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Abstract Except for some philosophical differences, our underlying
approach is essentially the same as that discussed by

There is widespread use of computer models as tools in Sacks, Welch, Mitchell, and Wynn (1989). As noted
scientific research. As surrogates for physical or there, versions of this approach have been used for a long

behavioral systems, such models can be subjected to time in various settings, e.g., kriging and Bayesian interpo-
experimentation, the goal being to predict how the lation. The details of the method (e.g., choice of correla-
corresponding real system would behave under certain tion function, design criterion) are more in line with Cur-
conditions. For long-running (expensive) model codes, fin, Mimheli, Morris, and Ylvisaker (1991).

there may be a severe limitation on the number of experi-
ments that can reasonably be done. This motivates the 2 The Computer Model
construction of a fast-running (cheap) approximation to

the original code, for use in experiments where a large Sheet molding compound (SMC)is composed of polymer
number of mns may be necessary. Here we discuss our resin, chopped fibers, filler, and additives. Prior to the

approximation of a simulation model for the compression molding process, a "charge", or piece of SMC, is cut from
molding of sheet molding compound, applied to the a sheet and placed in a heated mold. The process is begun
manufacture of an automobile hood. The approximation by closing the mold slowly; during the process the material

was constructed using Bayesian interpolation methods for flows and fills the mold cavity. After filling, a constant

prediction of the movement of the flow front. The predic- force is maintained on the mold, as the curing reaction
tions were based on data generated by a sequence of com- proceeds; then the part is removed and the curing is com-

puter experiments, using designs chosen according to a pleted.
type of D-opt_nality criterion.

Designers of the manufacturing process are concerned

1 Introduction with the movement of the flow front; it is desirable that the
charge fill the mold evenly and rapidly, without the pres-

The purpose of this paper is to demonstrate the application ence of "knit lines" formed when two parts of the flow
of Bayesian methods for design and analysis of computer front meet. To help determine the effect of the design

experiments to the construction of a "cheap" substitute for parameters (e.g., the initial shape and placement of the
an "expensive" computer model. As our example, we charge) on the flow front movement, a computer simula-
shall use a computer simulation model for a compression tion model is used. This model is a version of the TIMS
mold-filling process that is used in the manufacture of (Thin Mold filling Simulation) model, which was
automobile hoods. Our primary use of this model was to developed by Tim Osswald and Charles Tucker of the

generate prediction formulas that could serve as fast sub- Depa.,ament of Mechanical Engineering at the University
stitutes for the real model in certain well-defined tasks, of Illinois. The version we used came to us through the

This done, we did riot follow through any further, so this courtesy of Alonzo Church, Jr. and Daniel Fleming of
account is best considered as a realistic example rather GenCorp Research, who were of great help to us in learn-

than a complete scientific application, ing to use it and in evaluating the results. The theoq, and
n,)mefical implementation are described in Osswllkl and

•Researda_onKm:d by the Applied MathematicalScience, Tucker (1990). The inputs to the code include the
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the shape and location of the charge. The output consists nodes m = 1..... 469 at each time step in the simulation,
of ali the information needed to predict the position of the where pm(x) denotes the proportion of node m that is filled
flow front as a function of time. The code uses a finite ele- at time x.

ment method to solve a system of differential equations
based on the physics of the process. This is not a trivial At each node m, we defined the five responses
computation -- each run of the model code takes 4-5
minutes on a Cray X-MP computer. For specific, weil- Ym_:the last recorded time at which node m
defined experiments, it is worthwhile, therefore, to seek a is empty (Pm(Yml)= 0),
fast approximation to the model; this is the purpose of the
exercise we shall describe here. Of special interest to us is Ym2:the time at which node m becomes
the highly multidimensional nature of the response (flow 25% full (Pm(Ym2) = 0.25),

front movement). Previous applications of our prediction Ym3:the time at which node m becomes
method, and of similar methods described by other 50% full (Pm(Ym3)= 0.50),
authors, have been concerned with prediction of a single
response computed from the output. Although we shall do Ym,t:the time at which node m becomes
nothing more than apply the same prediction method 75% full (Pm(Ym4)=0.75),
separately to 2345 related responses, we shall see that y_: the first recorded time at which node m
even this kind of naive approach can be useful, is 100% full (p,,,(y_) =1).

