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Abstract

A new nonlinear equation has been derived and solved for the evolution of an unstable
collecti\{e mgde in a kinetic system close to the threshold of linear instability. The resonant
particle résponée produces the dominant nonlinearity, which can be calculated iteratively in
the near-threshold regime as long as the mode does not trap resonant particles. With sources
and classical relaxation processes included, the theory describes both soft nonlinear regimes,
where the mode saturation level is proportional to an increment above threshold, and explo-
sive nonlinear regimes, where the mode grows to a level that is independent of the closeness
to threshold. The explosive solutions exhibit mode frequency shifting. For modes that exist
in the absence of energetic particles, the frequency shift is both upward and downward. For
modes that require energetic particles for their existence, there is a preferred direction of the

frequency shift. The frequency shift continues even after the mode traps resonant particles.

PACS numbers: 52.35.-g, 52.35.Mw, 52.40.Mj

* Also at Budker Institute of Nuclear Physics, Novosibirsk, 630090, Russia
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I. Imntroduction

There is a variety of plasma problems where instability arises as a result of the free
energy available in a particle distribution with an inverted population. When the instability
drive «y, from this inverted distribution function exceeds the damping -4 from background
dissipation mechanisms, the waves grow to a nonlinear level. Recently! the near-threshold
nonlinear regime has been described for a single-mode electrostatic bump-on-tail problem
where vz — Y4 < Y. It was shown that the nonlinear development depends on the 'presence
of an energetic particle source and on the rate veg of collisional relaxation of the particles
interacting with the wave. Incrementally above the instability threshold the mode saturation
level is always proportional to the closeness to the threshold when collisionality is taken into
account. However, if v, — g is greater than veg the mode exhibits an explosive nonlinear
evolution, growing faster than exponential to levels that are independent of the closeness to
the threshold.!

The purpose of the present work is to show how these bump-on-tail results can be gen-
eralized to any kinetic system where the unperturbed particle orbits are integrable. The
theory is extended in several ways. The initial work! is limited to the analysis of waves that
exist in absence of hot particles. The kinetic component was treated as a perturbation to
the mode. In this paper we extend the theory to so-called nonperturbative waves, the waves
whose very existence requires the kinetic component. We present a detailed derivation of
the results outlined in Ref. 2. The key assumption needed for this generalization is that
the system is close to the instability threshold, which still allows the linear properties of the
mode to depend on the distribution of hot particles.

A distinctive feature of the near-threshold kinetic problem is that the nonlinear re-

sponse of resonant particles is the dominant nonlinear response. We employ an action-angle



formalism® to present the response of the resonant particles in a universal form. We also
use a reduced Fokker-Planck collision operator® to describe collisions of resonant particles
in a realistic way (in the previous work, collisions were schematically described by a Krook
operator). The nonresonant particles can be treated in a linear approximation, and other
nonlinear effects, such as mode coupling, are higher order. In this work we use linear theory
(including collisions) to lowest order, and then iterate to third order in the field amplitude.
This approach is valid as long as resonant particles do not complete a bounce cycle in the
field of the wave (because they either scatter out of resonance or the time interval is too
short to allow large deflections). We then find that the theory and the ensuing explosive
solutions are accurate if the particle nonlinear bounce frequency wy is less than . This
is a larger range of applicability than was presumed in Ref. 1. At breakdown the explosive
solution shows that the wave frequency shifts by an amount comparable to yz. Depending
on details the frequency can shift up, down or simultaneously in both directions. After the
breakdown of the near-threshold theory a different type of analysis has been used and some
of the results are discussed in the text. We will see that the dissipation and drive remain in
balance and the mode frequency can change by large amounts compared to z.

The theory presented in this paper has a broad range of applications in describing plasma
phenomena. It can be used to interpret the onset of shear Alfvén instability in a tokamak®
(more precisely, the Toroidal Alfvén Eigenmode, TAE, driven unstable by energetic par-
ticles), or for describing nonperturbative waves, such as the fishbone,®’ an internal kink
mode driven unstable by energetic particles. This theory can also be applicable to some
collective instabilities in storage rings®® and there are other potential applications that need
development.!® Ironically, the theory does not resolve a classic problem posed by Simon and
Rosenbluth!!!? of how to determine the mode saturation level near threshold éf a double
humped distribution function that just barely satisfies the Penrose criterion'® for linear in-

stability. In this case we find that the nonlinearity only becomes important at too large of

3




a field amplitude where the iterative approach fails.

