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1.0 INTRODUCTION AND SUMMARY

The objective of this study was to assess and evaluate the effectiveness, appropriateness and
economics of ceramic barrier filter cleaning techniques used for high-temperature and
high-pressure particulate filtration.

Three potential filter cleaning techniques were evaluated. These techniques include, conventional
on-line pulse driven reverse gas filter cleaning, off-line reverse gas filter cleaning and a novel rapid
pulse driven filter cleaning. These three ceramic filter cleaning techniques are either presently
employed, or being considered for use, in the filtration of coal derived gas streams (combustion or
gasification) under high-temperature high-pressure conditions. '

These cleaning techniques were evaluated initially from a first principles approach followed by
conceptual designs and cost estimates. This approach resulted in the development and analysis of
the fundamental mechanisms involved in the cleaning of ceramic barrier filters. A primary
objective in the first principal analyses of the proposed cleaning techniques was to identify the
governing mechanisms, and the values of parameters which would support these mechanisms, so
that satisfactory filter cleaning can be obtained.

This study was divided into six subtasks, as outlined below:

Subtask 1: First Principle Analysis of Ceramic Barrier Filter Cleaning Mechanisms

Subtask 2: Operational Values for Parameters Identified With the Filter Cleaning Mechanisms
Subtask 3: Evaluation and Identification of Potential Ceramic Filter Cleaning Techniques

Subtask 4: Development of Conceptual Designs for Ceramic Barrier Filter Systems and Ceramic
Barrier Filter Cleaning Systems for Two DOE Specified Power Plants

Subtask 5: Evaluation of Ceramic Barrier Filter System Cleaning Techniques
Subtask 6: Final Report and Presentation

The report is organized in a slightly different order than the subtasks. Initially, a review of existing
literature on ceramic filter technology and a survey of DOE and EPRI funded hot gas cleanup
programs was conducted. This is reported in Section 2.0. In order to complete Subtasks 1 and 2,
the concepts, cases and design bases had to be identified. This was completed in Subtask 3 and is
presented in Section 3.0, Discussion of Concepts. The results of Subtasks 1 and 2 are presented in
Section 4.0, Analyses and Modeling of Filter Blowback Systems. Subtasks 4 and 5 are presented in
Section 5.0, Conceptual Design Detail and Section 6.0, Economic Analyses. The final section of
the report, Section 7.0, presents conclusions and R&D recommendations.

1.1 CONCLUSIONS AND R&D RECOMMENDATIONS
Within individual sections of this report critical design and operational issues were evaluated and
key findings were identified. This section presents some overall conclusions on the issues and
recommendations for R&D design challenges.
1.1.1 Conclusions

¢ The on-line 400°F pulse blowback system is commercially available and has been widely

tested under both PFBC and IGCC conditions. Potential limitations include thermal shock
and particle redeposition resulting in poor overall filter cleaning efficiency.
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The off-line 400°F pulse blowback system should provide an improved filter cleaning
efficiency by allowing the dust particles to fall to the bottom of the filter vessels. However, *
this has yet to be demonstrated and quantified through large scale tests. The greater
efficiency will come with a higher capital costs associated with additional valve and vessels.
As with the on-line system, thermal shock could also be a potential limitation.

The rapid combustion pulse blowback system, while at this time only a concept, has the
potential to eliminate thermal shock in a cost effective manner. A significant amount of test
work will be needed before this concept can be considered viable. The rapid combustion
pulse system was not included for the carbonizer and IGCC cases due to concerns about
controlling a reducing gas pulse.

The criteria for determining at what temperature thermal shock starts occurring for candle
filters is based on tests which showed that at temperatures 100°F below operating
temperature micro cracking of the candle is observed. However, long term test results with
candle filters blown back with "cold” air have not shown that micro cracking necessarily leads
to candle filter failure.

The off-line cleaning system has a higher cost due primarily to the extra vessels required too
maintain a constant face velocity. However, if testing shows that off-line cleaning can sustain
a higher face velocity this cost differential will disappear. These costs, however, were a small
portion of the entire plant costs. Technical feasibility and not cost will determine which
technique is chosen.

The cost driver for the ceramic barrier filter cost are the vessel costs. The blowback systems
including gas compression represent a small percentage of total system costs.

The spreadsheet model developed for this task can be used to assist conceptual design of a
blowback system or used as an analytical tool to compare performance of different filter
cleaning techniques. It became clear during the model development that many of the
fundamental process parameters required for the effective design of blowback systems are
not commonly available in the literature nor easily estimated by theoretical means.

Based on calculations for plenum blowback using G/C’s spreadsheet model, it appears that a
fast acting valve may not be needed. If this is the case, a less expensive, high temperature
valve may be used and the reservoir gas temperature could be heated to alleviate thermal
shock.

1.1.2 R&D Recommendations

Several fundamental parameters (such as cake separation stress) required for the effective
design of blow back systems are not commonly available in the literature nor easily
estimated by theoretical means. It is recommended that R&D effort be directed in
establishing/compiling this class of information.

The main advantage of off-line cleaning is that dust particles have sufficient time to fall to
the bottom of the filter vessel before redepositing. However, there is no quantitative data on
the mean particle size of dust blown off candle filters. This needs to be determined and ways
of achieving rapid settling by additives, blow back techniques or filter and vessel design
should be explored.

In order to prevent thermal shock it is advantageous to use as hot a gas as possible. The

operating temperature of the back pulse valve is the present limit on blow back temperature.
The development of higher temperature, fast acting valves could alleviate this situation.
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The rapid combustion system has the potential to eliminate thermal shock limitations in a
cost effective manner. A significant amount of development work is needed including fuel *
selection, fuel and oxidant feed control, firing mechanism and sonic orifice design.

e  More data is needed on the plenum cleanin-g technique to verify the uniformity of gas
distribution and cleaning. These concerns should be addressed during the testing at Tidd.

e The piping system between the gas reservoir and the filters has a very strong impact on the
pressure drop of the blow back system. Much more attention in the future needs to be paid
to the design, testing and standardization of this system.

1.2 SUMMARY
A summary of the key findings and issues identified in each section is'presented below.
1.2.1 Review of Literature

A review of existing literature on ceramic filter technologies and survey of DOE or EPRI funded
hot gas cleanup programs were conducted. The objectives were: (1) to gain a better general
understanding of the state of the art, and (2) to identify the analytical and modeling/simulation
methods suited for evaluating the various barrier filter cleaning techniques. In the latter category,
the review was focused on those built upon fundamental principles that govern particulate removal
mechanisms.

From the review of the literature, it can generally be concluded/remarked that:

(1) An ideal on-line pulse cleaning technique is one that is capable of building a sufficiently high
pressure in the candle filter cavity to blow off the cake with the /east amount of pulse gas in the
shortest possible time.

(2) In general, the minirmwum pulse pressure needed to blow off the cake layer is a function of the
operating parameters (e.g., cleaning cycle duration) and cake separation stress (related to the cake
adhesivity/cohesivity). The cake separation stress must be known for effective design of the filter
blowback system.

(3) Ideally, the temperature and composition of cleaning fluid should be as close as possible to
that of clean gas to mitigate thermal shock and thermal fatigue.

(4) Extended cleaning cycle duration is likely to cause permeability reduction and increase in
residual dust layer thickness. If the cycle time is too long, the filtering operation may become
unstable unless the pulse pressure is increased.

(5) Increasing pulse duration causes increased pulse gas consumption, lower filter temperature,
and increased potential for thermal shock. However, it may improve cake cleaning efficiency
because a correspondingly longer free-fall time is available for the detached cake to settle to
bottom of the filter vessel.

(6) The specific operational characteristic and response time of the solenoid valve that initiates
and terminates the pulse of jet is important in analyzing the performance of pulse blowback
system.

(7) When filtering coal gas in integrated gasification combined cycle (IGCC) applications, there
may be a need for long-term regeneration of the filter elements (such as "burning-out") in addition
to short-term cyclic cleaning of the filter /cake.




1.2.2 Discussion of Concepts ,

The three candle filter cleaning systems that have been evaluated include:

- On-line 400°F pulse
- Off-line 400°F pulse
- Rapid combustion pulse

A technical and economic analysis was done for the three described blowback systems operating
under three different filtration conditions: gasifier, circulating pressurized fluidized bed
combustor (CPFBC) and a carbonizer. Conceptual designs of commercial size systems were
developed using process data based on a G/C’s analysis and modeling of the filter blowback
system. Physical characteristics such as blowback reservoir size, compressor requirements were
determined by the model’s calculation procedure.

The analyses were done for eight different cases as requested by METC described as follows:
- Case 1: CPFBC with conventional on-line cleaning, 400°F pulse.
- Case 2: CPFBC with conventional off-line cleaning, 400°F pulse.
- Case 3: CPFBC with rapid combustion 1500°F pulse, on-line cleaning.
- Case 4: CPFBC with rapid combustion 1500°F pulse, off-line cleaning.
- Case5: Carbonizer with conventional on-line cleaning, fuel gas 400°F pulse.
- Case 6: Carbonizer with conventional off-line cleaning, fuel gas 400°F pulse.
- Case7: IGCC with conventional on-line cleaning, fuel gas 400°F pulse.
- Case 8: IGCC with conventional off-line cleaning, fuel gas 400°F pulse.

For the CPFBC cases, each of the three candle filter cleaning systems were evaluated. For the
rapid combustion pulse system, both on and off-line cleaning techniques were included.

The rapid combustion pulse system was not included for the carbonizer and IGCC cases. For very
short pulses the valves, which control the amount of fuel and oxidant entering the combustor, must
be very accurately controlled. This is especially crucial for gasifiers where a reducing pulse gas is
required. Because of this limitation this system has not been evaluated for use in gasifier or
carbonizer filtration systems.

1.2.3 Analysis and Modeling of Filter Blowback System

One of the objectives of this project is to identify the basic mechanisms and functional
relationships governing cake removal as they relate to the ceramic barrier filter cleaning
techniques described in the previous section. This involves, for example, analysis of pressure drops
through porous media (filter and cake layers), or the pressure level required in the candle filter
cavity for effective cake removal. A companion objective is to determine a range of values for
operational parameters, such as the flow rate of the cleaning fluid, its pressure and temperature at
‘the pulse lance. The values of these parameters are to be established by taking into consideration
the properties of cleaning fluids such as air, nitrogen, or recycled fuel gas as appropriate, and the
properties of filter medlum and cake that forms on the surface of filter medjum.




In short, given a suitable geometrical and process description of the components and constituents
involved in the filter blowback system, the analysis and modeling objectives are to establish the
necessary design data for the Conceptual Design Task, including:

(1) The required gas flow rate and the associated pressure P and temperature T conditions at
various points in the blowback system.

(2) The volume, P, and T of the cleaning fluid reservoir and the duration of blowback.

Three types of dirty gas in combination with the three filter cleaning techniques give rise to the
eight design cases to be studied. While each of these eight cases has its unique process conditions
that would lead to a different blowback requirement (see Table 1.2-1 for a summary of
common/unique parameters and blowback requirement for each case), it is clear that the analysis
procedure itself would be similar, and it can be "copied” from one case and applied to another.

For example, the main difference between the "cold pulse" and "hot pulse" cases is the temperature
of the cleaning fluid, and the main difference between the "on-line" and "off-line" cases is the
settling time available for the separated cake to fall to the bottom of the filter cake. But the first
principle that governs cake separation per se is the same for all cases.

The relatively large number of physical/process parameters involved in characterizing the systems
can often be treated as "inputs" or interchangeably as calculated "outputs” or assigned as common
“constants". The analyses, therefore, were implemented by a series of spreadsheets using
commercially available software.

During implementation of the spreadsheet model, Dr. David Leith, Director, Air, Radiation and
Industrial Hygiene Program, University of North Carolina, Chapel Hill, N.C., was used as a
consultant to review the approach and to answer specific questions. A summary of his comments
~ and his report on specific questions are included in the Appendix A. '

1.2.4 Conceptual Design

DOE/METC has selected the KRW air blown gasifier and Foster Wheeler’s second generation
PFBC for the candle filter cleanup system conceptual designs. Table 1.2-2 provides candle filter
vessel parameters for the PFBC and carbonizer, and also the KRW gasifier. The general design
criteria followed included:

- The candle filter vessel is based on a Westinghouse commercial design. Candles are
attached to plenums which are blown back by a single pulse using compressed air or fuel gas
stored in a reservoir. .

- To reduce the harmful effects of thermal shock it is desirable to blowback with the highest
temperature gas as possible. With a 400°F temperature limitation on the currently available
fast-acting valve it is not possible to entrain enough hot, clean gas to produce a blowback gas
which is 100°F lower than operating temperature. As a result no effort was made to
maximize the blowback gas temperature.

- The candle filter vessels for the eight cases are the same size, 16 ft. diameter x 67 ft. height,
and have the same number of tiers and clusters per tier. The different power plant flows are
accommodated by the number of vessels and somewhat by the number of candles per vessel.
This was done to simplify the process design for blowback requirements and also to lessen
the amount of effort to cost the vessels.

- Reasonable face velocities were chosen to size the filter vessels based on published reports:
10 fpm for the PFBC and 5 fpm for the gasifier and carbonizer.
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Table 1.2-2

Candle Filter Vessel Parameters

Foster Wheeler
Second
KRW Generation

No. Parameter IGCC PFBC Carbonizer
1. MWenet 458 453 453
2. Pressure, inlet, PSIA 380 192 208
3.  Temp, inlet, °F 1,015 1,600 1,500
4.  Flow, inlet, Ib/hr gas 1,904,867 5,288,600 492,562
5.  Flow, inlet, ACFM 57,507 343,721 31,811
6.  Inlet particulate loading, ppmw 1,500 1,000 3,000
7.  Particle size, microns, D50 1.2 2.1 1.6
8. Particle loading, Ibs/hr 2,857 5,289 1,478
0. Candle filter data

Size O.D., mm 60 60 60

Size 1.D., mm 30 30 30

Length, m 1.5 15 15

Material SiC SiC SiC
10. Candle filter vessel design

Diameter, ft. O.D. 16 16 16

Height, ft. 67 67 67

Total candles needed 3,978 11,888 2,272

No. of candles per vessel 995 1,188 1,136

No. of vessels 4 10 2

No. of tiers 4 4 4

No. of candles per blowback cluster 62 74 71

Design face velocity, fpm 5 10 5

Flow, ACFM per vessel 14,377 34,372 15,906

PEN



- Adifference from the Westmghouse des1gn is that the blowback reservoirs are larger in
capacity. At Tidd a 4 ft3 vessel is used to blowback 38 candles. For Case 1 a 25 ft° vessel is’
used for blowing back 74 candles. The larger vessels were designed to lower the required
blowback pressure.

- Compressor horsepower requirements, as calculated in the model, were not rounded off to
reasonable numbers because this study is concerned more with system comparisons rather
than detailed design of equipment.

1.2.5 Economic Analysis

The economics of the ceramic barrier filter hot gas cleanup (HGCU) systems were developed on
the basis of consistently evaluating the capital and operating costs and then performing an
economic analysis based on the incremental cost of electricity (COE) as the figure of merit. The
conceptual cost estimate was determined on the basis of system scope as described in Section 5.0,
equipment quotes, the PFBC reference plant, and inhouse cost data.

Table 1.2-3 Itemizes the Total Plant Cost (TPC) and the component COE costs for each of the
eight estimated cases. Cases 1 - 4 represent HGCU systems as applied to Circulating Pressurized
Fluidized Bed Combustors, Cases 5 - 8 represent HGCU systems applied to carbonizers and
gasifiers. The face velocities for these applications as well as particle loading determine the
number of vessels required for each system. As shown in Table 1.2-3, the COE of the systems with
similar applications are equivalent. As expected, the cases with off-line cleaning are slightly
higher than the same system with on line cleaning, since additional vessels are required. All but
Cases 7 and 8 have the same working pressure so the TPC is equivalent on a cost per vessel level.
Cases 7 and 8 have a higher working pressure, more costly vessels, thus a higher TPC’s on a per
vessel basis. The cost difference between the 1500°F and 400°F pulse on-line cleaning technique is
negligible. Technical feasibility and not cost will determine which is used.




Table 1.2-3
HGCU SYSTEMS COST SUMMARY *

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8
PFBC PFBC PFBC PFBC |Carbonizer| Carbonizer] IGCC IGCC
400°F 400°F 1500°F 1500°F 400°F 400°F 400°F 400°F
Pulse Pulse Pulse Pulse Pulse Pulse Pulse Pulse
On-Line | Off-Line| On-Line | Off-Line| On-Line | Off-Line | On-Line | Off-Line
MW 453 453 453 453 453 453 458 458
TPC - $/kW 132.7 158.3 130.8 157.5 26.5 39.1 62.1 75.6
# of Vessels 10 12 10 12 2 3 4 5
TPC/Vessel 133 13.2 13.1 131 133 13.0 15.5 151
Fixed O&M -
mills/kKWh 1.6 19 16 19 05 0.6 0.7 10
Variable O&M
mills/kWh 0.9 1.0 09 10 0.2 03 0.4 5
Carrying
Charge
mills/kWh 41 48 40 48 0.8 1.2 19 23
coe®
mills/kWh 6.5 7.7 6.5 77 15 21 32 38

(1) No consumables were large enough to be recognized on a unit cost basis, although the costs
are included in the annual costs. No fuel cost difference was recognized.




2.0 REVIEW OF LITERATURE

»

As part of Tasks 1 and 2 activities, a review of existing literature on ceramic filter technologies and
survey of DOE or EPRI funded hot gas cleanup programs were conducted. The objectives were:
(1) to gain a better general understanding of the state of the art, and (2) to identify the analytical
and modeling/simulation methods suited for evaluating the various barrier filter cleaning
techniques. In the latter category, the review was focused on those built upon fundamental
principles that govern particulate removal mechanisms.

The domain of literature reviewed consists of reports, proceedings and papers that are available
from recent conferences and workshops, including: ’

e  Twelfth EPRI Conference on Gasification Power Plants, San Francisco, CA,
Oct. 27-29, 1993

e Tenth Pittsburgh Coal Conference, Pittsburgh, PA, Sept. 20, 1993

e  Coal-Fired Power Systems 93 - Advances in IGCC and PFBC Review Meeting,
Morgantown, WV, June 28, 1993

e  Twelfth International Conference on Fluidized Bed Combustion, San Diego, CA,
May 9, 1993

e  Twelfth Annual Gasification and Gas Cleanup Systems Contractors Review Meeting,
Morgantown, WV, Sept. 15, 1992

e  Second EPRI Workshop on Filtration of Dust from Coal-Derived Reducing and
Combustion Gases at High Temperature, San Francisco, CA, March 11, 1992

e Eleventh Annual Gasification and Gas Cleanup Systems Contractors Review Meeting,
Morgantown, WV, August 13, 1991

e  Eleventh International Conference on Fluidized Bed Combustion, Montreal, Canada,
April 21, 1991

e Transactions - ASME Journal of Engineering Materials and Technology; ASME Journal of
Engineering for Gas Turbines and Power; Chemical Engineering Progress

e In-house DOE, EPRI and other agency reports/papers on FBC and coal gasification
published in the recent years

e  Technical articles on conventional low temperature filters
e  Reports specifically supplied by the METC participants for this project

Papers/articles that are more relevant to or of interest to this project are listed individually in the
references at the end of this section.

The following is a summary of the status of high temperature high pressure (HTHP) filtration
technologies development. It is presented and discussed from the vantage point of this project
(pulse cleaning of barrier filters), and is not intended to be an all encompassing review.




2.1 HOT GAS PARTICULATE REMOVAL UNDER OXIDIZING AND REDUCING
ATMOSPHERES - AN OVERVIEW . ’

Pressurized fluidized bed combustion (PFBC) and integrated gasification combined cycle (IGCC)
are two advanced energy conversion technologies currently under development for electric power
generation. In both PFBC or fluid-bed type gasifiers, the sulfurous species in the coal are captured
by adding sorbent such as limestone or dolomite to the combustor or gasifier. In PFBCs,
particulates in the raw gas must be removed in an external device under a high temperature, high
pressure (HTHP) condition so that the particulate loading in the hot gas is reduced to an
acceptable level to the downstream gas turbines (GT). In IGCC systems, HTHP particulate
cleanup is an option, since the raw fuel gas could be conventionally water-scrubbed (to remove
particulates as well as water-soluble components) and then desulfurized in a commercially
available low temperature desulfurization (LTD) process.

Initially, the HTHP particulate removal devices were developed solely for removal of flyash from
the PFBC flue gases. These were the rigid barrier type filters, made of ceramic materials to
withstand erosive particulates as well as the corrosive actions of alkali vapors in the flue gas. More
recently, use of these devices has been extended to high-efficiency IGCC systems, in which sulfur
in the hot raw gas is removed by passing it through high temperature desulfurization (HTD)
absorbers operating at 1,000-1,200 °F or higher. Typical of these are the zinc titanate external type
moving or fixed beds; consequently, the hot fuel gas must be removed of particulates under an
HTHP condition to protect the HTD absorbers from plugging. (Another filter may also be needed
after the absorber for GT protection.) The ultimate benefits from such implementations of
ceramic filters and HTD include not only increased IGCC conversion efficiency (because the fuel
gas is kept hot), but potentially also a simpler wastewater treatment scheme (no solid/liquid
separation and hence lower costs), and increased plant reliability/availability. Other incentives
include reduced heat exchanger erosion and deposition.

In recent tests, however, the barrier-type HTHP particulate removal devices (as developed for
PFBC oxidizing atmospheres) have encountered somewhat unexpected difficulties under the IGCC
reducing atmospheres. Unlike the relatively inert flue gas from a PFBC, which consists largely of
N3 and CO», the hot fuel gas produced in gasifiers contains not only a large fraction of reducing
components such as CO and Hj but also reactive hydrogen sulfide (H5S) and carbonyl

sulfide (COS), in addition to alkalis and halogens such as HCl. These reducing/reactive
components (and alkalis) in the coal gas are suspected of interacting more aggressively with the
ceramic materials to cause more rapid chemical degradations over time, especially under high
temperatures. '

Under the reducing atmosphere, the coal gases were also found to contain stickier, smaller yet
more irre -shaped high carbon particles (unreacted chars) than those found in the flue gas
from a combustor. They are suspected to cause more severe filter bridging and drainage blocking,
and/or to penetrate deeper into the interior of barrier filters, although carbon deposition from the
gas within the filter is also a suspect. Because of the increased pressure drops across the filter, the
filter face velocity has generally been found to decrease by one-half or more, dropping from
greater than 10-5 fpm under PFBC conditions to 5-3 fpm or less under IGCC conditions. This
lowering of face velocity potentially has a large impact on filter costs, although the actual volume
of gas that needs to be filtered is much less for IGCC compared with PFBC at the same power
output level.

Furthermore, in either PFBC or IGCC, the on-stream cleaning of filter elements using
countercurrent pulse of relatively cool gas is thought to subject the rigid ceramic elements to a
thermal stress that is believed to reduce the lifetime of the material (as micro-cracks can form
when the temperature difference is in the order of 100 °F or greater). In short, the current
concerns regarding rigid type gas filtering materials/methods are: (a) chemical attacks of the filter
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elements (by alkalis and other reactive components), (b) cleanability of the filter itself (when
filtering coal gas), and (c) thermal shock (caused by pulse cleaning at lower temperature). All
these are significant concerns and must be resolved or minimized with additional R&Ds. Two of
the potential solutions being investigated to at least partially mitigate the above problems are:

(1) off-line reverse gas filter cleaning and (2) rapid combustion gas driven filter cleaning. Both
methods will be studied in this project to compare their performance/costs against the
conventional technique.

2.2 HTHP CERAMIC PARTICULATE REMOVAL DEVICES

Ceramic barrier filter devices currently under development include the general class of candles,
cross-flow, tubes, bags, and granular bed. For this project, we are focused only on the rigid type
filters (i.e., candles, cross-flow, and tubes) for which the pulse cleaning techniques are most
applicable. Among the rigid type, we are mainly interested in the candle and, only to a limited
extent, the cross-flow and tubular types. A brief description of these rigid type filters (and the
associated pulse cleaning technique) is given below:

The candle filter has been tested for the longest periods under various conditions, including both
PFBC oxidizing and IGCC reducing atmospheres. Although the filter dimensions can be varied,
the most common size is 1.5 meters in length with a 60-mm outside diameter and a 30-mm inside
diameter, each weighing about 6 kilograms. The typical composition of candles is clay-bonded
silicon carbide or aluminum oxide, although more costly sintered SiC candle is also available. The
bonded ceramics are fired such that the finished candles are monolithic. Major suppliers of candle
filters include Schumacher, Refractron, Coors, IF&P, and Forseco.

Characteristically, one end of the candle is plugged and the other is flanged for mounting on a tube
sheet, which is housed in a pressure vessel. The tube sheet can be solid or water cooled. To
ensure proper sealing of the candles in case of high pressure differences across the tube sheet, the
candles are sometime held down in their places by counterweights at the top . To prevent dirty gas
from inadvertently entering the clean gas side of the tube sheet in case of candle failure, a special
safety valve (which would close automatically by the lift force due to increased gas velocity, e.g., the
Schumacher patented fluid dynamic valve) may be used (above the filter).

In filtering operation, dirty gas enters the pressure vessel, impinges on the outside of the suspended
candles, passes through the nominal 15-mm gas path in the filter, and exits up through the center
of the filter. The face velocity can vary from 2 to 20 fpm depending on the dirty gas and filter cake
characteristics. As the cake builds up and as the pressure drop through the filter/cake reaches a
pre-selected value ("trigger” pressure), a high pressure pulse of cleaning fluid (air, nitrogen, or gas
process gas) is activated to blow off the cake. Typically, the pulse jet is generated by a quick acting
electromagnetic solenoid valve that is connected to a high pressure gas reservoir, and the valve
would open for a fraction of a second on command. The pulsed gas accelerates itself through
interconnecting pipes and enters via a pulse lance to an ejector. At the ejector opening, the high
velocity motive gas (cleaning fluid) entrains and mixes with a portion of the clean filtered gas,
converting its kinetic energy (momentum) into the pressure energy of the mixed gas. The ejector
essentially functions as a fluid pump to reverse the flow of the mixed gas to pressurize the candle
cavity, and the reverse pressure drop through the cake layer in turn exerts a "separation stress" to
blow off the cake. The minimum separation stress that must be developed to separate the cake is
a function of cake cohesivity or adhesivity.

Depending on the blowback system configuration, the gas reservoir pressure can be varied to
achieve the impulse intensity requn'ed to blow off the cake. Depending on the pressure ratio at
the nozzle, the high velocity gas passing through the lance tip can become sonic or subsonic. The
actual pulse duration may last as short as 0.1-0.2 second or as long as 1 to 2 seconds or more, and a
complete filtering cycle may be as short as 1 minute or as long as 60 minutes or more. The wide
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operating conditions reported attest to the fact that filtering of HTHP cake is extremely complex,
depend strongly on specific cake properties, design, operation, and optimization requirements at
individual facility.

The largest candle filter test unit ever built until recently is the American Electric Power’s Tidd
PFBC facility in Brilliant OH, where as many as 384 1.5-meter candle elements are contained in a
single 10-ft diameter by 40-ft tall pressure vessel. In mid-1993, a ceramic filter unit comprising of
600 candles (reduced height version) became operational at the KoBra HTW gasification
demonstration plant in Germany, which is presumably the largest. The unit is 11.8 ft in diameter
and is 36 ft tall, and the candles are arranged in two levels. The unit can reportedly accommodate
as many as 900 candles.

The cross-flow (XF) type filter has been championed by the Westinghouse (WH) since the early
1980s primarily for PFBC applications. The XF filter element is typically a 12x12x4 inch ceramic
membrane layered and oriented at 90-degree angles so that dirty gas enters, passes through the
membrane, and exits perpendicularly to a sealed end of the filter. Multiple elements are attached
to a plenum through which clean gas exits. The plenums are hung from a tube sheet which can be
water cooled. Cleaning of the filters is done periodically by a pulse jet technique (as described
above). Field tests of the WH XF filters have been done at several sites, including the one
conducted under IGCC conditions at the Texaco pilot plant in Montebello, CA. Typical materials
for XF filters include mullite, cordierite, and sintered silicon nitride. Suppliers include Coors,
GTE, and Allied-Signal.

The CeraMem Ceramic Monolith Filter (parallel channel flow filter made of cordierite) has some
 similarity to the WH cross-flow filter. The inlet/outlet openings of the honeycomb monolith are
much smaller than i e Westinghouse cross-flow filter, resulting in a very high filtration area per
unit volume, 155 ft</ft>, as compared to 40 for the latter. Another difference is the membrane
coating which, at 50 nucrons is said to allow higher filtration rates at lower reswtanccs All these
are said to lead to reduced filter vessel cost, structural steel, and plant space.

The tube filter manufactured by Asahi Glass Co. (Japan) is 2 to 3 meter long, 170 mm in O.D. and
140 mm in 1D, and is typically made of porous cordierite ceramic. The elements can be butted
together to form a 20-ft vertical unit, and 9 to 66 of these may be housed in a pressure vessel.
While dimensionally somewhat similar, the tube differs from the candle in that it requires
mounting fixtures on both ends. Furthermore, in operation, the dirty gas enters from the tube top,
flow downward at high velocity through the inside of the filter tube. Clean gas then exits
horizontally and outside of the vessel through side outlets. The filters are cleaned by a reverse
pulse blowback which enters the clean gas exit pipe.