3 Predictors and Responses Since these values are not given directly by the output,
which gives values of Pm at various times, we approxi-

In this example, we are concerned, only with the effect of mated them by linear interpolation of the output data. The
the initial shape and location of the charge. The input that prediction problem was then taken to be: Approximate the
defines this is a list of "nodes" (in the finite element 2345 functions ym_=Y,,,_(tl,t2,t3, t4), where m= 1..... 469
discretization of the mold surface) that are filled initially and r = I..... 5, over the region defined by 0 < ta< tt < 1,
by the charge. There are 469 nodes altogether, and the ini- 0 < 1.4< t3< 1. Two further practical constraints on the
tial charge typically fills 30 to 40 of them. (Although region of interest were added. The first restricted the
nodes are actually points, each is associated with a small

placement of the charge to be symmetric about the north-
subvolume of the mold. When we refer to a node as being south center line, i.e., t3 + ta = 1.0. The second required
"filled", we are really referring to this associated subvo- that the number of the nodes initially filled by the charge
lume.) In order to represent the list of initially filled nodes
by a few predictor variables, we require the initial shape of be between 39 and 40; this was our way of implementing a

requirement that the area of the mold surface initially
the charge to be rectangular. The predictor variables are
then defined by the boundaries of the rectangle. This is covered by the charge be fairly constant.

done conveniently using the node map as constructed for 4 Designthe finite element method, where the nodes form an

approximately uniform grid over the part of the mold The central idea (which is not original with us) is towhere the charge might be placed. The north and south
boundaries of the charge correspond to the predictor vari- represent uncertainty about each function y,,,.,on the k-
abies tx and t2, while the east and west boundaries dimensional region of interest T by means of a stochastic
correspond to t3and ta, respectively. (The scaling is such process (random field) Y_. For simplicity and conveni-
that 0 < t2< tl < 1 and 0 < ta < t3 < 1.) For other ence, we use stationary Gaussian (normal) processes as
geometries, of both the charge and the region of the mold priors. These are fully described by a constant

2 V[Y,_(t)], and a con'eta-
into which the charge is to be placed, the representation of _ = E[Ymr(t)],a constant _m_=

tion function _ where R_(d)= Corr[Ymr(t+d), Ymr(t)]
the initial shape and location of the charge by a few pred-
ictor variables might be considerably more difficult, and where t = (tl, • • • , t_) and t+d = (tl+dl, "" • , tk+dk)

are any two "sites" (points in T) separated by a difference
vector d. For simplicity, we also take the 2345 Ym_The next part of the setup of the prediction problem is to

define, from the mass of output, a manageable set of processes independent of one other, and R_(d)= R(d) for
response variables that will permit prediction of the flow all (m,r). (The choice of independence is made at the cost
front. The output gives values of the function Pm for ali of ignoring information about the relationships among the

Ym_'s at any site. We have not found it feasible to



implement such information here.) Currin, et al. (1991) for further details.

For a design criterion, we use the "maximum entropy" Here the set of candidate runs was formed by first letting tl

principle (Lindley 1956), which in this case leads to a kind and t2 take any of 11 levels and t3 and tn take any of 13
of D-optimality, namely, the maximization of ICDDI , levels, subject to the restrictions on the region of interest
where Coo is, for any one of the processes Ym_, the nxn noted above.

matrix of prior correlations among the design sites
(Shewry and Wynn 1987). We find this criterion appeal- The initial 10-run design, plus an additional 5 runs that
ing, for reasons given by Currin et al. (1991), but other cri- were chosen late,, are shown in Table 1.
teria could be used. (See, e.g., Sacks, Schiller and Welch
1989 and Sacks, Welch, Mitchell, and Wynn 1989.) Initial Design