The structure of the paper is as follows: In Sec. I we extend the derivation of Ref. 1
to obtain a universal nonlinear equation for a weakly unstable mode driven by resonant
particles, that is applicable even to nonperturbative modes. In Sec. III we present various
nonlinear scenarios described by the universal equation. In Sec. IV we discuss some nonlinear
regimes that go beyond the assumptions of the near-threshold theory. An overall summary

is given in Sec. V.
II. Basic Equations

Near the threshold of linear instability, the evolution of the unstable mode can generally
be analyzed within the assumption of a weak nonlinearity. In this limit, the perturbed
current J that enters Maxwell’s equations is a sum of Jz, a part that is a linear functional
of the mode electric field E, and Jyr, a nonlinear current whose functional dependence on
E is calculated with a perturbation technique. Further, in this paper we assume that Jyr
arises solely from resonant particles, and we neglect the other contributions to Jy; which
are smaller in the range of validity of our calculations. When we use the Fourier transformed

Maxwell’s equations, we find
/ dr'g(r,r',w,q) - B(t',w) = Iz (1)

where the matrix g(r,r’,w, @) includes the contribution from J; and « is a parameter that
measures closeness to the instability threshold. The linear theory yields the homogeneous
equation

/dr'g(r, r,w,a)-e(r,w) =0.

At the threshold, @ = o, this equation has a real eigenvalue w = wy and a nontrivial

eigenvector e(r,wp) which is determined up to an arbitrary constant. Also, there exists an



adjoint vector ef(r,wo), which is a solution to the equation
[ dr'el(x' o) - g, 7,0, ) = 0.

When 0 < 1—ae/a < 1 and the nonlinear current is sufficiently small, the eigenfunction
e(r,w) must be peaked about w = wp. We can then expand g(r,r’,w, @) about w = wy and
@ = 0. To eliminate the lowest order term, we take a dot product of Eq. (1) with ef(r,wp)

and integrate over all space. This procedure reduces Eq. (1) to
/drdr’ef(r,wo) - [(w — wo)gu (T, ¥, wo, @) + (@ — Cer)Ea(T, T, o, A )] - B(r,w)

= /dref(r,wo) - Inr(r,w)
where a subscript indicates a partial derivative. It is now allowable to use the lowest order
expression for E(r,w) in this equation, namely we put

E(r,w) = ;:(w)e(r,wo).

The factor c(w) represents the Fourier components peaked at & = wp. The real electric
field of the mode is
E(r,) = C(t) exp(—iwot)e(r, wo) + c.c. ()

where C(t) is a slowly varying mode amplitude. Transformation to the time domain gives

the following equation for C(t):
z'G’w-(fi—? + (@ — 0e)GoC = giwot / dref(r,wo) - Inc(r,t) (3)

where

G, = / drdr'ef(r,wp) - g (r,r', w0, aer) - (', wo)

Go = /drdr’ef(r,wo) - galr, r', wo, aer) - €(r',wo).




In order to evaluate the nonlinear term in Eq. (3), we first express Jy(r,t) in terms of

the particle distribution function, which gives

et [ dret(z,u) - Ins(r,t) = g [ drel(r,wo) - vir, P fws(r,p, ). (4)
Here, q is the particle charge, dI' = drdp is the phase space volume element, v(r, p) is the
particle velocity, and fnr(r, p,t) is the nonlinear part of the distribution function.

We now need to find fyr(r, p,t) from the kinetic equation

o =51 +Q ©)
in which the Hamiltonian H splits into H = Hy + H, with Hy being the unperturbed
Hamiltonian that determines the equilibrium orbits, and H; the perturbation from the mode.
The right-hand side of Eq. (5) takes into account particle source @ and collision operator,
St. We assume the unperturbed motion described by Hp to be fully integrable, which allows
canonical transformation to action-angle variables. Let I; with ¢ = 1, 2, 3 be the actions and

&: be the corresponding canonical angles, so that all physics quantities are periodic functions

of & with the period 27. Then, the Hamiltonian H can be cast into the form

H=Hy(L, L, I3) + H; (6)
with
Hy=2ReC(t)e™™" 3 Vi 0, I, Is)etadrtibtatibsts (7)
£1,82,83

where £1,%>, and ¢35 are integers, and Vj, ¢, (1, I2,I3) are matrix elements that can be
calculated in a standard way, given the mode structure and the unperturbed particle orbits.
We have neglected C% and other higher order corrections to H as it can be shown that they
produce small terms in the final equation, compared to the terms we will generate.

