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1. Introduction

Substantial progress has been achieved in recent years in our abili ty
to calculate the electron-phonon parameters of transition metals. This
progress has been based primarily on one or the other of two ad hoc
prescriptions for the electron-phonon matrix elements, the "rigid
muffin-tin approximation" (KMTA.) or the "fitted modified tight-binding
approximation" (FMTBA). Here, I shall mainly be concerned with the
RMTA. Comparisons between RMTA calculations and several types of
experiments show that the RMTA is remarkably accurate for average
electron-phonon properties such as the electron-phonon mass enhancement
X. There are indications, however, that the RMTA matrix elements may
be too small at low momentum transfers.
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In this paper I shall attempt to demonstrate these assertions concerning
the accuracy of the RMTA and shall offer some simple observations which
may help to explain why they are true. I shall also try to place the
numerous electron—phonon calculations in a broader perspective by
showing how they can be used to explain the trends in the strength of
the electron-phonon coupling among the transition metals and the A-15
compounds.

2. Average Electron-Phonon Properties in the RMTA

The basic problem in the theory of the electron-phonon interaction is
the calculation of the transition rate between Bloch states i|^ and
i)^- due to an infinitesimal atomic displacement 6R. The matrix element
for this transition is

V (1)

where <5V/5Ra is the change in (self-consistent) crystal potential per
unit displacement due to the displacement of a single atom in direction
a. In the RMTA, SV(r)/6Ra is replaced by the gradient of the usual
muffin-tin type potential which would enter an augmented plane wave or
Korringa-Kohn-Rostocker band calculation.

The RMTA has been used to calculate a host of electron-phonon interaction
dependent properties for a wide variety of mat' - i a l s . Calculations of
<I™>, the Fermi surface average of Za \ Iak'k I have been extremely popu-
lar because Caspari and Gyorffy (1972) showed how i t could be obtained
rather simply in the course of a typical hand structure calculation.
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The electron phonon matrix element g-'k'k i s defined in terms of

*Vk--k

where e-Hq) is a phonon polarization vector, u)Jq is a phonon frequency
and Ua is the atomic mass. The absolute square of g^ -^ determines the
transition rate between Bloch state ^ and i^.- due to the presence of a
phonon of wave vector k' — k and polarization j . In principle, the
energy of the Bloch state t|̂  should differ from that of state i|i^ by
ojj^ ' .^ , but phorion energies are usually small on an electronic struc-

ture scale so in practice both of the states, k and k' can be taken to
be at the Fermi energy for most transition metal systems.

Host of the experimentally observable quantities related to the
electron-phonon interaction can be viewed as averages over the Fermi
surface of | g \ ' k I ^• The mass enhancement parameter which gives the
electron-phonon enhancement of the specific heat and which enters the
McMillan (1968) equation for the superconducting transition temperature
is given by

3
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where N(0) is the (siagle-spin) Fermi energy density of states. A quan-
tity very similar to X determines the high temperature electrical
resistivity. For temperatures greater than the Debye temperature, the
resistivity is given rather accurately by a relaxation time approximation

p =
2e~N(0)<v >T

(4)
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where <v-> is the earl square Fermi velocity and where the electron-
phonon lifetime Tpp is determined by the transport version of \

h/x = 2nk_T X. , (5)
ep B tr

4
N(0)<vV >

V
kk

fi(e ) 6 ( e
v

K.

Other electron-phonon properties can be wr:Ltten in terms of tnore
restricted averages over | g \ - k j

 2 as will be shown in Sect. 3.

The question "How well does the RMTA work?" is answered in part by
Table I which shows values of X as calculated using the RMTA and as
deduced from experiment for various transition netals . Overall the



Table 1. Values of X Calculated Using the Rigid Muffin-Tin or
Rigid Atomic Sphere Approximations and

Deduced from Experiment*

Material

V

Nb

Ta

Mo

W

Pd

Pt

Glotzel

Butler
Butler
G.lbtzel

Glotzel

Pinski
Glotzel

Glotzel

Pinski
Glotzel

Glotzel

Reference

e t

et
et

et

e t

et
et

et

et
et

e t

a l .

a l .
a l .

a l .

a l .

a l .
a l .

a l .

al .
a l .

a l .

