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FOLDING MODELS FOR ELASTIC AND INELASTIC SCATTERING*

G. R. Satchler
Oak Ridge National Laboratory
Oak Ridge, TN 37830, U.S.A.

1. Motivation

We are accustomed to the use of many simple models in nuclear physics. In

the present context, the most widely used models are the optical model potential

(OMP) for elastic scattering, and its generalization to non-spherical shapes,

the deformed optical model potential (DOMP) for inelastic scattering. These

models arc simple and phenomenolugical; their parameters are adjusted so as to

reproduce empirical data. Nonetheless, there are certain, not always weil-

defined, constraints to be imposed. The- potential shapes and their parameter

values must be "reasonable" and should vary in a smooth and systematic way with

the masses of the colliding nuclei and their energy. Without these constraints,

the potentials tell us very little, and they will be essentially useless for

other purposes, such as in DWBA calculations.

One way of satisfying these constraints, without going back to a much more

fundamental theory, is through the use of folding models. Remember that tne

basic justification for using potentials of the Woods-Saxon shape for nucleon-

nucleus scattering, for example, is our knowledge that a nuclear density distri-

bution is more-or-less constant in the nuclear interior with a diffuse surface.

When this is folded with a short-range nucleon-nucleon interaction, the result

is a similar shape with a more diffuse surface. Folding procedures allow us to
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incorporate many aspects of nuclear structure (although the nuclear 'size' is

one of the most important), as well as theoretical ideas about the effective

interaction of two nucleons within nuclear matter. It also provides us with a

means of linking information obtained from nuclear (hadronic) interactions with

that from other sources, as well as correlating that from the use of different

hadronic probes. For example, inelastic electron scattering measurements may

provide a transition density p. (r) for an excitation. Frequently this is

represented by a simple collective (deformed density) model when the transition

is strong, whose shape may be of the form

r r dpp(r)

where p~(r) is the ground state charge density distribution, R~ is its radius,

and 6. is an amplitude or 'charge deformation parameter' for the 2 -pole

transition. The interaction for hadronic inelastic scattering is frequently

represented in an analogous way (the DOMP) where the transition potential U. (r)

is taken to be

where U(r) is the optical potential for elastic scattering of that particular

N '

hadron, R., is its radius, and 3. is the corresponding 'nuclear' Z'-pole defor-

mation paramater.

The use of these models (1) and (2) (and their extensions) has led to much

H C IV

discussion as to how the 3 and 3 are related and, indeed, how the 3 obtained

with different probes are to be related. (One popular prejudice1 is that the

'deformation lengths' should be the same, 6[_ R~ = 6L R*,.) Folding provides some

insight into this problem2"4 and indeed may be used to construct the transition



potential U. (r) directly from the transition density by folding with a suitable

interaction. As usual, such extensions of a model also open up new uncertain-

ties. For example, the charge density (1) arises predominantly from proton

excitations, while neutron and proton excitations contribute comparable amounts

to the hadronic transition potential (2). However, we may turn this situation

into an advantage and use it to give information about the neutrons.

Folding is still a model, and, at best, an approximation. It is a reason-

able model for nucleon scattering. At low energies, it is closely related to

the Brueckner-Hartree-Fock model for bound states. At high energies, it can be

justified in terms of the impulse approximation. Extensions of the Brueckner-

type theories provide support at intermediate energies. The situation is not so

clear for composite projectiles, especially the scattering of two heavy ions.

However, here the situation is helped because such systems usually exhibit

strong absorption. Under such circumstances, the details of the interaction

when the two nuclei overlap are largely irrelevant; all that matters is the

interaction for peripheral collisions where again folding may be reasonable.

Ultimately, the justification of the folding procedure must be two-fold: (i) it

must be seen to work in practice (i.e. to explain experimental data), and

(ii) it should be justified from a more fundamental theory. This is the common

fate of physical models.

2. Further Theoretical Background

2.1. Coupled Equations and the Feshbach Projection Theory for the Optical
Potential

We have spoken so far as though the inter-nucleus potential was defined

uniquely. This is not so; there are various ways in which we may reduce the

complicated (Aj + A2)-body scattering problem to an effective two-body problem.



Failure to remember this has sometimes led to confusion. A conventional optical

model potential U(R) for two nuclei Ax, A2 is one which appears in a one-body

Schrodinger equation

£ - V2 + U(R)IX(R) = E x(R). (3)

where u is the reduced mass of the pair, R is the separation of their centers

of mass, and E is the CMS energy of relative motion. The solution x(R) with the

appropriate boundary conditions describes the elastic scattering of Aj + &>.

