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SOAR: AN EXTENSIBLE SUITE OF CODES
FOR WELD ANALYSIS AND OPTIMAL WELD SCHEDULES

G. R. Eisler", P. W. Fuerschbach'

ABSTRACT

A suite of MATLAB-based code modules has been developed to provide optimal weld schedules
regulating weld process parameters for CO2 and pulse Nd:YAG laser welding methods, and arc
welding in support of the Smartweld manufacturing initiative at Sandia National Laboratories. The
optimization methodology consists of mixed genetic and gradient-based algorithms to query semi-
empirical, nonlinear algebraic models. The optimization output provides heat-input-efficient welds
for user-specified weld dimensions. User querying of all weld models is available to examine sub-
optimal schedules. In addition, a heat conduction equation solver for 2-D heat flow is available to
provide the user with an additional check of weld thermal effects. The inclusion of thermodynamic
properties allows the extension of the empirical models to include materials other than those tested.
All solution methods are provided with graphical user interfaces and display pertinent results in
two and three-dimensional form. The code architecture provides an extensible framework to add

an arbitrary number of modules.

INTRODUCTION

It has been a goal of advanced manufacturing initiatives at Sandia
to provide model-based applications to reduce the design cycle
time. In pursuit of this objective, a set of MATLAB-based
computer codes, SOAR (Smartweld Optimization and Analysis
Routines) has been developed to aid the welding engineer. The
contents cover solution methods to generate optimal weld
schedules for:

* CO, laser welding

* Plasma or gas-tungsten arc welding

* Pulse Nd:YAG laser welding
For these applications, weld schedules represent the constant-value
settings on the device for output power (g,) or energy delivered
(Q), part travel speed (v), and in the laser-device cases the focusing
lens size (f). In addition a fourth application has been written to
provide graphical solutions to a two-dimensional (2-D) steady-
state, heat conduction equation. Results of the constant-value weld
solutions provided by the “scheduling” applications can be entered
into this application (dubbed ISO) to provide the engineer with a
geometric check of weld thermal effects.

Figure 1. CO, Laser weld in progress
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Since an important goal of Sandia’s manufacturing initiatives is model-based design, it was
felt that more software tools were necessary to make the specialized knowledge more
accessible to the weld community. An application for CO, laser welding (Ref. 1) was an
initial foray into this area. Based on models given in Ref. 2, additional weld schedule
applications were able to be brought on-line. All have implemented the following basic
approach: '

1. Formulate a semi-empirical, input response model of the weld process. (A conceptual
model is shown in Fig.2) These may consist of pure polynomial fits of experimental
data, or may be parameterized extensions of relations developed in the literature to
better fit experimental data. Model expansions to other than the experimentally-tested
materials is accomplished via the embedding of thermodynamic properties within the
model. The use of numerical scaling may be relied upon to achieve better data fits.

Responses
inputs Energy Transfer Efficiency, n;

Laser Spot Diameter, d Melting Efficiency, ng,
Travel Speed, v Process Efficiency, n; «n
Output Power, qo Weld Pool Width, W

= Penetration Depth, P

Figure 2. The Input-Response Model for CO, Laser Welding

2. Use acombination of genetic and gradient-based optimization algorithms to invert the
model by solving for the inputs to provide an “optimal” response. A surface of possible
responses for a “grid” of inputs is shown in Fig.3. Typically, the optimal solution is
one that maximizes an efficiency metric (i.e., Melting Efficiency, which can also be

interpreted as minimizing heat input), while simultaneously yielding a weld of given
depth/width dimensions.




The use of a mix of optimization algorithms
stems from the fact that genetic-based methods
can survey a wide range of solution possibilities
efficiently, and are thus better disposed towards
finding the most promising region in the solution
space from which a gradient-based scheme can
converge quickly to the final optimal solution.
Numerical scaling was used to aid the searching
algorithms when various quantities were
disparate in magnitude.

Efficiency

Figure 3. A Weld Response Surface

3. Provide 2-D and three-dimensional (3-D) presentations to allow the weld engineer to assess
how this type of solution, which may not always be intuitive, fits in with qualitative metrics
such as weld appearance, past experience, and equipment capability.

All applications were written in MATLAB (Ref. 3) which provides
B integrated “number-crunching”, graphics, and graphical-user-interface
(GUI) routines. The applications were separately launched from the
SOAR “executive” control panel in Fig.4. The architecture of this
panel allows the addition of an arbitrary number of analysis modules
to cover future needs. The applications will be covered in the ensuing
sections.