(1979)

(1977)
(1979)

(1979)

(1979)

(1978a)
(1979)

(1979)

(1978b)
(1979)

(1979)

^calc.

1.2a

1.2
1.1
1.3a

0.9a

0.40
0.4a

0.25a

0.41
0.5a

0.7a

emp.

o.83c, >o.8r

l . 2 c , 1.0r, 0.96c

O^t (0.7 - 0 .9) r

0.44c

0.24c

0.38 r

(a) Rigid atomic sphere approximation, (t) estimate from
tunneling data, V (Zasadzinski et a l . , 1980), Nb (Bostock et a l . ,
1980), Ta (Shen, 1972), (r) estimate from resis t ivi ty , (c)
estimate from Tc.

agreement between calculation and experiment is quite impressive. While
considering these results one should remember that neither the calcula-
tion nor the experiments are completely free from ambiguity. In the
calculations, the phonon frequencies and polarization vectors were
obtained from Born-von Karraan fi ts to the experimental phonon curves but
the electronic structures were determined from energy band calculations
with their consequent uncertainties. In particular, it should be noted
that the calculations of Glbtzel et a l . , are based on a linearized ver-
sion of KKR theory which employs overlapping atomic spheres rather than
the more usual muffin-tin spheres. Their approximation for the
electron-phonon matrix element might more properly be called the "rigid
atomic sphere approximation".

The ambiguities in the experimental values for X arise from various
sources. Specific heat data can be used with a band calculation to
deduce X from

1 + X = N*(0)/N_(0) , (7)
a

where M (0) is the enhanced density of states and NB(0) is the band
structure density of s ta tes . This method of obtaining X, however,
requires an accurate NB(0) and begs the question of the existence of
other many-body enhancements (Rietschel and Winter, 1979).

The nost common method of estimating X is via the superconducting
transition temperature using an equation originally due to McMillan
(1%8) but modified by AlL-n and Dynes (1972)



Log 1.04(1 + X)

- u* - 0.62 XU

(8)

Once Tc has been treasured X can be determined from Eq. (8) if <w> 0̂(> (a
particular average of the phonon frequencies) and u (the residual
Coulomb repulsion) are known. Unfortunately, they (u especially) never
are knovra accurately for transition metals. In principle X, <<̂ >xOp» and
U* can all be determined from an analysis of superconducting tunnefing
data, but there are difficult experimental problems and the analysis of
the data is not nearly so straightforward for transition netals as for
the simple raetals.

There are few experimental difficulties in measuring the room tem-
perature resist ivity so a coraparison of the calculated and experimental
resisi t ivi ty should provide a significant test for the1 W1TA. Calculated
and experimental resis t ivi t ies for Nb and Pd (Pinski et a l . , 1980a) are
shown in Fig. I. If we assume that N(0)<v2> has been calculated accu-
rately and that the resistivity indeed varies in a manner described by
Eqs. (4) and (5) at 300 K we can conclude that the RMTA values of X for
both of these raetals are about 10% too large. There is a possible ambi-
guity even in this test of the RMTA since the resis t ivi t ies of both Nb
and Pd show substantial negative deviations from linearity at tem-
peratures above 300 K. These deviations may be due to "Mott Fermi
smearing" or to "non-classiccil conduction channels" (Allen, 1980)
neither of which are included in Eq. (4). If these effects are
Influencing the resistivity at 300 K, the RITA values for A might be
even more accurate than Fig. . suggests.