Usually U(R) is assumed to be local (although its parameter values may vary with

bombarding energy) and to have a smooth, simple functional form like that of the

Woods-Saxon shape. Occasionally, some L-dependence is introduced, but only if

one is forced to consider such a generalization ty some intractable data. The

primary consideration is simplicity.

How do we justify the use of an equation like Eq. (3) which makes no

reference to the many internal degrees of freedom and the corresponding non-

elastic channels except insofar as they lead to absorption from the elastic

channel and require U to be complex? One standard way to make it plausible that

such an equation may adequately describe elastic scattering is to use the pro-

ject-on operator formalism of Feshbach.5

Suppose that the complete Hannltonian for the colliding pair is given by

H - Hi + H2 + T + V (4)

where Hj and H2 denote the internal Hamiltonians for the isolated nuclei, T is

the kinetic energy of relative motion in the center-of-mass system, and V is the

coupling interaction between the ions. At this point, we ignore any explicit

reference to antisymmetrization between nucleons in different ions, although we

assume that the wavefunctions for the internal states of the individual nuclei



are antisymmetric. We denote a complete set of states for the internal

Hamiltcnians of nuclei Aj and A2 by <b. and <)>. respectively, where

(Hi - e n ) ^ = 0» (H2 " E 2 J ) 4-j. = 0. (5)

If the complete wavefunction is denoted by *r ', we note that measurements of

elastic or inelastic scattering provide us with information about the projection

of the complete wavefunction onto the channel subspace defined by the particular

measurement. We denote these R-dependent projections (amplitudes) by

X i j(R) = <«14...|<F
( + )>, (6)

which means that we can express the total wavefunction as

{ + )
 r (7)

J

A set of coupled equations governing the x^(?) can be found by inserting the

above expansion into the complete Schrodinger equation

(H-E) </ + ) = 0. (8)

This yields

[T + l V j | V , V j - i..] x . j ( R ) - ^ - ^ ^ i v ^ j l v i v ^ j x k 4 { R ) .

(9)

where E • = E - £n-e2j anc^ (i >J=0- • •0O) •

The rounded brackets denote integration over the internal coordinates of the two

nuclei and serve to remind us that the matrix elements remain a function of R-

Now Eqs. (9) represent an infinite set of coupled equations which, although

complete, are not very useful. Practical calculations require a severe



truncation of these to a small set cf equations coupling a few states of par-

ticular interest; this is what is involved in the so-called "coupled-channels'

method. The use of an equation like Eq. (3) in fact involves truncation to just

tnat one channel associated with the ground states, i = j = 0. The price we pay

for any such truncation is that the interaction V should be replaced by an

effective interaction. This becomes clear in Feshbach's formalism5 in which all

explicit couplings to channels other than the one of interest are transformed

away and their effects incorporated into an effective interaction. For that

channel in which both nuclei remain in their ground states this procedure

results in an equivalent one-body Schrodinger equation for the x (R)>

[T + Uop - E] x0Q = 0 (10)

with the effective interaction or optical potential operator U given by

U = f i> <t> I V I \li <t> 1 + f il) <}> I VQ r ,. —— QV I i> <(> ]

(11)

Up is defined as the first term • ; Eq. (11)

= UF + AU.

and is called the folded potential for elastic scattering. (Note that this same

folded potential and its generalization to excited states and off-diagonal

couplings also appears in Eqs. (9).) Q is the operator which projects off the

ground states of the two nuclei, so that only excited states appear as inter-

mediate states in AU. By its construction, the exact elastic scattering ampli-

tude may be obtained from x 0 0 as R + ».

A similar result ic obtained when the truncation is to a model space which

includes one or -i few excited states as well as the ground states. U becomes
op

a matrix in the model space and provides the effective interactions to be used



in the corresponding truncated coupled-channels problem. In particular, it

yields (complex) corrections AU to the interchannel couplings in addition to the

folded terms that already appear in the Eqs. (9).

The folded potential Up is real (provided that V is real). The remaining

term All, which we may refer to as a 'dynamic polarization potential', arises

from coupling to all the other states, is much more difficult to calculate even

approximately, and, in general, is complex, non-local, energy- and angular-

momentum dependent. (In practice, because of the strong short-range repulsion

in the bare nucleon-nucleon interaction, the V itself will be an effective

interaction or G-matrix which itself includes some 'polarization' corrections,

primarily those associated with the short-range correlation between the

interacting nucleons and hence high excitation energies. In principle, this

leaves open the possibility of some double counting.)

In phenomenological approaches it is this object U which is approximated

by a local, complex model potential U(R) in Eq. (3). However, although this

formalism provides us with the form of the optical model, it does not guarantee

that any given simple representation of U will be adequate. This question may

be explored both empirically (is a given model successful in fitting data?) and

by studying the structure of AU.