An example of operation using Asahi tubes for PFBC applications is the 10 MW}, Ahlstrom PFBC
Pilot plant facility in Karhula, Finland. One of the novel feature of the pulse cleaning system -
(designed by Asahi Glass Co.) is the use of a regenerative wire mesh heat exchanger to heat up the
pulse cleaning air (and entrained clean gas) prior to it entering the clean gas compartment, the
intention being to minimize thermal shock to the tube during pulse cleaning. In spite of this,
failure rates were high and the durability of the tubes has yet to be demonstrated. Its performance
in treating coal gas is also uncertain since only a relatively short penod of testing has been
conducted under IGCC conditions. (Note: A new effort to minimize thermal shock is the "rapid-
combustion” technique being developed by METC in which a hot gas is generated in a combustion
chamber by an ignition device. This is discussed in detail in Section 3.)

23 MATERIALS FOR FILTERING APPLICATIONS

The major ceramic filter materials that are currently used in the manufacturing of porous HTHP
filters include: (1) oxides (such as alumina/mullite or cordierite), (2) aluminosilicate foam,
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(3) non-oxides (such as clay bonded silicon carbide), (4) bonded/sintered silicon nitride, and (4)
oxide-nonoxide hybrids. In both oxide and non-oxide, there are basically two classes of ceramic
materials: high density and low density. The high-density materials are bonded ceramic granules
having porosity of about 40%, and low-density materials are bonded ceramic fibres having porosity
of 80 to 90%. Currently, the high-density type is prevalent; however, the low density vacuum
formed ceramic fibers are beginning to being tested more widely, especially in Europe.

The long-term stability of ceramic materials is not only affected by ceramic materials but also by
factors such as ceramic granule size, binder type, and manufacturing techniques. Glass of any type
can be detrimental since it can absorb alkali rapidly, leading to increased fluidity and thermal
expansion. Silicon carbide and silicon nitride can be seriously corroded by steam, especially above
1,400 °F. The overall durability of major ceramic materials under PFBC and gasification
conditions are still under laboratory and/or field tests. Some better known names and materials
include:

TABLE 2.3-1 MATERIAL FORMUILATION

Material Name Formulation Suppliers
Mullite/Alumina 3AlH0328i05/Al,03 _ Coors, Forseco
Cordierite 2Al»03°58i092MgO CeraMem, Asahi
Aluminosillicate 3A1,0328i09 Forseco, Fibrosics
Silicon Carbides SiC Schumacher, Refractron,

IF&P
Silicon Nitrides SigNy GTE, Allied-Signal

The relative reactivity of ceramic materials with respect to alkali, steam, or other reducing gaseous
components in the hot raw gas at or above 1,200 °F is a major concern. A general ranking of the
material tolerances to the process variables are:

TABLE 2.3-2 MATERIAL TOLERANCE TO PROCESS VARIABLES

Material Name Tolerance to Process Gas Characteristics/Variable
Alkali Steam ' Coal Gas
Mullite/Alumina High High High
Cordierite Med High High
Aluminosillicate Low High High
Silicon Carbides Low Med/Low Med




The material tolerances at or above 1,200 °F to thermal fatxgue thermal shocks, and mechanical
strength degradation (that can occur due to cyclic variation in temperature and gas flow direction)

are generally thought to be:

TABLE 2.3-3 MATERIAL TOLERANCE TO OPERATING VARIABIES

Material Name Tolerance to Operating/Design Variables
Thermal Fatigue Thermal Shock Mech. Strength
Mullite/Alumina Med Med/Low Med
Cordierite Med Med/Low Med
Aluminosillicate High/Med High Low
Silicon Carbides Med Med/Low Med

The above general assessments naturally can change as additional R&Ds produce newer and more
specific data/information in the future.

2.4 FILTER TESTINGS/APPLICATIONS IN IGCCS

For IGCC applications, candle filters (especially the Schumacher silicon carbide type) and
cross-flow filters have been tested most widely, as summarized in the following table. The table
lists more notable R&D efforts here and abroad as well as several near-term DOE/Clean-Coal
Technology and other energy agency demonstration projects:

TABLE 24-1 R&D PROJE INVOLVING HTHP FIL TRATION

Project Notes

KRW/Waltz Mill Tested 16 sintered metal and 33 Schumacher (SCH) candie
filters

DEA/HTW Tested 90 SCH ceramic candles at Wesseling

Rheinbraun/HTW Tested 9 SCH ceramic candles at Berrenrath

Shell/Deer Park 250 TPD; 44 SCH and 44 IF&P candles tested at 500 °F; good
results with face velocity to 5.8 cm/sec

Texaco/Montebello 4 WH XF and 19 SCH candles tested;
high pulse gas consumption at 1 cm/sec face velocity

CRIEPI/Yokosuka NGK tubes and SCH candles; recycle gas for pulse cleaning

VTT/Otaniemi 5 SCH and 5 Didier ceramic candles tested with coal and
biomass feeds

Tampella/U-Gas Tested SCH candle and tube filters




GKT/PRENFLO

36 SCH candles tested at Furstenhausen .

FW/2PFBC WH XF and candles tested with the carbonizer at Livingston, NJ

Westinghouse XF tested with reentrained Texaco/KRW gasifier char; fair
results with face vel = 1to 3 cm/sec

British Coal (CRE) 12 TPD spouted FBG; testing of ceramic candie filter

IGC/MHI/Iwaki 20 TPD; NGK ceramic filters; in-situ regeneration of filter with
hot air

Demkolec/Shell 253 MW IGCC at Buggenum, Netherlands; testing of ceramic
candle filters to start in 11/93; LTD for sulfur removal

Rheinbraun/HTW 367 MW IGCC KoBra project at Hurth near Cologne; testing
600 ceramic candles since 6/93; LTD for sulfur removal

ELCOGAS/PRENFLO 335 MW IGCC at Puertollano, Spain; to start testing of candle
filters in 6/96; LTD for sulfur removal

SCS/Wilsonville Development of various barrier filter types at the PSDF; dust
properties data to be collected/analyzed

PSI/Destec 265 MW IGCC at Wabash River, IN; to test barrier filters in
1995; LTD for sulfur removal

Sierra Pacific/KRW 80 MW IGCC Pinion Pine project; to test barrier filters,
including candles in 1997; Fixed bed HTD for sulfur removal

TECO/Texaco 250 MW IGCC at Lakeland, FL; to test 100% LTD and 50% GE
moving bed HTD coupled with barrier filters in 1996

TAMCO/U-Gas 58 MW IGCC rei)owering project at Toms Creek, VA to test
barrier filters with fluid bed HTD; project site uncertain

CLWP/CE 60 MW IGCC repowering project at Springfield, IL; to test
bag-type ceramic filters with HTD; project status uncertain

APCI/FW 95 MW Four River (formally Calvert City ) 2PFBC CCT5

project; to test WH filters

Overall, most of the past filter tests were considered reasonably successful, but some were only |
fair. Typical problems were that the face velocities for coal gases were generally low, only in the
order of 1 to 3 fpm. They also experienced similar mechanical problems common to all HTHP -
devices for PFBC applications. In the area of chemical degradation, vapor phase alkalis appeared |
to contribute to deterioration of silicon carbide filters above 1,400 °F, but less so for
alumina/mullite ceramics. Below 1,200 °F, alkalis are condensed and their attacks are thought to
be much weaker and less problematical.

It is important to note that, in many of the newer IGCC projects (the
Demokolec/Shell/Buggenum, Rheinbraun/HTW /KoBra, ELCOGAS/PRENFLO/Puertollano,
and PSI/Destec/Wabash River projects), the ceramic filters are or will be tested at a relative low
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temperature in the range of 500-700 °F. In these, which involve cleanup sequence that may be
termed partial hot gas cleanup, the separated chars are returned to the gasifier after dry-filtration’
but the particle-free gas is conventionally wet-scrubbed to remove halogens (HCl, HF) and other
water-soluble components (NH3, HCN), followed by a low temperature desulfurization (LTD)
process for sulfur removal. The main purpose of using ceramic filters in this fashion is not so
much as to maximize thermal efficiency (by conserving sensible heat for HTD and GT) but rather
to simplify the downstream wastewater treatment steps to minimize costs. Apparently, in
switching to the dry solid/gas filtration from wet solid/liquid separation schemes, there is net
capital and/or O&M savings by eliminating or minimizing use of bulky solid/liquid separators such
as settlers and clarifiers. The overall conversion efficiency may not be as high as those coupling
the filters to a HTD but there is still improvement in the thermal efficiency. Use of ceramic filters
for partial hot gas cleaning at a medium temperature level represents a practical near-term .
solution for IGCC applications since it minimizes chemical attacks/thermal shock problems. Itisa
worthy implementation along with other "partial” processing concepts that are being tested,

e.g., partial gasification (British Coal Topping Cycle; FW 2nd generation PFBC) and partial air
integration (GT/Air Separation Unit; GT/air-blown gasifier).

2.5 FILTER CLEANING TECHNIQUES - ANALYSIS AND MODELING

While there is available a large body of R&D reports on hardware-oriented topics such as
materials development, physical/chemical degradation tests, mechanical strength analyses, and
pilot or large-scale demonstration operations, there is limited number of reports devoted solely to
the analysis and modeling of HTHP filter cleaning technology. The following is a discussion of
reports we found useful for the current project:

Westinghouse In 1989 Westinghouse published a set of reports on the performance evaluation of
their ceramic cross-flow filter system which they tested with a bench-scale coal gasifier. In one of
the appendices, they described a mathematical model for the pulse jet blowback unit which they
developed in conjunction with a cold flow model. It appears that the mathematical model was
developed in part to help verify test results and scaleup design parameters for large unit
applications.

The basis of the dynamic simulation model involved a set of unsteady-state energy, momentum,
and material balances that simultaneously described the gas dynamics around the cross-flow filter -
plenum during pulse blowback. The model was intended to examine whether a particular !
blowback design would work -- for a given input data set (hardware configuration, operating
conditions, cake and gas properties), it calculates key process variables such as the maximum
plenum pressure rise, the associated plenum temperature, total quantity of the motive gas
expended during the pulse, total quantity of the clean gas entrained during the blow-back process,
etc. One of the key parameters that is required as input is the cake breakage constant (related to
cake/filter adhesivity) B, which together with a definition of mean particle diameter d,,” defines
the pressure drop del P, = B/dy,’ across cake needed to blow off the cake during backflush. The
model considers the cake successfully blown off at the instant the transient maximum plenum
pressure exceeds del Py, '

In sample calculations, the model showed that:

(1) The filter cake would detach quickly and early in the pulse cleaning cycle (in a fraction of
second after valve opening) if the pulse flow was initiated with a sufficiently high initial reservoir
pressure. [Otherwise, the printout message would say "The cake is still on. Blow harder",
suggesting the reservoir pressure be raised higher.]




(2) The model indicated that the bulk of the pulse jet (which continued to escape from the tank
due to relatively slow closing action of the valve) would not contribute beneficially to cake removal
but only serve to cool the filter elements.

(3) For most of the test cases, the predicted pressure rises were reasonably close to the observed
values (within 10-20 %) but some were quite off (greater than 50% or more). The differences
were attributed to experimental noises.

The WH filter cleaning computer program was coded in Fortran could be run on a PC. The basic
version of the mathematical model was actually established earlier (1982-83); the 1989 version
include changes such as: new treatment of nozzle piping flow resistance (actual pressure drops
accounted for as head losses), wall resistances (with inertia term added to the viscous term),
solenoid valve opening and closing characteristics (finite speed instead of instantaneous),
entrainment clean gas contraction/expansion losses, blowback suction area, effective filtration
area, and mixing zone energy balances. While the model was specifically derived and set up for the
WH cross-flow filters, the general approach described in the report can be applied to other rigid
barrier filters such as the candle with appropriate modifications.

RWTH (Germany) In 1986-1989, the Aachen University of Technology (RWTH Aachen) of
Germany tested a pilot scale candle filter system co-sponsored by EPRI and Schumacher GmbH,
FRG. In the tests for AFBC and PFBC applications, six Schumacher sintered silicon carbide
candle filter elements were cleaned using air as cleaning fluid in an on-line cleaning setup. The
filtering tests were done with a slip-stream of combustion gas at (up to) 850 °C and 3.8 bar. As
part of study on filtration efficiency, pressure drop characteristics, power consumption,
temperature and pressure transient, and pulse regeneration behavior, they also developed filter
cleaning models using various analysis techniques. The flow in the pulse-jet lance was modeled as
quasi-steady state flow in one case since the initial unsteady period was found to be short. In
others, the steady and/or the unsteady flow and heat transfer through the tube sheet, filter
element and clean gas manifolds were modeled using the commercially available FLUENT code
and/or the ABAQUS finite element code.

Overall, the RWTH models and their computer codes were larger and more complex as they could
handle more elaborate situations, such as two- and three-dimensional transient temperature,
pressure and streamline distributions in polar coordinates and variable grid spacing. The data
generated from the models were characterized useful for structural/fatigue analyses of the filter
elements or tracking of particle movement. The models could show for example, under a certain
operating condition, a strong vortex would develop at the lance tip, and that the bulk (85%) of the
pulse gas would not enter the candle during the first 40 ms of the pulse and that the top of the
candle would be at much different temperature than that of the surrounding gas. The conclusion
was that the permeability of the filter element determined the amount of gas entering the filter
which impacts the degree of transient cooling of the ceramics material by the pulse jet.

In many cases, the model (and tests) indicated no entrainment of clean filtered gas under their
operating conditions. Other RWTH findings that are of interest to filter cleaning analysis include:

(1) Increasing pulise duration has no effect on permeability and only caused an increase in pulse air
consumption. Increasing pulse duration tends to introduce a significant amount of low
temperature air into the ceramic candle filter cavity which, in turn, leads to lowering of the
minimum temperature in the filter elements. Thus, the pulse duration relates closely to the length
of thermal shock conditions.

(2) The cake separation efficiency improved considerably with increasing reservoir pressure. For
example, while sufficient cleaning was attained at a pulse pressure of 3.0 bar in AFBC tests but,
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when the pulse air pressure was increased to 4.0 bar, the temporary as well as the residual dust
layer thickness were nearly cut into half.

(3) An increase of the pulse pressure, however, also causes an extended transient gas temperature
drop in the candle filter cavity (due to an increased mass flow) which increases the thermal shock
potentials.

(4) Increasing cleaning cycle duration, i.c., reducing pulse frequency, was found to lead to
increasing temporary dust layer thickness as well as increasing residual dust layer thickness. At
equilibrium, the given pulse was able to remove the entire temporary layer; however, the intensity
was too small to keep the thickness of the residual layer at the same low value compared to shorter
cleaning cycle durations.

(5) Residual dust layer could only be removed by mechanical means. The dust may have
interacted with the pores in the filter element and caused irrecoverable blinding that could not be
removed by pulse jet.

(6) The relation between pulse pressure and cleaning cycle duration appears to be very important.
Testing at an extended cleaning cycle duration and low pulse pressure generally ran "out of
control” - i.e., the pressure drop continued to increase and no steady state clean-up was achieved.
In contrast, when cleaning cycle durations were short, successful steady-state cleaning were
achieved at low pulse pressure even if the permeability was reduced.

(7) Precise data on the transient behavior of the solenoid valves is important for a good result of the
numerical model. Often, the nominal pulse duration set at the timer and the actual duration of the
pulse jet are found to be different.

CRIEPI (Japan) In a recent EPRI workshop on dust filtration, the researchers from the Central
Research Institute of the Electric Power Industry of Japan (CRIEPI) described the design of a
pulse cleaning system which was used to test tube filters at their 20 TPD pilot gasification plant
near Iwaki City, Japan. (The pilot plant is located in the close proximity of a 200 TPD IGCC
demonstration plant in Nakoso power station.) In their analysis, the flow in the tube filter was
found to approach a steady state very quickly. Consequently, the general relationships among
temperature, pressure, and flow were analyzed/modeled under a steady state assumption for both
filtration and cleaning periods. The predicted data based on Fanno mass, momentum, and energy
balances were shown to compare favorably against measured data obtained from the 2-TPD
process development unit at their Yokosuka laboratory.

Based on the model predictions and PDU data, some of the conclusions they arrived at were:

(1) For a given nozzle of fixed diameter, the relationship between the flow rate of entrained clean
gas Q) and that of pulse jet Qq was nearly linear. They could be related in the form:

Q3 = a + b Qq, where a and b are constants depending on nozzle diameter. Qj could become
negative when Q1 was small and the nozzle diameter was large, i.e., when the momentum of the
pulse jet was small.

(2) The slope of Q2/Qq (the constant b in the above equation) would increase as the nozzle
diameter was reduced, i.e., more clean filtered gas could be entrained per unit volume of motive
gas as the momentum of the jet was increased by reducing the nozzle diameter.

(3) The mixing of the motive gas and the entrained clean gas resulted in a pressure increase

which, in turn, resulted in the reversal of flow through the filter element and eventual removal of
the cake. In a relatively short filter, the reservoir pressure P required to remove the cake was -
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found to be essentially proportional to the cleaning face velocity Uy, i.e.,, Us = ¢ + d.P,
approximately, where c and d are constants related to the nozzle diameter.

(4) For the 20 TPD pilot plant which operated at 20 atm, it was determined that a pulse jet
pressure of 50 atm or more would be needed to blow off the cake, if a cleaning face velocity of
10 cm/sec or greater were used during the forward filtration period.

(5) The pulse gas used in the tests were the filtered coal gas, compressed and stored in a gas
IESErVoir.

(6) Filter plugging was thought to be caused by intrusion of sub-micron particles into the depth of
filter pores. It was deemed that most of these fine particles found in the filter interior were
generated through the "gas-to-particle conversion" process, i.e., by implication, the carbon
deposition due the Boudouard reaction. In tests, the fines were found to be mostly carbon and
could be removed by "burning out” using hot air at atmospheric pressure.

(7) In testing the filter regeneration concept, it was found that the ignition temperature stayed
below 500 °C and the temperature did not increase any higher if the amount of fines was small.
The ashy layer remaining on the surface of filter (after burning out) did not have be removed since
they would actually protect the filter surface.

CRIEPI applied these findings in scaling up their pulse blowback system, including the hot air
filter regeneration scheme for removal of deeply trapped fine carbon particles. In commercial
application, the filters would be regenerated in-situ (i.e., the filters stay in the filter vessel) once a
year during the period of annual maintenance.

2.6 CONCLUDING REMARKS
From the review of the literature, it can generally be concluded/ remarked that:

(1) An ideal on-line pulse cleaning technique is one that is capable of building a sufficiently high
pressure in the candle filter cavity to blow off the cake with the least amount of pulse gas in the
shortest possible time.

(2) In general, the minimum pulse pressure needed to blow off the cake layer is a function of the
operating parameters (€.g., cleaning cycle duration) and cake separation stress (related to the cake
adhesivity/cohesivity). The cake separation stress must be known for effective design of the filter
blowback system.

(3) Ideally, the temperature and composition of cleaning fluid should be as close as possible to
that of clean gas to mitigate thermal shock and thermal fatigue.

(4) Extended cleaning cycle duration is likely to cause permeability reduction and increase in
residual dust layer thickness. If the cycle time is too long, the filtering operation may become
unstable unless the pulse pressure is increased.

(5) Increasing pulse duration causes increased pulse gas consumption, lower filter temperature,
and increased potential for thermal shock. However, it may improve cake cleaning efficiency
because a correspondingly longer free-fall time is available for the detached cake to settle to
bottom of the filter vessel.

(6) The specific operational characteristic and response time of the solenoid valve that initiates
and terminates the pulse of jet is important in analyzing the performance of pulse blowback
system.
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(7) When filtering coal gas in IGCC applications, there may be a need for long-term regeneration
of the filter elements (such as "burning-out") in addition to short-term cyclic cleaning of the !
filter /cake.
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3.0 DISCUSSION OF CONCEPTS

This section presents the results of Subtask 3, Evaluation and Identification of Potential Ceramic
Cleaning Filter Techniques. Since the concepts, cases and design bases had to be identified before
‘completing the analyses and modeling of Subtasks 1 and 2, this section is presented first.

The three candle filter cleaning systems that have been evaluated include:

- On-line 400°F pulse
- Off-line 400°F pulse
- Rapid combustion pulse

Each of the systems has built-in physical characteristics which limit and define the capabilities for
producing a pulse of blowback gas. A description of the three systems, including their limitations,
is the purpose of this section of the report.

3.1 ON-LINE 400°F PULSE

This system is essentially the one that is proposed on commercial candle filters and is being used at
test facilities such as Tidd, Karhula and Aachen University. It consists of a compressor, air dryer,
primary accumulator tank, air filter and several secondary accumulator tanks with 2" fast acting
back pulse valves. The secondary tanks are also called blowback reservoirs. When the back pulse
valves are activated during candle filter blowback a 200 millisecond pulse of cleaning fluid is blown
through piping into the candle filter plenum and then into the candle filters. For this evaluation
the pulse is blown into a plenum containing up to 74 candles. In some designs tubing is manifolded
into each candle. The blowback gas for PFBC is compressed air. For gasifiers and carbonizers the
blowback gas is fuel gas taken from the clean fuel gas stream and then cooled and then

- compressed. Nitrogen has also been proposed.

The 200 ms pulse is a limitation of the Atkomatic valve used at Tidd. Attempts are being made to
develop a faster acting valve since a shorter pulse is believed to be more advantageous.

Figure 3.1-1 shows a piping schematic of the blowback system for the Tidd filter. At Tidd the
secondary tank is 4 ftg in size and the piping includes redundant valves which would not be needed
in a commercial system.

The accumulator tank pressure can be whatever is needed to release the cake from the filter. At
Tidd the tank and compressor are rated for 1500 psig. Normally the back pulse pressure has been
800 psig but up to 1200 psig has been needed at times. Because of the very high pressure drop
from the tank to the individual candle filters these high tank pressures are required. At the filter
only a few psig pressure differential is needed to blow off the filter cake.

In order to prevent thermal shock it is advantageous to use as hot a gas as possible. The maximum
operating temperature of the back pulse valve limits the tank gas temperature to 400°F for the
type of valve that is used at Tidd. Since the pulse is very rapid, attempting to heat the gas in the
external pipe after the valve would not be effective. It may be possible that in the future a high
temperature, fast acting valve and a properly designed ejector could produce a blowback gas hot
enough to prevent thermal shock. For this evaluation a 400°F maximum blowback gas will be used
in the design.

The criteria for determining at what temperature thermal shock starts occurring for candle filters
is based on tests that showed that at temperatures 100°F below operating temperature micro
cracking of the candle is observed. However, long term test results with candle filters blown back
with "cold" air have not shown that micro cracking necessarily leads to candle filter failure.
Westinghouse at the Tidd facility, for example, has made no attempt to use heated blowback gas in
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the reservoir. Candle life data from this facility could provide useful information for blowback
system design.

The limitations for this system are thus: -
Pressure: no limit but typically 800 - 1200 psig
Temperature:  400°F maximum in the reservoir

Pulse duration: minimum 200 millisecond for Atkomatic valve, maximum dependent on
tank size

Flow rate: subsonic dependent on pulse tube pressure drop
3.2 OFF-LINE 400°F PULSE

The advantage to off-line filter cleaning is that the dust ash has an opportunity to fall to the bottom
of the filter vessel before it re-attaches to the filter surface. It must be emphasized that removal of
ash from the gas stream is actually a result of gravitational settling and this is a relatively
ineffective method of particle separation. The ash particles entering the filter are less than

10 microns in size. The size of the particles blown off the candles is not known; therefore,
calculations cannot accurately predict the settling time required for a particular case. Since on-line
filter blowback systems have worked successfully it can be assumed that the particles being blown
off are large enough agglomerates. Off-line cleaning can allow more agglomerates to settle
between blowback pulses. This can increase cleaning efficiency and increase the duration of time
between blowback resulting in lower consumption of blowback gas and lower compressor power
requirements.

Off-line cleaning requires a shut-off valve that can function at high température and pressure.
This valve would not have to be a positive shut-off valve. Some leakage would be allowable which
would lower the valve cost.

In order to prevent high excessive gas flows to other filters when a filter is valved off additional
filter vessels would be required in a system. This will add capital cost compared to on-line systems.

Off-line cleaning involves isolating a vessel from the gas stream and then blowing back the candles
starting with the top tier of candles then the remainder in succession from top to bottom. For a
commercial vessel containing 16 candle clusters and assuming a blowback cycle time of 30 seconds
per cluster, the vessel would be off-line 8 minutes. This should allow ample time for settling of
agglomerates. '

In order to optimize system design, information is needed on the actual particle size of
agglomerates blown off candles at various conditions. Also attempts should be made to increase
the size of agglomerates formed on candles. ‘

The limitations for this system are the same as for on-line cold pulse cleaning.

3.3 RAPID COMBUSTION PULSE |

Nakaishi and others of METC have patented a concept using a rapid pulse combustor to produce a
hot blowback gas for filter cleaning. This concept is a radical departure from the conventional

systems previously described in that the high pressure blowback pulse is generated only when
needed by the rapid combustion of fuel in a pressure vessel outside of the filter vessel. After
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The CPFBC plant is the Second Generation PFBC design which uses a carbonizer to generate a
low BTU combustion gas. The IGCC plant is an alr-blown, fluidized bed gasifier.

Input to the model was based on real data from operating systems, laboratory and pilot scale tests,
model simulations and information from Westinghouse. Section 4.0 describes the model in detail.
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4.0 ANALYSIS AND MODELING OF FILTER BLOWBACK SYSTEM

This section presents the results of Subtask 1 First Principal Analysis of Ceramic Barrier Filter
Cleaning Mechanisms and Subtask 2 Operational-Values for Parameters Identified With the Filter
Cleaning Mechanisms.

4.1 ANALYSIS OBJECTIVE AND SCOPE

One of the objectives of this project is to identify the basic mechanisms and functional
relationships governing cake removal as they relate to the ceramic barrier filter cleaning
techniques described in the previous section. This involves, for example, analysis of pressure drops
through porous media (filter and cake layers), or the pressure level required in the candle filter
cavity for effective cake removal. A companion objective is to determine a range of values for
operational parameters, such as the flow rate of the cleaning fluid, its pressure and temperature at
the pulse lance. The values of these parameters are to be established by taking into consideration
the properties of cleaning fluids such as air, nitrogen, or recycled fuel gas as appropriate, and the
properties of filter medium and cake that forms on the surface of filter medium.

In short, given a suitable geometrical and process description of the components and constituents
involved in the filter blowback system, the analysis and modeling objectives are to establish the
necessary design data for the Conceptual Design Task (to be described in Section 5), including:

(1) The required gas flow rate and the associated pressure P and temperature T conditions at
various points in the blowback system.

(2) The volume, P, and T of the cleaning fluid reservoir and the duration of blowback.

4.2 ANALYSIS BASIS AND FORMAT

In carrying out "first principle" analyses to achieve above objectives, it was assumed that the filter
is the typical 1.5 m long, 0.6 m O.D., 0.3 m LD. SiC candle, which is one of the widely tested porous
HTHP ceramic filters. The geometrical/physical arrangement of the blowback system (the piping
and internals that deliver the pulse gas from reservoir to candle cavity) is assumed to be similar to
that used at the Tidd PFBC demonstration plant, i.e., a "cluster” blowback type. In a cluster
blowback system, a number of candles are suspended from a common plenum, which is connected
to a single ejector through a pulse pipe. When a pressurized gas is discharged through the ejector
into the plenum/candle cavities, the clustered filters are cleaned all at once. (See Section 5 for the
overall schematics of the blowback piping arrangement.) In contrast, in a "single" or "individual"
blowback system, each candle is cleaned individually with a small ejector located directly above the
candle opening/cavity. The individual blowback type is suitable for compact pilot plant filtering
systems, while the cluster type is more economical for large, commercial-scale applications since it
employs a fewer number of ejectors per candle.

The filtrates, i.e., "dirty" gases, considered in the present analysis are the raw dusty gas from the
Second Generation PFBC, Second Generation Carbonizer, and a Fluid Bed Gasifier, as described
elsewhere. The raw gas, however, may be "pre-cleaned" with cyclones (as required by the overall
design optimization) to reduce the dust loading in the raw gas to a lower level so that it is more
appropriate for "final cleaning” in the candle filters.

As mentioned in Section 3, these three types of dirty gas in combination with the three filter
cleaning techniques give rise to the eight design cases to be studied. While each of these eight
cases has its unique process conditions that would lead to a different blowback requirement (see
Tables 4.2-1 through 4.2-3 for a summary of common/unique parameters and blowback
requirement for each case), it is clear that the analysis procedure itself would be similar, and it can
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be "copied" from one case and applied to another. For example, the main difference between the
"cold pulse" and "hot pulse" cases is the temperature of the cleaning fluid, and the main difference
between the "on-line" and "off-line" cases is the settling time available for the separated cake to fall
to the bottom of the filter cake. But the first principle that governs cake separation per se is the
same for all cases. Furthermore, the relatively large number of physical/process parameters
involved in characterizing the systems can often be treated as "inputs" or interchangeably as
calculated "outputs” or assigned as common "constants". The analyses, therefore, can be
conveniently implemented in a series of spreadsheets using commercially available software.
When the spreadsheets are constructed in a tabular format to describe the changes in gas flows
from one point to next, they serve simultaneously as "computer programs" to perform mass,
momentum, and/or energy balances etc., and as "printouts" or "tables" to display all pertinent local
input/output relationships. The spreadsheet format also allows the user to experiment "what if"
analyses more easily than any other format.

The following is a summary of key "input" parameters that are required for the spreadsheet
modeling that is described in Section 4.3.

Solids (Filter Medium and Cake)

Physical properties of conditioned filter medium and cake layer(s) such as density, porosity, and mean
"effective” particle diameter (which together lead to a definition of permeability or the inversely
related specific resistance "k3"); separation pressure/stress that is required to overcome the
adhesive/cohesive forces of the cake/filter medium for filter cleaning. When the cake is viewed as
one having two sublayers, fresh and redeposited, a value of cake cleaning efficiency is also required
to define the relative thickness of dust in the two sublayers.