For nearly resonant particles we can relate H; to the perturbed electric field given by
Eq. (2). The result is

H;=2gRe (iC’(t)—VU.E e“"""t) .
0
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With this expression for H;, we find

) p .
Veuta,03(11, 12, Is) = 'E}% dg—&%gé—‘i exp [—i(€1&1 + 2ba + £a€s)] v - e.

Each term in the perturbed Hamiltonian represents a resonance that can be treated
separately if the rescnances do not overlap, which we assume here to be the case. For the
motion dominated by a single resonance, the summation sign can be dropped in Eq. (7).
One can then make a canonical transformation to a new set of action-angle variables so that
one of the new angles is € = £1&; + £o&s + f3€s, and I is the corresponding action. The

Hamiltonian then reduces to the one-dimensional form
H = Hyo(I) + 2Re C(t)e™**V (I) exp(if) (8)

where the other two new actions, not shown here, are suppressed as they can be treated as
parameters in the new Hamiltonian. The location of the resonance I = I, is determined by

the condition

Q(Ir) =Wy

where Q(I) = aI =415 3—H‘1 + 45 %’—2‘1 + 43 aa—iﬂ. In the absence of collisions, the motion of a
resonant particle satisfies the pendulum equation
2

Z tf + wy sm(§ wot — &) =0 9)

where

wy = |2CV (I)OSUT,) /8L |*/?

is the nonlinear bounce frequency of the particle and & is a constant phase.

Near resonance, the kinetic equation is

‘Z{ + Q(I) — 2Re[iCE)V (‘Z?) exp(i€ — jwot)]% = Stf +Q. (10)




In this equation, we have neglected the term %1%%, which is indeed a justified approximation:
this term is small compared to the last term on the left-hand side of Eq. (10) because the
perturbed distribution function of the resonant particles has a steeper gradient in I than
the perturbed Hamiltonian. For the same reason, we treat the matrix element and 8Q /01
as constants evaluated at I = I when we solve Eq. (105 for the resonant particles.

We will consider two different descriptions of collisions in Eq. (10): a simplified Krook

model and a more realistic diffusive model. For the Krook model, we take

Stf+Q=—v.(f - F) (11)

where F' is the equilibrium distribution function with a nearly constant nonzero slope near

the resonance, and v, is the relaxation rate. The diffusive collisional operator takes the form
52
Stf +Q = Virgess (f — F) (12)

where F is again the equilibrium distribution. Equation (12) and the expression for v2; can
be consistently derived from a specific Fokker-Planck collision operator with an appropriate
orbit averaging procedure developed in Ref. 4. The specific form for v3; is given in section
(c) of the Appendix. Note that only second derivative term with the perturbed distribution
function needs to be retained in the collision operator as this is the dominant term near the
resonance where the perturbed distribution is strongly peaked. Equations (11) and (12) lead
to similar results if one takes v, ~ veg. The v-parameter in both equations describes the
rate particles decorrelate from resonance when C(t) is sufficiently small.

We explicitly solve Eq. (10) with the diffusive collisional operator and we will also present
the results for the Krook model (without derivation). Both solutions are based on a per-
turbation technique that assumes that either the time interval is short compared with the

characteristic bounce period, 2w /ws, or the collisional relaxation rate is much greater than



wp. This assumption allows us to seek f in the form of a truncated Fourier series
f=F+ fo+ [frexp(i€ — iwot) + foexp(2i€ — 2iwet) + c.c.] (13)

where the Fourier coefficients f(;, f1, and fy are functions of ¢ and I or, equivalently, Q.
Although the second harmonic generally needsito be .included in the calculations of the
nonlinear response, if; turns out that f, does not affect the resulting equation for the mode
amplitude. Therefore, we ignore f, from the very beginning, a procedure that can be verified

in a straightforward way. With this simplification, Egs. (10) and (12) reduce to

of o0 o b2
3‘};— —ifwo — Q) fi =iCRH)V = 3T 56 = (F + fo) + v 85{21 (14)
aJO oQ afl * * o afl 3 azfo
i = COV 5750 OOV 57 a0 T g (15)

We integrate Eqgs. (14), and (15) iteratively taking into account that F > f; > fo and
assuming zero initial values for f; and fo. It is convenient to take the Fourier transformation
of Eq. (14) in 2, which converts it to a first order partial differential equation that can be
integrated by the method of characteristics. We first neglect fo on the right-hand side of
Eq. (14) and find fiz, the part of fi, linear in C:

t t
fip=1 / drC(r)V 09 gF o= M) exp [ / va(n) (T — 7 1)247'1] .
0

J
This expression applies to resonant particles for which % and V can be treated as constants.
Next, we use fr, instead of f; in Eq. (15) to find in a similar manner fo and %%:

