculations for the valence systems.

Thus, a shell-model calculation of 1 80 gives n. in 1 8 0 .
a5/2

Then
n v = n. - n^ . (4.4)
"5/2 d5/2 d5/2
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From this model follows a number of interesting properties

of nuclear densities which are subject to experimental test,

but which we will not discuss here. It has also been ap-

plied to calculate charge radii.

Brown, et̂  al^ tried a number of systems in the sd shell

and the fp shell. The first case of interest is the series

of 1 RI17,18Q isotopes. In Table III experimental values of

V& <r2> for 170-160 and 180-l60 are compared with calcula-

tion for three nuclear structure models.

Model 1: 1 70 = vd 5 / 2 *
 1 60 closed shell

1 80 = v(sd)2 x 16o closed shell

Model 2: 1 80 = v(sd)2 x 1 60 + g2

Model 3: 1 7> 1 80 = 1 2C closed core + (psd)5»6

TABLE III Change in RMS charge radii in 16,17,18g f o r

the structure models described above.

Expt.

Model

Model

I

1

3

—

0

0

.008±

.006

.003

.007 fm

0

0

.074+0

.010

.073

.005 fm

Experimentally, there is a negligible change in the

charge radius between 1 60 or 1 7 0 , but a large one between
180 and 1 6 0 . The simple shell-model calculation does not

reproduce this. In Model 2, only 180-160 has been calcu-

lated and $ 2 varied to fit experiment. These result in
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(52 m 0.20. However, this f$2 is twice as large as the value

of f$2 needed to fit a number of other observables in 1 8 0 .

In the Model 3 with multiparticle, multihole configurations,

there is very good agreement. Thus, in this case, the be-

havior in the charge radii seems to put some constraints on

the shell-model wave function.

Similar calculations have been performed on the Ca iso-

topes. There is rather extensive and accurate data on rms

large radii in the Ca isotopes. The data indicate that the

radii increase from ^ C a to ''^Ca, and then decrease so that

the radii of **8Ca and '*°Ca are roughly equal. There is also

odd-even staggering seen. Brown, et al. analyze the data in

terms of a model similar to Model 2 above for 1 8 0 . They as-

sume that the wave function for ^ C a is

tOCa = /Pg2"|0> + 3|d3/2-2"
2 (f7/2 p 3 / 2 )

2 (4.5)

where |0> is the spherical closed shell and

d3/2~ 2 (f7/22 P3/22) i s a two-particle, two-hole admixture.

For "t0+nCa, the wave function is

"0+nca = /TZ&Z (f?/2 p3/2)n + p fan-2 (f?/2 P 3 / 2 )
n + 2 ) .

(A.6)

They calculate the self-consistent densities as a function

of An = 2f52 = number of d3/2 holes. For comparison, they

calculate the radii in a spherical two-orbit model

lt0+nCa = (f7/2 P3/2)
n- For the simple (f7/2P3/2)

n model,

the radii monotonically increase from "^Ca to **^Ca. Excel-

lent agreement with experiment is obtained with the values

B2 = 0.7, 0.85, 0.9, 0.53, and 0.15 for l*0,t2,».'*,i.6,«»8Ca>

respectively. It is known that there are light nuclei near

closed shells that exhibit low-lying states that do not
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naturally fit in spherical shell-model pictures. These

states are assumed to be based on deformed orbitals which

coexist with spherical orbits. This is true, for instance,

near *60 and l*0Ca. There have been extended spherical

shell-model calculations of some of these coexistence

states, where the deformed states are dominated by two-

particle and four-particle excitations from the closed core.

One can interpret the existence of large multi-particle,

multi-hole components ir a given state as a manifestation of

deformation and consequently an increased radius. Large

multi-particle-hole admixtures imply large radii. Zuker,

Buck, and McGrory*3 and Reehal and Wildenthal*1* calculated

the low-lying states of the oxygen isotopes in a model ^ith

a *2C core, where the Pi/2» ^5/2» an<* sl/2 orbits were ac-

tive. Zuker--1 carried out some calculations of the Ca iso-

topes in a model with a ^ S core and particles in the d3/2

and f7/2 shell. It is amusing to look at the probability

that the core is in the conventional shell-model configura-

tion in the wave functions of the ground states of the 0 and

Ca isotopes in these models. Thus, for 1 6 ~ 2 2 0 , what percen-

tage of the wave function has a filled P1/2 shell, and in
4°-'<8Ca what percentage of the vrve function has a d3/28

configuration? This is done in Ta,^ IV for the ZBM wave

functions1 of 0 and for the Zuker wave functions for the Ca

isotopes. Also included here are some results for the hole

nuclei * 50, ̂ Ca, 39^a> There are persistent features for

the two sets of isotopes. If we assume our picture above

that a larger closed shell component implies a smaller

radius, we see a distinct size increase at the closed shell.

For the even isotopes, the radius increases to the middle of

the shell and then decreases towards the end of the shell.