Gases (Filtrate and Cleaning Fluid)

The filtrate and cleaning fluid are treated as ideal gases. The only required physical property of the
gases is the molar composition, which allows internal calculations for molecular weight, specific heats
(Cp and the C,/C,, = kratio) and viscosity, all expressed as a function of locally prevailing
temperature and pressure at various points within the blowback system.

Operating Conditions

Input parameters required for filtering operation include the temperature, pressure, face velocity and
dust loading of the incoming dirty gas, filtration cycle time (or the trigger pressure that initiates pulse
blowback), cake separation efficiency (which defines the fraction of cake freed by the cleaning
pulse), and cake cleaning efficiency (which is related to the fraction of freed cake that would
redeposit after the pulse), a geometric description of the piping/internals that interconnect the filters to
the gas reservoir (i.e., length/diameter of pipes, number/type of fittings such as elbows, tees, ball
and control valves; length/diameters of pulse lance, ejector, pulse pipe, and plenum; effective
length/diameter /number of candle filters; relative flow areas available for the motive gas and the
filtered gas to entrain/mix at the ejector). Also, indirectly required are characteristics of the pulse
control valve such as its opening/closing time (e.g., 50-200 ms) and temperature limitation (e.g., less
than 400 °F).

43 ANALYSIS AND MODELING OF BLOWBACK SYSTEM
The general principle of filter cake removal is discussed below, aiong with an explanation of the
mathematical expressions used and design assumptions made in analyzing/modeling the

conventional on-line, cold pulse cleaning system. Extensions of concepts to on-line, hot pulse, or
off-line cleaning methods involve only minor modifications. Where appropriate, data used in
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Case 1 (conventional on-line, cold pulse) are referred to as numerical examples for clarity. Case 1
as a whole is discussed in more detail in Section 4. 4

The analysis/modeling of the blowback system is presented in a "backward" fashion, i.e., starting
with the prerequisite for cake separation at the candle, the required flow conditions of the pulsed
gas (at various key points within the blowback system) are established in reverse from the cake layer
on the filter surface to the gas reservoir where the cleaning fluid is stored. (Note: In writing
mathematical expressions, typical spreadsheet notations are used, that is, the symbol / means
division, * multiplication, and ” exponentiation.)

Pulse Cleaning Principle

When the pulse valve in a filter blowback system is opened to discharge the compressed cleaning
fluid from the reservoir, the gas accelerates itself through the connecting pipes and enters the
ejector mixing zone at a high velocity (see Section 5.4, Figure 5.4-5; for an ejector schematic).
Here, the motive gas mixes and entrains a portion of the clean filtered gas at the ejector opening.
As the mixed gas slows down in the ejector diffuser, the momentum of the gas is converted back to
pressure energy, raising the pressure of the mixed gas at the exit. The ejector, in effect, functions
as a fluid "pump"” which increases the gas pressure and brings about flow reversal.

The reverse flow initiated by the ejector causes the pressure in the downstream pulse pipe, plenum
space and filter cavities to increase which, in turn, stops the forward filtration of the dirty gas
through the porous media. As the pressure in the candle cavity continues to increase, the reverse
flow and the "reverse pressure drops” of the mixed gas through the filter/cake increases. The
pressure drop through the cake layer is actually a manifestation of the (viscous) drag force exerted
by the moving gas onto the stationary cake particles. Thus, when the applied "separation pressure"
associated with the reverse flow (or, equivalently, the tensile stress across the cake layer) exceeds
the tensile strength of the cake as represented by either

(1) the internal cohesive force among the cake particles, or
(2) the adhesive force between the cake and the filter medium,

the cake layer detaches. The detached cake typically assumes the form of flakes or agglomerates
in falling down to the bottom of filter vessel. :

Quasi-Steady State Square-Wave Flow Approximation

The idealized cake separation process described above actually takes place in a very short period
of time - typically, in a fraction of a second. There are reports in the literature (RWTH, CRIEPI)
that describe the pulse cleaning of candle filter in an individual blowback system as essentially a
quasi-steady state process with an extremely short initial unsteady phase. That is, once the pulse
valve is opened, the pressure and the reverse flow increase rapidly to the steady state values, and
the cake detaches within the first S0 ms (milliseconds) or less, which is very short compared to the
overall pulse duration time of 400 to 1,000 ms or more. This is understandable since, in a single
blowback system, the ejector is located right above the candle cavity and the pulse gas reservoir is
often located in close proximity. For practical purposes, then, the pressure rise and the attendant
flow reversal in a single blowback system can be viewed as an instantaneous "square wave" process.

In a cluster blowback system, the quasi-steady state square-wave approximation may be less
perfect. This is because the ejector in a cluster blowback system is located some distances away
from the filters, and it should take longer for the reversing gas to pressurize the extra volume of
pulse pipe and plenum that interconnect the ejector and candles. In addition, the reservoir may
also be located some distance away from the ejector in a larger system. Therefore, the increase in
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pressure in the candle cavity and the attendant flow reversal through the filter may be more
gradual than in an individual blowback system. Nevertheless, the square wave approximation car
be and is used in the spreadsheet model to provide a conservative estimation of the gas
flow/pressure requirements so long as the candle cavity is pressurized to the critical "separation
pressure" level. To ensure this, the pulse duration should be sufficiently long to allow the system to
attain the quasi-steady state values. This required minimum pulse duration time is a function of
the blowback system volume and the gas flow rate, and it should be set at least equal to the system
"pressurization” time. This latter parameter is established as an output in the model for the
purpose of determining the minimum pulse duration time and the reservoir volume. More on this
later.

Cake Separation Pressure and Separation Efficiency

The critical "separation stress" at which cake can be removed is clearly the fundamental data
required for effective design of a blowback system, regardless of the cleaning technology type (on-
or off-line, cold or hot pulse). Yet there is paucity of information on separation stresses in the
literature, even though they should have been tested, compiled, and made available for various
cake types to be separated under a variety of operating conditions.

The separation stress is a complex function of material, temperature, pressure, and the manner by
which the cake is deposited. There is apparently no reliable method to predict a priori the critical
separation stress, del Pgep, (in units of, e.g., psia) based solely on the mechanical properties of cake
and/or filter medium. [Note: "del" means "delta" or "difference".] For reliable results, direct
experimental measurement of the separation stress by coupon testing for each cake/medium
combination under actual conditions is apparently the only dependable method.

Still, there are suggestions that the separation stress may be roughly proportional to the inverse of
particle diameter Dp and/or to a decreasing function of porosity e:

del Pgep = (constant)/Dp,
or,
del Pgep = (constant) /Dp*((1-e)/e)

These relationships suggest that a cake having smaller diameter particles and/or smaller porosity
may be relatively more difficult to remove. They also allow a rough estimation of the required
separation stress to be made for the same kind of cake but one having a different particle diameter
and/or porosity. It should also be commented that, at least in the above relations, the apparent
separation stress is not a function of cake thickness, which implies that a thick cake may be easier
to remove than a thin one since the former provides a greater pressure drop under (otherwise)
identical flow condition.

In actual filtering practice, neither the applied separation pressure nor the cohesive/adhesive
strength of the cake/filter medium is ever uniformly distributed over the entire filter surface.
Therefore, "patch cleaning" as opposed to "uniformly layered cleaning" is likely to develop, i.e., the
cake is completely detached in some areas and completely retained in some other areas. To
quantify such partial cleaning, a "separation efficiency” Esepy may be defined to indicate the
fractional weight of cake freed by a cleaning pulse. This separation efficiency is not only a function
of cake properties but may also be a strongly skewed function of the applied separation pressure.
For example, the separation stress required to remove the entire cake is reportedly twice that
necessary to remove 90% of the cake, and may be as much as ten times that necessary to remove
50% (Koch et al, p. 337, "Filtration & Separation", July, 1992). Clearly, the two separation
parameters, Pgep and Egep, should be used together to be meaningful but, once again, there is
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paucity of such paired data. Often, the separation pressure (e.g., Psep = 2.4 psia used in Case 1) is
available without the corresponding separation efficiency clearly defined. In such case, the only *
recourse is to assume that it is for full cake separation, i.e., Egep = 1, as is assumed in our case
studies. -

Impulse Intensity in Filter Cavity

In order to create a sufficiently strong back flow for cake separation, the candle cavity must be
pressurized to a certain minimum level during the blowback. The required Cavity Impulse
Intensity (CII) is the sum of the pressure drops across the cake/filter medium in the forward
filtration and those during the reverse flow periods:

Cavity Impulse Intensity = (del P)gorward + (del P)reverse

or  CII = (del Peake + del Peijter)for + (del Peake + del Pfjlter)rev

In above, the term (del Peake)rey is the cake layer pressure drop that must be developed during
the reverse flow period to equal to or exceed the critical cake separation stress, del Pgep, which is
presumed known/specified.

For example, the pressure drops through the cake and filter during the forward filtration period
may be 1.3 psia and 1 psia, respectively, for a total of 2.3 psia pressure drops. (This is the "trigger"
pressure drop that initiates a pulse blowback). If the reverse flow is such that the pressure drops
through the cake and filter are 2.4 psia and 1.7 psia, respectively, then the cavity impulse intensity
isequalto (1.3 + 1) + (24 + 1.7) = 6.4 psia. This 6.4 psia increase in pressure is that which must
be developed in the filter cavity in order to create a separation pressure of 2.4 psia across the cake
layer. If the known critical cake stress is equal to 2.4 psia or less, then the cake is blown off;
conversely, if the critical stress is greater than 2.4 psia, the cake would remain attached.

The above "relative pressure" conditions can be described alternatively in terms of "absolute
pressure”. If the absolute pressure of the dirty gas at the filter surface is 190 psia, then the clean
filtered gas in the filter cavity is 190 - 2.3 = 187.7 psia when the pulse cleaning is triggered. During
the reverse flow period, the cavity pressure must reach at least 190 + 4.1 = 194.1 psia in order to
effect cake separation. Of the 4.1 psia differential, 2.4 psia are that due to the cake layer. The
mass flow rate of the pulsed gas that generates this pressure differential of 2.4 psia across the cake
layer is that required for characterizing the rest of blowback system.

Pressure drops Through Porous Media

In order to model the distribution of pressure drops through the porous media (filter and cake
layers) a suitable pressure drop correlation equation is required. The correlation equation we
selected for this purpose is the Ergun’s equation which is a super set of the more familiar

Carman-Kozeny equation and Burke-Plummer equation. The general Ergun equation can be
expressed as:

del P/L = fn/gc/Dp*((1-¢)/e"3)*Rho*u"2
where the friction coefficient fp is given by:

f = C1/Rep + Cp = 150/Re,p + 175

Re,p = Dp*u*Rho/Mu/(1-€)
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In above, Rho is gas density, Mu gas viscosity, u gas velocity, g. a conversion factor, and C’s
constants. The Ergun’s equation asymptotically reduces to the Carman-Kozeny equation when the
particle Reynolds number is small (Rep < < 10), ice.,

del P/L = 150/g5/Dp"2*((1-e)"2/e"3)*Mu*u

and to the Burke-Plummer equation when the particle Reynolds number is large (Re,p > > 1000),
ie.,

del P/L = 1.75/g./Dp*((1-€)/e"3)*Rho*u™?

To apply Ergun’s equation in determining pressure drops, one needs to know (in addition to the
gas flow rate and gas properties) the effective porosities (€) of both filter and cake, their effective
mean particle diameters (Dp), the thickness (L), density Rho,, ke, €tc. These can be either
directly specified (if known)p or estimated indirectly relative to other available information. For
example, effective diameter Dy, and porosity e may be "estimated" (i.e., treated as "fitted"
parameters) from known permeability coefficient, B, permeability B/L, and/or specific resistance
ko, since they are related to each other through the equation (in the Carman-Kozeny form), by:

del P/L = Mu*u/B = Cl/gc/Dp"Z*((l-e)"Z/e"S)*Mu*u
ie, B =g./Ci*e™3/(1-e)"2*Dp™2
or,
del P/L = kp*Rho,cake*u*(1-e) = Cq/ gc/Dp"z*((l-e)"Z/e"?’)*Mu*u

ie, kp = Cy/g/Dp"2*((1-¢)/e">)*Mu/Rho,cake

The cake thickness in the model may be treated as one consisting of two sublayers, a fresh layer L.
and a redeposited layer Ly, although in assessing the cake separation stress they are considered
together. The fresh cake layer L, is that related to the amount of dust removed from the dirty gas
at steady state: its value can be determined directly from known gas flow rate, dust loading (or
areal density), filtration cycle time (or trigger pressure) effective filter surface area, cake porosity
and cake density.

The redeposited layer L, represents the dust that is "recycled" from the previous cycle of filtration
operation. It is generally known that even if the cake is completely blown off in a pulse, a fraction
of it would redeposit to the filter surface because, in an on-line blowback system, there is simply
not enough time for all the detached cake flake or "agglomerates" to settle by free-falling to the
bottom of filter vessel. The redeposned layer thickness, therefore, is more of a function of filter
vessel design (e.g, cluster/tier arrangement, height of tiers /vessel) and other operational factors
external to the blowback system. In the model, different values of porosity, particle diameter,
and/or cake density may be assigned to the redeposited layer to simulate the different manner by
which this sublayer is formed. For example, particle diameters in the redeposited layer may
assume a smaller value because, with their relatively slower free-fall terminal velocity, smaller
particles are more likely to be recaptured than larger particles in the redeposited layer. The
porosity of the redeposited layer may also be smaller because it is the inner sublayer which is likely
to be more compacted.

The true redeposited layer thickness is not easy to quantify even if all details of the cake
settling/redeposition process are known. Nevertheless, in order to provide a capability to
approximately account for this effect in the pressure drop calculation, a "cake cleaning" efficiency
is defined as:
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Eclean = Le/(Lc + Ler)

which may be specified as an input in the model to provide an estimation of Ly from known L.
The "cleaning” efficiency Ejeap (DOt to be confused with the cake "separation” efficiency discussed
earlier) represents the fractional thickness of the fresh cake layer relative to the total thickness,
and is assumed to be 0.667 for all on-line cleaning cases and 0.98 for off-line cleaning cases in the
analysis. Off-line clea.ning cases should have higher cleaning efficiency because, by design, they
provide a longer settling time for the cake flakes or agglomerates to more completely fall to the
bottom of the vessel. When Ejean = 1, there would be no separate redeposited layer; all the cake
is considered "fresh” and the two layer distinction disappears.

»

Pressure Drops Through Pipes and Fittings

Once the pressure drops through the porous media are determined as above, the pressure drops
through out the rest of blowback system may be determined in a step-by-step fashion starting from
the center of candle cavity to the reservoir, using pressure drop correlations for pipes and fittings.

Conventionally, the pressure drops in a pipe containing expansion/contraction sections, and
various type of fittings are determined by:

del P = (4*f*Le/D)*Rho*u"2/2/g.
= (4**L/D + K¢ + K. + Kf)*Rho*u"2/2/g,
where u is the applicable local gas velocity, and

f = Fanning’s coefficient for skm" friction; approximately, f = 0. 04*(Re)"0 16 , where Re =
D*u*Rho/Mu is the Reynolds number

D = Diameter of pipe
L = Actual linear length of pipe
K¢ = Expansion loss coefficient = (1-Aq /A2)"2 ; A’s are flow areas, with A1 < Ay
K. = Contraction loss coefficient = 0.4*(1- A1 /A'Z) ; A’s are flow areas, with A1 < Ap
K¢ = Fitting loss coefficients for elbows, tees, valvés, etc. (see Table 4.4-2 for numerical values)
= Equivalent length of pipe including the K terms
It shéuld be commented that the K coefficients in above represent.the so called "velocity head"
losses; they are numerically constants once the types/number of fittings are specified. The f
coefficient is a weak variable function of the Reynolds number (and hence a function of velocity u

as well as P and T), but often can be assumed constant for simplicity.

In our blowback system, there are two distinctive groups of "piping/internals” for which the
pressure drops are to be determined:

(1) The pressure drops from the center of candle cavity through plenum, pulse pipe (located below
the ejector), to the lower diffuser/throat area of the ejector; and

(2) The pressure drops from the nozzle tip of the pulse lance (located above the ejector) through
the interconnecting pipes and fittings/valves to the gas reservoir.
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The gas flow in the first group downstream of the ejector is relative low in velocity and so are the
pressure drops relative to the absolute pressure. In determining the pressure drops caused by *
frictions the conventional correlations can be applied using only "representative" local properties
(e.g., mean gas velocity or density) as if the gas were incompressible.

Within the second group of piping upstreamn of the ejector, the gas velocity is generally very high
and so are the pressure drops due to friction. As a consequence, the absolute pressure and density
of the gas change greatly and rapidly from one section to another. Furthermore, not all of the

del P is due to friction; part of the change is due to the conversion of pressure energy to kinetic
energy when the gas is accelerated. Therefore, in this group of piping, the gas is best treated as a
true compressible fluid and the pressure changes determined by equations that account for such
effects.

For an adiabatic frictional flow of a compressible gas in a pipe with known diameter D (see, for
example, MaCabe, Smith, and Harriott, "Unit Operation of Chemical Engineering", Fifth Ed.,
P. 133-135), the "equivalent” length L between any two points a and b is related to the gas
velocities V, and Vi, (expressed in terms of Mach number) at points a and b by:

4*f*Le/D = (1/V3"2 - 1/Vp2 - (k+1)/2*In((Vy 2/ Va"2)*(Ga/Gp))) /k

where f is the Fanning’s coefficient for skin friction as before, and

k= Cp/Cy
Gy =1+ (k-1)/2*V,"2
Gp = 1 + (k-1)/2* V™2

The Mach number V is of course the ratio of linear gas velocity u to that of local sonic velocity c,
i.e., V = u/c, and c is given by:

¢ = (k*g*T*R/MW)"0
in which T is the absolute temperature, R the universal gas constant, MW molecular weight of gas.

Assuming the gas velocity V, and the properties of gas at point a are "known" from a previous
calculation, the above equation can be evaluated for the 4*f*L./D term on the left hand side if a
value for Vi, is "guessed”. From the computed equivalent pipe length L, a value for the linear
pipe length L can be determined by subtracting the effects of velocity head losses due to
contraction, expansion, and/or fittings. If the computed L matches the specified value for the pipe
length, the guessed Vy, is accepted. If not, the trial-and-error is repeated until they match within a
desired accuracy.

Once Vy, is determined as above, the pressure and temperature’ of the gas at point b can be
determined by the following relations:

Pa/Pp = Vip/Vy*(Gp/Ga) 03
Ta/To = (Gb/Ga)

This whole procedure can be repeated to determine the condition of gas for velocity, pressure and
temperature at point c in the next segment of pipe using point b as the reference where gas
conditions are known. If that next segment of pipe is different in pipe diameter, a contraction or
expansion loss is assessed in determining the pressure drop at the interface. Similarly, if fittings in
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that segment are different in type/number, the velocity head loss effects are adjusted accordingly.
However, in the very last and "short" section of the pipe that is connected to the reservoir tank, the
gas flow is assumed isentropic and friction is ignored.

Ejector Design

The schematic of the ejector postulated in our blowback system is illustrated in Figure 5.4-5. The
ejector is physically located below the pulse lance and is connected to the pulse pipe.

As mentioned earlier, the ejector functions as a fluid pump to increase the pressure of the mixed
gas in the ejector mixing zone (opening/upper diffuser). Typically, the motive gas enters the
mixing zone at a high velocity, entraining a portion of the clean filtered gas in forming the mixed
gas. The pressurized gas then flows through the throat, lower diffuser, and pulse pipe into the
candle cavity, where it ultimately causes the cake to separate. In our "backward" design procedure,
the flow rate and pressure/temperature of the mixed gas required to effect cake separation have
already been determined, as previously explained. What needs to be determined presently at the
ejector are the flow rate and pressure/temperature of the motive gas leaving the pulse lance
nozzle. The pressure and temperature of the clean filtered gas are "known" (from forward
filtration calculations) but not the rate of entrainment, if any.

The following mass, momentum, and total energy equations around the ejector mixing zone are
solved simultaneously to determine the flow rate and P/T condition of the motive gas. In the
mathematical expressions below, terms with subscripts 1, 2, and 3 refer to the motive gas, clean
filtered gas, and mixed gas, respectively.

Mass Balance
mq + mj = m3

The mass flow rate of the mixed gas m3 is known from previous calculations for the pressure drop
through porous media. It is the critical mass flow rate required to produce a sufficiently large
pressure drop across the cake layer to overcome the cake adhesive or cohesive forces. When

mq < m3, the mass flow mj is necessarily positive, meaning a portion of the clean filtered gas is
being entrained. Conversely, when m{ > m3, the mass flow mp is negatlve and there would be no
entrainment of the clean filtered gas. Instead, the portion of excess motive gas would overflow
into the space above the mixing zone.

Total Energy Balance
(m*Cp*T +m*u"2/2/g); + (m*Cp*T +m*u"2/2/gc); =
(m*Cp*T +m*u"2/2/gc)s3

In the above equation, the potential energy or effect of elevation is neglected. The mass flow rate
m and velocity u are generally related by m = Rho*u*A, in which A1 would be the nozzle flow
area for motive gas, Ay the annular flow area for clean filters gas, and A3 the throat area for the
mixed gas. The reference temperature Tyt in the enthalpy term m*Cp*(T - Tyef) is set equal to
zero for brevity but any other convenient temperature may be used instead. It should be also
noted that any frictional effects would be automatically accounted for as an increase in
temperature although they do not explicitly appear in the equation.
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Momentum Balance

»

For simplicity, one dimensional flow is assumed in the ejector momentum balance. In general, the
x-directional (downward direction in the ejector schematics) momentum balance around the upper
diffuser may be written as:

(sum of all surface forces)y = (sum of x-momentums)outv - (sum of x-momentums);n
or, in more detail,

Py*A1 + Po"Ag - P3*Az - Pyye*((A1 + Ap) - Ag) - Fy =

(m3*u3 - (mq*ug + mp*up))/gc
where

Pave = (P2 + P3)/2 (approximation)
and A’s are flow areas as described earlier. The term P,ye*((A1 + Ag) - A3) represents
approximately the x-directional force acting on the side wall of the upper diffuser. The term
Fs represents any frictional force, which is normally small and may be ignored for simplicity.

However, if desired, various inefficiencies may be empirically approximated by the following
expressions, although only the last term is a true "surface" force:

Fg= (Ke*Rho*u"Z/Z [8c*A) Expansion loss
+ (Kc"‘Rho"‘u"2 [2/8:*A)) Contraction loss
+ (4*f*L/D*Rho*u"2/2/g.*A)3 Skin friction

It should be noted that the effect of P and T enter indirectly into the energy and momentum
balances through density Rho, specific heat e and velocity u.

The above three equations may be solved for uq, P1, and Tq (of the nozzle gas) by any suitable
iterative procedure such as the modified direct substitution method used in the spreadsheet model.
Basically, one guesses a set of Pq and T, and specifies a Mach number V for the nozzle gas, e.g,,
0.8 for a high velocity but subsonic flow. This allows a determination of uy and mj and, whence,
my and u via the mass balance. From these, a new set of P1 and T can be solved from the
energy and momentum balances and compared with the guessed set. If they are not sufficiently
close to each other, an averaged value of P and T are used as the revised guess. The process is
repeated until the re-computed set of P/T is very close to the previous set of P/T.

When P and T are determined as above, the ratio of P1 and P, is tested against the critical
pressure ratio Pt to determine if indeed the flow is subsonic or sonic, i.e.,

P1/P3 < Prit for subsonic flow
and

P1/P2 = or > Perit for sonic flow
where

Perit = ((k + 1)/2) /(D)
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If the result differs from what was assumed, the value of V1 is re-specified as appropriate and the
whole process of determining Pq and T iterated until a set of feasible and acceptable uy, Py, and
T is found. It should be added that there may be other operational constraints that must be
accommodated in establishing the feasibility. For example, in Case 1, the nozzle temperature T is
necessarily kept below 400 °F because of the temperature limitation of the reservoir pulse valve (<
400 °F) which is located upstream of the pulse lance.

It should be commented that an effective ejector may be designed with the motive gas velocity in
the range of Mach 0.2 to 1.0. The effectiveness of momentum-to-pressure energy conversion
depends strongly on the nozzle/annular flow area ratio and other hardware dimensjons, because a
pulse jet having same momentum can be created either with a large nozzle/low pressure gas or
with a small nozzle /high pressure combination. In fact, depending on the particular combination
of nozzle/annular space dimensions and the velocity of the nozzle gas, entrainment of the clean
filtered gas may or may not occur. If the motive gas has excess mass and momentum, a portion of
the motive gas can overflow and escape through the annular space as negative entrainment. This
occurs in some of the study cases.

Reservoir Sizing

Once the P/T and flow rate of the cleaning fluid (m.] = mass of motive gas exiting the lance
nozzle) are determined as above, the previously described pressure drop calculation procedure
may be used to establish the P/T profile of the gas along the interconnecting pipes from the pulse
lance nozzle to the gas reservoir. The required minimum pressure P, and temperature T} of the
cleaning fluid in the reservoir is therefore known. What remains to be established is the volume of
the reservoir tank.

Sizing of the blowback reservoir is very much a function of one’s attitude as to how conservatively
the tank should be designed/operated. If energy losses in the form of pressure drops and the costs
of reservoir/cleaning fluid are not a concern, an effective gas reservoir can always be realized by
making it arbitrarily high in pressure and arbitrarily large in volume relative to the rest of
blowback system. On the other hand, once the cake is blown off, any excess amount of "cold" gas
passing through the hot filter would serve only to cool the ceramic materials, thereby increasing
the risk of thermal shock. In actuality, costs of gas/tank/compression energy are not negligible
and, hence, compromises on reliability /benefits vs. costs/risks must be made in specifying the
pressure and volume of the reservoir.

H the reservoir is maintained at the minimum design condition of Py and T, the volume of tank
would have to be infinitely large. For a finite size reservoir, it is clear that the cleaning fluid must
be stored at P/T above that required as minimum. It is also clear that the smaller the tank volume
the higher the initial value of P1, T must be so that, at the end of gas discharge, the final value of
Py, T would be close or at the minimum level (i.e., Py and Ty). In the spreadsheet model, the gas
discharge from the reservoir is modeled as an isentropic process so the P/T condition before and
after the discharge are related by:

Ty/Ty = (Ma/Mp) D)
Py/Pq = (To/Tyy &/ (D)
where M1 and M> are the initial and final mass of gas in the reservoir, and k the specific heat ratio

C€ /Cy. The mass difference (M7 - M) is the amount of gas dlscharged during the pulse and is
related to the pulse duration time, tp, by

tp = (Mg - MZ)/ me)



where m] is the quasi-steady state flow rate of cleaning fluid determined earlier. For a specified
value of pulse duration time t,,, the mass difference (M1 - M) is therefore known. In addition to’
this, a value of the mass ratio%dz/Ml may be specified so that both M1 and M5 can be fixed to
determine the size of tank. The ratio My/M1 is an indicator of the fank size: the closer it is to 1
the larger the tank becomes and, conversely, the closer it is to 0, the smaller the tank becomes.
(However, the impact of this parameter on the tank pressure is exactly opposite: the closer it is to 1,
the lower the pressure, and vice versa.) In the spreadsheet model, the ratio My /M is set at about
0.78 (Case 5) to 0.90 (Case 7) by trial in such a way that the initial P/T values is deemed not
excessively "high".

Finally, an explanation is in order as to how the pulse duration time tp may be specified. As
mentioned earlier, a system "pressurization” time can be determined once the P/T profile is
established for the whole blowback system. For Case 1, the system pressurization time can be
shown to be about 500 milliseconds (ms). The "minimum pulse duration time" t;, mip, must
therefore be at least 500 ms to effect cake separation; however, the "actual pulse duration time" tp
may be set at any higher values for other reasons. In Case 1, ty, is set at a higher value of 700 ms;
this is done to allow an extra margin of fluid flow and time to reach the quasi-steady state values.
With the added margin, the initial value of P/T in the reservoir could also be beneficially lowered
(to minimize compression work). More on this shortly.

4.4 EXAMPLE OF SPREADSHEET MODELING - CASE 1

We now turn to the explanation and discussion of the numerical results from the spreadsheet
modeling, using Case 1 as example. Case 1 results for conventional on-line. cold pulse cleaning of
FW/PFBC cake are tabulated in Spreadsheet Table 4.4-1 through 4.4-6 in the following pages; the
corresponding tables for the other seven cases (Case 2 through Case 8) are presented in
Appendix B.

Table 4.4-1 serves as the depository of gas properties that are required in spreadsheet modeling,
such as molar (volumetric) composition, molecular weight (MW), density (Rho), viscosity (Mu),
specific heat (Cp), the specific heat ratiok = mcv, and sonic velocity, among others. Up to

9 gases can be accommodated in the table for this purpose; they are stored as available gases in
Column 1 to 9. The last two columns are reserved for the two currently active gases that are
designated as the filtrate and cleaning fluid, since the "formulas" for viscosity, specific heat, etc.
stored in the last two columns are directly linked to other corresponding "cells" in Tables 4.4-2
through 4.4-6.

