
CONF-820663--3

DB82 017425

has been reproduced from ths best avail- ••

RELATIONS BETWEEN THE SIMULTANEOUS AND SEQUENTIAL
TRANSFER OF TWO NUCLEONS

G. R. Satchler
Oak Ridge National Laboratory
Oak Ridge, TN 37830, U.S.A.

to be published in

Proceedings of La Rabida International Summer School
on Heavy Ion Collisions
La Rabida (Huelva) Spain

June 7-19, 1982

-DISCLAIMER .

This report was preoarwjasan account oi w
Neither the United Stales Governmen: noi

usefulness

oonwted by an syeMcv o t t h « U n i l e d Stales G i w n m e m .
aqency thereof, nor any o ' t^ei ' emcloyees. mates any

assurr«es ^T^V ^^at fcabi'ity c 'Kton5*tJility *0f Ihft ac^uracy^
y infor.r i t io", apea'atui. product, or procea tJisc'osM. or

nirinQC orivately owned rights. Refe'er*ce ^ereiri TO 3rty Specific
commercial product, process, oi service by if3d? "<ir™*. tcademailr, «r«nu!fl««cc(. or otherwise, does
not neoMwrffv conjtilut? o' imply 'is enrjorsfr^ient, recommpridsiion, or favoring bv the United
Slates Government or any arifKv W i o ' , The viuvw anfl osii '^ris of aulho's expressed fiereirt <jo nor
necessarily stale or reltect those of the United Statei Gwvernmenr or J " V agency thereof-

By acceptance of this article, the
publisher or recipient acknowledges
the U.S. Government's right to
retain a nonexclusive, royalty-free
license in and to any copyright
covering the article.



RELATIONS BETWEEN THE SIMULTANEOUS AND SEQUENTIAL
TRANSFER OF TWO NUCLEONS"

G. R. Satchler
Oak Ridge National Laboratory
Oak Ridge, TN 37830, U.S.A.

1. Introduction

The transfer of two nucleons between projectile and target in a direct or
peripheral reaction such as (p,t) or (I60,11+C) may occur in one-step or two-steps.
These we refer to as 'simultaneous' and 'sequential' transfers, respectively. In
the former, the interaction acts once and both nucleons are transferred- In the
lat ter , the interaction acts once to transfer one nucleon, the system then propa-
gates in one or more intermediate states and is followed by a second action of the
interaction to transfer the second nucleon. This process may be symbolized for the
above examples as (p,d;d,t) and (160,15N;15N, l l4C), implying the intermediate for-
mation of a deuteron or the nucleus 15N. (Of course, the intermediate system may
exist in more than one state of excitation.)

In terms of a perturbation theory expansion, such as the distorted-wave Born
series, simultaneous transfer is possible in f i r s t order while sequential transfer
requires second order. This is i l lustrated in Fig. 1. We are accustomed, perhaps,
to thinking that a first-order process is more l ikely than a second-order one.
However, a closer examination can prepare us for the possibil ity that this may not
be so. The nuclear forces are predominantly two-body in character; hence, in
first-order (Fig. la) only one of the two nucleons experiences an interaction. The
possibility of finding that the other nucleon has also transferred arises only be-
cause its state within the projectile is not orthogonal to the state in the target
into which i t transfers. This process corresponds to a kind of quantum-mechanical
tunneling from the projectile to the target .^ However, in the two-step process
(Fig. lb) each nucleon is transferred under the direct influence of an interaction
with the target; intui t ively, this might seem more plausible. I t requires an ex-
p l i c i t calculation to determine which process is most l ikely in a given case, and
such calculations are often beset with uncertainties. Nonetheless, i t seems clear
that the one-step and two-step amplitudes are frequently comparable in magnitude
for l ight-ion reactions,2) while the two-step may dominate in reactions with heavy
ions.3) (The existence of strong Q-window effects, especially with heavy ions,1*)
may enhance the sequential process when there is a large mismatch between the en-
trance and exit channels. The gap may be bridged more easily in two steps, with
the interaction acting twice.) Consequently, i t is not safe to ignore the exis-
tence of sequential transfer. However, one of the main reasons for studying two-
nucleon transfers is to learn about the two-nucleon overlaps (existence and extent
of pairing correlations, etc.) . So we wish to know i f this information is s t i l l
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Fig. 1. (a) Simultanec - transfer, (b) sequen-
tial transfer. The wavy ine corresponds to
one action of the projectile-target interaction.