Of course, one cannot maximize ICDDI without specifying Run tl t2 t3 t4
how CDD depends on D. For our priors, this means speci-
fying the correlation function R. We favor using a weak 1 0.40 0.00 0.75 0.25
correlation function, i.e., one for which R(d) decreases 2 0.40 0.20 1.00 0.00

rapidly to zero as d increases. Such a strong conviction of 3 0.80 0.60 1.00 0.00
prior ignorance is not useful for analysis, since one would 4 1.00 0.00 0.58 0.425 0.80 0.40 0.75 0.25
need to observe y at very many sites, located densely in T, 6 0.60 0.40 0.92 0.08
in order to yield predictions that are usefully precise. At 7 0.50 0.20 0.83 0.17

the design stage, however, we feel that the choice of a 8 0.70 0.10 0.67 0.33
weak correlation function is appropriately conservative. 9 0.90 0.60 0.83 0.17

For design purposes then, we use the exponential correla- 10 1.00 0.50 0.67 0.30

tion: Additional Points

- °EldJI (4.1)
R(d) = e _ Run h t2 t3 ta

where 0 is "large". Asymptotically (as 0 _ _ ), it can be 11 0.50 0.00 0.67 0.33
shown that the D-optimality criterion, where (4.1) is used 12 0.70 0.40 083 0.17
to construct CDD, maximizes the minimum intersite dis- 13 1.00 0.60 0.75 0.25

rance _ldjl among design points, and favors those 14 0.60 0.20 0.75 0.2515 0.90 0.20 0.67 0.33
designs with the fewest pairs whose intersite distance
matches this minimum. This is a special case of a result

Table 1. Design for experiment on compression moldingclue to Johnson, Moore, and Ylvisaker (1990), who called model.
such designs "maximin distance" designs. In this sense,

the designs we construct will attempt to push the design The need for the additional runs was clear after inspection

points as far away from each other as possible, of the cross-validation predictions based on the initial
experiment. These runs were chosen using the same algo-For design construction, we use an algorithm similar to
rithm and the same correlation function which generatedDETMAX (Mitchell 1974). Starting with a random set of
the first ten runs. The full 15-run design populates then sites, the aigorithm does a series of "excursions" in

which candidate sites are added to and removed from the region of interest (which is relatively small here) quite4

design. When adding a site, the chosen site is intended to densely; the maximum distance _1 tj - sjl between any
be the one at which the posterior variance, based on the J=_

feasible site t not in the design and the closest design site scurrent design, is largest, lt may not be possible to ensure
is 0.2.

this if there are many sites to consider; if this is the case,

the algorithm does a limited search. Wheri removing a site,
the chosen site is the one corresponding to Thelargest diag-

onal element in the inverse of the current CDD matrix. See



5 Prediction validation, each of the n experimental runs is deleted in
turn, and the data at the remaining sites are used to predict

Predictions were made using standard formulas for condi- y at the deleted site. Computationally, this is not as

tional normal disla'ibutions. Let Y,_.Dbe the vector of the n exhausting as it seems, since it can be shown that the error
observed ve.!ues of y,_. The mean of Ymr(t) given of prediction for response m,r at the deleted site i is

Y.-ar.D= YrrtrJ)iS:
e,_._ = qi(g_r.i - I-tm_Wi)

9_(t) = _ + CtDC_ (Y,_.o- I.t_J._) (5.1) where

where Ca is a row vector that holds the n prior correla- gmr = C_ Y_.D

tions between Ymr(t) and Ym_.Dand J, is the column vector w = C_ Jn
composed of n l's. In order to use (5.1), one needs to
specify the prior mean _ and the correlation function and q is the inverse of the diagonal of CD_. Here CDD is
(needed for CtD and CDD). In our approach, we arbitrarily based on the full n-run design, The cross-validation root

chose a family of correlation functions, indexed by a set of mean squared error is then:

parameters 0, and then used cross-validation to select _ i I ,469 5 "_
and 0. CVRMSE = _ _ _" _-'e 2 (5.4)- z_ z_ .L, ntr,