Table 4.4-1A is one of the two support tables where the viscosity "formula" for a specified mixed
gas is prepared from their pure components and "copied" back to Table 4.41 for later use. Ascan
be seen, the gas viscosity is expressed as a 3-coefficient polynomial function of T, and the mixed
gas may consist of up to 12 pure components. As shown in the "Sample Data", the gas viscosities
can vary 2 to 3 times in the temperature range of interest (77-1,600 °F) and, hence, the viscosity
has a very strong impact on pressure drop calculations. . ‘
Table 4.4-1B is the other support table where "formulas” for specific heat C, are generated and
"copied” back to Table 4.4-1. The specific heat Cp is computed via a 4-coefficient polynomial
function of T. Because of the ideal gas assumption, Cy, may be computed as (C,, - R), where R is
the gas constant. Theratiok = C,/ 513 computed accordingly, which is then used to compute the
sonic velocity ¢ = (g.*k*R*T/ ", etc. All these formulas (not the fixed numerical values)
are constructed in such a way that they can be readily "copied" to any other tables, if the relative
positions of the "cells" are not altered.

Table 4.4-2 deals with the pressure drop calculations at the end of forward filtration period. All
inputs required to establish the distribution of pressure drops through filter and cake are specified
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or estimated as shown. For example, the effective porosity of fresh cake (0.83) and its effective
particle diameter (2.1 migrons) are "fitted" to the known specific cake resistance data of ’
15.60 (in.W)/(fpm)(Ib/ft“) listed at the bottom. As shown, at a face velocity of 10 fpm and after
60 minutes of filtration, the dirty gas that enters the candle at 190 psia would leave as clean filtered
gas from the candle cavity at 187.6971 psia. If pulse cleaning is initiated at this point, the "trigger"
pressure would be the difference, or 2.3029 psia. The thickness of the fresh cake layer is 1.4485
mm which sits on top of a redeposited cake layer of 0.7242 mm ("recycled” from previous cycle of
filtration), assuming the cake cleaning efficiency is 66.67%.

Table 4.4-3 is analogous to Table 4.4-2 but is for the reverse flow period after the pulse cleaning
has been initiated. The left half of the table pertains to the initial phase of reverse flow when the
gas has just reversed its direction but the gas is still hot at 1,600 °F. The total pressure drop is
4.1143 psia (from 194.1143 psia, clean gas side, to 190 psia, dirty gas side) although the pressure
drop across the cake layers is only 2.4195 psia. This figure, which is restated in the footnote, is the
separation pressure that is required to overcome the tensile strength of cake under the HTHP
condition. If the cake is detached during this initial phase, the impulse intensity of the gas in the
filter cavity that is developed to activate cake separation is = 6.4172 psia, which is the sum of the
trigger pressure drop (2.3029 psia) and the pressure drop in the initial reverse flow period

(4.1143 psia). As shown in the table, in order to generate this condition, the pulsed gas must enter
the clean side of the filter at 18 fpm with a mass flow of 13.1179 Ib;, /min. This critical mass rate is
the quasi-steady flow that must be developed through out the system.

The right hand side of Table 4.4-3 provides similar analysis but is for the final phase of the reverse
flow period when the "colder" mixed gas at 510 °F flows through the filter and the cake, assuming
the cake is still attached. (The mixed gas is at 510 °F because the cleaning fluid is stored at 400 °F
or less in the reservoir.) As can be seen in the table, the pressure drops at 510 °F are drastically
smaller than those in the initial phase because of lower gas viscosity and lower linear gas velocity
(8.5674 fpm) even though the mass flow rate is identical at 13.1179 lbm/min. The total pressure
drop has now decreased to 1.0686 psia and the pressure drop across the cake layer would be only
0.6231 psia, if the cake is still attached. Because of the much lower separation pressure exerted by
the cold gas, it is very unlikely that the cake separation would take place in this phase, unless the
tensile strength of the cake is improbably lower in the lower temperature range. It can be
postulated therefore that what actually blows off the cake is the hot gas that reversed its flow
direction during the jnitial phase and is not the cold gas that follows it in a later phase. This is
consistent with experimental observations that cake tends to detach early and quickly, not later and
slowly.

Table 4.4-4 deals with the pressure drop calculations for the entire cluster containing 74 candles in
the piping section from the center of candle to the ejector venturi area. The mass flow rate is

74 times 13.1179 or 970.7251 by, /min. As noted earlier, the pressure drops in this section
(downstream of the ejector) are relatively small because of the relatively low gas velocity. The
process here is assumed isothermal except the lower diffuser which is assumed isentropic. It
should be noticed that there is small pressure gain through the diffuser and, as a result, there is
little overall change in pressure and temperature from the candle to the venturi throat area.

The left hand side (LHS) of Table 4.4-5 deals with the calculations in the ejector mixing zone using
the successive substitution procedure described earlier. The results of the simultaneous mass, total
energy, and momentum balances show that, in the mixing zone, the "cold" cleaning fluid ("nozzle
gas" = dry air, Gas 8) at 265.7791 psia and 282.7676 °F would entrain/mix with the clean filtered
gas ("entrained gas" = Gas 2) at 187.0880 psia and 1,600 °F to form a "mixed pulse gas" at

193.9756 psia and 507.0941 °F. For the specified Mach number of 0.8 (or 1,066 ft/sec) at the
nozzle tip, 873.9116 lby, /min of cleaning fluid would entrain 96.8134 Ib, /min of the clean filtered
gas in forming 970.7251 Iby,, /min of the mixed gas at the P/T conditions that are required for cake
separation.
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The RHS of Table 4.4-5 deals with the P/T changes that take place in the pulse lance. A similar
iterative procedure is applied here to determine the P/T conditions for the pulse lance which is °
1.905 m in length. The cleaning fluid would enter the pulse lance at 378.7818 psia and 323.8011 °F,
but because of the high velocity flow, it would lose pressure and temperature rapidly (to

265.7791 psia and 282.7676 °F) as the gas is accelerated from 771 ft/sec at the inlet to 1,066 ft/sec
at the nozzle tip.

The LHS of Table 4.4-6 deals with the pressure drops in the pipe section upstream of the ejector.
Above the pulse lance there are two main interconnecting pipes which can be different in length
and/or diameter: for Case 1, the lengths are assumed to be 50 ft and 15 ft respectively for
Connecting Pipes 1 and 2, but the inside diameter is same at 0.0737 m (2.90 inches) for both.
There are a number of fittings/valves in Pipe 1 that create a total "velocity head" losses of 19.1, of
which 10 is attributable to the control valve alone. (In contrast, there is a total of only 1.1 "velocity
head" losses for Pipe 2.) Using the equations for compressible fluid discussed in the previous
section, the overall pressure drops in Pipe 1 and Pipe 2 are found to be 149 psia and 11 psia,
respectively, most of which due directly to fitting/valve frictions. The final "short" pipe connected
to the reservoir is considered frictionless and, hence, the change in pressure here is entirely due to
acceleration of the gas from 0 to 163.9084 ft/sec. The minimwm tank design requirement, i.e., the
lowest P/T for storing the cleaning fluid, is 569.5944 psia and 328.1434 °F. At this minimum
level, however, the tank volume is infinitely large unless P/T is allowed to drop.

The complete P/T profile data along the blowback system from the filter surface to the reservoir
tank can be found in the above referenced spreadsheets. For quick reference, a simplified P/T
profile is compiled from these and presented below (Table 4.4-7).

The RHS of Table 4.4-6 deals with reservoir sizing. "Design 1" shown in Column 1 of the table is a
temporary design for a tank with a finite volume in which the initial gas condition is arbitrarily set
equal to the minimum condition. When the gas is discharged from this minimum condition, the
final P/T naturally drops to a lower level that is not effective for cake separation; however, by
varying the tank volume (which affects the final/initial mass ratio), the effect of P/T drops can be
studied. Using a suitable mass ratio learned in Design 1, "Design 2" is performed with the initial
P/T set at a higher level so that, when the gas is discharged for the same pulse duration, the final
P/T would be equal to the minimum required or nearly so.

For Case 1, our final design choice is to set the final-to-initial mass ratio at 0.8259 and the tank
volume at 25.2818 cubic feet. Under this condition, it is found that the pulsed gas can be
discharged for 0.7 second from initial P = 728.4606 psia and initial T = 389.4121 °F to arrive at
final P = 558.2025 psia and final T = 328.1434 °F. In general, the tank volume and the initial P/T
values are very strongly related to each other, as is evident in the following sensitivity analys1s
(Table 4.4-8).

Clearly, the tank pressure can be several hundred psia higher than the minimum required,
depending on the design philosophy or constraints. It should be noted in this conjunction that, had
the initial temperature T for the design case exceeded the specified upper limit of 400 °F for the
pulse control valve, the temperature of pulse gas passing through the cake (i.e., 510 °F specified in
Table 4.4-4) would have to be lowered and the whole calculations repeated. The final tank
pressure for the design case (558.20 psia) is slightly lower than the required minimum (569.59 psia)
but this is compensated for by the positive effect of longer pulse duration (0.7 second rather than
the minimum required time of 0.5 second), as discussed below.

The "pressurization” time as defined in the model is the time required to pressurize the system
with the cleaning fluid to the pressure profile necessary to blow off the cake without replacing the
hot gas pre-existing in the system. This parameter is listed for all major system segments in the
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TABLE 4.4-7 REVERSE F1L.OW P/T PROFILE
(From Filter Surface to Reservoir Tank)

LOCATION Ppsia| - T,°F Velocity Notes
Dirty gas side 190.00 1600.00 | 18.00 fpm
Cake/filter 192.42 1600.00 17.86 fpm Psep = 2.42 psia
Candle center 194.11 510.00 53.11 fps
Plenum top 194.23 510.00 2.28 fps
Pulse pipe top 195.81 510.00 147 fps
Lower diffuser 193.70 507.09 393 fps
Ejector venturi throat 193.97 507.09 393 fps
Pulse lance, nozzle 265.78 282.77 1066 fps Mach = 0.80
Pulse lance, top 378.78 323.80 789 1ps
Pipe 1 (lance end) 403.05 323.80 228 fps
Pipe 1 (pipe2 end) 552.44 325.79 167 fps
Pipe 2 (pipel end) 552.44 325.79 167 fps
Pipe 2 (tank end) 563.75 325.88 164 fps
Tank (min. req.) 569.59 328.14 0 fps Vol. = infinity
Tank (actual) 728.46 389.41 0 fps Vol. = 253 ft3

TABLE 4.4-8 SENSITIVITY OF TANK VOLUME VS. INITIAL TANK P/T

TANK VOLUME, Ft3 Initial P, psia Initial T, °F
4.9 1561 592

15.1 851 427

(Final Design) 253 728 389
355 678 373

45.7 651 363

96.7 601 |. 345

198.8 579 336

(very large) | 569 328




bottom row of Tables 4.4-3 through 4.4-6. The gas "pass-through" time, which is also listed at the
bottom of the tables, is the time required for the "cold" cleaning fluid to reach the cake layer, *
assuming the flow is plug flow through out the systéem. In other words, it is the time needed for the
cold gas to completely replace or purge the hot gas from the blowback system. Both parameters
are a function of the gas flow rate and the volume of blowback system and, by definition, the
pass-through time is longer than the pressurization time. The following table which is compiled
from the spreadsheets illustrates the differences:

TABLE 4.4-9 BLOWBACK SYSTEM TIME FACTORS

SYSTEM COMPONENT | PRESSURIZATION TIME, ms | PASS-THROUGH TIME, ms
Filter/Cake layers - 113 67.63
Candle cavity 23.65 44.01

Plenum | 137.44 255.61

Pulse pipe 31.10 57.53

Ejector venturi - 091 1.70

Pulse lance 5.37 ‘ 791

Pipe 1 220.84 254.24

Pipe 2 79.32 91.21

Total Time (ms) 501.10 781.21

As explained in Section 4.3, the cake is most likely blown-off by the time the cold gas arrives at the

cake layer. Therefore, a suitable pulse duration time may be selected using these two time
parameters as a guidance. It is clear that the actual pulse duration time should be at least equal to
the pressurization time but it may be shorter or longer than the pass-through time, depending on
other operational considerations. For example, a longer pulse may be justified because it can
provide a longer cake free-fall time for more complete cake cleaning. Another reason might be
that the initial P/T in the reservoir can be lowered to minimize the gas compression work or to
avoid reaching an uncomfortably high level. This is a design trade-off because the final P/T may
have to be allowed to fall below the minimum level. In Case 1, the actual pulse duration time is set
at 0.7 second which lies between the pressurization time of 0.5011 second and gas pass-through
time of 0.7812 second. However, the final pressure is allowed to drop to 98% of the minimum
required pressure of 569.5944 psia (= P;) or 558.2025 psia as shown in the last column of

Table 4.4-6. It is estimated that this would reduce the usefil driving force (the "Pressure Reserve
Factor" listed in Table 4.2-1) to about 93.3% of the time when the gas is discharging or the
effective pulse duration time to about 0.65 second.

It is interesting to note that the total pressurization time in the piping segments below the ejector
is 0.1944 second, of which 0.1374 second is that required for pressurizing the plenum alone (see
Table 4.4-4). Similarly, the pressurization time in the piping above the ejector is 0.3055 second, of
which 0.2208 second is due to Connecting Pipe 1 (see Table 4.4-6). The plenum and Pipe 1 thus
represent most of the "volume" that must be "filled up” before the cake separation could be
effected. Since the amount of cleaning fluid consumed per pulse is a function of system volume,




the time parameter can be used to identify the piping segments (here, plenum and Pipe 1) where
the system volume could be minimized to save power and cost. *
Finally, Table 4.4-6A is a short table wherein the compression work/power needed to compress the
cleaning fluid is determined. The compressor is assumed to be 2-stage with intercooling and its
adiabatic efficiency is assumed to be 90 %. Since pulse discharges are infrequent, the pulse gas
can be resupplied by a "slow" compressor and, hence, the nominal power required (as shown) is not
great. In practice, when one wishes to do the compression "quickly" in a short period of time, the
power requirement would be many times greater.

4.5 SUMMARY FOR OTHER CASES

An overall comparison of the reverse flow condition and P/T requirements (at various key points
in the blowback system) for all study cases are presented in Table 4.2-3. A brief explanation of
Tables 4.2-1 and 4.2-3 follows:

The major difference in operating conditions between off-line cases (Cases 2, 4, 6, and 8) and
on-line cases (Cases 1, 3, 5, and 7) is that a cake cleaning efficiency of 98 % is assumed for the
off-line cases vs. only 66.67 % for the on-line cases. Because of the better cleaning efficiency, the
off-line cases can be operated with a longer filtering cycle time: 90 min vs. 60 min for the on-line
cases. As a result, their power requirements are only two thirds of the power requirement for the
on-line cases, which is the chief advantage.

The major difference in operating conditions between the contrasting cold pulse and hot pulse
cases is that the reservoir temperature for cold pulse cases is limited to 400 °F or less but there is
none for the hot pulse reservoir. It should pointed out that the two hot pulse cases (Cases 3 and 4)
as modeled here are hypothetical in that the hot cleaning fluid is "stored" at 1,537 °F, which is not
entirely realistic. They are shown here only to demonstrate the impacts of temperature on the
operating conditions for the two pairs of corresponding cases namely, Case 1 vs. Case 3 and

Case 2 vs. Case 4. (Later, the design of reservoirs for these cases will be replaced by more feasible
"Rapid-Combustors" as designed by METC. See Section 5 for details). In general, the hot pulse
cases tend to require higher pressure in the tank but the hot fluid can entrain more of the clean
filtered gas. (However, entrainment is not a virtue here: the cleaning fluid itself is already hot and,
hence, entrainment of clean filtered gas is not required at all from the view point of preventing
thermal shock.) Another interesting observation regarding the hot pulse cases is that their
pressurization time at about 185 ms is much shorter than the 500-750 ms required for the cold
pulse cases. This follows since there is less mass in the system when the gas is hot.

One of the major differences in operating conditions among the PFBC cake, carbonizer cake, and
gasifier cake is the relative cake resistance. The specific cake resistances ko, are assumed to be
about 15.60-16.58, 28.53-30.16, and 43.91-46.34 (inches of water)/(fpm)/(Ib/ft“), respectively, so
that they are approximately in the relative order of 1 to 2 to 3 for the three types of cakes. Partly
because of their higher cake resistances, the face velocity for the carbonizer and gasifier cases is
set at 5 fpm vs. 10 fpm for the PFBC cases. Due to lack of reliable data, cake separation pressures
are somewhat arbitrarily graded in the range of 2.36-2.42 psia for the PFBC cake (base case),
3.32-3.39 psia for carbonizer cake, and 3.63-3.71 psia for the gasifier cake to reflect the relative
difficulties of separating these cakes. The gasjfier case requires the cleaning fluid to be stored at
the highest pressure (1,090-1,094 psia in 55-ft° reservoirs) partly because of its higher system
pressure (384.23 psia) and partly because of its higher separation pressure requirement. The 25-
reservoirs for the PFBC and carbonizer cases require a storage pressure in the range of
726-769 psia for the cold pulse and about 950 psia for the hot pulse technology. (Note: The
reservoir volume for the gasifier cases is made larger than the PFBC/carbonizer cases in order to
keep the storage pressure at a "relatively low" level of 1,090-1,094 psia; if the tank volume were 24
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to 25 ft3 the pressure would have been about 1,280-1,290 psia which were deemed too "high". This
isa desxgn/cost trade-off issue.)

It should be remarked that the "hardwares” (ejector, pulse lance, pipings, etc.) as specified in the
present study are not necessary optimal for each individual case. In fact, for the sake of
maintaining uniform comparison, most of the hardware components are kept the same as possible
(to Case 1) for all other cases. As a result, some of the blowback conditions may not be entirely
optimum. For example, in the cases for the carbonizer, the entrainment is negative, meaning there
is overflow of excess motive gas which is wasted. For the gasifier cases, there is essentially no
entrainment. (Note: However, entrainments of clean filtered gas for these cases can always be
achieved by changing/optimizing the ejector configuration.)

Another point regarding the hardware is that practically all of the pressure changes take place in
the piping upstream of the ejector. Most of the pressure drops due to skin friction occurs in the
pulse lance immediately above the ejector and in the interconnecting Pipe 1, where gas velocity is
very high. Within Pipe 1, most of the friction losses can be attributed to fittings and valves,
especially the control valve. The diameters of piping segments also have very strong effects on the
pressure drops. Any changes in these components can easily cause a large difference in pressure
at the end of the interconnecting pipes. The pressure of the gas reservoir itself is a strong function
of tank volume and/or pulse duration: depending on the design philosophy applied in sizing the
reservoir, the tank pressure can easily be increased or decreased by a hundred psia or more. In
summary, the final P/T condition determined for a reservoir must be so understood in light of the
unique hardware components and geometric configuration of each ific blowback system. The
conventional wisdom of simply assuming the reservoir pressure being in the range of "two to three"
times of the system pressure may or may not be sufficiently accurate nor revealing (as to why so
much pressure is needed) in many cases.

4.6 CONCLUDING REMARKS

The spreadsheet model described above can be used to assist conceptual design of a blowback
systems or used as an analytical tool to compare performance of different filter cleaning
techniques. The model can be applied to carry out "what-if" analyses to provide guidance in
optimizing system parameters - especially in determining the dimensions or geometrical
configuration of hardware such as ejector and pipes. While optimization was not one of the basic
objectives (and therefore not specifically done for each individual system), it was found that the
reservoir pressure (and, to some extent, temperature) depend strongly on the hardware setups
(length/diameter of pipes, type/number of fitting/valves) of the blowback system. Often, there
are numerous seemingly equally good alternatives that can achieve the same result: for example, at
the ejector, a pulse with the same momentum can be generated with a large nozzle/low pressure

~ gas or with a small nozzle/high pressure combination. In a future work, an optimization study
could be carried out to investigate the performances of the blowback system with different
configurations.

It also becomes clear during the model development that one of the fundamental process
parameter required for effective design of blowback system is the cake "separation stress". This
separation stress is nominally in the order of a few psia, and once it is specified or known, all the
rest of pressure and temperature distribution of the pulsed gas within the blowback system can be
established in a step-by-step fashion. [It is refreshing to realize here that the essential purpose of
storing the cleaning fluid under a very high pressure of several hundred psia or even in excess of a
thousand psia is to generate only a few psia of pressure drop across the cake layer. All the rest of
pressure energy is expended in accelerating the gas or in overcoming the system friction and is
eventually lost.] Unfortunately, the data on cake separation stress is not commonly available in the
literature nor easily estimated by theoretical means; it appears that the only reliable method is by
direct experimental measurements.
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Other important parameters that need to be developed or compiled include cake separation and
cake cleaning efficiencies. The former is the parameter closely associated with cake separation *

. stress, and the latter is a function of the properties of cake flakes which are not well characterized.
For instance, it is the particle size distribution of the cake flakes or agglomerates after separation
that determines the effective terminal velocity during free-fall which, in turn, determines the cake
cleaning efficiency. The mean particle size of the cake flakes during free falling is definitely greater
(by, perhaps, two to three orders of magnitude) than the mean particle diameter of the cake on the
candle filter or that found in the bottom of filter vessel, but there is no reliable measured data. It is
recommended that more R&D effort be directed in establishing/compiling this class of
information (separation stress, cake flake properties, etc.) for all types of cakes under their actual
operation conditions. ‘

Originally, the quasi-steady state method of analysis as developed here was meant for use with the
single or individual blowback systems. The quasi-steady state assumption and the "square wave"
approximation should be nearly perfect for small filter systems but perhaps less so for the large
cluster type for which the analysis work was later extended. For a large cluster type the responses
to a pulse can be expected to be more "gradual” than in a small system. While the concepts of
pressurization time and gas pass-through time can help in estimating key design parameters such
as the minimum pulse duration required for effective cake separation, a suitable unsteady state
formulation should be able to determine this more directly. Such options could be explored in
future work on blowback system modeling and analysis.
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5.0 CONCEPTUAL DESIGN

>

In this section the conceptual designs of the three filter blowback systems are described. This will
include brief descriptions of the IGCC and CPFBC power plants, operating parameters of these
plants, rationale for design cases, modeling results, and design details of the filter systems. Based
on the conceptual designs an economic comparison was completed and is presented in Section 6.0.

The conceptual design includes system and component descriptions, general arrangement
diagrams and material and energy balances. The conceptual designs were done for eight different
cases as agreed upon by the project participants described as follows:

- Case 1: CPFBC with conventional on-line cleaning, 400°F pulse.

-  Case2: CPFBC with conventional off-line cleaning, 400°F pulse.

- Case3: CPFBC with rapid combustion 1500°F pulse, on-line cleaning.

- Case4: CPFBC with rapid combustion 1500°F pulse, off-line cleaning.

- CaseS5: Carbonizer with conventional on-line cleaning, fuel gas 400°F pulse.

- Case 6: Carbonizer conventional off-line cleaning, fuel gas 400°F pulse.

- Case7: IGCC with conventional on-line cleaning, fuel gas 400°F pulse.

- Case8: IGCC with conventional off-line cleaning, fuel gas 400°F pulse.
5.1 PLANT DESCRIPTIONS
DOE/METC has selected the KRW air blown gasifier and Foster Wheeler’s second generation
PFBC for the candle filter cleanup system conceptual designs. Following are brief descriptions of
the two power plants.
5.1.1 Foster Wheeler Second Generation PFBC
Information and data about this advanced power génerating concept was from a FWDC report
titled "Second Generation Pressurized Fluidized Bed Combustion Plant Conceptual Design and
Optimization of a Second-Generation PFB Combustion Plant, Phase 1, Task 1, Volume 1"
September, 1989, and a report written by Combustion Power Company for DOE/METC titled
"Granular-Bed and Ceramic Candle Filters in Commercial Plants-A Comparison” April, 1993.
In this concept, coal is pyrolized to produce a low-Btu fuel gas that is burned in a topping
combustor by mixing it with high excess air exhaust gas from a PFBC. The coal char residue from
the pyrolizer /carbonizer is burned in the PFBC along with the balance of plant coal, if any. Lime

sorbent is added to the carbonizer and PFBC to minimize carbomzer tar yield and to control sulfur
oxide emissions from both units.

The fuel gas leaving the carbonizer flows to cyclones where particulates are removed and then
enters the candle filter vessels for final particulate removal. The gas from the PFBC is also
precleaned with cyclones before entering the candle filter vessels. Table 5.1-1 provides candle
filter vessel parameters for the PFBC and carbonizer, and also the KRW gasifier.




5.1.2 KRW Air Blown Fluidized Bed Gasifier

The data for the KRW gasifier was taken from a report titled "Assessment of Coal
Gasification/Hot Gas Cleanup Based Advanced Gas Turbine Systems"” December, 1990 written for
DOE by Southern Company Services, Inc. and others.

The KRW gasifier operates by mixing steam and air with coal at a high temperature to produce a
low BTU fuel gas. The fuel gas is cooled to 1,056°F and then partially cleaned with cyclones. The
cooled, clean gas passes through a candle filter before entering a high temperature desulfurization
device. The candle filter cleans the gas of the remaining particulates in order to protect the fixed
bed dcllesulfurization device. The conditions shown in Table 5.1-1 are for the fuel gas as it enters the
candle filter.

Table 5.1-1

Candle Filter Vessel Parameters

5.2 SELECTION OF CONCEPTUAL DESIGN CASES

Foster Wheeler
Second
KRW Generation

No. Parameter IGCC PFBC Carbonizer
1. MWe net 458 453 453
2.  Pressure, inlet, PSIA 380 192 208
3.  Temp,, inlet, °F 1,015 1,600 1,500
4.  Flow, inlet, Ib/hr gas 1,904,867 5,288,600 492,562
5.  Flow, inlet, ACFM 57,507 343,721 31,811
6.  Inlet particulate loading, ppmw 1,500 1,000 3,000
7. Particle size, microns, D50 12 2.1 1.6
8.  Particle loading, Ibs/hr 2,857 5,289 1,478
9. Candle filter data

Size O.D., mm 60 60 60

Size I.D., mm 30 30 30

Length, m 15 1.5 1.5

Material SiC SiC SiC
10.  Candle filter vessel design

Diameter, ft. O.D. 16 16 16

Height, ft. 67 67 67

Total candles needed 3,978 11,888 2,272

No. of candles per vessel 995 1,188 1,136

No. of vessels 4 10 2

No. of tiers . 4 4 4

No. of candles per blowback cluster 62 74 71

Design face velocity, fpm 5 10 5

Flow, ACFM per vessel 14,377 34,372 15,906

Eight design cases have been chosen for evaluation. The rationale for these choices is discussed in
this section. The selection was a combined effort of the project participants and was based on the
results of work done under Tasks 1, 2 and 3.




5.2.1 Pros and Cons of Potential Cleaning Techniques

The three filter cleaning techniques under evaluation are:

- Conventional on-line, pulse-driven reverse flow using a blowback gas stored under pressure
in a reservoir.

- Conventional off-line cleaning using shut-off valves to isolate the candle filter vessel during
blowback. Blowback can be cold pulse or rapid combustion pulse.

- Novel rapid combustion pulse cleaning technique using a high temperature, high pressure
combustion product as the cleaning fluid.

More detailed descriptions for each of these methods appear in Section 3.0. This section
addresses only the aspects of pros and cons for each method which provided input for the
conceptual design choices.

5.2.1.1 On-line 400°F Pulse

Pros: The strongest point in favor of this technique is its commercial availability and its
operational experience (irrespective of success or failure). The associated hardware has been
widely tested under various HTHP conditions and the basic operating data/information are much
more readily available than any other method. Generic PFBC and IGCC operating points are
reasonably well established and reported/described in the literature.

Cons: The major drawback of the conventional method is its apparent inability to prevent thermal
shock from occurring when the relatively "cold” blowback gas passes through the hot candle filter
element even for a very short period of time. The pressurized cleaning fluid is normally stored
"cold" near the ambient condition since the control valve is typically designed for a maximum of
only 400°F. Although the temperature of the blowback gas (motive pulse gas plus entrained hot
clean gas) may be made higher with a properly designed pulse tube, the mixed gas temperature is
usually still several hundred degrees Fahrenheit below that of ceramic material. As a result,
thermal shock inevitably occurs.

Another weak point of the conventional technique is that, due to its reliance on a quick acting
valve (200-400 ms) for its blowback operation, there is insufficient time for the separated cake
particles from falling off and away from the filter surface. The end effect is that a large fraction of
the cake particles that are just blown off tend to redeposit again onto the filter surface, resulting in
poor overall filter cleaning efficiency.

5.2.1.2 Off-line 400°F Pulse

Pros: The principle advantage of the off-line cleaning method is that it can provide an opportunity
for the dust particles to fall to the bottom of the filter vessel thus improving filter cleaning
efficiency and lowering compressor operating costs. A secondary advantage is that because
additional vessels are needed this allows a filter to be off line for a lengthy period of time to
remove difficult cakes formed during upset conditions.

Cons: If a 400°F blowback gas is used then thermal shock will occur as described in the previous
system. A major disadvantage are the additional capital costs associated with the shut-off valves
and the extra candle filters needed to prevent high face velocities to the other filters when the filter
being cleaned is valved off.
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5.2.1.3 Rapid Combustion Pulse

>

Pros: Basically, the combustion-driven filter cleaning method generates its own cleaning fluid as
required by combustion of a fuel with an oxidant.-The HTHP combustion product exits through a
sonic orifice and is piped and manifolded to the individual filter tubes as in the conventional
method. The advantages include: (1) the pulsed gas is at a high temperature thus eliminating
thermal shock effects, (2) a high-temperature quick opening valve is not needed, (3) the pulse
duration and peak pressure can be controlled by selecting a particular fuel and a suitably designed
combustor, and (4) the composition of combustion production can be modified to produce either a
reducing or oxidizing gas to suit the need of a given application (IGCC or PFBC); however, for
short pulses, the difficulty in controlling precise amounts of fuel and oxidant for a reducing
atmosphere is such that at this time it is not being considered for gasifiers.