BILIEI SOAR &

To access this panel:
1.Enter MATLAB

2.Type: soar (lower case) at the command prompt

Figure 4. The SOAR Executive Control Panel

THE CO2 APPLICATION

This application was the first developed and is explained in detail in Ref. 1. It will be summarized
briefly here. For this study, the desired response characteristics are concerned with heat input effi-
ciency on a given metal, while attaining a user-specified weld geometry. Weld schedules consist
of constant values over a given weld for: 1) laser output power (g,) in watts, 2) part travel speed
(v) in millimeters(mm)/second(sec), and 3) laser focusing lens focal length characterized by spot
diameter (d) in centimeters (cm).

In the context of laser welding, g, and v can be considered to vary continuously over a given range.
However, spot diameter, d, corresponds to only a select few discrete lens focal lengths. It was de-
cided to model four output responses or process variables as functions of the weld schedule (WS)
parameters, ¢, , V, and d. These quantities were:




1. energy transfer efficiency (1, dimensionless), defined as the ratio of net heat input to
the part to the incident energy produced by the power source.

2. melting efficiency (n,, , dimensionless), defined as the ratio of the amount of heat

required to just melt the fusion zone to the net heat input deposited in the part. Slow
travel speeds usually encountered in manual welding operations result in low melting
efficiency.

3. top width of the weld (W, mm). Area of the weld is used for the thermodynamic
calculation and a parabolic, weld shape approximation was used to map area to width.

4. weld penetration depth, (P, mm).

For CO, laser welding, the weld schedule (WS) implies the triple, g,,, U, d. The method pro-
posed for generating optimal weld schedules required a parameterized, algebraic model to
relate the WS to the responses, 1, M,,, W and P. Experimental input-response data for 126
different welds for the 304 stainless steel, 1018 steel, and tin were fit with a nonlinear least-
squares algorithm. The parameters in the algebraic model were computed to minimize the
sum of the squares of the errors (i.e., the least-squares fit) between experimental responses
(My; » P; for the ith weld) and those from the model. Given 1, and P, then 1, and W were
generated from known relations. Extensions to molybdenum, nickel, and titanium were
done via the use of material thermal diffusivity, ¢, and enthalpy of melting, 84, values em-
bedded in the model. The final response model was given by the following:

(1)
c,0q, [2 aum(z(,d/m] g, v [%] ['c?]
= & T‘t = C4—C58 Ry = -2_ 'nm = C7+C8e +C‘9€
vd o6k
Rym,, uz 3Area . .
Area = — - W= p (parabolic shape approximation)

v

Numerical constants, c;, are those found via least-squares data fitting. Ry is the Rykalin
parameter Ref. 4.

Given the parameterized model which provides the best "least-squares™ fit to the experi-
mental data, a genetic algorithm optimization method was used in consort with either a gra-
dient-based optimization scheme or a nonlinear algebraic solver to find the WS to solve the
following problems,

Performance Metric Goal Weld Specifications Solution Method
1.Maximize T}; Waesireds Pdesired genetic w/nonlinear algebraic solver
2. Maximize T}; P tesired ONly genetic w/nonlinear optimization
3.Maximize 0, Wesired» Pdesired genetic w/nonlinear algebraic solver
4 Maximize 1}, P iesired ORlY genetic w/nonlinear optimization

5.Maximize M¢*1,, W esired> Pdesired genetic w/nonlinear algebraic solver




Performance Metric Goal Weld Specifications Solution Method

6.Maximize T¢*1,;, P jesired ONly genetic w/nonlinear optimization

or stated somewhat differently

Maximize: 1(q,,v,d), or N,(q,,v,d), or . *n,.(q,,v.d)
Subject to: Wy, ;.0q - W(q,,0.d)=0 and/or P .g,eq-P(q,,0,d)=0

where the quantities followed by (g,,v,d) imply model responses resulting from the "constant”" WS
parameters. The optimization space is discontinuous due to the discrete variable, d, and would ap-
pear as separate surfaces in a vertical stack (one of which is shown in Fig.3). The largest lens (f =
7.5, d =.0294 cm) produces the lowest efficiencies and would be at the bottom of the stack. If d
had been continuous, this "space" would have appeared "solid". The gist of our optimization effort
is to "jump" to the highest surface (which corresponds to the lowest value of d), which will simul-
taneously yield a bounded WS solution to satisfy the ( Pyugireq a0d Wyesireds Pdesireq) CONStraints.

In the genetic algorithm (GA), the W ;. 0a, P gesirea CONStraints were attached as a quadratic penalty
function onto the performance metric to form a composite metric. The GA treats all values of g,
,0,d as discrete, makes up various combinations of them (members of the population), and
evaluates the composite metric according to the response model. It then chooses the highest value
after a designated number of population or “generation” changes. In Ref. 1 the entire problem was
solved with the GA, but it was felt that the solution was too time-consuming for an adequate
convergence of the search. However, it was found acceptable for narrowing the response space for
initializing a gradient scheme.