Improving upon the RITA in the sense of calculating raore accurate values
of X for transition tnetals may prove to be quite difficult. I t is
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Fig. 1. The electrical res is t iv i t ies of Nb and Pd. The solid lines are
from solutions to the Blotzmann equation which use RITA matrix
elements and take into account both the wave-vector and energy
dependence of the distribution function. The experimental
resuLts are from Webb (1969) for Nb and from White and Woods
(1958) for Pd.



possible (certainly in principle and probably in practice, see e.g.
Winter, 1973) to evaluate 5V(x)/6Rna numerically within local density
theory. The matrix elements calculated from such a function using Eq.
(U would certainly have a firmer theoretical foundation than rigid
muffin-tin matrix elements but they would not be exact because they
neglect Coulomb vertex convections. These corrections have never been
evaluated for a transition metal, but for Al they reduce the high tem-
perature resist ivi ty by about 10% (Rasolt and Devlin, 1976).

3, A Sum Rule and Problems For Small Momentum Transfer

A useful sum rule which helps to make the success of the EMTA more
plausible can be derived from the translational invariance of the crystal,
The self-consistent potential in the crystal V(x) depends implicitly on
the positions of all the atoms {R }̂ • Moving from x to x + 5 with the
crystal fixed in space is equivalent to translating the crystal through
—6, thus

V(x + 6,{R2}) = V(x,{R - 6 } ) . (9)

Expanding Eq. (9) to first order in & yields

This sum rule will be satisfied by any approximation (such as the RMTA)
in which the crystal potential is written as a sum of "atomic" contribu-
tions

V(x) = I V (x - R ) , (11)
I a *

which are assumed to move rigidly when an atom is displaced. Although
Eq. (10) is easily satisfied i t is often violated by schemes which
attempt to "improve" on the RMTA. The RMTA amounts (essentially) to
approximating 6V(x)/6RQa by —VaV(x) for all points x in the cell at the
origin so that Eq. 10 can be written

[6V(x)/6R 1 = [6V(x)/6R ] + £ 6V(x)/6Rp . (12)
oa RMTA oa exac t £ la

The RMTA is justified if (for x in the cell at the origin) the second
term on the right hand side of Eq. (12) can be neglected. This requires
that the perturbation in the potential due to the displacement of an
atom not extend outside the cell in which that atom is Located. This
approximation may not be bad in a transition metal with its localized d-
orbitals and i ts high density of states which can screen out charge
fluctuations within a short distance.

These assumptions (and the RMTA) clearly fail for the simple metals.
For the limiting case of very weak potentials we have a rigorous theory
(Bardeen, 1937) which tells us that it is the screened ionic (pseudo)
potential which moves rigidly when an atom moves. Such a potential is
much stronger and of much longer range than a muffin-tin potential. The



two types of potential correspond to too very different ways of writing
the total crystal potential as a sun of atomic contributions (Lee and
Heine, 1972).

The difference between the two types of potential is most apparent at
small momentum transfers. For a nearly free electron system Iak'k. =
(k" — k)av(k"-k) where v(q) is the fourier transform of whatever poten-
t ia l moves rigidly with an atom. The low q limit of a screened pseudo-
potential for an ion of valence Z in a system with Fermi energy density
of states N(0) is v(0) =-Z/N(O). The low q limit for scattering off of
a muffin-tin potential which gives the same band structure will be much
smaller.

There is some evidence that the RMTA matrix elements for transition
metals are also too weak at low q. Figure 2 shows the same Nb r e s i s t i -
vity data shown in Fig. 1 but here i t is displayed as the ratio of the
calculated to the experimental values. The ratio is very close to unity
above 30 K but it drops significantly at lower temperatures. The
experimental resistivity exceeds the calculated value by a factor of two
at 10 K. The K-tTA results at this temperature depend upon the low q,
lov u) matrix elements (jiui < 3 raeV) and upon how well one solves the
Boltzmann equation. Our solution to the Boltzmanti equation is not per-
fect but a better solution allowing even more variational freedom to the
distribution function could only lower the res is t iv i ty .

Further evidence for weak low q matrix elements may be seen in the
electron-phonon spectral function a2(M)F(tii). This function is a more
detailed measure of the olectron-phonon interaction than X since i t
picks out only those contributions to X which are associated with fre-
quency 0)

a (w)F(to) 6Uk)6(V 3k'k )
K, K

(13)

Fig. 2. The ratio of the resistivity calculated In the RITA to the
experimental values for 'Jb.



