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ABSTRACT

The observation of a large vy width for the !Dy ¢ state mp(1670) suggests that the vy
couplings of many orbitally-excited light qg states may be experimentally accessible. In this
talk we present v+ helicity amplitudes for qg states with general angular momenta !¢, and *¢,,
and note some relations and selection rules that may be useful in spectroscopic classification

of orbital excitations.

tTo appear in the Proceedings of the “HADRON91” Conference on Hadron Spectroscopy.




Two-photon production of meson resonances has proven to be a very useful experimental
technique for studying light mesons with even C-parity. The coupling of photons to the quark
charges in ¢ states provides direct evidence of the internal charge structure, for example
in the relative yy partial widths of 25:9:2 for (u@ + dd)/v/2,(uii — dd)/+/2 and s5 states
within an orbital! SU(6) multiplet. Non-gq states may also be identified through their two-
photon couplings. For example, the f,(975) and a,(983) KK-molecule candidates [1] have
anomalously small vy widths (2] of ~ 0.2 Kev 3], whereas quark model expectations for light,
nonstrange (I = 0,1) *Py qg states are typically several Kev. A much broader f,(~ 1200) has
recently been identified in ¥y — 7w by the Crystal Ball [4] and CELLO [5] collaborations,

which has a 4y width consistent with quark model estimates for an £ = 1 ¢q state.

Until recently only quarkonium states with low orbital angular momenta, £ < 1, had
been reported in two-photon collisions. The observation of the D, gg state m(1670) [4-7)
with a ¥y partial width comparable to those of light £ = 1 states has dramatically altered
this situation, and suggests that two-photon experiments may be useful in the study of other

light higher-spin resonances.

It will be important to have theoretical estimates of I',, and characteristic vy couplings
(such as the dominant helicity amplitudes) for orbitally-excited states for comparison with
future experimental studies. In this talk I report theoretical vy couplings of nonrelativistic
qq states with all allowed angular momenta, (S = 0,€ = even) and (5 = 1,£ = odd). These
results are abstracted from work with E.S.Ackleh, F.E.Close and Z.P.Li [8-11], and complete
a theoretical program of nonrelativistic calculations of fermion-antifermion couplings to on-
shell vy states begun by Wheeler [12] (for £ = 0) and continued by Alekseev [13] (£ = 1),
Anderson, Austern and Cahn (14] (£ = 2) and Ackleh and Barnes [9] (£ = even). Details of
the calculation and of relativistic corrections will be presented elsewhere [9-11]. We note in
passing that relativistic corrections are actually very important in determining the absolute
rate within an (5, £) multiplet, for example in the y+v partial width of the m5(1670). We have
evaluated relativistic corrections to the (§ = 1,£ = 1) [8] and (S = 0,£ = even) [9] vy widths,
and (S = 1,€ = odd) is in progress [11], but space does not permit discussion of these results

here. Helicity selection rules appear to be less sensitive to relativistic effects, at least in the

3P, case [7,8].
Our result for the nonrelativistic two-photon width of an et e~ bound state is of the form
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Dnn(P*78(eten) 1) = 3 Ta =z 0O (1)

A=0.2

where %9 (0) is the £th derivative of the radial wavefunction at contact, which is normalised
to fl 2jp(r)|?dr = 1. Allowed values of the two-photon helicity A are 0 and 2 for § =1,
gj=4£+1, X =2 only for the S = 1, 7 = £ “middle-of-multiplet” triplet states, and A = 0
only for the § = 0, ) = £ singlet quarkonium states. We have determined the reduced partial
widths 'y in (1) for each two-photon helicity state (A = 0 or 2) for given ete™ or g7 angular
quantum numbers. (Here we quote coefficients for positronium decay; for the ¢g case one
should replace m, in (1) by m, and multiply f‘,\ by an overall color factor of 3.)

For the spin-singlet case, 77’C = even™7, the reduced partial width [9] is
f‘,\:“(lszd =1 (20‘)

for all ¢; this reproduces the well-known 'S, parapositronium width [12] and the recent
¢ = 2 result of Anderson, Austern and Cahn [14] as special cases. (Although we agree
with the nonrelativistic formula of [14], we find that large relativistic corrections and other
effects [9) lead to a numerical value much closer to experiment for the 73(1670) than was
reported in [14].) The previously unpublished results presented in this talk are for spin-
triplet states, S = 1 and £ = odd. For these states the coefficients {I'x} have nontrivial 3, ¢

and ) dependence; our general results [10] are

(£+2)(€+3)

. 5 B _
Paz2(=i) = £20+3) (26)
fA:ll(3£J=1+1) =0 ; (2¢)
. £—-1) £+ 2
Paea(Pl)=r) = (—-—g———) : (2d)
. 3 _(E*Z)(E-l)(f«i-l) 2 .

T,\:Z( EJ:I—I) - £2(2E — 1) (1 + X) 3 (26)
. 5 (20412
F/\:H( eJ:l-—]) - E(2£ _ 1) ) (2f)
where ¥ is
{0, £=1; 0
= (24 ~
X 5”522;(&’1‘)1)’ £>3 . !J)
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Spin-triplet decays of current interest are £ = 1 and £ = 3. For £ = 1 we recover the
well-known relative widths of

15
T (3)

The light £ = 3 gq states will probably be the first £ > 2 states to be detected in v, and the

[mzz(SPz) : fAz(,OPz)] . Taco(®Py) t Tacu(PPu) = [1 : 0] L0

theoretical partial widths and helicity couplings we find are rather novel and may be useful
as experimental signatures. For a nonrelativistic £ = 3 orbital multiplet we find relative vy
widths (summed over helicities, with Tiot = Dyoo + f‘,\:(,) of

. . - 919
Fff)f(3F~l) : Ftot(3F3) : Ffuf(aF?) = 1 : 1 : —1—(—)6 (4)

These nonrelativistic two-photon couplings evidently favor the 2+t 3F, state by about an
order of magnitude in the partial width (but somewhat less in the cross section, due to (27+1)
factors), so the 9++ gtate should be the easiest member of the £ = 3 multiplet to observe.
(Assuming of course that relativistic corrections do not qualitatively alter the relative rates.)
Note that we expect very similar vy widths for 3t+ and 41+ 3F, states; this is in marked
contrast to the analogous states in the ¢ = 1 case, in which the 3 = ¢, 1*++ state is forbidden
to on-shell photons by the Landau-Yang theorem.

One might be concerned about the difficulty of distinguishing a 3F, qq state from a
radially-excited *P, state or a more exotic possibility such as a hybrid. Fortunately, we find
that the helicity couplings of the 3F, are quite characteristic, as A = 2 and A = 0 couplings

are both present in the nonrelativistic decay with comparable amplitudes;

Dazu(’Fa) _ 29 (5)
F,\:Q(SF?) 625
In contrast, in the *P, states the A = 2 amplitude is known to be dominant {7,8]. This
helicity-two dominance is expected to apply to all triplet 7 = £ + 1 states (2b,c), whereas the
7 = £ — 1 states with { > 3 should all have significant couplings to both A =2 and A =0 vy

final states (2e,f). These may prove to be useful signatures for higher-£ qq states in future

experimental studies.
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