2.2. Other Approaches to the Nucleus-Nucleus Interaction Energy

A particular point to be stressed is that with the potential U (and by

implication an equivalent model potential U) defined in this way, the solution

x(R) of Eq. (3) represents x 0 (R) of Eqs. (9) and (10) and describes the rela-

tive motion of the two nuclei while they both remain i_n their respective ground

states. This may be a y_ery small component of the total wavefunction in that

region of space where the two nuclei overlap appreciably; in that case, the



strong absorption into other channels manifests itself through xoo(B) becoming

very small for R < Rx + R2.

This is to be contrasted with most of the potentials calculated microscopi-

cally for heavy-ion collisions (see Refs. 6-10, for example). These calcula-

tions may use the energy-density approach, the Thomas-Fermi approximation, the

liquid-drop model, the proximity theorem- etc., but they all attempt to follow

to a greater or lesser degree the readjustments that the two nuclei must make as

they begin to interact and overlap; distortion of the nuclear shapes, reaction

to the Dauli principle, effects of the saturating nature of the nuclear forces,

etc. Such an interaction energy function does not determine just the x com~

ponent of the wavefunction (7) but is to be used in a description of the motion

of a wave packet which includes a wide range of excited states of the separated

systems. It is not to be identified with U of Eq. (11), and, in principle, it

should not be used in an equation like Eq. (3).

It is possible that the equations for elastic scattering from these other

approaches may be formally recast into the same form as the optical model Eq.

(3) (see Pal, et aj_. n for a recent discussion of this). The corresponding

effective optical potential 0 appearing in such an equation will be different

from U . It will contain not only the interaction energy function just re-

ferred to but also correction terms. For example, in one model situation12

there are corrections corresponding to changes in the kinetic energy due to

changes in the inertial properties as the system begins to interact. The

corresponding scattering solutions x(R) from such equations will differ from

X O O(R). Before approximations are made, we must have x(R) + X (R) asymp-

totically because the var'ous theories describe the same elastic scattering, but

these wavefunctions will differ in the interaction region at small R.



The actual physical processes that are to be described in the two types of

approaches are, of course, the same. In the Feshbach theory they manifest them-

selves in the dynamic polarization potential All; in some ways this formalism is

deceptively simple, being most convenient to use when the effects of a few non-

elastic channels are to be studied explicitly. The other approaches provide

vehicles for including, perhaps in intuitively more obvious ways, various bulk

physical effects. Nonetheless, the 'potential' functions they generate should

not simply be identified as optical potentials without bearing in mind the con-

siderations already mentioned.

In practice, of course, approximations are made in both kinds of approach,

hrequently an adiabatic aproxirnation is used when calculating an ion-ion

interaction energy. This implies that the collision is slow enough for the two

nuclei to readjust, both as they begin to interact and overlap and as they

ser >"ate, so that they return to the elastic channel; there is no 'absorption'

into non-elastic channels and the calculated interaction energy is real. The

absorption into other channels that actually occurs must then arise from the

correction terms mentioned above. In practice, these are usually replaced by a

phenomenological absorptive potential. On the other hand, the folding model

evaluates only the L' term of Ec. (11), identifying it with the real part of the

potential and implicitly assuming that the polarization potential All is predomi-

nantly imaginary and can be represented by a phenomenological imaginary poten-

tial. This corresponds to a sudden approximation in which excitations ('polari-

zation') of the system tend not to de-excite back to the elastic channel, but

result in absorption.
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2.3. Folding Model Potentials

The idea of a folded potential has a long history. The electrostatic poten-

tial U r(r), due to a charge distribution p (r), is given by a single folding,

M r ) = -±-r dr', (13)
1 I |r-r |

while the electrostatic interaction between two charge distributions is given by

a double folding,

UC(R) = JJ - ^ ^ 6rxdr2 (14)

where r12 = R + [^-rj (see Fig. 1). In the nuclear case, the Coulomb interac-

tion l/r12 is replaced by a nucleon-nucleon (effective) interaction v1;« The

f i r s t term UF(R) in Eq- (11) was identified as a folded potential.