The low frequency a^(u)F(w) inferred by Arnold et a l . (1979) from tun-
neling data for Nb exceeds that calculated in the KMTA (Butler, et a l . ,
1979) by an amount which is consis tent with the discrepancy between the
experimental and RHTA r e s i s t i v i t i e s .

The phonon Hnewidth Y)W c a n i n principle be used to measure the
contributions to X which ar ise from phonons of a par t icu lar wave vector
and momentum transfer since

Y (q) = TT I 6 ( e k ) 6 ( V ) | g ^ k | 2 ^ . k 6 ( k - k ' - q ) . (14)

The RMTA has been very successful in predicting structure in the
linewidth (Butler, et al. 1977, Pinski and Butler, 1979); however,
there is one accurate measurement of a low q transverse phonon linewidth
in Nb at q = (0.07, 0.07, 0.00)ir/a (Shapiro et al., 1975) for which the
experimental value exceeds tha RMTA result by a factor of approximately
1.5.

The too small low q matrix elements may be responsible for a possible
inaccuracy of the RMTA in predicting the anisotropy of the electron-
phonon mass enhancement. The mass enhancement is not truly a constant
but varies from point to point on the Fermi surface. The electron-
phonon contribution to the k dependent mass enhancement is given by

Xk= 2 I fi(EkJ l 4 - k | 2 / ^ k • (15)
k

The average of X^ over the Fermi energy is jus t X. The wave vector
dependent mass enhancement can also be writ ten in the form

Xk = 2 / ^aj>)F(u>) , (16)

where a\(u>)F(u)) i s a k dependent spectral function obtained by e l imi -
nating the sum over k in Rq. (13) . "ow i t is known from de Haas-van Alphen
measurements of electron l i fe t imes (Nowak, 1972) that the low frequency
part of a ic(u)F"(u)) is quite an i so t rop ic . I t is much more anisotropic
than the average over a l l frequencies X^. I t might be expected the re -
fore that the TC1TA would underestimate the anisotropy in X^. Such an
effect has apparently been observed by Crabtree et a l . (1979) who
obtained 1 + X^ by dividing calculated band ve loc i t i e s by experimental
quas ipar t lc le v e l o c i t i e s . The r e l a t ive anisotropy in Xk inferred in
th i s way, although small in comparison with that of some simple metals,
was subs tan t ia l ly greater than that calculated in the RMTA (Harmon and
Sinha, 1977, Pinski et a l . , 1980b). I t should he remembered however,
that there is some vincertainty in the in te rp re ta t ion of the experiments
since small e r rors in the band ve loc i t i es would cause substant ia l error
in the anisotropy of Xk and since other many-body enhancements may also
be anisotropic .

4 . The Variation of the Superconducting Tc Among Transition Metal
Systems

Despite the possible problems with small momentum transfers discussed in
the preceeding sect ion, the RMTA appears to give a good account of the



overall strength of the electron-phonon coupling in transition metals.
I t can also be used to rationalize the empirical rules which have been
found to govern the occurrence of high Tc superconductivity in transition
metal based systems. The following set of rules are based on trends
observed primarily in the transition metals and the A-15 compounds.

(a) The rule of the half-filled d-band. High Tc 's tend to be found
only in those transition metal elements and compounds with approxi-
mately half-filled d-bands.

(b) The rule of e/a. Within a given crystal structure Tc correlates
with e/a, the average number of valence electrons per atom
(Matthias, 1971).

(c) The rule of 4-d superiority. For a given crystal structure nnd e/a
the compounds based on the 4-d transition toetal elements (e.g. , Nb)
tend to have higher Tc 's than those based on corresponding 3-d
(e.g. , V) or 5-d (e.g. , Ta) elements.

(d) The rule of togetherness. For a given crystal structure, e/a% and
period, electron-phonon coupling is enhanced if the transition metal
atoms are closer together.