available when the reaction pro-
ceeds by two, sequential, one-
nucleon transfers. Our purpose
here is to gain some insight in-
to the relationship between the
two amplitudes by using a simple
approximate form of the theory.
For simplicity, we shall discuss
a light-ion reaction and, to be
specific, we choose the (t,p)
reaction (or the inverse (p,t)
reaction). Similar considera-
tions apply to other reactions,
and we include some remarks con-
cerning (a,d) reactions. This
work (done in collaboration with
W. T. Pinkston) is described in
a paper shortly to be published
in Nuclear Physics A. Hence,
here we shall only give an ab-
breviated and schematic outline
of the theory, leaving the reader
to consult the forthcoming paper
for the details.

2. The (t,p) or (p,t) Reaction

Apparently contradictory evidence exists for the relative importance of the
two-step or sequential-transfer mechanism in (t,p) or (p,t) reactions. Indeed, the
results of a confusing variety of sophisticated calculations are available, each of
which treats properly some, but not a l l , aspects of these transitions. Among these
aspects are: ( i) the use of a realistic tr i ton wsvefunction and the associated
realist ic interaction;5"8) ( i i ) an exact treatment of the finite-range of the in -
teractions (as opposed to use of a zero-range approximation), in both the one-
step5"9) and the two-step8"11) amplitudes; ( i i i ) accounting for the non-
orthogonality correction to the two-step term,2*9 '11*12) which tends to cancel the
one-step amplitude;12"11*) (iv) allowing the intermediate n-p system of the two-step
process to exist in continuum states, both spin-singlet and t r ip le t , as well as in
the bound, t r ip le t deuteron ground state12»15^ (sometimes this is called the
'deuteron break-up effect1) . In addition, there is a sensitivity of the results to
the optical potentials employed, and a particular sensitivity of the cross section



magnitudes to the nuclear wavefunctions used to construct the two-nucleon over-
laps. 6»7>

In view of the complexity of the theoretical description of this transfer pro-
cess, the agreement with measured cross sections obtained by calculations which
only include some of these aspects must be viewed with some caution. In this situ-
ation i t is valuable to have an understanding of any general, albeit approximate,
features that the amplitudes may possess, independent of these details, which may
illuminate the results of more detailed calculations.

The central point of the present study is to use a closure approximation for
the intermediate nuclear states that appear in the second-order distorted-wave-Born
expression for the two-step amplitude in order to show that the simultaneous and
sequential processes tend to depend in the same way upon the nuclear structure of
the initial and final states3»16^ and to exhibit similar selection rules. Various
additional simplifying assumptions, such as zero-range, can be used to demonstrate
more dramatically17^ the basic similarity of the two amplitudes in a way that is
not obscured by partial-wave expansions, angular momentum algebra, e t c . 3 ' While
these may have large effects upon the magnitude of the amplitudes, they do not af-
fect the underlying structure. They do help to explain why the sequential and
simultaneous processes tend to yield similar angular distributions.