UF(R) = \\ **(ti)^(5 2) I. v^. ̂ o C e 1 > o t C 2 J d 5 1 d c 2 (15)

where nucleon i is in nucleus 1, nucleon j is in nucleus 2, and £j and £2 ^efer

to the internal coordinates of these two nuclei, respectively. If v.. is a

local interaction, v-- = v(r-.), then the potential (15) may be reduced to the

analogue of Eq. (14):

r r
u,-(R) = jj P 1L C1J

p 21 ̂2 ) v I !T 12 I d r ] d r2. (16;

where p-(r-) is the one-body density for the i'th nucleus, usually assumed to be

spherically symmetric. This we call a double-folded potential. The properties

and applications of this expression have been discussed in detail elsewhere (see

Refs. 14-16), where many other references are also given). We just mention here

that many results are more easily understood in momentum space by using Fourier

transforms. If we denote the transform of a function f(r) by
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f(q) = | dr exp(iq-r)f(r), (17)

then in momentum space Eq. (16) becomes

0F(q) = v(q) Pi(q) P2(-q). (18)

Then, for example, if the densities PJ and p2 are spherically symmetric,

U F ( R ) =i^2 j q2 dq j o ( q R ) v(q)Pi(q)p2(q)-

When only small momentum transfers are involved in the scattering, it is helpful

to expand the various factors in powers of q in order to see which are their

important characteristics. For example, if f(r) is scalar in Eq. (17),

f(q) = JQ[1 - {• <r2> q2 + ^ <r"> cf + . . . ] , (20)

where J is the volume integral of f(r) and <rn> is its n t n radial moment.

A simple generalization of the formula (16) is applicable to inelastic

scattering.14"16 The transition potential for exciting one of the nuclei is

obtained by replacing the corresponding ground-state density by the appropriate

transition density (for example, like the simple collective model one of Eq.

(1)). The resulting folded transition potential is non-spherical (if L * 0 ) .

There is no reason to believe that its radial shape will be exactly like the

radial derivative of the diagonal potential Ur-(R) of Eq. (16), as is assumed in

the simple DOMP model of Eq. (2). indeed, it is known15'16 that the folded

shape depends upon the multipolarity, whereas the DOMP prescription (2) gives a

shape that is independent of the multipole order.

We may break the double folding into two steps and rewrite Eq. (16):

UF(R) = f dr! U^fr^Jpxd:!), (21)
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where

j (22)

and 71 2 " ri2-r.2 = 8"Ci- ^ e n ^?N ^s a f ° ^ e c l potential for the interact ion of

nucleon 1 with nucleus 2 (analogous to Eq. (13)). Clearly Eq. (13) is the

appropriate folding model for nucleon scattering from a nucleus.13

3. Single-Folded Potentials

3 . 1 . Introduction

In practice, the single-folded form (21) has often been invoked for the

scattering of composite nucle i , but with IL., replaced by an empir ical, phenome-

nological nucleon-nucleus A2 optical potent ia l , Usually th is is what is meant

by a single-folding model. Clearly the procedure is symmetrical in the two

nuclei Ai -md A2; one may equally well take an empirical nucleon-nucleus Aj

opt ical potential U,,. and fo ld i t with the density d is t r ibu t ion for nucleus A2.

Since the potentials U,,. and Up., are empir ical, there is no a p r io r i guarantee

that the. two results w i l l be ident ica l .

The phenomenological nucleon-nucleus optical potential IL.. w i l l be complex

i f i t is obtained from analysis of nucleon-nucleus scatter ing. However, i t

should not be concluded that s ingle-folding with the imaginary part w i l l y ie ld

the correct imaginary potential for nucleus-nucleus scatter ing, even i f use of

the real part is successful. The imaginary part of U?N accounts for absorption

due to the exci tat ion of one nucleus by a free nucleon; i t does not account for

exci tat ion of the other nucleus in which the interact ing nucleon resides, or

effects due to the presence of the other nucleons in that nucleus. In the sim-

plest case of the scattering of the loosely-bound deuteron, the absorption due
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to break-up of the deuteron is not included; the single-folding model gives an

absorptive potential which is much too weak.17 (Such break-up can also modify

the effective real potential.18*19)

Of course, if the potential IL.. (or its imaginary part) is riot taken from

empirical nucleon scattering data, but is adjusted to fit nucleus-nucleus scat-

tering data, as in the alpha scattering case discussed below, then it is reaso-

nable (though not necessarily correct!) to use the same adjusted interaction

for, say, application to inelastic scattering.

The other ingredient of the single folding model is the density distribution

for the nucleus into which the interaction is b^ing folded (or transition

density, if an inelastic excitation is being considered). The tail of the

folded potential, important for the scattering of strongly absorbed particles,

is very sensitive to the extent of this density distribution, raising the possi-

bility of learning something about the matter distribution provided some

interaction potential can be shown to be valid. This is important because our

other source of data on nuclear densities is electron scattering which primarily

tells us about the proton distributions. Hadrons, on the other hand, interact

as strongly with the neutrons. Only for nuclei with N = Z is it reasonable to

assume that neutron and proton distributions are the same (and even then there

can be small differences because of the Coulomb forces). It is sometimes

assumed that the distributions are in the ratio N/Z when N * Z, or p (r) =

( N / Z ) P (r). Although reasonable, this assumption must be used with caution; it

is believed, for example, that neutron distributions in the ground state extend

to slightly larger radii than do the protons, and this can have quite large

effects.
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The mean square radius (MSR) is a useful characteristic of the ground-state

densities. Although the folded potential does depend to some extent upon the

detailed surface shape of the density, it is largely determined by the MSR.15

L ~ L+2

In the case of 2 -pole excitations, this role is taken by the r moment of the

transition density. These results can be easily understood14"16 in momentum

space, using the expansion (20).