(e) The rule of the perversity of nature. For a given class of:
materials those with the highest Tc 's tend to be less stable and
more difficult to make.

Insights gained from RITA and tight-binding calculations can explain
rules (a), (b) and (d) in a qualitative fashion. If, fallowing
McMillan (1968), we write A as

X = N(0)<I2>M<cu2> , (17)

we see that X depends on three factors N(0), <I~>, and M<OJ~>. The last
of these factors is essentially a measure of the lat t ice stiffness and
we know qualitatively how it should vary. It should peak near the
center of the transition oetal series for the strongly bonded metals
like Mo. This variation by itself would lead us to expect l i t t l e or no
superconductivity for half-filled d-bands.

The RMTA calculations (Butler, 1977, Pettifor, 1977, and
Papaconstantopoulos et a l . , 1977) indicate however that <I-> is also
largest near the center of the transition metal series. In fact, the
variation in <I2> with e/a is stronger than that of M<UJ2> so the ratio
<I->/M<0)2> is largest for an approximately half-filled d-band.

This result explains the absence of superconductivity near the ends of
the transition metal series. In the RMTA, <I-> can be written approxi-
mately for transition metals as

where ?2 anc* 3̂ a r e the fractions of the Fermi energy density of states
which are associated with the d and f character respectively of the K.KR
wave functions, and V is the volume per atom. f3 of course has nothing
to do with atomic f orbitals but arises because d orbitals on neigh-
boring sites have tails which hang over into the site at the origin.
These tails yield a non d-like density of states when expanded about the
origin. At the low e/a side of the series (e.g., Y) <I2> is small pr i -
marily because V is large. At the opposite end of the series (e.g., Pd)
f3 and hence <I-> are small because the d-orbitals are concentrated near
the nucleus.



The observed variations of Tc with e/a (Matthias, 1971) result primarily
from the rapid variation of the Fermi energy density of states with e/a
superimposed on the variation of <I->/M<w >, A high density of states
in the vicinity of the Fermi energy increases X both directly because it
is a factor in Eq. (17) and indirectly through a renormalization of the
phonon frequencies which lower M<w ->,

The rule of "4-d superiority" and the rule of "togetherness" are
illustrated in Fig. 3 for the A-15 compounds with e/a's of 4.50 and
4.75. The former rule is difficult to explain on general grounds. When
one descends a column in the periodic table (e.g. , V, Nb, Ta), <Î > and
M<u -> both increase whereas N(0) typically decreases. Tc may also be
affected by variations in the Coulomb repulsion which is likely to be
greatest for the 3d's. It is difficult to predict a-pviovi the net
effect of these conflicting treads.

The rule of "togetherness" can be understood in terms of the overlapping
of d-orbitals between transition netal atoms. This is necessary to
obtain a large <I-> and it is clearly facilitated by a small lat t ice
parameter. The variation of Tc with lattice parameter seen in Fig. 3
can be understood therefore in terms of a simplistic picture in which
the simple metal atoms act as relatively inert "spacers" which determine
the magnitude of the lattice parameter. This picture is supported by
the RMTA calculations for the A-15's of Klein et a l . , (1979) who found
that <!-> is dominated by contributions coming from the transition metal
s i te .

Much attention has been given in recent years to the lattice ins tabi l i -
ties that are fairly common in high Tc materials. In the final rule, I
am also suggesting, however, a phenomenon which may be difficult to
detect experimentally, namely, a tendency for high Tc phases to have a
higher free energy than competing phases with lower T c ' s . I t is likely,
for example, that phases with a high Fermi energy density of states are
at a disadvantage when the Fermi energy falls near the center of the ri-
band complex. Finding ways to violate or circumvent this rule seems to
be one of the keys to raising Tc.
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Fig. 3. T c vs lattice parameter for the A-15's with electron per atom
ratios of 4.50 and 4.75. The lattice parameters have been nor-
malized by the metallic radius of the transition metal atom.
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