A closer examination of the spin angular momenta involved modifies the initial
conclusion that the selection rules are the same in both cases. For example, in
the two-neutron transfer (t,p) reaction, if the n-p system or 'deuteron' associated
with the intermediate states of the two-step amplitude appears in spin-singlet or
spin-triplet states with equal weight, the selection rules for one- -nd two-step
are identical. However, constraining i t to be in a tr iplet state ori"y (such as the
common assumption that i t is the physical deuteron ground state) acts as a spin-
fil ter and determines that the two neutrons are transferred with a particular mix-
ture of total spin S = 0 or 1. This mixture will differ from that for the one-step
term. In this way, inclusion of singlet deuterons might change the results for
vector analyzing powers and might modify conclusions that have been drawn from
measurements of these quantities.18)

2.1. First- and Second-Distorted-Waves Born Approximations

We do not refer explicitly to spins for the schematic presentation given here;
see Ref. 17 for details. Consider the A(t,p)B reaction, so that B = A+2n. The
first-order (or simultaneous transfer) amplitude has the form19)

XO) = | x ( - )* (RpHBlAHVj + V2)*t x[+) (Rt), (1)

where the X and X. are the usual distorted waves describing the centre-of-mass
motion of the proton and triton, while V2 and V2 are the residual interactions

\



acting on neutrons 1 and 2, and y. describes the internal state of the t r i ton.

Also, (B|A) is the overlap between the in i t ia l and final nuclear states,

(B|A) = J 4£(rlfr2,£)¥AU)d5 = *b\rltr2), (2)

say. All the nuclear structure information, including pairing correlations, is
manifest through this * , which is often called the two-nucleon form factor for
the transition.

The second-order (or sequential transfer) amplitude for the processes
A+t •*• C+d •*• B+p has the form19)

T ( 2 ) = I j 4"}*CRp)(B I ov2td G^+)(Rd.Ra)*>i(c I AH t x[+)(R t), (3)I
where <K is the internal state of the intermediate deuteron and &, is the Green
function describing the relative motion (in the Coulomb + optical potential) of the
intermediate d+C system. For example, i f we ignored the optical potential and the
Coulomb f ie ld so that the system propagated in plane waves with momentum k^, we
would have

GC(R,R') -> exp(ikds]/s, s =|?-R' | . (4)

The wavenumber k. could be re-interpreted as the local value k.(R) at the position
R" =-£-|B + B'l in the potential, thus introducing a 'local energy approximation13)
for the effects of the optical and Coulomb potentials.

2.2. Closure for the Two-Step Amplitude

Now we do not see a two-nucleon overlap appearing in the two-step amplitude
(3), but a sum of products of one-nucleon overlaps weighted by G~, where

(C | A) = | ^ ( rLOn^UJde = 4>CA(n), (5)

say, with a similar expression for (B | C). The question is , "Is the information on
B (1}

two-neutron correlations that is carried by * [^^2) in the first-order T l ' lost
(2)i f i t should happen that the second-order T is important?". The answer is "No"

i f the important intermediate states C are sufficiently close in energy that the
propagators Gc do not vary much. For then we may replace each Gc by an average
value (L and then use the closure property of a complete set of states,

Ij 5)

to collapse the sum over C in Eq. (3):

S (B I C)GC(C| A) * S C I (B| C)(C I A) = ̂ ( B | A). (7)

c c
The result is the appearance of the same two-neutron overlap as that which occurs
in the one-step amplitude T . Consequently, when the approximation (7), is



sufficiently good, nuclear structure effects such as pairing correlations wil l
manifest themselves in much the same way in one-step or two-step processes. In
this way, one can understand how analyses of measured cross sections, using the
theory for a one-step transfer alone, may yield useful information on the relative
behavior of spectroscopic factors for different states and different nuclei,20^
even when sequential transfer may be important.

Although i t is not necessary for the present argument, i t is instructive to in-
troduce further the usual zero-range approximation19) for the one-step process,

Yt t « D(r)6(p)

where r = |jrx - r2 | is the separation of the two neutrons, while g is the position
of the proton relative to the centre of mass of the two neutrons. We also take the
usual zero-range approximation19) for each of the one-neutron transfers in the two-
step process. Then the amplitudes (1) and (3), with the closure (7), become

xJ")*(R')*BA(r1,r2)D(r)xJ
+)(R)dr dR, (8)