A variety of representations of the ground-state density have been used.

There is the standard Fermi (= Woods-Saxon!) shape, or the convoluted form of

Helm (itself a folding model) which has some analytic advantages.20 Independent-

particle models have also been used, either from Hartree-Fock calculations or

more phenomenological shell-model calculations.14'16 These provide a way of

incorporating our prejudices about shell effects and about the behavior of the

neutrons, for example.

Transition densities may be constructed in similar ways. One popular form

is like that given by Eq. (1), except for the appearance of the matter, rather

than the charge, distribution. Another is the Tassie or hydrodynamical model

whose radial part differs from Eq. (1) by an additional factor of r " ; for

L > 2 and isoscalar excitations,

This has some appeal i f the transition is strong (such as for a giant reso-

nance), for i t has been shown21 to be correct for a single transition that ex-

hausts the classical energy-weighted sum rule (EWSR).

3.?. Alpha Scattering

Single fuTding has been applied with some success to alpha-nucleus elastic

and inelastic scattering using either model N-a potentials or ones derived from
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data on nucleon-alpha scattering.11* When we are concerned only with data for

forward scattering angles (or small momentum transfers), the most relevant pro-

perties of the effective interaction are its strength (volume integral) and mean

square radius (see Eq. (20)). In these circumstances, a simple form like a

Gaussian may be used. A recent example22 adjusted the strength -(V+iW) and

range a of a Guassian N-a interaction to fit the forward angle (9 < 30°) elastic

scattering of 140-MeV alphas. As had been found in earlier studies,14 there is

a remarkable consistency in the results (Fig. 2) with V x 36 MeV, W s; 23 MeV,

and a « 1.94 fm.

This empirical interaction was then applied to inelastic data for the exci-

tation of both low-excited states and giant-resonance states. The Tassie form

(23) was adopted for the transition densities and the amplitudes a, deduced by

comparison with the data. Figure 3 shows an example for the lowest 3 state in

2 0 8Pb; the amplitude a3 required corresponds ic 18% of the EWSR, which is

exactly what one would deduce from the measured B(E3) value for this transition

if it is assumed that the proton transition density is just (Z/A; times the

matter density. This illustrates how folding allows one to directly correlate

information from different sources in a relatively unambiguous way. (The excel-

lent agreement, of course, has to be somewhat fortuitous. Equation (23) is

still a model; the proton and neutron contributions do not have exactly the same

shape, and the proton part is not in exact agreement with the measured charge

transition density. On the other hand, when a transition density of the form of

Eq. (1) was used, the B(E3) value deduced from the (a,a') data was 50% larger

than the measured one. We can conclude that the Tassie model (23) is more

appropriate.)
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3.3. Heavier Ions

The single-folding approach to the optical potentials for heavy ions starts

with some standard phenomenological nucleon optical potential obtained from

nucleon-nucleus scattering. It invariably overestimates the strength of the

real potential (near the strong absorption radius, where it matters most) by a

factor of about t^o.23 Several reasons have been offered in explanation of

this,21* including the improper treatment of any density-dependence present in

the underlying nucleon-nucleon effective interaction.

It has been suggested25 that single folding of this kind may be adequate for

estimating both the real and imaginary contributions to the optical potential

from one or a few loosely-bound 'valence nucleons', even if it does fail for the

bulk of the more tightly bound nucieons. In this approach, the nucleus is di-

vided into 'core' and 'valence' Darts. The core contribution is taken to be the

same as the phenomenological potential which describes scattering from the

corresponding core nucleus, while the valence nucleons are treated 'micro-

scopically' within the single-folding model. Successful applications have been

made25 to the elastic and inelastic scattering of 170 and 1 80 where, of course,

the core nucleus is taken to be 1 6 0 . The relatively weak binding of the valence

nucleons results in their contribution to the interaction being of longer range

than that due to the core nucleus. Thus, they may play a disproportionately

large role in generating the potential at the large distances that are important

for strongly absorbed scattering, In particular, they may have important ef-

fects on the Coulomb-nuclear interference pattern when the nucleus is excited.