6fo

oF
_ , 2 1% 2 gilwo—)(r—m)
39 = 2Re/d'r/d7'1(’r 1) C (T)CM)|V| (31)

0 °

t T
© eXp [" _/ V?ﬁ(’7'2)(7'1 - 7')2d7'2 - / ngf(Ts)(T 1— 7-3)2d7—3] .
T Tl




We then substitute %’% into Eq. (14) and calculate fijyr, the part of f; cubic in C. For

wot > 1, the dominant contribution to fiyr has the form
t T 1 3

o0\ OF

. 2 2 (934} of

fint = Z/dTO/dﬁO/de(Tl 1) V|V| <6I) ETY)

0

- exp [—- / V3:(13) (T — 73)2dms — / Ve() (11 — 72)%dTs — / Vi(3) (12 — 73)2d7'3]

n T2

' [C(T)C'(ﬁ)C* (ra)eilo=Oe=r=mutms) 0(r)0*(a)G(n»)e““’“‘“’“‘””_”)} . (16)

The nonlinear term on the right-hand side of Eq. (3) is a functional of finz. The evaluation
of this term involves an integration over phase space, including integration over I, or alter-
natively, over {2(I). As a function of 2, the integrand is a product of a smooth function,
which can be treated as constant near the resonance, and the exponential functions in fiyz.
Once integrated over §2, the-exponential functions generate two é-functions: §(t —7—7 + 1)
and 6(t— 7+ 1, —73), of which only the first one falls into the time domain of Eq. (16). This

observation leads to the following structure of Eq. (3):

.~ aC
ZGw —CE' + (CY - ac-,-)GaC =

t

/dT/dTl/de S(t—1—11+ )N —-7'2)20(7')0(7'1)0*(7'2)/ 'K
0 )

0

T1

T1

- exp [—- / V(m) (T — 73)%dms — / V(Ts) (11 — 1) %dms — / Via(Ts) (12 — 7'3)2dT3:| (17)

T2

where
o0\’ oF
—_ - t 22 =
K = 2rwob(wo — VT V|V (OI) 30" (18)
vit=_4Y d€1d€edEs el - vexp(it). (19)

wo (2r)®

In cases where veg is independent of phase space position, one can factor the parameter
K= [drx

10



out of Eq. (17) and obtain a somewhat simpler expression (henceforth, unless otherwise
stated, this assumption will be made).

When Egs. (17)-{19) are applied to specific problems, transformation from I to other
variables can be useful. For example, natural transformation of the operator ;% for a sym-
metric torus is given in section (a) of the Appendix.

The linear growth rate « is given by v = —(a — @) Im(Ga/G.) and it is convenient to

rescale time in Eq. (17) in the units of y~1. In addition, we introduce a new amplitude
A = aC exp(ibt)

where a = |K/G,|"?/¥*/? and b = (@ — ar) Re(Go/Gu) so that Eq. (17) attains a standard

form,

dA t/2 t—27

—r=A-c? / rdr / drie VA AG - P) At — T — ) AN — 27— 1) (20)
0 0

where vy = v/ is assumed to be time independent, and ¢ is a constant angle defined by

the relation

e® = iK|G,|/(| K|G.)-

A similar derivation can be carried out with the Krook collision operator (11). The

resulting dimensionless equation has the form

dA t/2 t—27

E =A—¢e¥ / 2dr / dTle(—2VaT—Va7'1)A(t - T)A(t S TI)A*(t - 27 — Tl) (21)
0 0

where v, = v, /7.

In the perturbative case, the matrix g in Eq. (1) is nearly Hermitian, which gives et = e*
and V't = V*. The factor K is real in this.case. The quantity G, is purely imaginary for
any Hermitian matrix g with Im G, |C|? being the mode energy. We thus conclude that the
value of ¢ can only be 0 or 7 in the perturbative case. Note that ¢ = 0 corresponds to a

positive energy wave with negative dissipation from resonant particles.
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The absolute value of the dimensionless amplitude A in Egs. (20), (21) measures the

square of the typical nonlinear bounce frequency wy, namely

Q@ — e\ %2
it (222) 4, 22)

where for perturbative instabilities -y;, is the growth rate in the absence of background dis-
sipation, and for nonperturbative instabilities y;, is roughly the growth rate when a = 2a,,.
It should also be noted that the small parameter (%fﬁ)sﬂ in Eq. (22) gives the basis
for the neglect of higher than cubic nonlinear terms in Eqgs. (20) and (21), as long as
|A] < [oer/(a — aer)]?/?. Further discussion of the applicability range of Eqs. (20) and