T(2) « Do(d,p)Do(t,d) | X ^ V j A r i . r a M r i . r i k ^ W d r dR, (9)

where r£ = r2A/(A+l), R' = RA/(A+2) and R = ̂ rx + r2)o The Do are the usual zero-
range normalization constants. There is a remarkable similarity of structure in
the two amplitudes, which differ only by the appearance of the short-ranged overlap
function D(r) in 1 ' and the average Green function E in T . In the plane-wave
approximation (4), £ is also a function only of r ( i f A » 1 so we can neglect the
small recoil correction). (Of course. is complex, whereas D is usually taken to
be real.) Consequently, we should not L-J surprised to find that one-step and two-
step transfers have rather similar angular distributions.

2.3. Further Comments on the Closure Approximation

One can easily construct model situations in which the procedure (7) becomes
exact. For example, consider two-neutron transfer to a closed-shell target in
which the intermediate states ^Q are pure single-particle j-states and the residual
state i|>B has a pure j 2 configuration. Only one intermediate state can contribute,
namely the corresponding single-particle state in nucleus A+l with the same j , and
Eq. (7) becomes exact.

The expression (3) assumes a single intermediate state for the intermediate n-p
system, in this case the ground state of the deuteron. More generally, both inter-
mediate nuclei may be in more than one state and expressions l ike (3) need to be
supplemented by an additional sum over the states of the "deuteron". In a heavy-
ion reaction, the intermediate nuclei may be comparable and hence should be treated
on the same footing. This was done by Feng, et al_.3) when they applied the closure
approximation. The tendency has been to treat l ight-ion reactions differently, by



assuming that the intermediate light particle remains in i ts ground state. This
has been a matter of expediency; excited states of light ions are unbound and thus
introduce a continuum of intermediate > 3-body states which greatly increases the
complexity of the calculation. This has been investigated12»15) for the intermed-
iate 'deuteron1 in (p,t) reactions.

The closure approximation (7) may be applied to the states of c, as well as
those of C, in the process A+a + C+c * B+a, if the important contributions s t i l l
come from a sufficiently narrow band of energies ( i .e . narrow enough that the Green
function G~ does not vary much). This results in the appearance of a second two-
nucleon overlap or form factor (b | a) , which again is the same as that which occurs
in the one-step amplitude T . Then the nature of the intermediate nucleus c
plays no role and, for example, angular rwmentum selection rules are the same for
one-step and two-step transfer. It is plausible that this is approximately valid
for heavy-ion reactions3) where the important intermediate states are likely to be
bound states of moderate excitation energy. It is not so obvious for light-ion
reactions. The explicit calculations12*15) for lt8Ca(p,t) at 20 and 40 HeV included
the n-p scattering states, both singlet and t r iplet . Important contributions came
from the continuum states at 40 MeV, but the effect (on the cross section) was
small at 20 MeV. The intermediate spin-singlet n-p state is always associated with
continuum states of relative motion. Hence, the transition would be dominated by
tr iplet intermediate states vf the contribution of the continuum were negligible.
This constitutes a spin-filter through which the two-step process must pass and in-
troduces differences in the spin selection rules compared to the one-step process.
In the simplest triton wavefunction,21) the two neutron spins are coupled to S = 0
and the triton spin - i is due to the odd proton. Then we have S=0 transfer in the
one-step amplitude. After recoup!ing the spins within the triton, we find a linear
combination of s. = 0 and 1 for the proton plus one of the neutrons. The assump-
tion of an intermediate triplet deuteron in the two-step process selects s^ = 1;
i .e . i t filters out the sd=0 component. The resulting n+n+p function is no longer
pure S = 0; i t also contains S=l components for the two neutrons. However, if the
singlet and triplet deuteron states were included with equal weights, the f i l ter is
removed and only S=0 transfer is possible for the sequential transfer also.