2345n i=lm--l_l

For the present example, we chose the product piecewise

cubic correlation (Currm, et al. 1991): Given the 0j's, this is easy to minimize over the I.t_'s, but
minimization over ,.he 0:'s requires iterative search -- this

k

R(d 1, "." , d_)= I-I Rj(dj), (5.2) is by far the most (computer) time-consuming part of the
j=_ prediction me!hod.

where k is the number of predictor variables, and To save time in the search for the optimal correlation

parameters (0j's), we used only one response at each node,
dj 2 Idjl (5.3a) namely Ym3,the time to 50% filling. This seemed reason-

Rj (di) 1
6(0j)_ + 6( 0j)3,-- :.,jl_ I l able since we expected the other response functions to be

similar in form. The values of _3, m = 1..... 469, and

2(1 Idcjjl )3, (5.3b) 0j, j= 1..... 4, were chosen to minimize (5.4) with r=3 andRj (di)
= - __j Idjl_ I2 a divisor of 469n. Then, fixing the 0j's at these values, we

determined values of la_ for ali m and r (again by cross-

Rj (di) =0 Idjle 13, (5.3c) validation), this time using ali 5 responses at each node.

where I_=[0, 0j / 2], I2=[0j / 2, 0ii, and I3=[0i, oo]. In our first analysis, the cross-validation results at particu-
lar nodes indicated that the predictions of y,_ tended to be

There is no particularly compelling reason to use this lower than the true values when the area of the charge was
instead of some other family of correlation functions, smaller than average and higher than the true values other-

However, the piecewise cubic does have two appealing wise. That is, the predictions had the flow front moving

features: (i) R(dj) decreases to 0 as Idjl increases to 0j, so too fast when the area of the charge was relatively small.
that predictions can be made more local or less local by We assumed that this was due to the increase in the height

controlling 0j, and (ii) S' is a cubic spline in every tj if the of the charge when the area is small (since the volume is
other tj's are fixed. (This is because each element of Co, held constant), which would presumably result in a slow-

regarded as a function of tj, is itself a cubic spline.) Cubic ing of the movement of the front as computed by TIMS.
splines are quite highly regarded as interpolators and data At any rate, we decided to introduce an additional predic-

tor: ts = (h - t2)(t4- t3), which represents the approximatesmoothers; Bayesian prediction based on (5.2)-(5.3) pro-

duces an interpolating cubic spline with very little effort area of the charge, and we repeated the analysis. This
on the part of the user. reduced the cross-validation errors, so the area was use6 as

a predictor in ali subsequent predictions.

To select the parameters by "leave-one-out" cross-



We then implemented the prediction equations for ali the root mean squared error for _'m3over ali nodes varied

responses in the form of a short computer code "FTIMS", from 0.01 sec to 0.68 sec, with a median of 0.27 sec. In
which serves as a fast emulator of TIMS for investigating these test cases, the "true" times to 50% filling, averaged
the effects of changing the shape and location of the over ali nodes, varied from 6.4-9.! seconds.
charge. The input and output files for FTIMS are of

exactly the same form as those for TIMS. The only differ- The range of applications of the current version of FTIMS
ence is that the output for FTIMS is based on the predic- is obviously quite limited. Further generalizations,
lion equations that followed from the computer experiment modifications, and tests would need to be made before it
we descnbed here, rather than the finite element solution could be a considered a practical tool for optimizing this
to the differential equations of the model, particular sheet molding process. Even at that stage, we

would regard FTIMS as only an occasional replacement
FTIMS converts the TIMS input into the site (tl ..... ts) for TIMS, when one wants to consider many scenarios
at which predictions are desired. The 15×1 vector CaDof quickly and one is willing to accept an approximate result.