(21) is given in section (b) of the Appendix.
III. Steady-State Saturation, Limit Cycle, Explosion

Equation (21) is of the form derived in Ref. 1, except for the additional phase factor e
and the complex conjugate appearing in the nonlinear term. In the limit of large ¢ and when

cos ¢ > 0, Eq. (21) has a periodic solution with constant amplitude:

2
2v;

A= (cos ¢)'/2

exp(—it tan @), (23)

a generalization of the steady state solution found in Ref. 1 to ¢ # 0. A similar solution can
be readily obtained for Eq. (20):

vi

(cos ¢ 7dz exp(—22° /3))

A=

7z exp(—it tan ¢). (24)

Note that if v,/vy = 0.71 the two models give the same steady state levels. For an unstable
system with a negative value of cos ¢, the nonlinearity enhances the drive and always leads to
a hard nonlinear scenario where the mode grows to a large amplitude regardless of closeness

to the instability threshold. Note that cos ¢ > 0 is a necessary but not a sufficient condition
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for the mode to saturate at a low level as a hard scenario is possible even when cos¢ > 0.
In this case, however, it requires sufficiently low collisionality (see below).
We now address the question of stability for the constant amplitude solutions (23) and

(24). In order to make the analysis more compact, we use the transformation
A = a(t) exp(—it tan @), (25)

delete the subscripts in v, and vy, and also combine Egs. (20) and (21) into

da

] ‘ euﬁ x< (> o] )
prie (1+itang)a — "l b/dro/d'rlQ(U'r, vr)a(t —7)a(t — T —7)a*({t —2r —71) (26)

with Q(z,y) = 22e~"@=/3+9) for Eq. (20) and Q(z,y) = 22>~ for Eq. (21). We have
extended the integration limits in Eq. (26) to infinity, reflecting the limit of large . We now

linearize Eq. (26) about the steady state o = ap = const with

) o -1
o3| = * [cos¢ JETEE y)dy] 27)
0 0
and look for a solution of the form
a = ag + 6a; exp(VAt) + baq exp(VA*t) (28)

with A an eigenvalue. The solvability condition for the ensuing linear equations for da; and

8a} yields the dispersion relation
A212cos? ¢ — 20 Q cos® ¢+ QF = Q3 (29)

where

-1 oo )

QN = [ [a= ] Q(w,y)dy} [tz [ Q@ )t - exp(=2a) - exp(-=>z — )]
) 0

0 ( 0

Qa2(N) = [7dm 762(90, y)dy] ) 7dm7dyQ(x, y) exp(—2Az — Ay)
0 0 0 0
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For large values of v(v > 1) all roots of Eq. (29) have Re A < 0, while if v is sufficiently small
unstable roots are found. The critical value of v at which the first unstable root appears is
shown in Fig. 1 as a function of ¢ for both the diffusive and the Krook models. Note that
lower stable steady state values of |A| can be achieved in the diffusive model than in the
Krook model. For example, for ¢ = 0 the lowest stable values for |A| are 38 for the Krook
model and 6 for the diffusive model.

When the steady state nonlinear solution is unstable, the mode cannot converge to the
steady level. What develops instead when v is close to the critical value, is a limit cycle
of the type discussed in Ref. 1. An example of such a cycle is shown in Fig. 2. As v goes
deeper into the unstable range, bifurcations destroy periodicity of the cycle but the mode
amplitude can still be limited in this regime (see Fig. 2). Further, at even smaller values
of v, the mode develops an explosive singularity, evolving into a hard nonlinear regime that
runs out of the applicability range of Egs. (20) or (21).