3. The (a,d) Reaction

A similar analysis has been made of the (a,d) reaction.17) Two sequential
processes are available here, (a, t ; t ,d) and (a,h;h,d) (where h = ^He). Only sv=l
transfer is possible for the simultaneous transfer because of the zero spin of the
alpha. If we assume an S-state of maximum symmetry for the alpha, only spin - •%•
states are allowed for the triton and helion. Thus, although they act as spin - ^
"spin f i l t e r s ' , they impose no further constraint on the spin transfer. The spin-
transfer selection rules are the same for simultaneous and sequential transfer.



There could be, however, an isospin f i l ter ing effect which would result from any
difference in propagation of the t and h particles in unsymmetric, charged nuclear
matter ( i .e . i f they had different Green functions).

By introducing similar zero-range and closure approximations, the one-step and
two-step amplitudes are reduced to the same forms as Eqs. (8) and (9) for the (t,p)
reaction. Again, the two amplitudes are seen to depend upon nuclear structure in
the same way. The same two-nucleon overlap, analogous to Eq. (2), appears in both.
In particular, there does not appear any phase difference between them that depends
upon the spin of the residual nuclear state.

The latter point is especially relevant because of some observations of the
Pittsburgh group22) on the 208Pb(a,d)210Bi reaction. Consider excitation of the
(99/2^9/2) multiplet of states with J = 0,1,.. .9. Simple angular momentum consid-

J

erations, together with the tendency of (a,d) reactions to favor large L-transfers,
lead to the prediction that the one-step cross sections should show a regular
stepped pattern when plotted against J, with the rise at each step increasing as J
increases. DWBA calculations22) confirm this (see Fig. 2a}. The discussion of the
present paper suggests that a similar pattern should be seen for the two-step pro-
cess by i tse l f and again explicit calculations22) confirm this (Fig. 2a).

The measured cross sections22) show a rather different, saw-tooth pattern (Fig.
2). The predicted steady rise with L transfer is observed; however, the cross sec-
tions for the even-J members of the J=(L-1,L) pairs are larger than those for the
odd-J members. Coupled-channels calculations22) including direct and sequential
transfers reproduced these trends and seemed to indicate that the saw-tooth pattern
resulted f-~-. successively constructive and destructive interferences of direct and
sequential ? plitudes due to a J-dependence in their relative phase. No such in-
dependent phase factor appears in the present treatment"1", although this treatment
is able to recount for the trends shown by the individual one-step and two-step
amplitudes in terms of the reaction dynamics and the LS-jj transformation coef-
f icients involved in the two-nucleon overlap factor.17) Indeed, the integrand of
the two-step amplitude differs from that for the one-step only by the replacement
of the l ight-ion overlap function D(r) by (L(r,R), the average of the tr i ton and
he!ion Green functions.17) The symmetric part of the two-nucleon overlap 4(r2»ri)»
from which any J-dependence must arise, is common to both amplitudes.

Our analysis makes i t d i f f i cu l t for us to understand either the calculations
presented in Refs. 22 or the experimental data, which seem to be nicely explained
by the coupled-channels calculations. Cross sections for exciting the same states
by 208Pb(3He,p)210Bi show a similar behavior.23) The (3He,p) reaction differs from
(a,d) in that S=l and S=0 transfer are both possible. Howevers nuclear structure

Although a coupled reaction channels code was used, the calculations of Refs. 22
were made in such a way as to correspond exactly to th.e second-order distorted-
wave Born approximation discussed here, including the use of the zero-range
approximation.
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Fig. 2. Integrated cross sections, versus J, for
the 208Pb(a,d)210Bi reaction exciting the
(hg/2gg/2)j multiplet. (a) Individual one-step
and two-step cross section; (b) coherent sum of
one-step and two-step; as reported in Ref. 22.

factors make the S=0 contri-
bution much smaller than that
for S=l, so that, except for
kinematic effects, one should
expect the two reactions to
behave in a very similar way.