Cons: While there are no serious limitations for the combustion-driven technique for producing a
blowback pulse with the required temperature, pressure, and flow characteristics, the single pulse
generated by the combustion technique may not be able to provide a sufficient reverse flow
duration for the detached cake dust to fall to the bottom the filter vessel. In order to minimize the
cake redeposition problem, more than one combustion pulse (or longer burning combustion
process) may be necessary to achieve a high cake cleaning efficiency. The design of the combustor
(initiated with spark plug ignition) may be more complicated for this case. This system, however,
can be used with off-line cleaning eliminating this concern.

5.3 SPREADSHEET MODELING RESULTS

In Section 4 the complete spreadsheet data for Case 1 is presented and discussed. In addition, a
summary of data for Cases 2 through 8 are provided in Tables 4.2-1, 4.2-2 and 4.2-3. The complete
spreadsheets for all of the cases are in Appendix B. The information from the spreadsheets was
used for the conceptual designs detailed in the following Section 5.4. Some of the spreadsheet
data is repeated in the tables shown in Section 5.4 so that the data can be easily accessed and
compared while reading the text.

5.4 CONCEPTUAL DESIGN DETAILS

In this section conceptual design details are presented for the three blowback techniques as used in
the two power plants described in Section 5.1: second generation PFBC and an air blown fluidized
bed gasifier. The conceptual designs include eight cases for comparison of the three blowback
techniques providing necessary information for the economic assessment. Descriptions of each
case are given including equipment size, process flow conditions and operating parameters.

- Process design data for the eight designs was provided by the model/spreadsheet described in
Section 4.0. Summaries of the candle filter vessel designs and the blowback system designs for the
eight cases are shown in Table 5.4-1 and 5.4-2. Figure 5.4-1 illustrates the filter design and

Figures 5.4-2, 5.4-3 and 5.4-4 show typical blowback piping arrangements.

Before descriptions of each case are given some design criteria /philosophy will be discussed:

- The candle filter vessel is based on a Westinghouse design. Candles are attached to plenums
which are blown back by a single pulse using compressed air or fuel gas stored in a reservoir.
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FIGURE 5.4-1
COMMERCIAL CANDLE FILTER DESIGN
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- To reduce the harmful effects of thermal shock it is desirable to blowback with the highest
temperature gas as possible. With a 400°F temperature limitation on the currently availablé
fast-acting valve it is not possible to entrain enough hot, clean gas to produce a blowback gas
which is 100°F lower than operating temperature. As a result no effort was made to
maximize the blowback gas temperature.

- The candle filter vessels for the eight cases are the same size, 16 ft.D x 67 ft.H, and have the
same number of tiers and clusters. The different power plant flows are accommodated by
the number of vessels and somewhat by the number of candles per vessel. This was done to
simplify the process design for blowback requirements and also to lessen the amount of
effort to cost the vessels.

- Reasonable face velocities were chosen to size the filter vessels based on published reports:
10 fpm for the PFBC and 5 fpm for the gasifier and carbonizer.

- A difference from the Westinghouse design is that the assumed design blowback reservoirs
are larger in capacity. At Tidda 4 £t3 vessel is used to blowback 38 candles. For Case 1a
25 ft3 vessel is used for blowing back 74 candles. The larger vessels were designed to lower
the required blowback pressure.

- Compressor horsepower requirements, as calculated in the model, were not rounded off to
reasonable numbers because this study is concerned more with system comparisons rather
than detailed design of equipment.

5.4.1 Case 1 - FW CPFBC with On-line Conventional Blowback

This is essentially a base case since it is the only blowback system that has been used at what can
be considered a commercial size. For the 453 MWe power plant, ten candle filter vessels were
required using a 10 fpm design. This js a reasonable face velocity assuming a cake specific
resistance of 15.6 (in.w)/(fpm)/(lb/ft“). In practice the face velocity would be based on actual
cake properties determined by accepted standards. The dust loading to the filter is 1,000 ppmw.
Cyclones precede the candle filter. '

The reservoir blowback pressure required to blow off the cake every 60 minutes is 729 psi as
calculated using spreadsheet. The blowback pressure is very sensitive to the hardware between the
reservoir and the candle filter. Because the filter designed by Westinghouse for the Tidd facility
has had the most operating experience this design was used as a basis for input to the G/C
spreadsheet. Table 4.2-2 in Section 4.0 summarizes the pipe arrangements from the reservoir to
the candle for all the eight cases. For Case 1 the design is as follows:

Reservoir capacity 25 £t

Pipe to Atkomatic valve 3"D., Schedule 80, 15 ft. long
Atkomatic valve 2'D.

Valve to pulse lance 3"D., Sched. 80, 50 ft. long
Pulse lance 1.5"D., Sched. 40, 75" long
Ejector /venturi 17.4" long, 3.73" 1.D.

Pulse pipe 6"D., Sched. 40, 102" long
Plenum 7.5" high, 49" Diam.

Number of candles in plenum 74

Figure 5.4-2 shows the piping arrangement and 5.4-5 is a detail sketch of the venturi. Compressed
air at 400°F is supplied to the reservoir by a reciprocating compressor with intercoolers. Brake
horsepower required is 167.
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When the trigger pressure is reached in the plenum, the atkomatic valve is opened and the candles
are blown back with 10.2 Ib of air in a time frame of 700 ms. According to the model the cake is *
blown off in 500 ms. )

In order to lessen the amount of re-attachment the candles are blown back starting with the top
tier and in sequence until the 16 plenums in the vessel are cleaned.

During the blowback the reservoir pressure drops from 729 to 558 psi which is a conservative
design for the reservoir volume. Simultaneously the blowback gas temperature drops from 389°F
to 328°F in the reservoir. The motive gas at the ejector entrains hot, clean gas at a rate of 11%
producing a blowback gas temperature in the candle of 510°F. From a thermal shock standpoint
this is not a desirable condition; however, no amount of entrainment would alleviate this. The
limiting factor is that the reservoir gas temperature cannot be higher than 400°F because the fast
acting Atkomatic valve has a maximum design temperature of 400°F. Until a higher temperature
fast acting valve is available the potential for candle filter damage due to thermal shock will be a
drawback for this blowback system.

The total amount of blowback air is 1,631 Ib/hr. This is an insignificant amount when compared to
the total flue gas flow of 5,288,600 1b/hr; therefore, the dilution effect can be ignored.

54.2 Case 2 - FW CPFBC with Off-line Conventional Blowback
Referring to Tables 5.3-1 and 5.3-2 Case 2 design is identical to Case 1 except for the foilowing:
- Twelve candle filter vessels are required instead of ten for Case 1.
- Twelve filter vessel shut-off valves are required to isolate the filters during blowback.
- The time between pulses for Case 2 is 90 minutes versus 60 minutes for Case 1.
- The cleaning efficiency for Case 2 is 98% versus 66.7% for Case 1.
- Horsepower requirement for Case 2 is 111 versus 167 for Case 1.

As discussed in Section 3.2, the main advantage of off-line cleaning is that dust particles have
sufficient time to fall to the bottom of the filter vessel before re-depositing. It is assumed for this
design that the cleaning efficiency could reach 98%. With this assumption the time between pulses
increases to 90 minutes resulting in lower blowback air consumption and therefore lower
compressor horsepower.

There is another possible off-line cleaning advantage that could increase time between pulses.
During on-line cleaning the particles that re-deposit first are smaller than the mean particle size.
Smaller particles produce a cake which will either penetrate the candle filter or form a cake with a
higher pressure drop. Off-line blowback would prevent the re-deposition of fine particles and,
potentially, result in a lower pressure drop cake and longer times between blowback. When
blowing back with cold gases this would mean less thermal shock.

What is unknown at this time is the amount of time needed to allow 98% cleaning efficiency.
There is no quantitative data on the mean particle size of dust blown off of a candle filter. Some
reports state that the dust falls off in sheets or flakes. Some photos shown a rapid disintegration.
Samples of particles taken from filter vessels are invariably less than ten microns which would have
terminal velocities so slow that a significant amount of settling time, perhaps 15 minutes, would be
needed. The fact that on-line filter cleaning is effective in actual practice indicates that the dust
blown off must have a mean agglomerate size of at least 200 microns.
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The costs of the two additional filter vessels and the shut-off valves are evaluated in Section 6.0.
The valves could be either butterfly valves or slide gate valves. Three manufacturers of high ’
temperature, metal seated butterfly valves were contacted regarding costs of 30" valves for the
CPFBC, carbonizer and gasifier conditions. None of them would provide budget costs since the
valves would be custom designed because their standard designs were not suitable. While it has
not been established that valves are commercially available for the power plant conditions, it is
assumed that they could be designed and fabricated and would function satisfactorily as filter
vessel shut-off valves.

As in Case 1, the potential for thermal shock damage to the candle filters is present, and, because
the filter vessel is off-line for larger periods, additional cooling will occur. This has not been
quantified.

5.43 Case 3 - FW CPFBC with On-line Rapid Combustion Pulse Blowback

For Case 3 the spreadsheet was not used for the blowback system design. DOE METC was given
data and based on this sized the combustor vessel, the sonic orifice and downstream piping. In
Appendix B there are Case 3 and Case 4 spreadsheet designs for a hypothetical rapid combustor
that would be needed for a system containing blowback hardware similar to Case 1. The pressure
needed for these cases cannot be attained with the combustor as designed by DOE METC;
therefore, the DOE design will be described. The candle filter vessel design however is the same
as for Case 1, and the number of vessels needed, ten, is also the same. .

The rapid combustion blowback system is unique and has not yet been tested at any scale. As
proposed for this case the combustion vessel is a refractory lined vessel 20 ft. long with a 10" L.D.
(11 £t° in volume). At one end are inlets for gasoline injection and combustion air. At the
opposite end is a 4"D sonic orifice fabricated of Tungsten. Ignition is started with a spark plug.

When the filter trigger pressure is reached, 0.25 Ibs. of gasoline is injected into the combustor
along with a measured amount of air. The gasoline is combusted rapidly. In the first 20 ms the
required pressure for blowback, 450 psi, is reached. This pressure is sustained for 35 ms and

5.9 Ibs of pulse air is discharged to the candle filter plenum. In order to reduce friction losses and
maintain sonic velocity a 4" pipe goes from the sonic orifice to a manifold outside of the vessel.
The pipe diameter is reduced to 3" inside the filter vessel and it is this pulse lance which provides
the required momentum to the candle plenum. After the pulse the combustor pressure is
equalized with clean gas from the filter vessel. There is no fast acting valve at the combustor but
each pulse lance has a ball valve which is opened prior to a pulse. Refer to Figure 5.4-3 for the
piping arrangement.

The ignition temperature of the combustion gas is 3,540°F which generates the pressure. Since
this gas is hot enough to eliminate any chance of thermal shock, there is no need for an ejector in
the candle plenum. The actual temperature of the blowback gas at the candle filter has not been
determined. It may be too hot in which case the system design must allow for cooling the motive
gas.

Except for the sonic orifice, which is fabricated from tungsten, the combustor, fuel pump/injector
and air compressor are commercial items and not technical drawbacks. Precise feed control of the
fuel and air into the combustor may require fast acting valves and a sophisticated control system.
There is a limitation on the maximum pressure achievable in the combustor which at this time is
estimated to be three times operating pressure. For gasifiers it may be possible to use this system
but it would require different arrangements not yet resolved. As a result, for this study, it is being
used only in the CPFBC. .
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5.4.4 Case 4 - FW CPFBC with Off-line Rapid Combustion Pulse Blowback

s

If technically and economically feasible Case 4 provides the optimum blowback system. The rapid
combustion pulse eliminates candle filter thermal-shock damage and off-line cleaning achieves the
highest cleaning efficiency. Since the G/C spreadsheet could not be used for process design data,
all of the effects of the increase in efficiency on operating costs for off-line cleaning could not be
determined quantitatively; however, based on Case 2 costs versus Case 1 similar reductions could
be expected. Increased capital costs for two extra filter vessels and 12 shut-off valves are
determined in Section 6.0 along with the reduced amount of fuel and air costs because of longer
times between pulses. As in Case 2 a 98% cleaning efficiency is assumed.

The blowback technique is the same as for Case 3. At trigger pressure, gasoline is injected into the
combustor and ignited to produce a predetermined amount of pulse gas, in this case 5.9 Ibs.
Candle plenums are blown back in sequence from the top tier to the bottom. The blowback cycle
time will depend on the time needed for the particles to settle, approximately 8 to 12 minutes.

5.4.5 Case 5 - FW Carbonizer with On-line Conventional Blowback

The FW carbonizer produces a low Btu fuel gas which is highly reactive therefore compressed air
cannot be used for cleaning the candle filters. Either nitrogen or recycled clean fuel gas are
options but for this design fuel gas is used. A slip stream of clean gas is cooled and then
compressed to the required blowback pressure. From the blowback reservoir the blowback system
hardware is identical to that described in Cases 1 through 4.

The particulates leaving the carbonizer are different than CPFBC particulates and this has an
effect on the candle filter design and blowback requirements. The meap particle size is smaller,
1.6 microns, and the cake specific resistance is 28.5 (in.w)/(fpm)/ (lb/ftE), twice that of CPFBC
cake. Dust loading entering the filter vessel is 3,000 ppmw which results in a blowback time
between pulses of 60 minutes. .

A filter face velocity of 5 fpm was arbitrarily chosen. This is a reasonable face velocity for a
gasifier particulate filter. Two filter vessels are needed with four tiers of candles and four candle
clusters per tier.

The blowback system consists of a 24 ft> reservoir which contains fuel gas compressed to 769 psi, a
2"D fast acting valve, 2.5"D pipe from the reservoir to the filter vessel, a 1.5"D pulse lance and a
candle plenum containing 71 candles. The fuel gas compressor requirement is 22 Hp. Each pulse
requires 11.5 1bs of fuel gas but this is recycled not consumed. Cleaning efficiency is 66.7% and the
plenums are blown back in sequence from top tier to bottom tier. The blowback gas temperature
at the candle is 350°F presenting a thermal shock problem unavoidable for this system because of
the fast acting valve temperature limitations of 400°F.

5.4.6 Case 6 - FW Carbonizer with Off-line Conventional Blowback

For off-line cleaning an additional filter vessel is required (3 total) and 30" shut-off valves for each
filter vessel. The blowback system described for Case 5 is the same except that a smaller
compressor is needed, 14 Hp versus 22 Hp for Case 5.

Off-line cleaning will increase the cleaning efficiency from 66.7% to 98% and the blowback time
between pulses is now 90 minutes as compared to 60 minutes for Case 5. Thermal shock is still
likely since the blowback gas temperature at the candle is 350°F.
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5.4.7 Case 7 - KRW IGCC with On-line Conventional Blowback

An important input to the G/C spreadsheet is the cake specific resistance. For the CPFBCit is
15.6 (in.w)/(fpm)/(Ib/ft2) and this is considered reasonable. The carbonizer cake is double this,
28.5, and again there is confidence in using this. For the gasifier, however, the specific resistance
has been reported as high as ten times that of CPFBC. For comparing on-line versus off-line
blowback this does not present a problem, but, for an absolute cost of blowback, the specific
resistance becomes important.

An arbitrary choice of 43.9, three times that of CPFBC, was made for gasifier Cases 7 and 8. This
has still resulted in the highest blowback pressure of the eight cases, 1,094 psi, and the shortest
time between pulses.

Referring to Tables 5.4-1 and 5.4-2 the filter system consists of 4 filter vessels operating at a face
velocity of 5 fpm. Inlet loading is 1,500 ppmw and mean particle size is 1.2 microns. Figure 5.4-4
shows the piping arrangement.

Similar to the carbonizer system, clean fuel gas is cooled then compressed and stored in the
blowback reservoir until needed. Reservoir size is 55 ft> double that of the CPFBC reservoir in
order to keep the reservoir pressure below 1000 psig. Pipe size is 2.5"D from the reservoir to the
filter, the pulse lance is 1.5"D and the candle plenum holds 62 candles. Blowback pressure is

1,094 psia and time between pulses is 40 minutes. 15 lbs of fuel gas is used per pulse. As with the
other on-line systems, the cleaning efficiency is 66.7%. Fuel gas compressor requirement is 94 Hp,
relatively high because of the pulse pressure and quantity needed for blowback.

Thermal shock remains a potential problem since the blowback gas temperature is 390°F.

5.4.8 Case 8 - KRW IGCC with Off-line Conventional Blowback

Case 8 off-line cleaning requires five filter vessels instead of four. The blowback hardware and
pressure/volume requirements are the same as for Case 7. Time between blowback pulses
increases from 40 to 60 minutes and compressor horsepower is reduced from 94 to 63. An
assumed 98% cleaning efficiency is used for spreadsheet calculations.

Gasifier particles are smaller and tend to be more irregular. They may take longer to settle but
this is not known. Very little data is available concerning filtration of gasifier particulates at the
temperature and pressure conditions used for this study. In any case, the time required to settle
98% of the particles does not have an effect on costs. The only impact might be a longer time for
the candles to cool and perhaps suffer thermal shock damage. The blowback gas temperature is
380°F similar to on-line cleaning.

5.5 CONCLUSIONS

During the selection of the design cases and subsequently the conceptual designs several
observations become apparent:

- Thermal shock
Conventional on-line and off-line cold pulse blowback systems clean the filters with about

400°F air or gas. This is well below 100 less than operating temperature which is required to
prevent thermal shock. Only the rapid combustion pulse system satisfies this requirement.



Ancillary Equipment

The conventional systems use equipment that is commercial. The fast acting valve may be
considered developmental especially if a larger valve is desired. A larger valve would
decrease pressure drop and therefore blowback reservoir pressure requirements. For the
carbonizer and gasifier, fuel gas must be cooled and recompressed but, again, the heat
exchangers and compressors are standard equipment.

The rapid combustion system, on the other hand, is, at this time, only a concept. While
somewhat similar combustion systems have been built and operated none were designed to
deliver a precise amount of gas at a certain temperature, pressure and flow rate. A
significant amount of test work will be needed before this concept can be considered
commercial. The work will include fuel selection, fuel and oxidant feed control, firing
mechanism and sonic orifice design.

Dilution Effects on the Process Gas

The carbonizer and gasifier systems use recycled fuel gas therefore do not suffer a blowdown
dilution effect. The other systems using compressed air use such small amounts dilution is
not a concern. The amounts shown in Table 5.4-2 are for blowback cycles of 60 minutes but
even if the blowback cycle was reduced to an ualikely ten minutes dilution would not be a
factor to be concerned about.

On-line versus Off-line Cleaning

At best off-line cleaning would increase cleaning efficiency from 67% to 98%. Operating
costs would drop but not enough to be significant based on compressor horsepower
requirements. The additional vessels and shut-off valves needed will add what may be
prohibitive capital costs that may not be justified by lower operating costs or longer candle
life due to less pulsing. Comparative costs are discussed specifically in the cost section of
this report.

As has been mentioned previously, the efficient separation of particulates from the gas
stream depends on how fast particles fall to the bottom of the filter vessel after blow back.
Attempts should be made to see if the particles/cake can be altered with an additive so that
they are blown off as large flakes, sheets or agglomerates without making the cake too
"sticky" to be blown off with a reasonable pressure differential. Alternately, the candle filter
itself might be designed to promote discharge of the cake as a sheet or large agglomerates.

Feasibility

At this period in the development of blowback systems for CPFBC and gasifier
environments, feasibility rather than comparative costs may be the determining factor for
choosing one system over another. This is because capital costs and operating costs based
on these conceptual designs will not vary much between the eight cases except for on-line
versus off-line comparisons. The feasibility of even the conventional system being tested at
Tidd has not been demonstrated for long term periods especially the effect of the low
temperature blowback on candle filter stability. There is even less experience for systems
tested under gasifier conditions at high temperature and pressure.
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6.0 ECONOMIC ANALYSIS

The economics of the ceramic barrier filter hot gas cleanup (HGCU) systems were developed on
the basis of consistently defining the capital and operating costs and then performing an economic
analysis based on the incremental cost of electricity (COE) as the figure of merit. The conceptual
cost estimate was determined on the basis of system scope as described in Section 5.0, equipment
quotes, the PFBC reference plant, and inhouse cost data.

Table 6.1 Itemizes the Total Plant Cost (TPC) and the component COE costs for each of the eight
estimated cases. Cases 1 - 4 represent HGCU systems as applied to Circulating Pressurized
Fluidized Bed Combustors, cases 5 - 8 represent HGCU systems applied to carbonizers and
gasifiers. The face velocities for these applications as well as particle loading determine the
number of vessels required for each system. As shown in Table 6.1, the COE of the systems with
similar applications are equivalent. As expected, the cases with off-line cleaning are slightly
higher than the same system with on-line cleaning, since additional vessels are required. All but
cases 7 and 8 have the same working pressure so the TPC is equivalent on a cost per vessel level.
Cases 7 and 8 have a higher working pressure, more costly vessels, thus a higher TPC’s on a per
vessel basis. The cost difference between the 1500°F and 400°F pulse on-line cleaning technique is
negligible. Technical feasibility and not cost will determine which is used.

Table 6.1
HGCU SYSTEMS COST SUMMARY

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8

PFBC PFBC PFBC PFBC |Carbonizer{ Carbonizer] IGCC IGCC

400°F 400°F | 1500°F { 1500°F | 400°F 400°F 400°F 400°F

Pulse Pulse Pulse Pulse Pulse Pulse Pulse Pulse

On-Line | Off-Line| On-Line |Off-Line| On-Line { Off-Line | On-Line | Off-Line
MW 453 453 453 453 453 453 458 458
TPC - $/kW 132.7 158.3 130.8 157.5 26.5 39.1 621’ 75.6
# of Vessels 10 12 10 12 2 3 4 5
TPC/Vessel 133 13.2 13.1 131 133 13.0 15.5 151
Fixed O&M -
mills/kWh 1.6 19 16 19 0.5 0.6 0.8 1.0
Variable O&M
mills/kWh 09 10 0.9 1.0 0.2 0.3 04 S
Carrying
Charge
mills/kWh 41 48 4.0 48 0.8 12 19 23
coe®
mills/kWh 6.5 7.7 6.5 1.7 15 21 32 38
¢))

No consumables were large enough to be recognized on a unit cost basis, although the costs
are included in the annual costs. No fuel cost difference was recognized.




The cost of the ceramic barrier filter system for the advanced PFBC plant is about 2.5 times the
cost for the IGCC plant. The PFBC plant requires two filter systems, one for the combustor and *
one for the carbonizer, and has a much higher gas volume. The cost of the cleanup system as
compared to the total plant cost, however, is small, 10-12% for the advanced PFBC and 4-5% for
the IGCC.

The emphasis of this effort was placed on obtaining good cost results at the TPC level for the
HGCU systems. To highlight the cost of the HGCU systems, the battery limits of the estimate are
from the inlet piping of the filter vessels to the inlet of the ash coolers. The capital costs at the
Total Plant Cost (TPC) level include equipment, materials, labor, indirect construction costs,
engineering and contingencies. Table 6.2 lists the TPC components and Appendix C contains the
Total Plant Cost Summary Sheets.

Table 6.2
TOTAL PLANT COST COMPARISON M$

Casel | Case2 | Case3 | Case 4 Case 5 Case 6 Case 7 Case 8

PFBC | PFBC | PFBC | PFBC | Carbonizer | Carbonizer | IGCC IGCC

400°F | 400°F | 1500°F | 1500°F 400°F 400°F 400°F 400°F

Pulse Pulse Pulse Pulse Pulse Pulse Pulse Pulse

On-Line | Off-Line | On-Line | Off-Line| On-Line Off-Line | On-Line | Off-Line

Filter Vessel 451 54.1 451 54.1 8.5 12.8 204 25.5
Hot Gas
Piping 0.9 25 09 2.5 01 0.6 03 1.0
Blow Back
System 32 35 34 40 1.2 1.6 33 33
Ash Handling 6.0 72 6.0 72 12 18 24 3.0
Electrical 49 43 38 34 1.0 1.0 20 1.8
TPC 60.1 %} 593 713 120 17.7 284 346

The cost driver of the TPC are the vessel costs. The vessel costs represents approximately 75% of
the total plant cost. Thus a HGCU system configuration for on-line cleaning is less costly than the
same application with off-line cleaning. The blow back systems including gas compression
represent a small percentage of the total system cost.

Operation and maintenance (O&M) cost values were determined on a first year basis and
subsequently levelized over the 30 year plant life to form a part of the economic analysis.
Consumables were evaluated on the basis of the quantity required, operation cost was determined
on the basis of the number of operators, and maintenance was evaluated on the basis of
maintenance costs required for each major plant section. These operating costs were then
converted to unit values of $/kW-yr or mills/kWh.

The capital and operating costs of the plant are combined with: piant performance in the
comprehensive evaluation of cost of electricity(COE).
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In summary, the following economic assumptions were made:

Plant book life is 30 years

Capacity factor is 65 percent -

Plant inservice date is January 1995

COE determined on a levelized, current dollar basis

COE methodology was based on EPRI TAG methodology

6.1 METHODOLOGY

This section describes the approach, basis, and methods that were used to perform capital and
operating cost evaluations of the HGCU system. Included in this section are descriptions of the
capital costs, the operating cost and expenses, and the economic evaluation.

The capital costs, operating costs, and expenses were established consistent with EPRI Technical
Assessment Guide (TAG) methodology and the plant scope identified in Section 6.0. The cost of
each component was quantitatively developed to enhance credibility and establish a basis for
subsequent comparisons and modification as the technology is further developed.

] Total plant cost values are expressed in December 1994 dollars.

. The estimates represent mature technology plant, or "nth plant” (i.e,, it does not
include costs associated with a first-of-a-kind plant).

. The estimate represent HGCU systems from the filter vessel inlet to the ash cooler
inlet..

Site is located within the Ohio River Valley, southwestern Pennsylvania/eastern Ohio, but not
specifically sited within the region except that it is considered to be located on a major navigable

water way.
. Terms used in connection with the estimate are consistent with the EPRI TAG.
. The basis for equipment, materials, and labor costing is described in Section 6.2.
L Design engineering services, including construction management and contingencies
basis, are examined in Section 6.2.2. )
. The operating and maintenance expenses and consumables costs were developed

on a quantitative basis.

- The operating labor cost was determined on the basis of the number of
operators required.

- The maintenance cost was evaluated on the basis of relationships of
maintenance cost to initial capital cost.

- The cost of consumables, including fuel, was determined on the basis of
individual rates of consumption, the unit cost of each consumable, and the
plant annual operating hours.

The by-product credit for the gypsum is considered to be zero.




Each of these expenses and costs is determined on a first-year basis and subsequently levelized
over the life of the plant through application of a levelizing factor to determine the value that
forms a part of the economic evaluation. This amount when combined with fuel cost and capital
charges results in the figure of merit, COE. -

6.2 CAPITAL COSTS

The capital cost, specifically referred to as Total Plant Cost (TPC) for the HGCU system, was
estimated using the EPRI structure. The major components of TPC consist of bare erected cost,
engineering and home office overheads and fee plus contingencies.

The capital cost was determined through the process of estimating the cost of every significant
piece of equipment, component, and bulk quantity.

6.2.1 Bare Erected Cost

The bare erected cost level of the estimate, also referred to as the sum of process capital and
general facilities capital, consists of the cost of: factory equipment, field materials and supplies,
direct labor, indirect field labor, and indirect construction costs Other process equipment, minor
secondary systems, and materials were estimated by G/C on the basis of the PFBC reference plant
and in-house data consisting of other cost data and relationships, catalog data, and standard utility
unit cost data.

The piping system costs for the HGCU systems were estimated on the basis of the corresponding
systems in the PFBC reference plant, and the AFBC reference plant.

The electrical and 1&C portion of the estimate was developed using material and equipment cost
relationships to the electrical and I&C costs for similar systems. :

In most cases the costs for bulk materials for this estimate were derived from recent vendor or
manufacturer’s quotes for similar items on other projects. Where actual or specific information
regarding equipment specifications was available, that information was used to size and quantify
material and equipment requirements. Where information was not furnished or was not adequate,
requirements were assumed and estimated based on information available from project estimates
of similar type and size. :

The labor cost to install the equipment and materials was estimated on the basis of labor
manhours. Labor costing was determined on a multiple contract labor basis with the labor cost
including direct and indirect labor costs plus fringe benefits and allocations for contractor expenses
and markup. This was supplemented in limited cases, as required, with equipment labor
relationship data to determine the labor cost. The relationships used were based on the in-house
historical data and the source plants. .

The indirect labor cost was estimated at 7 percent of direct labor to recognize the cost of
construction services and facilities not provided by the individual contractors. The latter cost
represents the estimate for miscellaneous temporary facilities such as construction road and
parking area construction and maintenance; installation of construction power; installation of
construction water supply and general sanitary facilities; and general and miscellaneous labor
services such as jobsite cleanup and construction of general safety and access items.

6.2.2 Total Plant Cost (TPC)

The TPC level of the estimate consists of the bare erected cost plus engineering and contingencies.




The engineering costs represent the cost of architect/engineer services for design, drafting, and
project construction management services. The cost was determined at 12 percent applied to the *
bare erected cost on an individual account basis. The cost for engineering services provided by the
equipment manufacturers and vendors is included directly in the equipment costs.

Allowances for process and project contingencies are also considered part of the TPC. The
process contingency covers the uncertainty in the technical development of specific equipment. A
process contingency of 10 percent was added to the estimated cost of the filter vessels due
primarily to the uncertainty of the cluster blow back system. Also, a 5 percent contingency was
added to ash handling system due to the uncertainty in the physical characteristics of the ash. No
other process contingency was included. ’

Consistent with conventional power plant practices, the general project contingency was added to
the total plant cost to cover project uncertainty and the cost of any additional equipment that could
result from a detailed design. Based on EPRI criteria, the cost estimate contains elements of
Classes 1, II, and III level estimates. As a result, on the basis of the EPRI guidelines, a nominal
value of 15 percent was used to arrive at the plant nominal cost value. This project contingency is
intended to cover the uncertainty in the cost estimate itself. The contingencies represent costs that
are expected to occur.