The corresponding explosive solutions were first found in Ref. 1 (for ¢ = 0). Here, we
present another example of such a solution for Eds. (20), (21). As in the analysis of Ref. 1,
we look for an asymptotic solution that becomes singular at a finite time to, at which stage v
and the linear drive can be neglected. In this limit, there is no difference between Egs. (20)
and (21). The solution has the form

A(t) = gX(®)](to — )2 (30)

where g[X] is a periodic function of X = In(ty — t). This structure of A allows a common

time factorization and then we can reduce Egs. (20) and (21) to

e (_2. g— Z_f() = / /3 / dnU (€, m)g[X+In(1+8)]g[X+In(1+&+n)]g* [X+In(1+26+n)] (31)

with
62
(T + (L +E+ )21+ 2 + )2

14

U,n) =



We now observe that

g(X) = pexp(ioX) = pexplic In(to — t)] ’ (32)

is an exact solution to Eq. (31) if the constants p and o, with o real, satisfy the complex

relation
(5~ i) =P [ & [ an0Em exp i1 + O+ /(1426 )
that can also be rewritten as

ol .\ _ el .
= —io ) =|p|° | dz F(z)exp(ioz) (33)
e (2 w) p 0/ z F(2)exp(icz
with

f sids

0/ [14s(1 — e=#)12J4[1 + s(1 — e=2)~1/2]2"

F(z) =™/
Thus, in order for o to be real, we require

dz F(z) sin(cz)
ocosp+ %sinq& _ 0/

osing—2cosd

=3 . (34)
/ dzF(z) cos(oz)

Note that ¢ > 0 corresponds to a nonlinearly increasing frequency of the mode, while
o < 0 corresponds to a decreasing frequency. A plot of o vs. ¢ for two roots of Eq. (34)
is shown in Fig. 3. The roots are related by symmetry: if o(¢) is a root of Eq. (34), then
o(—¢) = —a(@) is also a root. When the kinetic response is nonperturbative, the frequency
shift in the explosive regime can reach a substantial fraction of the mode’s initial frequency
before solution (30) breaks due to higher nonlinearities.

The previous analytic solution for ¢ = 0, found in Ref. 1 has a special symmetry that gives
both upshifted and downshifted frequency components with equal amplitudes. However, with
a nonzero ¢, one can show that a two-component explosive solution does not even exist and

only a one component asymptotic solution presented in this paper has been found. We
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interpret this observation as meaning that ultimately a specific direction to the frequency
shift is selected in the explosive regime. Nonetheless, the numerical results indicate for
sufficiently small ¢ that a nearly symmetric solution (like that found in Ref. 1) is appropriate
for transient behavior. For ¢ > 7 /8, the numerical solutions are close to the asymptotic
solutions found in this paper, where there is a definite direction to the frequency shift. This
direction corresponds to the root with the lower absolute value of o (see Fig. 3).

It should be noted that the oscillations of the mode amplitude described by Egs. (30)—(32)
are not directly due to particle trapping (indeed, particle trapping would only occur when
the explosive solution is beyond its range of validity). The qualitative explanation for these
oscillations is that when the slope of the particle distribution function decreases nonlinearly
at the location of the original resonance, steeper slopes build up on both sides of the resonance
next to it. In the symmetric case (¢ = 0) discussed in Ref. 1, the mode frequency splits
into two sidebands that tend to grow faster than the original mode. Hence, we obtain an
explosive overall growth of the amplitude with the oscillations at the beat frequency that
increases as the sidebands move apart. This process continues until the mode traps resonant
particles where the presented theory fails. The corresponding peak amplitude of the mode is
unrelated to the closeness to the instability threshold. For perturbative instabilities, like the
bump-on-tail instability, this peak amplitude can be estimated from the condition wy =~ v,
where g, is the instability growth rate without the background damping. This is a much
higher level than the underestimated value wy = 7y presented in Ref. 1. For those instabilities
that have v ~ w far above the threshold, w; can grow up to wy, =~ w.

The explosive solutions we have discussed can also be initiated with a large enough
fluctuation when v > v, (see Fig. 1) and even in a linearly stable system. A straightforward
argument (confirmed by numerical testing) shows that the fluctuation level needed to induce

an explosion satisfies the condition (yr/|¥])*/2 > |A| > (1 + v)*/2.
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IV. Extensions of Theory

A. Steady solutions

The theory presented in Secs. II and III is limited to the near-threshold regime. We
have seen that if the collisionality is large enough, Vet & YL — Va, & steady state solution
arises where the mode saturation level is proportional to an increment above threshold,
viz. wy =~ (1 — 74 /75)1/ 4. As 1 — v4/7L increases, the iterative method eventually fails
and we then need a different technique to solve the problem. For a steady response of a
perturbative mode we need to balance the power being dissipated by the wave, wit;h the

power emitted by resonant particles. This relation takes the form

o,
ot

where f is a stationary (in the wave frame) solution to Eq. (10). In addition to the solution

~27,Im G,|CP? = / dr’ (3

in the limit 1 — 4/, < 1 presented iﬁ this paper, an analytic solution has previously been
found in the limit y;/vz < 1. The two solutions can be combined (accounting for the phase
space dependence of veg)to give the following interpolation formula for the steady state with
the diffusive model of collisions:

. Jae / [1+0.57u/(1 + 1.45/0)"/

1L , / dC' G (36)

where

OF
— 22X _
G(T) = VI 578(2 — wo),

3
o(T) = (w,,(r) / Veﬁ(r))

and wy(T") is given by Eq. (9).
This interpolation formula has been tested with a precise calculation for a physical system

where |V|?, v3; and 0Q/0I are independent of I'. A comparison of the calculated value of
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wiva/V3yL, as a function of v4/v;, with the interpolation formula, is shown in Fig. 4, and

good agreement is observed.