Our approach differs from
that using coupled channels
in that we do not consider
intermediate states explicit-
ly but make the closure ap-
proximation. However, with
the assumption of a single
(99/2^9/2) configuration for
the final state in the
208Pb(cx,d)21°Bi case, the re-
sult of making the closure
approximation yields the same
result as restricting the in-
termediate states to be the
209Pb and 209Bi ground
states, as was done in the
coupled-channels calcula-
tions.22^

4. Some Remarks on Non-Orthogonality and Second-Order Processes
In a rearrangement collision A(a,b)B, in which (b,B) are a pair of nuclei (or

part i t ion) different from (a,A), the internal states in the in i t ia l and final chan

nels are not orthogonal;19^ for example,

(b,B 1 a,A) = I *b(5b)fB^B^a^a^A^A^d5ad?A * 0* ( 1 0 )

Since £D
 = SnU=,»£A>r=fl)» e t c . , this overlap remains a function of the a+A separa-

D D a f t "*aH

tion r . . Such overlaps vanish asymptotically (ra f t •»• ») , but remain f ini te in the

region where the two nuclei overlap. This is jus t the region that contributes to

transit ion amplitudes like (1) or (3). As a consequence, in general Eq. (3) is

not the correct second-order Bern approximation to the transit ion amplitude; there

-is a "non-orthogonality (NO) correction" term. The expression for the NO

term11**19) depends upon the particular choice, post or prior, made for the inter-
(2)

actions in each of the two steps in the amplitude T of Eq. (3). If prior is
chosen for the a+A * c+C step and post for the c+C + b+B step, the NO term



vanishes. For other choices it does not. For example, frequently post is chosen
for both steps for sequential stripping (like the (t,p) reaction) induced by light
ions because then a zero-range approximation can be invoked for both of the steps
(as was done in deriving Eq. (9)). Then the NO term has the form

- - Z f xi" }%b ( B I c)+c(
Vi + V2)*c(c-c,c

This has a structure intermediate between that for V ' and V ' of Eqs. (1)
and (3); but note the overall minus sign. Indeed, i f we sum over a complete set of
states of both nuclei c+C using Eq. (6) and i ts analogue for nucleus c, then T
becomes13) equal and opposite to the one-step amplitude T . The two-step term

(2)T {which should be summed over the same complete set of intermediate states) is
then le f t as the lowest-order contribution to the transition. In practice, how-
ever, i t is not feasible to use a complete set. Formally, i t implies non-
convergence of the Born series because of the mathematical d i f f icu l t ies associated
with the 3- and more-body states that appear when the intermediate states are un-
bound. One standard approach19) is to regard our calculations as being done within
a truncated model space, limited to 2-body channels, and with effective inter-
actions. Thus, a complete set is ruled out from the start. Nonetheless, the ten-
dency remains for T and r ' to interfere destructively, sometimes quite
strongly (see Refs. 9 and 12-15 for examples), and this enhances the importance of
the two-step process described by T .

(2)One final note: the separation of the second-order amplitude into T and

V ' is a r t i f i c i a l . Despite the intuit ive appeal of interpreting r 2 ' as "the
two-step process", one cannot physically distinguish these two terms from each
other (nor they from the first-order term T ). This is emphasized by the lack of
uniqueness in the separation into two parts; for example, i f we had chosen the
prior-post interaction form for T , there would be no T te>-m and hence no
possibil ity of the cancellation of T . This lack of uniqueness also renders am-
biguous even the conceptual division into one-step and two-step. Only the total
amplitude has direct physical meaning; i ts breakdown into pieces is merely a con-
sequence of the way we do calculations. Nonetheless, the discussion given earlier
can be valuable as an aid to understanding the results of those calculations. Of
course, the division within any particular calculation is (or should be!) unambigu-
ous. Many calculations have ignored the possibility of NO corrections (for exam-
ple, the (a,d) calculations referred to earlier 2 2 h , usually as a matter of compu-
tational convenience. How.ever, the closure argument given above, albeit invalid,
remains as a warning that NO effects may not be negligible, and the results of ex-
p l i c i t calculations9 '12"15) support this conclusion.
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