In addition to the TPC cost level, the Total Plant Investment (TPI) and Total Capital Requirement
(TCR) were determined.

TPI at date of start-up includes escalation of construction costs and allowance for funds used
during construction (AFDC), formerly called interest during construction, over the construction
period. TPI is computed from the TPC which is expressed on an "overnight" or instantaneous
construction basis. For the construction cash flow, a uniform expenditure rate was assumed, with
all expenditures taking place at the end of the year. The construction period is estimated to be
1year. For a one year construction period, TPI = TPC.

The apparent escalation rate and the weighted cost of capital (discount rate) are the standard
values currently proposed by EPRI. ‘

The TCR includes all capital necessary to complete the entire project. TCR consists of TPI,
prepaid royalties, preproduction (or start-up) costs, inventory capital, initial chemical and catalyst
charge, and land cost:

. Royalties costs are assumed inapplicable to fhe mature PFBC plant and thus are not
included.

. Preproduction U.S. costs are intended to cover operator training, equipment checkout,
major changes in plant equipment, extra maintenance, and inefficient use of fuel and other
materials during plant start-up. They are estimated as follows:

- 1 month fixed operating costs - operating and maintenance labor, administrative and
support labor, and maintenance materials.

- 1 month of variable operating costs as full capacity (excluding fuel) - includes
chemicals, water, and other consumables and waste disposal charges.

- 25% of full capacity fuel cost for 1 month - covers inefficient operation that occurs
during the start-up period.

S




- 2% of TPI - covers expected changes and modifications to equipment that will be
needed to bring the plant up to full capacity. .

. Inventory capital is the value of inventories-of fuel, other consumables, and by-products,
which are capitalized and included in the inventory capital account. The inventory capital is
estimated as follows: Fuel inventory is based on full-capacity operation for 60 days.
Inventory of other consumables (excluding water) is normally based on full-capacity
operation at the same number of days as specified for the fuel. In addition, an allowance of
1/2% of the TPC equipment cost is included for spare parts.

e [Initial catalyst and chemical charge covers the initial cost of any catalyst or chemicals that
are contained in the process equipment (but not on storage, which is covered in inventory
capital). No value is shown because costs are minimal and included directly in the
component equipment capital cost.

. Land cost is not applicable to this estimate and is not included.

Each of the TCR cost components, as well as the summary TPC components and the TP, is

included in this section on the Capital Investment & Revenue Summary sheets. In addition, a
summary for the capital cost for each case is included in Appendix B.

6.2.3 Capital Cost Estimate Exclusions -

Although the estimate is intended to represent a complete HGCU system, there remain several
qualifications/exclusions as follows:

. Sales tax is not included (considered to be exempt).

3 On-site fuel transportation equxpment (such as barge tug, barges, yard locomotive,
bulldozers) is not included.

e Allowances for unusual site conditions (such as piling, extensive site access, excessive
dewatering, extensive inclement weather) are not included.

L Royalties are not included.
6.3 OPERATING COSTS AND EXPENSES

The operating costs and related maintenance expenses (O&M) described in this section pertain to
those charges associated with operating and maintaining the HGCU system over its expected life.

The costs and expenses associated with operating and maintaining the plant include:

. Operating labor e Administrative and support labor
o Maintenance L Consumables

- Material

- Labor

The values for these items were determined consistent with EPRI TAG methodology. These costs
and expenses are estimated on a first-year basis, in December 1994 dollars. The first-year costs
assume normal operation and do not include the initial start-up costs.

The operating labor, mamtenance material and labor, and other labor-related costs are combined
and then divided into two components; fixed O&M, which is independent of power generation,
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and variable O&M, which is proportional to power generation. The first-year operating and
maintenance cost estimate allocation is based on the plant capacity factor. *

The other operating costs, consumables and fuel, are determined on a daily 100-percent operating
capacity basis and adjusted to an annual plant operation basis.

The development of the actual values was performed on a G/G model that is consistent with TAG.
The inputs for each category of operating costs and expenses are identified in the succeeding
subsections along with more specific discussion of the evaluation processes.

- 6.3.1 Operating Labor

The cost of operating labor was estimated on the basis of the number of operating jobs (OJ)
required to operate the plant (on an average-per-shift basis). The operating labor charge (OLC)
expressed in first year §/kW was then computed using the average labor rates:

OLC = (OJ)x (labor rate x labor burden) x (8760 h/yr)
(net capacity of plant at full load in kW)

The operating labor requirements were determined on the basis of in-house representative data
for the plant section.

6.3.2 Maintenance

Since the development of the maintenance labor and maintenance material costs are so
interrelated in this methodology, their cost bases are discussed together. Annual maintenance
costs are estimated as a percentage of the installed capital cost. The percentage varies widely,
depending on the nature of the processing conditions and the type of design.

On the basis of G/C in-house data and EPRI guidelines for determining maintenance costs ,
representative values expressed as a percentage of system cost were specified for each major
system. The rates were applied against individual estimate values. Using the corresponding TPC
values, a total annual (first-year) maintenance cost was calculated, including both material and
labor components. The rate applied to the filter vessels includes the cost of candle replacement
once every three years. :

Since the maintenance costs are expressed as maintenance labor and maintenance materials, a
maintenance labor/materials ratio of 40/60 was used for this breakdown. The operating costs,
excluding consumable operating costs, are further divided into fixed and variable components.
Fixed costs are essentially independent of capacity factor and are expressed in $/kW-y. Variable
costs are incremental, directly proportional to the amount of power produced, and expressed in
mills/kWh ($/MWh). The equations for these calculations are:

Fixed O&M = Capacity Factor (CF) x Total O&M ($/kWy)

Variable O&M = (1-CF) x Total O& kW-vr) x 1000 mills
(CFx 8760 h/yr)

6.3.3 Consumables

The feedstock and disposal costs are those consumable expenses associated with power plant
operation. Consumable operating costs are developed on a first-year basis and subsequently
levelized over the 30-year life of the plant. The consumables category consists of water and
chemicals, auxiliary power, other consumables, and waste disposal.
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The "water" and chemicals component pertains to the water acquisition charge for water required
for the plant steam cycle, and for miscellaneous services and composite water makeup and treating
chemicals and liquid effluent chemical category, representing the composite chemical requirement
for wastewater treating. These commodities are negligible for the HGCU system and are not
included.

The auxiliary power component consists of the electricity required to drive the blow back gas
compressors. The charge rate of .05 $/kWh is based on current in-house information for internal
power costs.

The "other consumables” component consists of startup fuel, gases, primarily the nitrogen required
for transport and blanketing and steam but does not contain any significant quantities. For cases 3
and 4 this component represents the gasoline costs for the pulse combustors.

The "waste disposal” component pertains to the cost allowance for off-site disposal of plant solid
wastes. This commodity is not applicable to the HGCU systems and is not included.

6.4 COST OF ELECTRICITY (COE)

The revenue requirement method of performing an economic analysis of a prospective power
plant is widely used in the electric utility industry. This method permits the incorporation of the
various dissimilar components for a potential new plant into a single value that can be compared to
various alternatives. The revenue requirement figure-of-merit is COE that is the levelized (over
plant life) coal pile-to-busbar cost of power expressed in mills/kWh. The value, based on EPRI
definitions and methodology, includes the TCR, which is represented in the levelized carrying
charge (sometimes referred to as the fixed charges), levelized fixed variable operating and
maintenance costs, levelized consumable operating costs, and the levelized fuel cost.

The levelized carrying charge, applied to TCR, establishes the required revenues to cover return
on equity, interest on debt, depreciation, income tax, property tax, and insurance. Levelizing
factors are applied to the first year fuel, O&M costs, and consumable costs to yield levelized costs
over the life of the project. A long-term inflation rate of 4.1%/yr. was assumed in estimating the
cost of capital and in estimating the life cycle revenue requirements for other expenses. To
represent these varying revenue requirements for fixed and variable costs, a "levelized” value was
computed using the "present worth" concept of money based on the assumptions shown in the basis
table resulting in a levelized carrying charge of 16.9% and levelization factor of 1.541.

By combining costs, carrying charges, and leveliziné factors, a levelized busbar COE for the 65%
design capacity factor was calculated along with the levelized constituent values. The format for
this cost calculation is:

Power Cost (COE) = (LCC+LFOM) x 1000mills/$ + LVOM + LCM - LB + LFC
CF x 8760 h/y




where:

LCC = Levelized carrying charge, $/kW-y
LFOM = Levelized fixed O&M, $/kW-y

LVOM = Levelized variable O&M, mills/kWh
ILCM = Levelized consumable, mills /KWh

LB = Levelized by-products (if any), mx]ls/kWh
LFC = Levelized fueled costs, mills/kWh

CF =  Plant capacity factor, %

The consolidated basis for calculating capital investment and revenue requirements is given in the
succeeding table titled Estimate Basis/Financial Criteria for Revenue Requirement Calculations.
The principle cost and economics output for this study, the Capital Investment and Revenue
Requirement summary presents key TPC values and other significant capital costs, operating costs,
maintenance costs, consumables, fuel cost and the levelized busbar COE.

6.5 CONCLUSIONS

Off-line cleaning has a slightly higher cost than on-line cleaning even though more efficient. This
was due primarily to the extra vessels required. The cost difference between rapid combustion and
400°F on-line cleaning is negligible. Technical feasibility and not cost will determine which
technique is chosen.

The cost driver of the total system cost are the vessel costs. The vessel costs represent
approximately 75% of the total plant cost. Thus a HGCU system configuration for on-line
cleaning is less costly even though less efficient than the same application with off-line cleaning.
The blow back systems including gas compression represent a small percentage of the total system
cost.

The cost of the ceramic barrier filter system for the advanced PFBC plant is about 2.5 times the
cost for the IGCC plant. The PFBC plant requires two filter systems, one for the combustor and
one for the carbonizer, and has a much higher gas volume. The cost of the cleanup system as
compared to the total plant cost, however, is relatively small, 10-12% for the advanced PfBC and
4-5% for the IGCC.

-




CAPITAL INVESTMENT & REVENUE REQUIREMENT SUMMARY

TITLE/DEFINITION
Case:
Plant Size:
Fuel(type):
Design/Construction:
TPC(Plant Cost) Year:
Capacity Factor:

CAPITAL INVESTMENT
Process Capital & Facilities
Engineering(incl.C.M.,H.0.& Fee)
Process Contingency
Project Contingency

TOTAL PLANT COST(TPC)
TOTAL CASH EXPENDED
AFDC

TOTAL PLANT INVESTMENT(TP1)

Royaity Allowance
Preproduction Costs
Inventory Capital

Initial Catalyst & Chemicals(w/equip.)

Land Cost

TOTAL CAPITAL REQUIREMENT(TCR)

OPERATING & MAINTENANCE COSTS({First Year)

Operating Labor

Maintenance Labor
Maintenance Material
Administrative & Support Labor

TOTAL OPERATION & MAINTENANCE(1st yr.)

FIXED O & M (st yr.)

VARIABLE O & M (1st yr.))

CONSUMABLE OPERATING COSTS(ess Fuel)

Water & Chemicals
Auxilliary Power
Other Consumables
Waste Disposal

TOTAL CONSUMABLES(1st yr.,—fuel)

BY-PRODUCT CREDITS({First Year)

FUEL COST(First Year)

Case 1 — CPFBC with Conventional Blowback

453.0 (MW,net) HeatRate:
Pittsburgh #8 Cost:
_ 1 (years) BookLife:
1994 (Dec.) TPI Year:
65 (%)

$x1000
44,424
2,888
4,943

7,838

$60,093
$60,093

$60,083

1,548

187

$61,828

$x1000
381
1,286
1,929
500

$4,097

$x1000

35

$35

'LEVELIZED OPERATION & MAINTENANCE COSTS

FixedO &M
Variable O & M
Consumables
By-product Credit
Fuel

LEVELIZED CARRYING CHARGES(Capital)

LEVELIZED BUSBAR COST OF POWER

30 Year at a Capacity Factor of:

9.1 $/kW—~yr =

23.1 $/KW~yr =

65%

7,822 (Btu/kWh)
1.60 ($/MMBtu)
30 (years)
1995 (Jan.)

$/kW
98.1
6.4
10.9

17.3

132.7
132.7

3.4
0.4

136.5

$/kW—yr

0.8

2.8

43

- 11

9.0

5.88 $/kW—yr

0.56 mills/kWh
mills/kWh

0.01

0.01

1.6 mills/kWh
0.9 milis/kWh
0.0 milis/kWh
milis/kWh
milis/kWh

4.1 mills/kWh

6.5 mills/kWh
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CAPITAL INVESTMENT & REVENUE REQUIREMENT SUMMARY

TITLE/DEFINITION .
Case: Case 2 — CPFBC OFF LINE
Plant Size: 453.0 (MW, net) HeatRate:
Fuel(type): Pittsburgh #8 Cost:
Design/Construction: 1 (years) - BookLife:
TPC(Plant Cost) Year: 1994 (Dec.) TPi Year:
Capacity Factor:

CAPITAL INVESTMENT $x1000
Process Capital & Facilities 563,232
Engineering(incl.C.M.,H.O.& Fege) 3,370
Process Contingency 5,932
Project Contingency 9,173

TOTAL PLANT COST(TPC) $71,707

TOTAL CASH EXPENDED $71,707

AFDC

TOTAL PLANT INVESTMENT(TPI) $71,707
Royaity Allowance
Preproduction Costs 1,837
Inventory Capital 221
Initial Catalyst & Chemicals(w/equip.)
Land Cost

TOTAL CAPITAL REQUIREMENT(TCR) $73,764

OPERATING & MAINTENANCE COSTS(First Year) $x1000
Operating Labor 381
Maintenance Labor 1,635
Maintenance Material 2,302
Administrative & Support Labor 575

TOTAL OPERATION & MAINTENANCE(1st yr.) $4.’(92
FIXED O & M (1styr.)
VARIABLE O & M (istyr))

CONSUMABLE OPERATING COSTS(less Fuel) $x1000
Water & Chemicals
Auxilliary Power 24
Other Consumables
Waste Disposal

TOTAL CONSUMABLES(1st yr.,~fuel) $24

BY-PRODUCT CREDITS(First Year) '“

FUEL COST(First Year)

LEVELIZED OPERATION & MAINTENANCE COSTS
FixedO &M 10.6 $/kW—yr =
Variable O &M
Consumables
By-—product Credit
Fuel

LEVELIZED CARRYING CHARGES(Capital) 27.5 $/kW~yr =

LEVEUIZED BUSBAR COST OF POWER

30 Year at a Capacity Factor of: 65%

7,822 (Btu/kWh)
1.60 ($/MMBtu)
30 (years)
1995 (Jan.)

$/kwW
1175
7.4
13.1
20.2

158.3

158.3

4.1
0.5

162.8

$/kW—yr

0.8

3.4

5.1

1.3

10.6

6.88 $/kW—yr

0.65 mills/kWh
mills/kWh

0.01

0.01

1.9 mills/kWh
1.0 milis/kWh
0.0 mitis/kWh
mills/kWh
mills/kWh

4.8 milis/kWh
7.7 mills/kWh
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CAPITAL INVESTMENT & REVENUE REQUIREMENT SUMMARY

TITLE/DEFINITION ,
Case: Case 3 - CPFBC RP
Plant Size: 453.0 (MW, net) HeatRate: 7,822 (Btu/kWh)
Fuel(type): Pittsburgh #8 Cost: 1.60 ($/MMB1u)
Design/Construction: 1 (years) BookLife: 30 (years)
TPC(Plant Cost) Year: 1994 (Dec.) TPl Year: 1995 (Jan.)
Capacity Factor: 65 (%)

CAPITAL INVESTMENT $x1000 $/kW
Process Capital & Facilities 43,747 96.6
Engineering(incl.C.M.,H.0.& Fee) ' 2,844 6.3
Process Contingency 4,943 10.9
Project Contingency 7,730 17.1

TOTAL PLANT COST(TPC) $59,263 130.8

TOTAL CASH EXPENDED $59,263

AFDC

TOTAL PLANT INVESTMENT(TPY) $59,263 130.8
Royalty Allowance
Preproduction Costs 1,530 3.4
Inventory Capital 185 0.4
Initial Catalyst & Chemicals(w/equip.)
Land Cost

TOTAL CAPITAL REQUIREMENT(TCR) $60,979 134.6

OPERATING & MAINTENANCE COSTS(First Year) $x1000 $/kW—yr
Operating Labor ‘ 381 0.8
Maintenance Labor 1,282 28
Maintenance Material 1,923 4.2
Administrative & Support Labor 499 1.1

TOTAL OPERATION & MAINTENANCE(1st yr.) $4,086 9.0
FIXED O & M (1st yr.) 5.86 $/kW—yr
VARIABLE O & M (1st yr.) 0.55 mills/kWh

CONSUMABLE OPERATING COSTS(ess Fuel) ‘ $x1000 mills/kWh
Water & Chemicals -

Auxilliary Power 1 0.00
Other Consumables 35 0.01
Waste Disposal

TOTAL CONSUMABLES(1st yr.,~fuel) $36 0.01

BY-PRODUCT CREDITS(First Year)
FUEL COST{First Year)

LEVELIZED OPERATION & MAINTENANCE COSTS

FixedO & M 9.0 $/kW~yr = 1.6 mills/kWh

Variable O & M 0.9 milis/kWh

- Consumables . 0.0 mills/kWh
By-product Credit ~ ) mills/kWh

Fuel mills/kWh
LEVELIZED CARRYING CHARGES(Capital) 22.7 $IKW—yr = 4.0 mills/kWh
LEVELIZED BUSBAR COST OF POWER 6.5 mills/kWh

30 Year at a Capacity Factor of: _ 65%




CAPITAL INVESTMENT & REVENUE REQUIREMENT SUMMARY

TITLE/DEFINITION
Case: Case 4 — CPFBC RP-OFF LINE
Plant Size: 453.0 (MW net} HeatRate: 7,822 (Btu/kWh)
Fuel(type): Pittsburgh #8 Cost: 1.60 ($/MMBtu)
Design/Construction: _ 1 (years) BookLife: 30 (years)

. TPC(Plant Cost) Year: 1994 (Dec.) TPl Year: 1995 (Jan.)
Capacity Factor: 65 (%)

CAPITAL INVESTMENT $x1000 $/kW
Process Capital & Facilities 52,927 116.8
Engineering(incl.C.M.,H.0.& Fee) 3,351 7.4
Process Contingency 5,932 13.1
Project Gontingency 9,124 20.1

TOTAL PLANT COST(TPC) $71,333 157.5

TOTAL CASH EXPENDED $71,333

AFDC

TOTAL PLANT INVESTMENT(TPI) $71,333 167.5
Royality Allowance
Preproduction Costs 1,829 4.0
Inventory Capital 220 0.5
Initial Catalyst & Chemicals(w/equip.)
Land Cost

TOTAL CAPITAL REQUIREMENT(TCR) $73,382 162.0

OPERATING & MAINTENANCE COSTS(First Year) $x1000 $/kW—yr
Operating Labor 381 0.8
Maintenance Labor 1,534 34
Maintenance Material 2,300 5.1
Administrative & Support Labor 574 1.3

TOTAL OPERATION & MAINTENANCE(1st yr.) $4,790 10.6
FIXED O & M (1styr.) 6.87 $/kW—yr
VARIABLE O & M (1st yr)) 0.65 mills/kWh

CONSUMABLE OPERATING COSTS(less Fuel) $x1000 mills/kWh
Water & Chemicals ,
Auxilliary Power 1 0.00
Other Consumables 23 0.01
Waste Disposal

TOTAL CONSUMABLES(1st yr.,—fusl) $24 0.01

BY-PRODUCT CREDITS(First Year)

FUEL COST(First Year)

LEVELIZED OPERATION & MAINTENANCE COSTS
FixedO & M 10.6 $/kW—yr = 1.9 mills/kWh
Variable O & M 1.0 mills/kWh
Consumables 0.0 mills/kWh
By-product Credit mills/kWh
Fuel mills/kWh

LEVELIZED CARRYING CHARGES(Capital) 27.4 $/KkW—~yr = 4.8 mills/kWh

LEVELIZED BUSBAR COST OF POWER 7.7 mills/kWh

30 Year at a Capacity Factor of: 65%




CAPITAL INVESTMENT & REVENUE REQUIREMENT SUMMARY

TITLE/DEFINITION
Case: Case 5 — Carbonizer Conv.

Plant Size: 453.0 (MW,net) HeatRate: 7,822 (Btu/kwh) |
Fuel(type): Pittsburgh #8 Cost: 1.60 ($/MMBtu)
Design/Construction: _ 1 (years) BookLife: 30 (years)
TPC(Plant Cost) Year: 1994 (Dec.) TPl Year: 1995 (Jan.)
Capacity Factor: 65 (%)

CAPITAL INVESTMENT $x1000 $/kW
Process Capital & Facilities 8,920 19.7
Engineering(incl.C.M.,H.0.& Fee) 580 13
Process Contingency 952 2.1
Project Contingency 1,568 3.5

TOTAL PLANT COST(TPC) $12,020 26.5

TOTAL CASH EXPENDED $12,020

AFDC

TOTAL PLANT INVESTMENT(TPI) $12,020 26.5
Royalty Allowance
Preproduction Costs 340 0.8
Inventory Capital 37 0.1
Initial Catalyst & Chemicais(w/equip.)
Land Cost

TOTAL CAPITAL REQUIREMENT(TCR) $12,397 27.4

OPERATING & MAINTENANCE COSTS(First Year) $x1000 $/KW —yr
Operating Labor 381 0.8
Maintenance Labor 247 0.5
Maintenance Material 370 0.8
Administrative & Support Labor 188 0.4

TOTAL OPERATION & MAINTENANGE(1st yr.) $1,187 26
FIXED O & M (1st yr.) 1.70 $/kW—yr
VARIABLE O & M (1st yr.) 0.16 mills/kWh

CONSUMABLE OPERATING COSTS(less Fuel) $x1000 mills/kWh
Water & Chemicals
Auxilliary Power 5 0.00
Other Consumables
Waste Disposal

TOTAL CONSUMABLES(1st yr.,~fuel) $5 0.00

BY-PRODUCT CREDITS(First Year)

FUEL COST(First Year)

LEVELIZED OPERATION & MAINTENANCE COSTS
FixedO &M 2.6 $/kW-yr = 0.5 mills/kWh
Variable O & M 0.2 mills/kWh
Consumables 0.0 milis/kWh
By-product Credit mills/kWh
Fusel milis/kWh

LEVELIZED CARRYING CHARGES(Capital) 4.6 $/KW—-yr = 0.8 milis/kWh

LEVELIZED BUSBAR COST OF POWER 1.5 mills/kWh

30 Year at a Capacity Factor of: 65%
6~14 -




CAPITAL INVESTMENT & REVENUE REQUIREMENT SUMMARY

TITLE/DEFINITION
Case: Case 6 — Carbonizer Off-Line
Piant Size: 453.0 (MW,net) HeatRate:
Fuel(type): Pittsburgh #8 Cost:
Design/Construction: 1 (years) BookLife:
TPC(Plant Cost) Year: 1994 (Dec.) - TPl Year:
Capacity Factor: 65 (%)

CAPITAL INVESTMENT $x1000
Process Capital & Faciities 13,167
Engineering(incl.C.M.,H.0.& Fee) 833
Process Contingency 1,428
Project Contingency 2,262

TOTAL PLANT COST(TPC) $17,691

TOTAL CASH EXPENDED $17,691

AFDC

TOTAL PLANT INVESTMENT(TPI) $17,691
Royalty Allowance
Preproduction Costs 481
Inventory Capital 54
Initial Catalyst & Chemicals(w/equip.)
Land Cost

TOTAL CAPITAL REQUIREMENT(TCR) $18,226

OPERATING & MAINTENANCE COSTS(First Year) $x1000
Operating Labor 381
Maintenance Labor 367
Maintenance Material 5§50
Administrative & Support Labor 224

TOTAL OPERATION & MAINTENANCGCE(1st yr.) $1,523
FIXED O & M (Ist yr)
VARIABLE O & M (ist yr.)

CONSUMABLE OPERATING COSTS(ess Fuel) $x1000
Water & Chemicals -

Auxilliary Power 3
Other Consumables
Waste Disposal

TOTAL CONSUMABLES(1st yr.,—fuel) $3

BY-PRODUGCT CREDITS(First Year)

FUEL COST(First Year)

LEVELIZED OPERATION & MAINTENANCE COSTS
FixedO & M 3.4 $/kW-yr =
Variable O & M
Consumables
By-—product Credit
Fuel

LEVELIZED CARRYING CHARGES(Capital) 6.8 $/kW~yr =

LEVELIZED BUSBAR COST OF POWER
30 Year at a Capacity Factor of:

65%

7,822 (Btu/kWh)
1.60 ($/MMBtu)
30 (years)
1995 (Jan.)

$/kw
29.1
1.8
3.2
5.0

39.1

39.1

O -
.
L I

40.2

$/kW—yr

0.8

0.8

1.2

0.5

3.4

2.19 $/KW—yr

0.21 mills/kWh
mills/kWh

0.00

0.00

0.6 mills/kWh
0.3 milis/kWh
0.0 milisfkWh
mills/kWh
milis/kWh

1.2 milis/kWh
2.1 mills/kWh
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CAPITAL INVESTMENT & REVENUE REQUIREMENT SUMMARY .

TITLE/DEFINITION : )

Case: Case 7 ~ IGCC Conv.

Plant Size: 458.0 (MW,net) HeatRate: 9,000 (Btu/kWh)
Fuel(type): Pittsburgh #8 Cost: 1.60 ($/MMBtu)
Design/Construction: . 1 (years) BookLife: 30 (years)
TPC(Plant Cost) Year: 1994 (Dec.) TPI Year; 1995 (Jan.)
Capacity Factor: 65 (%)

CAPITAL INVESTMENT $x1000 $/kW
Process Capital & Facilities 21,197 46.3
Engineering(incl.C.M.,H.O.& Fee) 1,378 3.0
Process Contingency 2,153 4.7
Project Contingency 3,709 8.1

TOTAL PLANT COST(TPC) $28,437 62.1

TOTAL CASH EXPENDED $28,437

AFDC .

TOTAL PLANT INVESTMENT(TP!) $28,437 62.1
Royalty Allowance
Preproduction Costs 750 1.6
inventory Capital 87 0.2
Initial Catalyst & Chemicals(w/equip.)
Land Cost

TOTAL CAPITAL REQUIREMENT(TCR) $29,275 63.9

OPERATING & MAINTENANCE COSTS(First Year) $x1000 $/KW—yr
Operating Labor 381 0.8
Maintenance Labor 580 13
Maintenance Material 886 1.9
Administrative & Support Labor 291 0.6

TOTAL OPERATION & MAINTENANCE(1st yr.) $2,149 47
FIXED O & M (1st yr.) 3.05 $/kW—yr
VARIABLE O & M (1st yr.) 0.29 mills/kWh

CONSUMABLE OPERATING COSTS(less Fusl) $x1000 mills/kWh
Water & Chemicals
Auxilliary Power 20 0.01
Other Consumables
Waste Disposal

TOTAL CONSUMABLES(1st yr.,—fuel) $20 0.01

BY-PRODUCT CREDITS(First Year)

FUEL COST(First Year)

LEVELIZED OPERATION & MAINTENANCE COSTS
FixedO & M 4.7 $/kW—yr = 0.8 milis/kWh
Variable O & M 0.4 mills/kWh
Consumables 0.0 milis/kWh
By~—product Credit mills/kWh
Fuel milis/kWh

LEVELIZED CARRYING CHARGES(Capital) 10.8 $/kW-yr = 1.9 mills/kWh

LEVELIZED BUSBAR COST OF POWER 3.2 miiis/kWh

30 Year at a Capacity Factor of: 65%
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CAPITAL INVESTMENT & REVENUE REQUIREMENT SUMMARY

TITLE/DEFINITION
Case: Case 8 ~ IGGC Off—Line
Plant Size: 458.0 (MW,net) HeatRate:
Fuel(type): Pittsburgh #8 Cost:
Design/Construction: 1 (years) BookLife:
TPC(Plant Cost) Year: 1994 (Dec.) TPl Year:
Capacity Factor: 65 (%)

CAPITAL INVESTMENT $x1000
Process Capital & Facilities 25,843
Engineering(incl.C.M.,H.0.& Fee) 1,642
Process Contingency 2,692
Project Contingency 4,440

TOTAL PLANT COST(TPC) $34,617

TOTAL CASH EXPENDED $34,617

AFDGC

TOTAL PLANT INVESTMENT(TPI) $34,617
Royalty Allowance
Preproduction Costs 906
Inventory Capital 104
Initial Catalyst & Chemicals(w/equip.)
Land Cost

TOTAL CAPITAL REQUIREMENT(TCR) $35,627

OPERATING & MAINTENANGE COSTS(First Year) $x1000
Operating Labor 381
Maintenance Labor 730
Maintenance Material 1,094
Administrative & Support Labor 333

TOTAL OPERATION & MAINTENANCE(1st yr.) $2,538
FIXED O & M (1st yr.)
VARIABLE O & M (1styr.)