Since gradient schemes necessitate continuous parameters (i.e., variables), it was necessary to
reformulate the discrete optimization problem as a continuous one. The solution was to pose the
following two types of problems:

1. Wyesired » Paesirea SPecified: For each value of d, solve for the g, v combination that
algebraically solves the constraint equations
Wdesired - W(qo ’D’d)zo Pdesired 'P(qo ,0,d)=0

Since d is known, this reduces to solving two nonlinear algebraic equations in two unknowns.
Then, sort the solutions that produce acceptably small residuals in the constraint equations to find
the desired maximum according to whichever “efficiency” criterion (mentioned previously) was
chosen. This was accomplished using a Newton-type solution algorithm. The analyst should note
-->notall W00+ Pesirea COmbinations are possible. An intersection of the contours for a given
d is needed to produce a solution.

2. Pj,sireq Only specified: For each value of d, solve for the g,, v combination that

Maximizes: the efficiency criterion of interest (i.e. 1, N,,, or N,*N,,)
Subject to: P, ;.4 -P(q,,0,d)=0

Then sort the solutions that produce acceptably small residuals in the single constraint to find the
desired maximum according to whichever “efficiency” criterion was chosen. This was accom-




A plished using a MATLAB routine to do nonlinear programming.

| The capability developed for optimization and graphical model output can be most effec-
tively used by integrating them via GUI tools (available in the MATLAB system). The GUI
panel in Fig.5 allows the user to: '

1. Select any of presently seven metals (304 stainless steel, 304L stainless steel, 1018
steel, tin, nickel, titanium, molybdenum) to analyze.
2. Plot any of five “responses” from the model (n;, N,,, N;*N,,,,» W, P). Surfaces are
‘ plotted as continuous functions of g,,, ¥ and as a discrete function of d. Contours
appear as labeled iso-curves of the given response variable, continuous in ¢, v, and
for a single value of d.

3. Obtain the nearest optimal weld schedule for user-specified, W, ;s and/or P04

4. Display the assumed weld shape as it is changed by the user or the completed solution

Get continuous weld model output via “mouse-down” button clicks on the 2-D contour
plots.

6. Get text help describing the application.

Item 5 provides the analyst with the flexibility to choose an alternative weld schedule. The
optimization algorithms are configured to attain the extremum, be it minimum or
maximum, regardless of the cost in terms of g, v. If an efficiency response can be further

improved or “optimized” by a few percent for a large increase in g, or v, then that is what

the algorithm will recommend. It is up to the analyst to decide whether this
recommendation is practical.

THE ARC APPLICATION

Response characteristics for plasma-arc or gas-tungsten arc welding are concerned with
minimizing heat input on a given metal, while attaining a user-specified weld depth for an
assumed semi-circular weld cross-section. The schedules are produced by applying param-
eter optimization to the mathematical model in Ref. 4. Weld schedules consist of:

1. laser output (g,) power in watts with a range of 100-2000, and
2. part travel speed (v) in millimeters(mm)/second(sec), with a range of 1-50.

For arc welding, g, and v can be considered to vary continuously over given ranges. It was
not necessary to scale the model for this application.

Three output responses were modeled as functions of the WS parameters, g,, v. These
quantities were: 1) melting efficiency (1,,, dimensionless), 2)top width of the weld (W,
mm), and 3)weld penetration depth, (P, mm). The weld cross-sections are assumed semi-
circular and therefore W=2P.
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The following is the nonlinear algebraic, plasma-arc model

@

:&] [:_RY]
q,v Cio 1
Ry = 08— N, = C7+cge +cge
o”dh
2
R, M,

Area =

P = 2J(2Area)/n (semicircular area)

v

Note that the Ry relation used here assumes a constant 1), = 0.8. The gradient-based, non-
linear optimization algorithm (in MATLAB), described previously, was used to find the
WS to solve the single problem available for this application:

Maximize 1,, for Pg,;,..40nly.
To compensate for initial guess sensitivity, this single problem was solved for five different
sets of initial conditions which represent the boundaries of the ranges on ¢, , v. The solu-
tions were sorted for those that produced acceptably small residuals in the single constraint
and of these the one which maximized 1, was chosen. The YAG user-interface was pat-
terned on that of the CO2 application and is not shown.

THE YAG APPLICATION

Response characteristics for Nd: Pulsed YAG welding are concerned with minimizing
weld-induced temperature on a specific component, while attaining user-specified weld di-
mensions for an assumed parabolic-shape weld cross-section. The schedules are produced
by applying parameter optimization to a mathematical model obtained in Ref. 5 for 304
stainless steel. Weld schedules consist of constant values over a given weld for: 1) peak
power in watts (¢p,), 2) energy in joules (Q), and 3) lens focal length in mm (f)

qp and Q can be considered to vary continuously over given ranges. f is discrete as in the
CO?2 application. It was necessary to scale the model for this application because of the
magnitude disparity on g, and Q. Three output characteristics were modeled as polynomial
functions of the WS parameters, g,,, Q, f. These quantities were:1) temperature (7, °C), 2)
width of the weld (W, mm), (converted from area via a parabolic shape approximation), and
3) weld penetration depth, (P, mm).