A recent example of the use of this model is shown in Fig. 4. The curves

represent a preliminary analysis by Rhoades-Brown of Oak Ridge data26 for ihp

excitation of 120 MeV 180 to its first 2+ state by scattering from 2 0 8Pb. The
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calculations are almost free of adjustable parameters. The complex core poten-

tial is taken from analysis of 130-MeV 1 60 + 2 0 8Pb elastic data. The interac-

tion of the valence neutrons of 1 80 with the target is an empirical (complex)

optical potential taken from analysis of n + 2 0 8Pb scattering. The valpnce

neutron wavefunctions result from shell-model calculations.25 These alone are

not sufficient to account for the 2 excitation; for example, being neutrons

they would result in a vanishing BfE2) value unless they are assigned an effec-

tive charge. This implies polarization of the core protons. This core polari-

zation is included25 by using the standard prescription (e.g., Eq. (21)) of de-

forming the core potential by an amount required to explain the observed B(E2)

for this transition. The coupling is sufficiently strong that a first-order

DWBA is not sufficient for a description of this excitation. Particularly im-

portant is the re-orientation of the 2 state after its initial excitation (i.e.

transitions between the various magnetic substates). The quadrupole component

of this reorientation interaction is constructed in the same way,25 normalized

to the observed electric quadrupole moment of the 2 + state. In addition, it was

found advantageous to include an hexadecapole interaction as well. Although

there is no independent information on the electric hexadecapole moment of this

2 state, the values chosen are consistent with our expectations for nuclei in

this region. Trie main effect of the additional reorientation due to this term

is to decrease the cross section at the larger angles (see Fig. 4). (It is a

common feature of this and other analyses of these data that such a term seems

to be required. Consequently, we may obtain a measure of this hexadecapole

interaction and, through folding, of the underlying mass moment.)

The agreement with the data is remarkable considering that no parameters

were adjusted. The standard type of DOMP analysis has great difficulty in
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reproducing accurately the Coulomb-nuclear interference minimum near 50° without

destroying the fit at other angles. Even the agreement shown in Fig. 4 probably

could be improved by small parameter adjustments; this would be valid because

all of the empirical quantities used to determine the input have appreciable ex-

perimental errors associated with them.

4. The Double-Folding Model

4.1. The Ingredients

The double-folding model has been reviewed in detail several times in the

last few years (for example, see Refs. 15, 27, and 28). We only mention a few

points here.

The discussion in Sec. 3.1 on the nuclear densities or transition densities

applied equally here. The other ingredient in the formula (16) is the effective

nucleon-nucleon interaction v. At one time (see Ref. 13 for example), it was

popular to use for v a simple potential, such as a Gaussian, which fits low-

energy nucleon-nucleon scattering. However, this has been shown23 to overesti-

mate the heavy-ion optical potential by .-oughly a factor of two. (It has also

been shown29 to predict (p,p') cross sections which are too large.)

It is desirable to use at' effective interaction v which is based upon a

realistic nucleon-nucleon force, since one goal is to obtain a unified descrip-

tion of nucleon-nucleon, nucleon-nucleus and nucleus-nucleus scattering. As a

consequence, our effective interaction is some kind of G-matrix. There is no

guarantee of the existence of such a single, simple, effective interaction of

this kind which may be used in a variety of physical circumstances. However, it

is certainly worth seeing how far we can go with such a simple concept and to

find what kind of corrections we may have to make in particular cases.
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A 'high-energy' approach to this problem was used by Dover and Vary,16*28

In the high-energy limit (or impulse approximation), v would become the (com-

plex) t-matrix for free space nucleon-nucleon scattering. However, for the low-

energy (< 20 MeV per nucleon) collisions that are encountered particularly in

heavy-ion scattering, there are very large corrections to be made for the ef-

fects of the nuclear medium in which the two interacting nucleons are embedded

(Pauli principle, off-shell propagation and Fermi motion of the nucleons). One

'low-energy' approach30 assumes that the effective interaction v is similar tc

the G-matrix for two nucleons bound near the Fermi surface. One consequence of

this assumption is that v is real, so that the imaginary interaction has to be

treated phenomenologically. An example of this real interaction which has been

widely (and successfully) used15'30 has become known as the M3Y interaction.

The part that is independent of spin and isospin has the simple form

vM3y(r) =
-4r -2.5rl

7999 ^- - 2134 ^ H - 262 6(r), (24)

where the ranges are in fin and the strengths in MeV. The other spin, isospin-

dependent terms have similar forms. The last, zero-range term in Eq. (24) is a

pseudo-potential that represents the effects of knock-on exchange between the

incident and the struck nucleon. (This is believed to be the leading correction

when the formula (16) is properly antisymmetrized with respect to the inter-

change of nucleons between the two nuclei Aj and A2. The individual nuclear

wavefunctions * and $ are themselves assumed to be antisymmetric.)