This feature is exactly what is observed in the Ca isotopes,
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TABLE IV Probability (in Z) for a spherical core in the

ground states of 0 and Ca nuclei.

150
160

170

180

"0
200

210
220

77

66

66

47

60

55

80

85

(PI/23)

(Pl/2**)
••

••

»

••

•*

38Ca 70

73 (d3/2
7)

60

72

53

52

58

70

and the pattern is similar to that for the 0 2 extracted by

Brown, et_ al.^ There is also evidence here for an odd-even

staggering effect. ^Ca is distinctly less deformed than

are 40»lf2Ca. Results for l*3 >'*5'lt7Ca are not available. For

the 0 isotopes, *70 is the same "size" as *^0, and then

there is clearly an odd-even staggering effect through the

rest of the shell. The odd-even staggering here clearly re-

flects some combination of Paali-blocking effects and strong

pairwise correlations. It certainly reflects some of the

quadrupole deformation effect discussed by Sorensen. We

show the 0 results because the results for all the isotopes

are available. More complete results for the Ca isotopes

would surely reveal the same effects.

Zuker, Caurier, and Poves*6 have also studied the iso-

tope shifts in the calcium isotopes. They use an isospin-

projected Hartree-Fock technique and show that by introduc-

ing an effective three-body residual force, they can repro-

duce the parabolic behavior of the Ca isotope shifts.
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SUMMARY

We have attempted to show some examples where microscopic

shell-model calculations provide some insight into the

features of data on charge radii. By combining an incom-

pressible fluid model of ground-state quadrupole fluctua-

tions with shell-model calculations of B(E2) values, it is

possible to account for some distinctive qualitative

features of lead isotope shift data. I* is critical to have

an accurate calcvTation of monopole effects. and more effort

is needed in this area. We have also suggested that shell-

model calculations with "open cores" give qualitative in-

sight into the data or charge radii near closed shells.

Core-excitation effects could account for odd-even stagger-

ing effects in light nuclei, as well as distinctive "para-

bolic" features ct the Ca isotope shift data. Our calcula-

tions all deal with near-closed-shell nuclei. Exact diag-

onalizations still cannot be extended very far from closed

shells. The interacting boson model (IBM), an algebraic ap-

proximation to the exact shell model, can be exfendfd to de-

formed nuclei. The IBM provides a particularly simple

parameterization'' of the isotope shift data. The model has

been cL plied to nuclei in the Ba, Ce, and Cs mass region.

The only isotope shift data available on these isotopes has

a particularly simple structure which does not provide a

stringent test of the model. The predictions in the middle

of the deformed region for these isotopes have very distinc-

tive structures, and data in these regions could provide a

severe test of the model.



SHELL-MODEL CALCULATIONS OF NUCLEAR CHARGE RADII

REFERENCES

1. G. L. Borchert, 0. W. B. Schult, J. Speth, P. G.
Hansen, B. Joneon, H. Ravn, and J. B. McGrory, to be
published; H. Rebel, this conference.

2. R. A. Uher and R. A. Sorensen, Nucl. Phys. 86̂ , 1
(1966); R. A. Sorensen, Phys. Lett. 2±, 333 (1966);
B. S. Reehal and R. A. Sorensen, Nucl. Phys. A161, 385
(1971).

3. B. A. Blown, S. E. Massen, and P. E. Hodgson, J. Phys.
G _5, 1655 (1979).

4. T. T. S. Kiio and 6. Herling, U.S. Naval Research
Laboratory Report No. 2258 (1971).

5. J, B. McGrory and T. T. S. Ruo, Nucl. Phys. A247, 283
(1975).

6. J. B. McGrory and B. H. Wildenthal, Ann. Rev. Nucl.
Part. Sci. 30, 383 (1980).

7. J. Speth, L. Zaraick, and P. Ring, Nucl. Phys. A232, 1
(1974).

8. P. Ring and J. Speth, Phys. Lett. 44B, 477 (1973).
9. R. C. Thompson and B. A. Brown, to be published.

10. C. Ellegaard, P... D. Barnes, E. R. Flynn, and G. J.
Igo, Nucl. Phys. A162, 1 (1971).

11. Table o£ Isotopes, Ed. C. M. Lederer and U. S. Shirley
(John Wiley & Sons, New York, 1978).

12. T. P. Sjoreen, U. Garg, D. B. Fosson, Phys. Rev. C 21̂ ,
1838 (1980), and T. P. Sjoreen, private communication.

13. A. P. Zuker, B. Buck, and J. B. McGrory, Phys. Rev.
Letts. 21., 39 (1968).

14. B. S. Reehal and B. H. Wildenthal, Particles & Nuclei
£, 137 (1970).

15. A. P. Zuker, Proceedings of Topical Conference on The
Structure of lf7/2~Nuclei (Editrice Compositor!,
Bologna, Italy, 1971) ed. R. A. Ricci.

16. E. Caurier, A. Poves, and A. Zuker, Phys. Lett. 96B,
15 (1980).

17. F. lachello, Nucl. Phys. A358, 89 (1981).