B. Long time evolution of explosive solution

Let us now consider a case where collisionality is small (veg < 1) and let us imagine
that the increment above marginal stability increases slowly with time. As long as vz — 4
is sufficiently small compared with veg, the steady saturated level discussed in Sec. IVA is
appropriate. However, when (v — ;) becomes greater than v.g, explosive solution emerges.
When this solution reaches a level wy, & 7, the iteratively obtained Eq. (17) fails. At the
point of failure we also observe that the solution has a frequency shift, 6w, that is comparable
to vr.

The evolution of perturbative instabilities beyond the point of the explosive solution
breakdown has recently been analyzed.!® The results indeed confirm that ws saturates at the
level wy, =~ ;. However, the surprise is that the two sideband frequencies continue to shift
from the frequency of the original mode by an amount éw that is much greater than -z and
the waves do not readily damp. We find that the two frequencies arise because a “hole”
and “clump” form in the particle trapping region. When 6w > 7, the trapped particles
carry their phase space density with them adiabatically as the sideband frequencies continue
to slowly change compared to a particle bounce time. This creates a disparity between
the trapped particle distribution and the value of the ambient passing particle distribution,
which is necessary to support two BGK-type modes that emerge from the sidebands. The
energy losses from the background dissipation are compensated by the energy released by
passing particles. The passing particle flux to the separatrix skims around the separatrix
and energy is released as the particles go from one side of the separatrix to the other.

Figure 5 illustrates our explanation. We plot the spatially averaged particle distribution

and the mode spectrum as a function of 2 —wp and time. We see that the initial distribution
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function has a plateau-like region at the original resonance position, but as time evolves,
a depression in the distribution propagates to larger values of  — wp and bump in the
distribution propagates to lower values of € — wy. The BGK-modes last until collisions
become important. Then the trapped and passing particle distribution mix on a time scale
T ~ 2 [v3;, the rate of frequency shift diminishes, and the waves damp. The total frequency
shift is 6w ~ v (Y /verr)¥/? if this value is éma]ler than the width of the distribution function.

The evolution of the nonperturbative instability beyond the explosive phase is somewhat
different from that of the perturbative instability. We have seen that there is a preferred
direction to the frequency shift in the nonperturbative case. Therefore, either a hole or
a clump, but not both, will form. Technically, the probiem of the long time evolution
is easier in the f)erturbative case since a fully nonlinear treatment is only needed for the
resonant particles while the rest of the system response can still be treated linearly. In the
nonperturbative case, the explosive singularity leads to a complete breakdown of all aspects
of the linear problem, and new techniques of analysis are required.

Large frequency shifts have been observed in experiments for the fishbone mode® and for
the hot electron interchange mode!®; both of which are nonperturbative modes. The pattern
of the early stage of the fishbone instability is consistent with our explosive scenario.? It
remains a challenge to consistently describe the mode and particle evolution beyond the

explosive phase.
V. Summary

In this paper we have shown how a nonlinear single-mode near-threshold theory, first
discussed for the bump-on-tail instability in Ref. 1, generalizes to a wide range of kinetic
problems. This generalization leads to new results which include:

The extension of the nonlinear theory to arbitrary geometry and to nonperturbative
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modes (i.e. modes whose very existence requires the kinetic response of the particles). Now
the theory applies to any mode and any device where the equilibrium orbits are integrable.
An analytic description for the onset of a frequency shift in a definite direction in the

nonlinear evolution of nonperturbative instabilities.

Presentation of the nonlinear equation for the mode with a realistic diffusive collision
operator as opposed to the idealized Krook model for collisions.

A new explosive solution that applies to the nonlinear equation for the complex wave am-
plitude. We find that the applicability range of the explosive solutions extends considerably
beyond the limit estimated in Ref. 1.