Other work on nucleon-nucleus scattering27'31 has taken into account that

the projectile nucleon is in the continuum above the Fermi sea. This yields a

complex G-matrix; however, it seems probable that at least the absorptive pro-

cesses in the scattering of composite nuclei, especially heavy ions, are very



20

different so that it may still be preferable to treat the imaginary potential

phenomenologically. More recent work32 has recognized that, in the collision of

two composite nuclei, both of the two interacting nucleons are embedded within

two pieces of nuclear matter that are moving with respect to each othsr. This

work provides both real and imaginary components of the interaction. The imagi-

nary part provides the absorptive potential due to the bulk properties of the

overlapping nuclei; it is supplemented by additional surface terms, calculated

according to the AU term of Eq. (11), which arise from the finite extent of the

two pieces of nuclear matter and correspond to the excitation of collective sur-

face vibrations.33

It is worth remarking that replacing the bare nucleon-nucleon potential by

an effective or G-matrix interaction is a process analogous to the derivation of

the effective interaction U in Sec. 2.1. The G-matrix transformation itself

incorporates some polarization effects, namely the short-range correlations bet-

ween pairs of nucleons and, in principle, allows us to use simpler nuclear wave-

functions such as those of the shell model. Then a full derivation of the

operator U of Sec. 2.1 would go explicitly through this two-stage projection

from the original many-body problem (see, for example, Ref. 34).

From its origin as an effective interaction or G-matrix, it is clear that,

in general, this v should be both energy-dependent and density-dependent. For

example, the volume integral of the effective interaction (including, implicit-

ly, the knock-on exchange35) for a nucleon scattering from symmetric nuclear

matter was found by Jeukenne, ejt aj[.31 to be represented approximately by

The M3Y interaction (24) does not depend upon density or energy (except for a
weak energy-dependence of the strength of the zero-range pseudo-potential).
From its construction''0 within a truncated space of oscillator functions, one
can see that it represents a certain average over a range of kinetic energies
and densities.
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J0(p,E) s F(E)(1 - d p
2 ' 3 ) , (25a)

with

d = 2.03 fm2, F(E) = (903 - 7.67E + 0.22E2)MeV fm3 (25b)

and the density p in fm~3. ('Normal' nuclear matter has P Z 0.17 fm3; then

1 - dp 2 / 3 fs 0.38, a large reduction from the value in free space.)

The usual way of handling the density dependence is to use the local density

approximation. In this we assume that the effective interaction between two

nucleons embedded in a nucleus at some position where the density has a certain

value is given by the G-matrix for infinite nuclear matter with the same density

value. This ignores the effects on G of density gradients. Also, because the

force has a finite range, two positions, fj and r2 , are involved; frequently one

uses the density at the center of gravity, — [rj + r 2). This kind of uncertain-

ty is further aggravated i;i heavy ion double folding because there are two

densities, Pi(rj) and P2[r2). The simplest assumption is a sudden (or 'frozen

density') approximation in which the two undisturbed densities are simply super-

posed. Then one uses p = pj + p2 in Eq. (25). This may be adequate at high

energies (relative energy per nucleon high compared to the Fermi energy) where

the Pauli principle has little effect and there is little time for the two

nuclei to readjust as they collide. It seems less appropriate at lower ener-

gies; unfortunately, attempts to do better are quite complicated.32'33 Fortu-

nately, the region of strong overlap is not experienced in most heavy-ion colli-

sions because of the strong absorption, and the frozen density approximation is

more plausible for the low-density surface region. For a recent application to

heavy-ion scattering, see Ref. 36. In the example of alpha scattering at 140

and 172 MeV discussed below, one might argue that the energy per nucleon is
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moderately high and that the tight binding of the alpha discourages its polari-

zation.

4.2. Applications to Heavy-Ion Scattering

The M3Y interaction (24) has been used extensively to construct the real

parts of optical potentials for the elastic scattering of heavy ions (see Refs.

15 and other references quoted there). For example, analyses of some 156 sets

of data for some 67 systems at energies mostly between 5 and 15 MeV per nucleon

were reported in Refs. 15. Except for 6»7Li and 9Be, these data were fitted by

renormalizing the real folded potential by a factor N which was found to be

close to unity, "N = 1.06 ± 0.11. Although the imaginary potentials had to be

chosen phenomeno1ogTca71y, good data, do allc-/ one to determine the strength re-

quired for the real part with little ambiguity.

Figure 5 shows another example of the use of the M3Y interaction. The ex-

perimental deformed potential contours were deduced37 from measurements on exci-

tations of 160Gd up to its 12 state by the inelastic scattering of 1<0Ar. The

folded (non-spherical) potential was generated by using a non-spherical,

quadrupole-deformed density for 160Gd.