CONSUMABLE OPERATING COSTS(ess Fuel) $x1000
Water & Chemicais
Auxilliary Power 13
Other Consumables
Waste Disposal

TOTAL CONSUMABLES(1st yr.,—fusl) $13

BY—PRODUGT CREDITS(First Year) )

FUEL COST(First Year)

LEVELIZED OPERATION & MAINTENANCE COSTS
FixedO &M 5.5 $/kW—yr =
Variable O &M
Consumables
By—product Credit
Fuel

LEVELIZED CARRYING CHARGES(Capital) 13.1 $/kW—-yr =

LEVELIZED BUSBAR COST OF POWER

30 Year at a Capacity Factor of: 65%

9,000 (Btu/kwh)
1.60 ($/MMBtu)
30 (years)
1995 (Jan.)

$/kW
56.4
36
5.9
9.7|

75.6

75.6

5.5
3.60 $/kW—yr
0.34 mills/kWh
mills/kWh

0.01

0.01

1.0 mills/kWh
0.5 mills/kWh
0.0 mills/kWh
mills/kWh
mills/kWh

2.3 milis/fkWh
3.8 mills/kWh




7.0 CONCLUSIONS AND R&D RECOMMENDATIONS

The objective of study task was to assess and evaluate the effectiveness, appropriateness and
economics of three different ceramic barrier filter cleaning techniques. These techniques included
conventional on-line pulse driven reverse gas filter cleaning, off-line reverse gas filter cleaning and
rapid pulse driven filter cleaning.

The cleaning techniques were evaluated from a first principles approach. This analysis was then
used to understand the basic mechanisms and functional relationships governing cake removal and
to establish the necessary design data for the conceptual design and economic analysis. The result
of this analysis was a spreadsheet computer model which was turned over to METC and is a
powerful tool for identifying and directing future R&D developments.

Within individual sections of this report critical design and operational issues were evaluated
against the application and conclusions were identified. This section presents some overall key
findings on the issues followed by conclusions and recommendations for R&D design challenges.

7.1 FINDINGS
7.1.1 Analyses and Modeling of the Filter Blowback Systems

The spreadsheet model can be used to assist conceptual design of a blowback system or used as an
analytical tool to compare performance of different filter cleaning techniques. The model can be
applied to carry out "what-if" analyses to provide guidance in optimizing system parameters -
especially in determining the dimensions or geometrical configuration of hardware such as ejector
and pipes. While optimization was not one of the basic objectives (and therefore not specifically
done for each individual system), it was found that the reservoir pressure (and, to some extent,
temperature) depend strongly on the hardware setups (length/diameter of pipes, type/number of
fitting/valves) of the blowback system. Often, there are numerous seemingly equally good
alternatives that can achieve the same result: for example, at the ejector, a pulse with the same
momentum can be generated with a large nozzle/low pressure gas or with a small nozzle/high
pressure combination. In a future work, an optimization study could be carried out to investigate
the performances of the blowback system with different configurations.

It also becomes clear during the model development that one of the fundamental process
parameters required for effective design of blowback systems is the cake "separation stress". This
separation stress is nominally in the order of a few. psia, and once it is specified or known, all the
rest of pressure and temperature distribution of the pulsed gas within the blowback system can be
established in a step-by-step fashion. Unfortunately, the data on cake separation stress is not
commonly available in the literature nor easily estimated by theoretical means; it appears that the
only reliable method is by direct experimental measurements.

Other important parameters that need to be developed or compiled include cake separation and
cake cleaning efficiencies. As explained in an earlier section, the former is the parameter closely
associated with cake separation stress, and the latter is a function of the properties of cake flakes
which are not well characterized. For instance, it is the particle size distribution of the cake flakes
or agglomerates after separation that determines the effective terminal velocity during free-fall
which, in turn, determines the cake cleaning efficiency. The mean particle size of the cake flakes
during free falling is definitely greater (by, perhaps, two orders of magnitude or more) than the
mean particle diameter of the cake on the candle filter or that found in the bottom of filter vessel,
but there is no reliable measured data. It is recommended that more R&D effort be directed in
establishing/compiling this class of information (separation stress, cake flake properties, etc.) for
all types of cakes under their actual operation conditions.
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The diameters of piping segments have very strong effects on the pressure drops. Any changes in
these components can easily cause a large difference in pressure at the end of the interconnecting
pipes. The pressure of the gas reservoir itself is a strong function of tank volume and/or pulse
duration: depending on the design philosophy applied in sizing the reservoir, the tank pressure can
easily be increased or decreased by a hundred psxa or more. In summary, the final P/T condition
determined for a reservoir must be so understood in light of the unique hardware components
within each specific blowback system. The conventional wisdom of simply assuming the reservoir
pressure being in the range of "two to three" times of the system pressure may or may not be
sufficiently accurate nor revealing (as to why so much pressure is needed) in many cases. [It is
refreshing to realize here that the essential purpose of storing the cleaning fluid under a very high
pressure of several hundred psia or even in excess of a thousand psia isto generate only a few psia of
pressure drop across the cake layer. All the rest of pressure energy is expended in accelerating the
gas or in overcoming the system friction and is eventually lost.] Future filter designs must pay
careful attention to the design of the piping system between the gas reservoir and the filters.

7.1.2 Conceptual Design

‘The conventional systems use equipment that is commercial. The fast acting valve may be
considered developmental especially if a larger valve is desired. A larger valve would decrease
pressure drop and therefore blowback reservoir pressure requirements. For the carbonizer and
gasifier, fuel gas must be cooled and recompressed but, again, the heat exchangers and
compressors are standard equipment.

In order to prevent thermal shock it is advantageous to use as hot a gas as possible. The maximum
operating temperature of the back pulse valve limits the tank gas temperature to 400°F for the
type of valve that is used at Tidd. Since the pulse is very rapid, attempting to heat the gas in the
external pipe after the valve would not be effective. It may be possible that in the future a high
temperature, fast acting valve and a properly designed ejector could produce a blowback gas hot
enough to prevent thermal shock. For this evaluation a 400°F maximum blowback gas was used in
the design. The development of higher temperature, fast acting valves could alleviate this
situation.

The criteria for determining at what temperature thermal shock starts occurring for candle filters
is based on tests that showed that at temperatures 100°F below operating temperature micro
cracking of the candle is observed. However, long term test results with candle filters blown back
with "cold" air have not shown that micro cracking necessarily leads to candle filter failure.
Westinghouse at the Tidd facility, for example, has made no attempt to use heated blowback gas in
the reservoir. Candle life data from this facility could provide useful information for blowback
system design.

The rapid combustion system, while at this time only a concept, has the potential to reduce
thermal shock significantly with present technology. While somewhat similar combustion systems
have been built and operated none were designed to deliver a precise amount of gas at a certain
temperature, pressure and flow rate. A significant amount of test work will be needed before this
concept can be considered commercial. This work will include fuel selection, fuel and oxidant feed
control, firing mechanism and sonic orifice design.

The carbonizer and gasifier systems use recycled fuel gas therefore do not suffer a blowdown
dilution effect. The other systems using compressed air use such small amounts dilution is not a
concern. The amounts shown in Table 5.4-2 are for blowback cycles of 60 minutes but even if the
blowback cycle was reduced to an unlikely ten minutes dilution would not be a factor to be
concerned about.




Since the cleaning of multiple elements in a plenum has the potential to reduce the complexity of
the blowback system, most of the vendors are pursning this approach. More data is needed on this
approach to verify the uniformity of the gas distribution and cleaning. Testing at Tidd should
answer some of these questions.

At this period in the development of blowback systems for CPFBC and gasifier environments,
feasibility rather than comparative costs may be the determining factor for choosing one system
over another. This is because capital costs and operating costs based on these conceptual designs
do not vary much between the eight cases except for on-line versus off-line comparisons. The
feasibility of even the conventional system being tested at Tidd has not been demonstrated for long
term periods especially the effect of the low temperature blowback on candle filter stability. There
is even less experience for systems tested under gasifier conditions at high temperature and
pressure.

The separation of particles is a result of gravitational settling after blowback. In addition to
demonstrating blowback techniques it will be important to determine that the particles blown off
can settle in a reasonable amount of time. Ways of achieving rapid settling by additives, blowback
technique or filter design should be explored.

7.1.3 Economic Analysis

Off-line cleaning has a slightly higher cost than on-line cleaning even though more efficient. This
was due primarily to the extra vessels required. The cost difference between rapid combustion
400°F cold on-line cleaning is negligible. Technical feasibility and not cost will determine which
technique is chosen.

The cost driver of the total system cost are the vessel costs. The vessel costs represents
approximately 75% of the total plant cost. Thus a HGCU system configuration for on-line
cleaning is less costly even though less efficient than the same application with off-line cleaning.
The blow back systems including gas compression represent a small percentage of the total system
cost.

The cost of the ceramic barrier filter system for the advanced PFBC plant is about 2.5 times the

cost for the IGCC plant. The PFBC plant requires two filter systems, one for the combustor and

one for the carbonizer, and has a much higher gas volume. The cost of the cleanup system as

compared to the total plant cost, however, is relatlvely small, 10-12% for the advanced PFBC and
4-5% for the IGCC.

72 CONCLUSIONS

¢  The on-line 400°F pulse blowback system is commercially available and has been widely
tested under both PFBC and IGCC conditions. Potential limitations include thermal shock
and particle redeposition resulting in poor overall filter cleaning efficiency.

s  The off-line 400°F pulse blowback system should provide an improved filter cleaning
efficiency by allowing the dust particles to fall to the bottom of the filter vessels. However,
this has yet to be demonstrated and quantified through large scale tests. The greater
efficiency will come with a higher capital costs associated with additional valve and vessels.
As with the on-line system, thermal shock could also be a potential limitation.

e  The rapid combustion pulse blowback system, while at this time only a concept, has the
potential to eliminate thermal shock in a cost effective manner. A significant amount of test
work will be needed before this concept can be considered viable. The rapid combustion




pulse system was not included for the carbonizer and IGCC cases due to concerns about
producing a reducing gas pulse for these applications. g

The criteria for determining at what temperature thermal shock starts occurring for candle
filters is based on tests that showed that a temperatures 100°F below operating temperature
micro cracking of the candle is observed. However, long term test results with candle filters
blown back with "cold" air have not shown that micro cracking necessarily leads to candle
filter failure.

The off-line cleaning system has a higher cost due primarily to the extra vessels required to
maintain a constant face velocity. However, if testing shows that off-line cleaning can sustain
a higher face velocity this cost differential will disappear. These costs, however, were a small
portion of the entire plant costs. Technical feasibility and not cost will determine which
technique is chosen.

The cost driver for the ceramic barrier filter cost are the vessel costs. The blowback systems
including gas compression represent a small percentage of total system costs.

The spreadsheet model developed for this task can be used to assist conceptual design of a
blowback system or used as an analytical tool to compare performance of different filter
cleaning techniques. It became clear during the model development that many of the
fundamental process parameters required for the effective design of blowback systems are
not commonly available in the literature nor easily estimated by theoretical means.

Based on calculations for plenum blowback using G/C’s spreadsheet model, it appears that a
fast acting valve may not be needed. If this is the case, a less expensive, high temperature
valve may be used and the reservoir gas temperature could be heated to alleviate thermal
shock.

7.3 R&D RECOMMENDATIONS

Several fundamental parameters (such as cake separation stress) required for the effective
design of blow back systems are not commonly available in the literature nor easily
estimated by theoretical means. It is recommended R&D effort be directed in
establishing/compiling this class of information.

The main advantage of off-line cleaning is that dust particles have sufficient time to fall to
the bottom of the filter vessel before redepositing. However, there is no quantitative data on
the mean particle size of dust blown off candle filters. This needs to be determined and ways
of achieving rapid settling by additives, blow back techniques or filter and vessel design
should be explored.

In order to prevent thermal shock it is advantageous to use ashot a gas as possible. The
operating temperature of the back puise valve is the present limit on blow back temperature.
The development of higher temperature, fast acting valves could alleviate this situation.

The rapid combustion system has the potential to eliminate thermal shock effects in a cost
effective manner. A significant amount of development work is needed including fuel
selection, fuel and oxidant feed control, firing mechanism and sonic orifice design.

More data is needed on the plenum cleaning technique to verify the uniformity of gas
distribution and cleaning. These concerns should be addressed during the testing at Tidd.

7-4 -
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o The piping system between the gas reservoir and the filters has a very strong impact on the
pressure drop of the blow back system. Much more attention in the future needs to be paid
to the design, testing and standardization of this system.




APPENDIX A

This appendix contains complete correspondence with our consultant Dr. David Leith of the
University of North Carolina.




memorandum Gilbert/Commonwealth ,

February 22, 1994

To: M. G. Klett
From: R. Zaharchuk
Subject: Meeting with David Leith, HGCU Blowback Project

During the afternoon of February 16, 1994, a meeting was held at the University of North
Carolina. In attendance were:

H. Chen

R. Zaharchuk ,

David Leith, Director, Air, Radiation and Industrial Hygiene Program
Peter C. Raynor, Doctoral Student

The purpose of this meeting was to discuss the spreadsheet model for filter cleaning developed by
H. Chen and to determine how best D. Leith and P. Raynor could assist G/C in the DOE project
concerning the evaluation of three blowback systems for candle filters. Prior to the meeting

D. Leith was sent Task 1 and 2 progress report and spreadsheet information. During the meeting
G/C gave D. Leith the METC report on candle filter tests, SRI particle analyses and other papers
concerning candle filter cleaning. The meeting agenda was in three parts as follows:

1. The three blowback systems were explained by R. Zaharchuk to ensure that D. Leith fully
understood the advantages and disadvantages of each system. He was told that conceptual
designs would be done but at this time G/C was not sure which systems DOE would
choose. The DOE would be given our recommendations in Task 3 of the project.
Although D. Leith had not been involved in hot gas cleanup since 1988, it was fairly
obvious he understood the systems because of his past work on bag filters.

2. In the next portion of the meeting H. Chen went through the blowback model spreadsheet
in detail providing his rationale and basic assumptions. D. Leith agreed that using the
Ergun equation was acceptable. He also admitted that he was involved in producing many
models himself and was skeptical about their usefulness. He said that he would like to
have a copy of our model in order to perform sensitivity studies with various parameters.
H. Chen claimed that it would be difficult to do this since he had not written instructions
on how to run the model. )

During the model discussion, cake removal efficiency, cake tensile strength, cake porosity,
particle size and other parameters were talked about.

3. The last portion of the meeting concerned the areas where D. Leith and P. Raynor could
help G/C. G/C requested that a letter report by Leith should be completed by the first
week in March so that their input could be presented tc DOE at a meeting in mid-March.
The report would contain comments and potential efforts by Leith and Raynor. The areas
suggested by G/C were: ‘




i Memo to M. G. Klett
Meeting - D. Leith
February 22, 1994
Page 2

. Search sources of data that may not have been published. This should include work
being done by S. Rudnick who is currently a consultant for CeraMem.
. Comment on the G/C spreadsheet model.

. Comment on off-line cleaning versus on-line. D. Leith has done work on this at
atmospheric conditions.

° Comment on the three blowback systems being investigated.

. Comment on dust cake characteristics such as tensile strength, pressure drop,
porosity.

. Comment on blowback pressure versus time.

. Comment on re-entrainment during on-line cleaning, i.e., cake removal efﬁcfency.

) Comment on whether data collected for pulse jet cleaning at atmospheric

conditions applies to high temperature, high pressure rigid ceramic filters.

This was a very good first meeting. It is our impression that Leith and Raynor have a good
understanding of the theoretical fundamentals of filter cleaning and of our current concerns and
needs. This should become apparent in their first letter report. They were requested to reserve
hours for a later review or additional work.

After the meeting a short tour was taken through D. Leith’s test lab. He is currently doing work
on industrial oil aerosol filtrations, determination of aerosol content in work areas and testing of
HEPA type filters. '




David Leith ' 919 929-6176°

116 Porter Place
Chapel Hill, NC 27514

3 May 1994

Mr. Roman Zaharchuk
Advanced Technology Services
Gilbert/Commonwealth, Inc.
P.O Box 1498 v
Reading, PA 19603-1498

Dear Roman:

Following is my report on the questions you asked me recently. I will put the originals in the
mail today, and include copies of several articles that you may not have but that are listed in the
references.

Please let me know if you have any questions.

Sincerely yours,

Dewii A

David Leith




David Leith | 919 929-6176

- 116 Pornter Place
, Chapel Hill, NC 27514

3 May 1994

Mr. Roman Zaharchuk .
Advanced Technology Services
Gilbert/Commonwealth, Ing,
P.O Box 1498

Reading, PA 19603-1498

Dear Roman:

During our telephone conversation on April 21, you asked me to consider two questions
regarding the cleaning of ceramic candle filters:

o Estimate the effectiveness of off-line cleaning with the plenum-pulse system, assuming
the size distribution of the removed dust is given in the report by Snyder and Pontius
of Southern Research Institute, SRI (1 ).

¢ Estimate the effect of taking one vessel off-line for cleaning on the performance of the
vessels that remain on-line.

This letter will give you my thoughts on these questions.

Effectiveness of Off-Line Cleaning
To address this question, I madc several assumptions.

1.  Immediately after the plenum pulse, dust removed from the ceramic candles is
spread in uniform concentration throughout the vessel tier cleaned.

This assumption seems reasonable. The action of the plenum pulse should drive dust away from
the candles and mix it thoroughly with the gas in the vessel tier cleaned. Iam not assuming the
dust remains in uniform concentration, see point 3 below, only that it has uniform concentration
immediately afier the plenum pulse.

2.  The size distribution of the removed dust is given by the data in the SRI report.

Several size distributions are presented in this report. 1 did separate calculations for several of the
size distributions presented there. In general, the size distributions presented for the filter cake
are finer than the size distributions for the hopper ash.

3. Gasinthe vessel is partially mixed due to convection after the plenum pulse.




The degree of gas mixing in the vessel will affect how the dust settles. I did separate calculations

for gas fully and continuously mixed due to convection, and for gas that is stagnant and not mixed
at all. Reality should lie between these two extremes. As shown below, there is litile difference in

these two cases unless enough time passes to remove & significant fraction of the dust.

»

4. This work makes no assumption about the fraction of the dust cake on the ceramic
filters that the plenum pulse separates.

The fraction of dust on the ceramic candles thai is removed from the system by a plenum pulse
will depend on the product of the faction of dust on the candles that is sepurased by the pulse,
multiplied by the fraction of dust removed that settles out by gravity over time, after the pulse.
'This letter does not consider the fraction of dust that is separated. It addresses the fraction of
removed dust that settles out by pravity.

_Theory

The fraction of dust particles of a given size that settle from a closed chamber when the gas
within the chamber is continuously stirred or mixed by convection is given by Eq. (1). The
fraction of these same particles that settle from the chamber if the gas within is stagnant is given
by By. (2). These equations can be readily derived; let me know if you would like the derivations.

-V t ' N
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where

v.  isthe pasticle’s terminal settling velocity,

t is time, and

H  is the height of the chamber.

Equations for terminal velocity and its dependence on temperature and pressure are given in the
Appendix.

For particles with a size distribution, the overall removal efficiency for the dust is given by

Mo =4, (@) 4G » X ()20 3)

where 11 (d) is efficiency as a function of particle size as given by Eq. (1) or Bq. (2) above, and dG
is the differential fraction of all particles in the distribution with size “d”. For a discrete frequency
distribution, as given in the SRY daty, the differential “dG”™ can be replaced by “AG”. Eq. (3) was
used to determine the fraction of dust in the vessel removed by gravitational settling in time “t”.




Method

Size distributions for Tidd hopper ash, ID#2998, Tidd filter cake ash, ID#4012, and
EPRY/Grimethorpe filter cake ash, ID#2896 were taken from the SRI report and used in a
spreadsheet that utilized the above equations 1o determine fly ash removal by settling from the
vessel. In sll these calculations, the height of the tier cleaned was assumed to be 3 meters. Gas
temperature wes iaken te be 1550 F; pressure was taken to be ten atmospheres. Under these

conditions, gas viscosity was taken to be 3.0 x 10 Ib/(f-5) from the spreadsheet compiled by Dr.
Herbert Chen of your firm (2 ).

Results

Results of these calculations are given in the spreadsheets on the three pages at the end of this
letter. Of most interest are the plots in the lower left corners of each spreadsheet, which show the
fraction of dust that settles out against time since the cleaning pulse. Two lines are shown on
each plot, one for the well-mixed case where removal efficiency is given by Eq. (1), and one for

the stagnant case where removal efficiency is given by Eq. (2). For low removal cfficiencies,
these lines converge. :

If we assume that the size distribution for the separated ash is most like that given by the
sample from the Tidd hopper, ID#2998, it appears that after ten seconds less than 1% of the ash
will have settied from the vessel. After about two minutes, about 10% will have settled out. The
Tidd hopper ash is the coarsest ash considered in this analysis.

If we assume that the size distribution of the separated ash is most like that given by the
sample from the EPRI/Grimethorpe or Tidd filter cakes, then the time necessary for 1% of the ash
to settle out is 20 to 70 seconds, respectively, Similarly, the time necessary for 10% of the ash to
settle becomes about 250 to 1000 seconds, respectively. The EPRI/Grimethorpe and Tidd filter
cake ashes are finer than the Tidd hopper ash, and so take longer to setile.

Discussion

Regardiess of which ash we assume represents most accurately the size distribution of the dust
separated from the ceramic candles by a plenum pulse, these calculations suggest that the pressure
vessel will have to remain off-line for a significant amount of time if much of the dust is to settle
out. Dust that does not settle out completely will redeposit on the candle filters when they come
back on line, increasing the mass of the dust cake on the filters and the subsequent pressure drop.

The key assumption in these calculations is that the size distribution of the dust freed from the
candles by a plenum pulse is the same as the size distribution of the dust cake on the filters or in
the hopper. We can hope that the dust freed from the candles by the plenum pulse will be coarser
than the distributions for cake or hopper dust measured by SRI. This freed dust may contain
agglomerates that would scttlc relatively quickly, Ifthese agglomerates are fragile, they might be
broken apart in the process of measuring the size distribution of the hopper dust. The fact that the
hopper dust had a coarser size distribution than the filter cake dust shows that agglomeration does
occur, as otherwise the size distributions of these two dusts would be the same.

-




Although we might be hopeful that settling will be more effective than is calculated here, in
my view we should not plan on it. Experiments with pulse-jet cleaned fabric filters that collected *
fly ash with size distributions similar to those expected in pfbc operations had removal efficiencies
that generally were about 10% for on-line cleaning at filtration velocities lower than about 10
cm/s (3 ,4 ). Removal efficiencics for off-line cleaning were slightly higher, but comparable (5 ).

We can also use these results to estimate the fraction of dust that should settle to the bottom
. of the vessel during on-line cleamng This can be done by realizing that the mean residence time
for the gas in the vessel, t, is given by

v
where the dusty-side volume of the pressure vessel is given by “V”, and the gas flow through the
vessel is given by “Q”. Thus, if these two parameters are known, we can calculate mean

residence time in the vessel and enter the same spreadsheet piots discussed above to determine the
fraction of separated dust that should fall to the hopper after an on-line pulse. The complement of
this fraction will redeposit on the candle filters. Although I do not have data for V and Q, I

would expect that the mean residence time for the gas in the vessels would be less than ten
seconds. These calculations suggest that only a very small fraction of the separated dust should
settle out by gravity during this time.

These results can also be used to help determine the minimum mass of dust per unit area that
will remain on a candle after pulse cleaning, w. This is given (4) by

w v
wW=r—— 5
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where w, is the mass per unit area added to the candle between cleaning pulses and is given by
Wo = C ¥ timeat, Where ¢ is inlet mass concentration, v is filtration velocity, and tiea is the time
between cleaning pulses. Here, v is the fraction of the dust cake that is freed by the cleaning
pulse, and 1 is the fraction of removed dust that settles to the hopper after a pulse as calculated
according to the methods in this letter. In the optimistic event that the cleaning pulse removes all
dust from the candle, vy = 1, and Eq. (5) can be solved to give the mass per unit area of the dust
cake afier a pulse. This calculation could be done for reasonable operating values for the ceramic
candle filters, to determine the expected mass of dust that would remain on the filters for
modecling pressure drop. |

Effect of Taking One Vessel Off Line on Remaining Vessels
If one vessel is taken off-line for cleaning, the flow that previously passed through that vessel

would have to be diverted to the vessels that remain on-line. The increase in flow thorough the
vessels that remain on-linc would be given by

Qi * Qo 105 - | ©




where Q is gas flow to any single vessel and N is the total number of vessels. Clearly, as the total
number of vessels increases, the effect on flow through a vessel that remains on-line is minimized,

The effect on pressure drop of increased flow through a vessel can be checked using Dr.
Chen's model. I would expect that most but not all of the pressure drop through a candle filter
would be laminar; and in that case pressure drop is proportional to flow. Thus, as a minimum, we
could expect that pressure drop through the on-line vessels would increase by the value given in
the parenthetic expression in Eq. (6) above.

Some second-order effects may also occur. The added pressure drop caused by higher
velocity during cleaning has the potential to cause some cake collapse on the candle filters that
handle the extra flow. The effect of this collapse would be to decrease cake porosity, further
increasing pressure drop which could cause further collapse, etc. Thus, the net effect of off-line
cleaning on the pressure drop for the remaining vessels might be to cause higher pressure drops
than expected on the basis of flow diversion alone. Whether the collapsed cake would be easier
or more difficult to clean from the candle filter than cake that did not collapse is difficult to say.

Because these calculations suggest that a vessel will have to remain off-line for a considerable
length of time before appreciable dust settles out, it may be necessary to consider designing &
system in which one vessel is always off-line for cleaning. The particular vessel off-line would
rotate through all vessels used. In this case, cleaning of any given vessel would be more frequent
if fewer vessels are used. Calculations could be done to determine the feasibility of this concept.

I hope these comments will be useful. Please let me know if you have questions about the

points raised here, or if you have additional questions. 1 am enjoying working with you on these
problems. :

Sincerely yours,

Dowiok (el

David Leith, Sc.D.

-
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AFPPENDIX - EQUATIONS FOR TERMINAL SETTLING VELOCITY
Equations in this section are taken from Reist (1)

Terminal velocity is given by Stokes’s law,

d,’°C.g

v, = -Ts-;—— (A-1)
where

d, is the particle’s aerodynamic diameter,

C. is the Cunningham slip correction factor,

g is the acceleration of gravity, and

B is gas viscosity
Slip correction factor, C,, dcpcnds on the gés mean free path, A, which in turn depends on
temperature and pressure. .

2 -110d
=1+—11257+0. -2
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where dy, is the mean molecular diameter, given by 3.6 x 10" om for air, and assumed the same'
- for the combustion gases present here. The value for n is the number of molecules per mole, and
can be found from

)
n_6.0.‘¢.’><10 (T ]

22,400

(Ad)

where 6.02 x 10® js Avogadro’s number, 22,400 is the number of cm® per mole at 20° C, T is
absolute temperature in °K, and P is absolute pressure in atmospheres.