Finally we have given a brief discussion of later developments of our theory that are

reported in more detail elsewhere.
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Appendix: Technical Details

a. Operator 0/0I in a symmetric torus

For the guiding center motion in a toroidally symmetric magnetic field, the operator §/81
can be expressed in terms of the three conserved quantities in the nonperturbed field: the
particle energy E, the canonical toroidal angular momentum Py, and the magnetic moment

4. One can readily establish that
0/0I = £,0/01, + £,0/01, + £30/8I5.

It can also be shown that it is always allowable to take I = Py and I3 = umc/q; here q is
the particle charge. The particle energy F as a function of I, I, and I3 is the Hamiltonian
of the unperturbed system.‘ We now choose I; to be the action for the poloidal motion, so
that the quantities wy = 0E/0I1, w, = 0E/0I, and w3 = 8E /813 are the frequencies of the
poloidal, toroidal and gyromotion, respectively. We can then rewrite the operator 8/8I in
the form

6/8[ = (flwl + Loy + 53(4}3)6/(9E +£23/(9I2 + 338/3.[3

At the resonance, the sum Zjw; + fows + f3ws equals the mode frequency w. In addition,
£3 must be taken zero for the low-frequency modes, and £, is nothing else than the toroidal

mode number n. Hence, we find

S _,02 ..,.8 i' _nii
81~ “9E " "3P,~ “BElp "Rl

with Py = Py —nE/w and E' = E — wP/n.
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b. Validity limit of cubic integral equation and explosive solution

It is clear from Eq. (9) that the particle motion can be described perturbatively for short

enough time scales, satisfying the condition
t

/wbdt K 1.
0

With collisions present, the time of validity of perturbation theory can be indefinitely long
if the decorrelation time 7., which is 1/veg or 1/v, depending on description of collisions, is

less than w;!. Hence, a perturbative treatment is expected to be applicable if

¢
min ( / wedt; wac) <1 (A-1)
0

The explicit evaluation of the next (fifth) order nonlinear terms in Eq. (17) shows that those

terms are indeed smaller than the cubic term when condition (A-1) is satisfied.

Condition (A-1) sets the limit on w, for which the explosive solution is valid. For the -

explosive solution, the dC/dt term in Eq. (17) equals the nonlinear term with v, = 0. This
relation gives the following estimate:

1dC

" 4
@ N L ( / wbdt) <L L (A-2)
0

where v, is the instability growth rate far above the threshold (at & ~ 20,-). The breakdown

occurs when

lég_f\l
C dt ~ vL,

which determines the characteristic time scale near the singularity: At = 1/~;. We now find

from Eq. (A-2) that the corresponding limit for wp is wy = 1/At = 4.
c. Form of vg

Suppose the Fokker-Planck operator is of the form

) )
St:a_v'D'a_v',
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where 8/0v is a velocity space derivative with the spatial position r fixed, and D a dyadic
describing velocity space diffusion. The distribution function, f, is in general a function of
I1(Q2),£ and two additional action variables, but only the derivative with respect to I is large

near the resonance. Hence, the dominant part of the collisional term is

62

with
“T—=F 2
v = 0L p 9L (0%
TTov T ov\al)’
where the bar denotes bounce average over the nonperturbed orbit.

Using the result of section (a) of this Appendix we can take I = Ps/n at constant E.

Then we find 0
E'>

0P, 0P, [ 00
8 2 ¢.p.28 28
ver =gy D ov (6P¢
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FIGURE CAPTIONS

FIG. 1.

FIG. 2.

FIG. 3.

FIG. 4.

FIG. 5.

Stability boundaries for the steady state nonlinear solution. These curves plot the
value of v vs. ¢ with the dotted curve for the Krook collisional model and the solid
curve for the diffusive collisional model. v < v, corresponds to instability of the

steady state.

‘Iransition from steady state saturation to the explosive nonlinear regime as v de-
creases. Plots of the value of the normalized amplitude, A, vs. normalized time ¢

for the diffusive case with ¢ = 0.
Nonlinear eigenvalues o(¢) for the explosive solution.

Steady sate saturated level of a single mode. The curve is the interpolation formula
while the diamonds and triangles correspond to steady solutions of Egs.(3) and (10)

for (Veg/vL)® = 5 and (veg/vz)® =10 respectively.

Spontaneous formation of coherent modes with time dependent frequencies in the
near-threshold regime of the bump-on-tail instability. (a) The spatial average of the
distribution < f >= F + f, as a function of time and Q — wp; (b) the evolution of

the mode spectral intensity |c(w)|? as a function of time and frequency shift.
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