The polynomial functions, for a given f, are of the form
(3)
2 2
T = 12 +t2Q+t3qP+t4Q +15qu +t6qp
Area = a;+a,Q+ aq,+ a‘,,Q2 + asqu + ani

2 2
P = P1+P2Q+P3qP+P4Q +Psqu+Psqp

where the coefficients #;, a;, p; are found via least-squares fitting of experimental data. Since

W is generated for a parabolic cross-section model, W = (3Area)/(2P). Travel speed (v,

mm/sec), pulse duration (T, msec), pulse frequency (v, Hz) are also computed, based on an
average power of 200 watts. These relations are:




v=50% 1= 1000(—19- v=22 4)

The gradient-based optimization and nonlinear algebraic solver schemes described previously for
CO, were used to find the WS to solve the problems

1. Minimize T, Subject to: P,,;,.,; only (nonlinear optimization at each value of f with sorting
over lens f for minimum 7).

2. Minimize 7, Subject to: W, ; o4, Paesireq- (nODlinear algebraic solution at each value of f with
sorting over f for minimum 7)

The solutions were sorted for those that produced acceptably small residuals in the constraints and
of these the one which minimized temperature was chosen. Due to the fact that the ranges of ¢, Q
were discontinuous (i.e., depending on the value of f), the genetic algorithm was used to provide
an initial guess for the sub-WS$ (qp , Q) each time a new value of f was considered.

THE ISO APPLICATION

This application computes constant temperature contours due to saturation from a heat source ac-
cording to the 2-D steady-state, heat-flow equation as derived by Rosenthal (Ref. 6). The 2-D mod-
el arises from modeling the welding of thin sheets where the temperature variation is considered
negligible in the thickness direction. The steady-state description is derived from welding a plate
whose dimensions are large with respect to the size of the contours. A schematic is shown in Fig.6.

Easy access to temperature isotherms for a given set of welding conditions provides the optimiza-
tion user with an additional check of weld thermal effects. While melting efficiency indicates how
effective a given weld schedule is in minimizing heat input to the part, the Rosenthal analysis
graphically presents the resulting temperature distribution and indicates the geometric extent of the
weld heat input.

Temperature
contour

thin plate

plate of large

direction of travel . 7 .
relative surface dimensions

Figure 6. Schematic of the 2-D steady-state, heat-flow problem

The Rosenthal analytical solution is




o ®)
a(T-Toks  (38) |
o ¢ K(z%)

where the following are input by the user via the GUI-driven application,

T = contour temperature of interest (deg C)
T, = base metal temperature

o
k; = thermal conductivity of metal (Joules/(meter-sec-deg C))

t = thickness of metal plate (mm) \
Q =energy (heat) input to the metal (Joules)
v = welding speed (mm/sec)

o, = thermal diffusivity of metal (meters/sec)

K, is the modified Bessel function of the second kind and zero order (a MATLAB function)
and e is the exponential operator. The variable, r, radial distance from origin ((xz +y2)” 2
millimeters), is manipulated by the application.

The contour solution reduces to solving the above nonlinear algebraic equation as follows:

1. solvetheequation: ¢, - e K €yx) = 0 forx = x,,;,, X,,,, using a nonlinear solver,
where the constants c;= (2r*(T-T,)*k;*t)/Q and c,=V/(2*0). ¥ (Xpin) =V (Xpn)=0.

2. solve for the intermediate x values on the top half of the contour by inputting a range
of r values, abs(x,,;,,)<r<x,,... and solving x=1/c,*In (c;/K (c,*r)), and then the

corresponding y=( P-x? )m. In is the natural logarithm.

A complete contour is constructed by reflecting the top half and is approximately elliptical
in shape.

CONCLUSIONS

Computational methods have been developed to provide optimal weld schedules based on
semi-empirical mathematical models. The mathematical relations in the models originated
from past research and were modified to provide best least-squares fits to experimental da-
ta. Model extension to other metals was provided through the use of thermodynamic con-
stants. Genetic algorithms were used to provide initial guesses to gradient-based solution
schemes. Gradient schemes were used to provide tight convergence on specified weld di-
mensions as well as optimize various performance indices. Solution algorithms work well
provided that the required width and penetration specifications co-exist. In addition, the
Rosenthal 2-D heat flow equation was solved to produce a geometric view of weld effects.
GUI-driven input-output interfaces were provided for all applications. Future applications
can be added in a straightforward manner to the MATLAB architecture.
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Figure 7. The ISO Application GUI
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