The exceptional cases of 6'7Li and 9Be scattering require an optical poten

tial whose real part is only about half the strength predicted by the M3Y inter-

action. One feature that all three ions share is a dissociation energy much

smaller than for other stable nuclei, so one is tempted to attribute the failure

to the effects of break-up. This seems to have been confirmed, at least for

6Li, by some recent calculations.19 A similar overestmate of the real potential

when the M3Y interaction is used has been observed38 for the scattering of the

light ions d,t, and 3He, which are also weakly bound.
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4.3. Density Dependence and Alpha Scattering

It was noted in Sec. 3.2 that a simple nucleon-alpha potential of Gaussian

from was adequate, within the single-folding model, to reproduce the observed

alpha scattering at forward angles. Use of the M3Y interaction (24) in the

double-folding model (plus a phenomenological imaginary potential) also provides

agreement with data at 140 and i72 MeV in the diffraction region at small

angles,39 with only a few percent renormal ization required for an optimum fit.

This indicates that the model is providing the correct real potential for

peripheral collisions.

It has long been known40 that observation of alpha scattering at energies

high enough (> 100 HeV) and angles large enough to exhibit the 'nuclear rainbow'

refractive effects can resolve the discrete ambiguities associated with the

interior depth of the optical potential. Such data indicate that a real depth

of ~ 140 MeV is required. However, the folded potential is ~ 230 MeV deep in

the interior; consequently it will generate incorrect scattering at large

angles. This is indicated in Fig. 6. Reducing the strength of the interaction

(by N x 0.5) to give the correct large-angle scattering completely destroys the

agreement at smaller angles because the potential in the surface is then too

weak.

A natural way to rectify this situation is to introduce the expected density

dependence, like that of Eq. (25), which reduces the strength in the interior

relative to that in the low-density surface region. Explicit calculations39

confirmed that this was so, as shown by the example in Fig. 6. For these

illustrative calculations, the M3Y interaction (24) was simply multiplied by a

density-dependent factor. This factorization is not strictly correct but makes

the calculations easier. A factorized dependence on the densities, different

from (25a), was adopted for computational convenience41 ^ 2
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v(r,P) = f(P) v M 3 Y(r), (26a)

with

f(P) = C(l + a e "
B p ) , P = PifrJ + P 2 ( r 2 ) . (26b)

The (eneryy-depodent) cvstants in f(p) were chosen to reproduce the magnitude

and density dependence of the volume integral of the G-matrix of Jeukenne, £t

£ K 3 1 at the appropriate energy per nucleon. An overall renormaiization of the

real folded potential by a factor of N was allowed in fitting the 11 sets of

alpha-scattering data. Quite consistently the optimum value was N ̂  1.3. With

this, the factor N f(p) is unity for a density of p x 0.15 fm~3, nearly equal to

the 'normal nuclear matter' density of p K 0.17 fm~3. This is somewhat larger

than had been expected,15'1*1'142 but it is difficult to interpret this result

precisely, in the light of the hybrid nature of the simple model interaction

(26). We also note that the G-matrix of Ref. 31 is only given for p < p ,

whereas larger values of p = PJ + p 2 are encountered when the alpha is within

the target nucleus. Further, the use of p = px + p2 may introduce too strong a

dependence on density. The two densities are actually moving with respect to

each other, thus weakening the repulsive effect of the Pauli exclusion principle

compared to that for the static superposition p{ + p 2. Further studies with a

more sophisticated interaction would be of interest.
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Figure Captions

Fig. 1. Coordinates used in folding calculations.

Fig. 2. Variation of x2 with the range of the Gaussian nucleon-alpha interac-

tion used in a single-folding model when real and imaginary strengths

are optimized to f i t elastic data at forward angles.22

Fig. 3. Comparison of single-folding mdsi predictions,22 using 18% of the

energy-weighted sum rule with measured cross sections for the 3" state

in 208Pb.

Fig. 4. Coupled-channels predictions using the hybrid folding model of

Landowne, et aj_.25 for exciting the f i r s t 2 state of 180 when scat-

tering at 120 MeV from 208Pb, compared to measured cross sections.26

The solid curve includes reorientation due to a hexadecapole moment of

the 2 state, the dashed curve does not. (Both include reorientation

due to the quadrupole moment.)

Fig. 5. Non-spherical optical potential contours37 for 40Ar + 160Gd, referred

to the body-fixed axes for 160Gd, compared to folding-model calcula-

tions using the M3Y interaction.

Fig. 6. Comparison of measured elastic scattering of a + 58Ni with double-

folding calculations using either the M3Y interaction (dashed curve) or

the same interaction modified by a density-dependent strength ( fu l l

curve).
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