correlations between this site and the design sites are com- The computing time for the run of FTIMS in the first test

puted using the values of 0j, j = I ..... 5, that we found to case described above was about 43 seconds on a Sun 3/50
be optimal by the cross-validation criterion. Workstation, only 5 seconds of which were used to com-

pure the predicted response vector at each node. The rest

The predictions of the responses y,_, m = 1..... 469, of the time was used for input and output. We have
r = 1..... 5 are made using (5.1), where the 15×1 vector already noted that each run of TIMS takes 4-5 minutes on

w = C_Jn (which is the same for ali m, r ) is provided by a a Cray X-MP, so the availability of a practical and well-
fixed input file, as is the 15×1 vector gmr= C_ Y,,_..oand tested version of FTIMS would permit more extensive

the scalar I.tm_. FTIMS then adjusts the five predicted exploration of the effects of shape and position of the
responses at each node, if necessary, to incorporate the charge on the movement of the flow front.
knowledge that the true responses are nonnegative and
nondecreasing. (We do not expect this adjustment to be Acknowledgements
needed very often, since the predictions interpolate data
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report below, the adjustment was needed at only two of the of Illinois for allowing us to use the compression molding
469 nodes.) Monotonicity is enforced in a straightforward code (TIMS), to Dr. Alonzo Church of GenCorp Research

way, based on the notion that, of the five responses at node for permission to use GenCorp's version of it, and to Dr.
m, S'm3(i.e., the time to 50% filling) is generally the most Daniel Fleming of GenCorp Research for sending us an
reliable. This response is therefore left unchanged, and executable version and helping us learn how to use it.

_'m2 and _'_ are adjusted, if necessary, so that
_'m2-<f¢,_ -<_'_. Keeping these three predicted responses References
constant, .gmiand _,,_ are adjusted similarly.

Currin, C., Mitchell, T., Morris, M., and Ylvisaker, D.

To convert the five predicted responses at each node into (1991). Bayesian l-_-ediction of Deterministic Functions,

estimates of p(x) at the values of time desired, FTIMS with Applications to tl_e Design and Analysis of Computer
again uses linear interpolation. The results are then Experiments. J. Amer. Statist. Assn., to appear.
printed in exactly the same form as the output produced by
TIMS. The postprocessor that normally runs on TIMS Johnson, M., Moore, L. anti Y!visakex, D. (1990).
output can then be applied to the output of FTIMS. This Minimax and Maximin Distance Designs. J. Statist. Plan-
produces plots of the position of the flow front at various ning and Inf. 26, 131-148.

times. In a test case in which t_ = 0.7, t2 = 0.3, t3 = 0.75,
and t4= 0.25, examination of these plots showed the Lindley, D. V. (1956), On a Measure of the Information
predicted front to be just a little ahead of the true front. Provided by an Experiment. Ann. Math. Statist. 27, 986-

1005.
On average, the predicted time to 50% filling in this case
was 0.14 seconds less than the time calculated by TIMS;

Mitchell, T. J. (1974). An Algorithm for the Constructionthe root mean squared error for _'m3over ali nodes was
of 'D-Optimal' Experimental Designs. Technometrics 16,0.23 seconds. In seven other randomly chosen test cases,
203-210.



Osswald, T.A. and Tucker, C.L. (1990). Compression

Mold Filling Simulation for Non-Planar Parts. Int. Poly-

mer Processing 5, 79-87.

Sacks, J., Schiller, S.B., and Welch, W.J. (1989). Designs

for Computer Experiments. Technometrics 31, 41-47.

Sacks, J., Welch, WJ., Mitchell, TJ., and Wynn, H.P.

(1989). Design and Analysis of Computer Experiments.
Statist. Sci. 4, 409-422. Comments and Rejoinder: 423-

435.

Shewry, M. C. and Wynn, H. P. (1987). Maximum

Entropy Sampling.J. Appl. Stat. 14, 165-170.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implie_, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.