>
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Sett!ing Times for PFB Fly Ash During Off-Line Cleaning
Tidd hopper ash{(lb#zeaa) ciid
viscosity, g/(cm-s), bm/(fi.s) = 447E-04|3.00E-05, = |
Pressure, atm = 10 10 ’
 Temperature, oC, oF = 843 15501 -
Tier Height, cm = 300
lambda, cm = 0.000002
Size Distribution lx|tformation .
size %< Range _ Fracin |Adj Frac vi
fow high Midpt Range lin Rang_e Ce cm/s
0.55 0.0 0.0 0.6] 0.000028] 0.000] 0.000 1.225{ 0.00011
0.70 0.0 0.6 0.7 0.000083| 0.000{ 0.000 1.008{ 0.00052
1.00 0.0 0.7 1.0{ 0.000085| 0.000{ 0.000 1.073! 0.00095
i3 1.2 1.0 1.3/ 0000115, 0.012{ 0.012 1.054] 0.00170
1.8 3.0 1.3 1.8] 0.000155| 0.018] 0.018 1,040/ 0.00305
23 7.0 1.8 2.3] 0.000205| 0.040{ 0.040 1.030| 0.00528
3.1 14.0 2.3 3.1] 0.000268| 0.070| 0.070 1.023{ 0.00893
41| 260 3.1 4.1] 0.000358| 0.120] 0.120 1.017] 0.01586
55| -48.0 4.1 $.5] 0.000480) 0.200]  0.200 1.013] 0.02846
7.3 700 5.5 7.31 0.000640] 0.240| 0.240 1.010{ 0.05044
10 740 7.3 10.0{ 0.000865! 0.040] 0.040 1.007) 0.09191
13 77.0 10.0 13.0] 0.001150] 0.030] 0.030 1.005{ 0.16217
18] 840 13.0] 18.0] 0.001550] 0.070| 0.070 1.004| 0.20419
22 80.0 18.0{ 22.0{ 0.002000{ 0.080{ 0.080 1.003| 0.48937
31 £4.5 22.00  31.0| 0.002850] 0.045] 0.045 1.002] 0.85850
41| 98.0 31.0] _ 41.0] 0.003800]  0.035| 0,035]  1.002] 1.58338
50! 100.0 41.0] 50.0| 0.004550| 0.020{ 0.020 1.001] 2.52841
Total 1.000{ 1.000
Fractional Removal by Gravitational Settlin
{
i
Time :g_l;::‘ :tt:j:taant Fraction of Ash That Settles Out i
1] 0.0007] 0.0007]| OO0 === === ]
2| 0.0015] 0.0015 : |
4| 0.0030] 0.0030 L i
8| 0.0050] 0.0080{) . .. Wl i
18] 0.0116] o.o0118|| == el I
32] 0.0224] 0.0238] | |
64| 0.0423] 0.0477 Eo i
125/ 0.0746] 0.0932 .
250] 0.1252] 0.1664]| £ : == |
500] 0.1031] 0.3720 { 3 —e—etamx i [
1000] 0.2768 i A PN ||
2000{ 0.3768 0.0010 4 i wind!|| IR
4000, 0.4984
8000( 0.6434 [
16000] 0.7882 i
0.0001 '
1 10 100 1000 10000 100000 |
‘ Time, Seconds y
i J | l I |
Page 1
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Sheett

Settling Times for PFB Fly Ash During Off-Lins Cleaning

EPRl/jrlmatho na fliter cakle ash (ID#2896)
viscosity, g/(cm-s), Ibm/(fi-g) = 4 47E-04 3.00E-05
Pressure, atm = 10 101
Temperature, oC, oF = 843 1550
Tler Height, em = 300
lambda, cm = 0.000002
Size Distribution l:;formaiian
size__ %< “Range Fracin_|Adj Frac vt
low high Midpt Range jin Range|Cc cm/s
0.55 0.0 0.0 0.6 0,000028 0.000 0.000 1.225! 0.00011
0.70 0.7 0.8) _0.7: 0.0000823 0.007 0.007 1.088] 0.00052
1.00 2.0 0.7 1.0! G.000085 0.013 0.013 1.673] 0.00095
1.3 4.5 1.0 1.3} 0.000115]  0.025;, 0.025 1.054] 0.00170
1.8 10.0] 1.3 1.8 0.00D0155 0.055 0.055 1.040{ 0.00305
2,3 16.0 1.8 2.3] 0.000205] 0.080] 0.080 1.030{ 0.00528
3.1 23.0 2.3 3.1] 0.000268) 0.070; ©0.070 1.023] 0.00893
4.1 350| 3.4  4.1] 0000358, 0.120{ 0.120 1.017{ 0.01588
55| 820 4.1 5.5{ 0.000480f 0.270; 0.270 1.013{ 0.02846
7.3 78.0 5.5 7.3 0.000640! 0.140] 0.140 1.010] 0,05044
10 83.0 7.3 10.01 0.000855 0.070 0.070| __ 1.007, 0.08191
13 86.0 10.0; 13.0; 0.001150 0.030 0.030 4.005; 0.16217
18 82.0 13.0 18.0} 0.001550 0.080 0.080 1.004, G§.29419
22 84.5 18.0 22.0{ 0.002000 0.025 0.025 1.003! 0.48937
31 97.0 22.0f 31.0; 0.002650{ 0.025;{ 0.025 1.002] 0.85650
41 98.5 31.0 41.0} 0.003600 0.015 0.015 1.002] 1.58338
§0; 100.0 41.0; 50.0| 0.00455¢, 0.015] 0.015 1.001] 2.52841
Yotal 1.000{ 1.000
Fractional Removal by Gravitational Settiing
I

!

well mixdstagnant | | ’
1] 0.0005] 0.0005]| = EEEr e e ey s i
2/ 0,0008] 06.0009 =
4| 0.0018] 0.0019 I
8| 0.0037] 0.0038 i ¥l a
16, 0.0074] __0.0076] 1 Eommmee—
32] 0.0143]  0.0152 e .
64] 0.0270] 0.0303 i A
125 0.0480] 0.0592 ]
250 0.0820] 041851 5  E= e S S esnnen E=cs = =EA
500} 0.1308] 0.2389 T "’f--«q 1 — ——sota_mix H}
;ggg g;:g? “'o.oow 1 [ il H et ..- e TJ
4000| 0.4083 : ==
8000] 0.5608 — ~+
16090/ 0.7018
D.000" -
1 10 100 1000 10000 100000
SESER NI R | Time, Seconds
% L 1 ! | 1 I
Page 1 -
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[Settling Times for PFB Fly Ash During Off

A-13

-Line Clsaning
Tidd filter cake ash (ID#4012)
l
viscosity, g/{cm-s), lbm/(ft-5) = 4.47E-04} 3.00E-05
Pressure, aim = 1 10 10 !
Temperature, oC, oF = 843 1550
Tier Height, cm = 300 ;
lambda, cm = 0.000002
8ize Distribution Information
| i
size  |%< ‘Range Fracin_ |Ad] Frac vt
low high _ [Midpt Range [in Range |Cc cm/s o
0.55 21 0.0 _ 0.6] 0.000028] 0.021] 0.021 1,225| 0.00011
0.70 5.0 0.6 0.7{ 0.0000083 0.020 0.029 1.009{ 0.00052
1.00 10.0 0.7 1.0] 0.000085 0.050; 0.050 1.073] 0.00095
1.3 21.0 1.0 1.3| 0.000115 0.110 0.110 1.054| 0.00170
1.8] _ 35.0 1.3 1.8| 0.000155] 0.140] 0.140| _ 1.040| 0.00305
2.3 44.0 1.8] 2.3 0.000205] 0.080] 0.090] _ 1.030] 0.00528
3.1 520 23| 3.1] 0.000268] 0.080] 0.080]  1.023] 0.00883
41| 68.0 31| 43| 0.000358] 0.160] 0.160] _ 1.017| 0.01586
55 87.0 41 5.5] 0.000480] 0.190) 0.180|  1.013] 0.02846
73] 92.0 55| _ 7.3 0.000640] _ 0.050| 0.050] _ 1.010] 0.05044
10 94.5 7.3 40.0] 0.000865 0.025| 0.025 1.007] 0.09191
13 7.0l  10.0 13.0] 0.001150] 0.025] 0.025 1,006 0.,16217
18] 98.0 13.0] 18.0 0.001550|  0.010] 0.010] _ 1.004| 0.2041¢
22| 0.0 18.0] _ 22.0] 0.002000{  0.010] 0.010]  1.003] 0.48937
31| 98.5 22.0] _ 31.0{ 0.002650] 0.005{ 0.005] _ 1.002| 0.85850
41]7100.0 31.0] 49.0] 0.003600] 0.005] 0.005]  1.002) 1.58338
50| 100.0 41.0]  50.0{ 0.004550/  0.000] 0.000] _ 1.001|  2.52841
— |Totai 1.000]  1.000
Fractional Removal by Eravlmtlon'gl Settling
well mixstagnant Fraction of Ash That Setties Out :
time [eta_mix sta fac
1] 0.0001] 0.0001|| "o St S = [
2| 0.0003] 0.0003 f
4| 0.0005]  0.0005 ,i " - |
8] 0.0010 0.0010
76| 0.0020] _o0.0021]| *'*® — e entri |
32| 0.0040] _ 0.0041 |
64| 0.0078| 0.0083 I
125| 0.0148] 0.0161 E}mm - |
250| 0.0260| 0.0323| | | T |
§00| 0.0475]  0.0646 g —e—etnmi fll ]
1000 0.0804]  0.1201| p” e I
2000 0.1316 02582 | go010 Lol bl Lllsf | __ i Mhend ||| I1
4000| 0.2085 A o i
8000] 0.3170 — 1 i
16000] 0.4524 / i
- 0.0001 + 1
o 10 100 . 1000 10000 100000 ||
Time, Seconds !
| 1 ] | | | i
Page



David Leith 919 920-6176

116 Porter Place
Chapel Hill, NC 27514

14 May 1994

Mr. Roman Zaharchuk
Advanced Technology Services
" Gilbert/Commonwealth, Inc.
P.OBox 1458

Reading, PA 19603-1498

Decar Roman:

On 5 May you asked me to do some calculations to determine how long it would take for ash
to settle from a vessel if the ash particles are all 200 pm in aerodynamic diameter. You asked me
to determine this relationship for a single tier of candle filters 3 meters high, and also for a bank of
four tiers a total of 12 meters high.

Method

To make this calculation, we must first determine the settling velocity for 200 um particles
under high temperature and pressure conditions. Unfortunately, Stokes’s law cannot be used as
we are out of the Stokes drag region. Thus, we must first calculate CpRe?, where

. 4d’ P (pr‘p,.) g '
Co Re’ = 3 uz ¢y

and:

Co  is drag coefficient,

Re  is Reynolds number,

d is particle diameter,

P is fluid density,

Py is particle density,

g is the acceleration of gravity, and
1) is gas viscosity :

For this calculation, T used pr=0.00315 glem®, p, = 1 g/em®, and p = 0.000447 g/(cm ), where
the values are for 1550 F and 10 atmospheres. For these conditions, CoRe? = 165.

From Figure 4.3 on page 48 of Reist (1 ), we find the corresponding value of Reynolds
numbcer, Re, is §, from which
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v, =t =35 cm/ s @ -

f

* The value for settling velocity from Eq. (2) was then substituted into the spreadsheet used
previously and described in my letter to you dated 2 May 1994 for calculating removal by settling.

Further spreadsheet calculations were carried out for settling heights of 12 meters, both for
the 200 um ash particles and for ash particles with the size distributions analyzed previously.

Results

Results of these calculations are shown in the tables attached. The first table shows settling
for 200 pum particles in a 3 meter vessel, It shows that over 10% of the ash will settle out in less
than one second using either the fully mixed or the stagnant gas models. Essentially all of the ash
will settle out after ten seconds.

The second table attached shows the results for 200 um particles where the settling distance is
12 meters instead of 3 meters. It shows that nearly 20% of the ash will settle out after 10
seconds, and that removal will be essentially complele afier one minte.

The third, fourth, and fifth tables show settling data for a 12 meter settling height, where the
size distribution of the ash is assumed to be that of EPRI/Grimethorpe ash #2996, Tidd filter cake
ash #4012 , and 1idd hopper ash #2998. These tables show that several minutes are necessary for
only a few percent of the ash to settle out, and that even after an hour of settling, a substantial
fraction of the freed ash will remain in suspension in the gas.

Discussion

These calculations shuw that seitling estimates are very sensitive (o assumptions about the
size distribution of the ash freed from the ceramic candle filters during cleaning. If we assume
that the ash particles are all 200 um in diameter, then complele settling occurs relatively quickly.
On the other hand, if we use available data to estimate the size distribution of the ash, it appears
that settling will be much slower. The data suggest that the mean size of the ash is several orders
of magnitude smaller than the 200 {im assumption.

Data from pulse-jet cleanca fabric filters that I have sent you previously suggest that settling
will be slower rather than faster. My own view is that we should think very carefuily before
disregarding the data on size distribution that we already have, infavor of assumptions about
what the size distribution might be.

~

Additional Thought

It seems to me that the candle filters have two jobs here. The first job is to separate the
particles from the gas stream. The sccond job is to coalesce these collected particles into
agglomerates Iarz,e enough to settle out quickly when the filters are cleaned. Actual removal of
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the ash from the gas stream occurs due to gravitational settling of the agglomerates, as it is
settling that actually removes the particles from the process gas. A great deal of attention has
been given to the effectiveness with which the filters do their first job, and separate the particles
* from the gas. Perhaps too little attention has been given to their ability to build large
agglomerates.

The problem we are running into is that gravitational settling is a relatively ineffective method
- to remove particles from gas. If the filters do their second job poorly and are relatively ineflicient
as agglomerators, the agglomerated ash will remain fine and settle out slowly, even with off-line
cleaning.

Thus, some additional work may be warranted to determine what can be done to foster ash
agglomeration by candle filters. At the same time, we might consider methods other than
gravitational settling to remove agglomerated ash. As you know, I have great interest in cyclones
for ash collection. Perhaps ‘ve should consider using a secondary cyclone to remove the
agglomerates from the back-pulsed gas. Because a cyclone is much more efficient than gravity at
removing particles, the gas in the vessel after filter pulse cleaning could be cleaned of
agglomerates in a few seconds rather than requiring minutes or even hours,

I hope these thoughts will be helpful. Please let me know if you have questions or comments,

Sincerely yours,
David Leith, S¢.D.

Reference

1. Raeist, P.C,, Introduction to Acrosol Science, Macmillan, New York, 1984.
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Sheetd
Settling Times for PFB Fly Ash During Off-Line Cleaning
Al 2°°]um 98'"?135 U

viscosity, gicm-s), lbm/(ft-s) = 4.47E.043.00E-05
Prossure. atm = 10 10
Temperature, oC, oF = 843 1550
Tier Height, cm = 300 ' -
lambda, cm = | 2.64E-06 1.
8ize Distribution information
|
size (%< Range . Fracin {Ad] Frac vt -
fow high Midpt Renge |in Range |{Cc om/s
200 2.1 0.0/ 200.0| 0.020000{ 0.021{ 0.021 1.000{ 35.00000

2000 5.0] " 200.6] 200.0] 0.020000{ 0.028] _0.029] _ 1.000] 35.00000

2000 10.0) _ 200.0] 200.0] 0.020000] 0.050] _ 0.050| _ 1.000] 35.00000
200f 210 200.0] 200.0] 0.020000] 0.110] 0.110 1.000] 35.00000
200] 3500 200.0 200.0{ 0.020000] 0.140 0.140]  1.000| 35.00000

200] 440{ 200.0] 200.0| 0.020000| 0.080 0.080|  1.000| 35.00000
200] 52.0! 200.0] 200.0] 0.020000] 0.080] 0.080  1.000] 35.00000
200] €8.0]  200.0] 200.0] 0.020000] 0.160] 0.180]  1.000] 35.00000
200] 87.0{ 200.0] 200.0] 0.020000] 0.160] 0.190] 1.000[ 35.00000
200 92.0{  200.0/ 200.0| 0.020000] 0.050] 0.050{  1.000| 35.00000
200] ©04.5]  200.0] 200.0] 0.020000] 0.025] 0.025] _ 1.000| 3406000
200] 7.0/ 200.0/ 200.0] 0.020000 0.025] 0.025| 1.060] 35.00000
200] _08.0]  200.0] 200.0 0,020000{ 0.010|  0.010] __1.000| 35.00000
200] 96.0] 200.0] 200.0] 0.020000|  0.010] 0.010]  1.000] 35.00000
200 66.5]  200.0' 200.0{ 0.020000/  0.005{ 0.005] _ 1.000] 35.00000

—200] _100.0] __200.0,_200.0] 0.020000] __0.005] _0.005| __1.000] 35.00000 e
260] ~100.0] ~"200.0] _200.0] 0.020000] _ 0.000] _0.000] __1.000| 35.00000
___ [Total 1.000]  1.000

Fractwnal ‘Removal by Gravitatlonal st

- ]

well mix [stagnant

time |eta_mix |ela_stag Fraction of Ash That Settles Out
71 0.1101] _ 0.1167]] % P
2] 0.2081] 0,233 ‘ =t
4| 0.3729] 0.4667 _ _
8] 0.8088] 0.9333 - vt
. — —
ot s ’r o /
—
,( /
p — Pd g
] § < ——sta_ mlx
w ”
- 'd
- -
—— ”
- 0.1000 4
N | R 10

Tima, Saconds




Sheett

Settling Times for PFB Fly Ash During Off-Line Cleaning

All 200 um particles
viscosity, g/(cm-s), lbm/(ft-s) = ~4.47E-04| 3.00E-05 .
Pressure, aim = 10 10
Tempetature, oc oF = 843 1550| -
{Tior Height, cm = 1200
{arnbda, cm = J.2.64E-08
Size Distribution Information
l e
size %< Range Fracin |Adj Frac vt
_ low high Midpt Range _jin Range iC¢ cm/s
200 2.1 0.0| 200.0| 0.020000 0.021 0.021 1.000{ 35.00000
200 5.0 200.0] 200.0] 0.020000 0.028 0.029 1.000{ 35.00000 ]
_.200 10.0 200.0/ 200.0] 0.020000 0.050 0.050 1.000/ 35,00000
200 21.0 200.0] 200.0] 0.020000{ 0.110/ 0.110]  1.000{ 35.00000
200  35.0 200.0] 200.0] 0.020000! _ 0.140]  '0.140]  1.000| 35.00000
200 44.0 200.01 200.0| 0.020000 0.080 0.080 1.000| 35.00000
200] 52.0]  200.0] 200.0{ 0.020000] 0.080] 0.080] 1.000| 35.00000
200{ 68.0 200.0] 200.9] 0.020000]  0.160| 0.160] _1.000| 35.00000
g0D| _ 87.0) _ 200.0| 200.0{ 0.020000] _ 0.190]  0.180} _ 1.000| 35.00000
200 82.0 200.0{ 200.0! 0.020000 0.050 0.05Q 1.000] 35.00000
200 94.5 200.0{ 200.0] 0.020000 0.025 0.0256 1.000| 35.00000
200 97.0 200.0; 200.0{ 0.020000 0.025{ 0.025 1.000] 35.00000
200 08.0 200.01 200,0! 0.020000 0.010 0.010 1.000{ 35.00000
200]  ©9.0] 200.0] 200.0{ 0.020000]  0.090] 0.010]  1.000| 35.60000f = | |
200] 60.5] _ 200.0] 200.0} 0.026000| 0.005| 0.005{ 1.000| 35.00000
200/ 100.0 200.0] 200.01 0.020000 0.005 0.005 1.000{ 35.00000
200 100.0 200.0{ 200.0] 0.020000] 0.000{ 0.000 1.000] 35.00000 ]
: Total 1.000f 1.000
Fractionai Removai b'LGravlt'étlm%gl Settiing

well mix {stagnant

time ieta_mix |eta_stag
1] 0.0287] 0.0202]

- 21 0.0867 0.0583
4] 01101} 0.1167
18] 0.2081] 0.2333
16| 0.3728! 0.4687
32| 0.6068] 0.9333

mvmsreecme e fa mipmean

|
|

1.0000

0.4000

0.0100

Fraction of Ash That Settles Qut

*
N

—cta_mix |1

~ ¥ — ata_stap

ic

Time, Seconds

100




Sheet?

Settling Times for PFB Fly Ash During Off-Line Cleaning

[EPRI/Grimethorpe filter cake ash (ID#2806) |
| _ -
viscosity, g/(cm.s), Ibm/(fl-8) = 4.47E-04| 3.0CE-05
Pressure, atm = 10 10
Temperature, oC, oF = 843 1550 - A
Tier Height, cm = L. %200
lambda, cm = 2.64E-08
Size Distribution Ir]\fomwa'iién
size [%< Range Fracin__|Adj Frac vt )
low high Midpt {Range lin Range|Cc cmis
0.55 0.0 0.0]  0.6] 0.000028]  0.000[ 0.000;  1.242] 0.00011
0.70 0.7 0.6] 0.7/ 0.000063| 0.007] 0.007]  1.108] 0.00053
100 20/ 07 1.0/ 0.000085| 0.013] 0.013]  1.078] 0.00085
13 48 1.0 13[0.000115] 0.025] 0.025  1.058] 0.00171 N
1.8 100 1.3 1.8/ 0.000155] 0.055] 0.055]  1.043] 0.00306 B
23] 180 1.8 2.310.000205] 0.060] 0.060] _ 1.032] o0.00528 _ |
34 23.0 2.3 3.1]°0,000268] — 0.070] 0.070|  1.025| 0.00884
41 350{ 84| _ 41| 0000358 _0.420] 0.120] 1.018| 0.01588
55| 620 41/ 55| 0000480 0.270] 0.270]  1.014] 0.02849
'7.3]  76.0 55  7.3] 0.000840| 0.140[ 0.140]  1.010] 0.05048
10| 830 7.3] 10.0] 0.000885] 0.070] 0070 1.008] 0.08198 o
“13[ 86.0 10.0]  13.0{ 0.001150]  0.030] 0.030] _ 1.008| 0.16223
18] 020 13.0]  18.0[ 0.001550| 0.080] 0.080|  1.004| 0.29428
-22] 945 18.0]  22.0{ 0.002000{ 0.025 0.025]  1.003[ 0.48648
3 e70 22.0] 31.0] 0.002650] 0.025] 0.025]  1.003] 0.85864
41] 985 31.0] 41,0/ 0.003600] 0.015] 0.015]  1.002] 1.58358
150 100.0 41,0 50.0] 0.004550| _ 0.015| _0.015[ _ 1.001| 2.52886
— Jrotsl | 3.600] " 1.000
Fractional Removal by Gravltaﬂon[al Settlin
o ll mux stagnant Fraction of Ash That Setties Out
- 1] 0.0001] _ 0.0001]| 'O =g = ==urr
2] 0.0002]  0.0002 SREEILE
4] 0.0005] 0.0005 . b,
8| 0.0008] 0.0009 .
~18] 0.0019] _o0.0019]] *'*° =St
32] 0.0037] 0.0038] | ¥ %
‘84] 0.0074] 0.0078 Eﬂ '
125| 0.0140{ 0.0148 4
250] 0.0285] _0.0208]| § = E=F : S
500] 0.0480] 0.0502] § — — 3 ——eta_mix ]
1000] 0.0820] __0.1185| | « i
2000 0.1308] — 0.2370} | 00010 - | |~ 8~ ot
~000] 0.1983] 0.4738 = A e e e ===
8000| 0.2888] 0.6470 y THIE
16000] 0.4065
0.0001 °
1 10 100 1000 10000 100000
Time, Seconds
1 1 ! 1 f |
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Settling Times for PFB Fly Ash During Off-Line Cieaning

-

Tidd hopper ash (iD#2088) |
| 1

viscosity, g/(cm-g), lom/(fi-s) = | 4.47E-04) 3.00E-05 N
Pressure, atm = L 10 10 .
Teinperature, oC, oF = 843 15650 N
Tier Height, cm = 1200 N
janibda, om = | 284E08
" |Size Distribution information
1 _
size %< Range Fracin _(Adj Frac M
_ low _lhigh _ |Midpt Range _|in Range {Cc cm/s
1.55 0.0 0.0 0.6/ 0.000028! ©0.000{  ©.000 1.242|  0.00011
0.70 0.0 0.8 0.7] 0.000083] 0.000] 0.000 1.106] 0.00053
1.00 0.0 0.7 1.0] 0.000085]  0.000] 0.000 1.078] 0.00085]
1.3 1.2 1.0 1.3] 0.000115}  0.012] 0.012 1.058( 0.00171
1.8 3.0 1.3 1.8 0.000155] 0.018] 0.018 1.043] 0.00308
23 7.0 1.8 2,3|°0.000205]  0.040]  0.040 1.032] 0.00529
34 140 23 3.1| 0.000268|  0.070{  0.070 1.025| 0.00894
4.1 280 3.1 4.1{ 0.000358|  0.120] 0.120 1.018] 0.01588
55| 48.0 41]  5.5[ 0.000480] 0.200{ 0.200 1,014] 0.02840
17.3] 700 5.5 7.3/ 0.000840| _ 0.240[  0.240 1,010 0.05048
___10] 740 7.3 10.0| 0.000865| 0.040] 0.040 1.008] 0.08198
713] 770/  10.01 13.0] 0.001150] 0.030] 0.030]  1.006] 0.16223
t18] 840 13.0] 18.0/ 0.001550] 0.070] 0.070{ _ 1.004| 0.29428
122|  90.0 18.0] 220! 0,002000] __0.060| _ 0.060 1.003| 0.48948
31] 945 22.0] 31.0{ 0.002850{ 0.045] 0.045]  1.003] 0.85884

41 98.0 31.0{ 41.0; 0.003800] 0.035{ 0.035 1.002| 1.58358

<50 100.0 41.0]  60.0{ 0.004550| 0.020] 0.020 1.001] 2.52866

[Total 1,000 __1.000

Fractional Removal by Gravitational Settling
1

fime :;:’1:::: ::%%::g Fraction of Ash That Settles Out
. ........1 3:0-0—‘]2-'_01’_002 1.0000 s ﬁ B E b ot Eadis R B B K 6
3|70.0004] 0.0004 S
4] 0.0007 0.0007 - 7 T ‘
.8 0.0015] 0.0015[ .. i ¥ i 1
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Sheet1

Setttmgimes for PFB Fly Ash During Off-Line Cleaning

Tidd filter cake aish (ID#4012)
1 |
viscosity, g/(cm-s), lbm/(ft-s) = | 447E-04|3.00E-05 >
Prassure, atm = 10 10
Temperature, oC, oF = 843 1550
Tier Height, cm = 1200
lambda, cm = 2.64E-06
Size Distribution Iinformation
l ___
size (%< Range Fracin _|Adj Frac w
tlow high Midpt Range __lin Range|Cc cmis
0.55 2.1 0.0 0.6{ 0.000028 0.021 0.021 1.242;} 0.00011
0.70 5.0 0.8 0.7} 0.000083] 0.029] 0.029 1.108{ 0.00053
1.00 10.0 0.7 1.0] 0.0000858] 0.050{ 0.050 1.078] 0.00095
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140 BPW Club Road, Apt. E-3
Carrboro, NC 27510

(919) 968-4960

May 26, 1994

Dr. Herbert T. Chen

Advanced Technology Services
Gilbert/Commonwealth, Inc.

P. O. Box 1498

Reading, PA 19603

Dear Herbert:

This letter summarizes the findings from my search for literature that may assist
your design of a ceramic barrier filter cleaning system. To begin, I report my general
findings. Then, I provide a brief summary of each paper before finishing with a few
comments on where to look for literature in the future. The papers which I summarize are
included in this mailing. You will notice that several of the papers are ones which you
have already included as references in your “Progress Report 1 and 2”. These papers and
my comments on them are included for completeness.

Findings from Literature Survey

Several themes became apparent as literature was reviewed. First, the studies
described by the papers, in general, are not systematic; each tends to be focused on a
particular filtration installation. Consequently, the results from the studies tend to be
anecdotal. Furthermore, the information collected from a given filter installation is
difficult to apply in new situations. However, systematic studies may not be helpful to
designers of new ceramic filter installations either. As mentioned in several of the papers,
the effectiveness of a particular filter design can not generally be evaluated except under
actual operating conditions (temperatures, pressures, feed composition, etc...). Therefore,
it should be expected that new ceramic filter units will not work exactly as designed.

Secondly, many of the papers indicate that there is a significant increase in residual
pressure drop (the pressure drop across a filter inmediately after cleaning) as a ceramic
filter is used over time. The papers show that filter permeability tends to decrease to a
steady-state value that is between 15 and 40% of the initial permeability. This decrease in
permeability means that an increase in residual pressure drop of between 2.5X and 6X
should be expected as the candle filters are used. The cause of this pressure drop increase
is the thin layer of filter cake that remains attached to the ceramic candle filter during pulse
cycles. The model developed at Gilbert/Commonwealth underestimates the contribution
of the permanent filter cake to the residual pressure drop.
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Another observation common to most papers is that the dust cake separates from
the filter primarily as large agglomerates. This finding suggests that the increase in
residual pressure drop as the filter operates is not due to reentrainment of separated
particles.

Lastly, the papers provide some operating data that may be useful for comparison
to the Gilbert/Commonwealth model:

(1) The face velocities mentioned in these papers range from 1.6 to 6.5 cm/s.
However, there seems to be some concern that velocities at the high end of this
range may cause particles to penetrate far enough into the ceramic filter surface to
cause an unacceptably large increase in the residual pressure drop. In the
Gilbert/Commonwealth model, the face velocity is greater than 6 cm/s. Lowering
this design velocity may be prudent. _

(2) The largest pulse reservoir mentioned in any of these papers is 37 bar (538
psia). This is less than half of the reservoir pressure of 1236 psia in the
Gilbert/Commonwealth model. It appears that the Gilbert/Commonwealth pulse
system may be overdesigned, though such an approach may be appropriate when
so many design parameters are uncertain.

These papers probably include other data that can be used for comparison to the
Gilbert/Commonwealth model. Though the operating conditions will invariably change
from unit to unit, these data will at least indicate if the model is “in the ballpark”

Summary of Literature Provided

In this section, the information in each of the papers is summarized. Copies of the
papers are attached:

(1) Butcher, C., “Hot News in Ceramic Filters”, The Chemical Engineer, No. 505, 1991,
pp. 27-29.

This article is fairly general. However, it mentions that face velocities for ceramic
filters are typically 3 cm/s, but can range to as much as 6 cm/s .or more. In addition, the
article quotes researcher Jonathan Seville as saying that, although surface filtration
accounts for most particle capture, some particles may penetrate into the filter element to
cause a pressure increase that cannot be reversed by cleaning. Also, Seville states that
cleaning can be patchy. The difficulty in predicting pressure drops without trials is also
mentioned.

(2) Butcher, C., “The Unstoppable Cleanup Maclune The Chemical Eng;neer, No. 536,
1993, pp. 17-18.
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This article reports on practical operating experience which includes buildup of
large amounts of dust on filter elements. The article quotes researcher Roland Clift as
saying that the selection of face velocity is important; if the velocity is too high, too many
particles will penetrate into the filter element. Clift also stresses the importance of running
trials under actual operating conditions to understand a particular cleaning process.
Furthermore, it is reported that cleaning is patchy and that the cake usually detaches to
leave only a thin layer of dust attached to the filter element.

(3) Callis, R., “Practical Application of High Temperature Filters”, Filtration and
Separation, Vol. 28, No. 4, 1991, pp. 231-232.

In this article, face velocities for ceramic filters are reported to be 1.5 to 2 times
greater than for fabric filters. The author states that any face velocity can be chosen
depending on the pressure drop that is affordable. Dust released by cleaning is reported to
leave the filter surface in agglomerated form so that reentrainment is not extensive.

(4) Clark, R., Holbrow, P., Oakey, J. E., Burnard, K. and Stringer, J., “Some Recent
Experiences with the EPRI Hot Gas Rigid Ceramic Filter at Grimethorpe PFBC

Establishment”, 12th International Conference on Fluidized Bed Combustion, Vol. 2,
1993, pp. 1251-1258.

This paper is one which you have already reviewed. Its results indicate that
residual permeance in a ceramic filter may decrease to 15-30% of the original permeance
as the filter is used and repeatedly cleaned by pulsing. The paper also shows profiles of
pressure increases associated with the pulsing cycle. The authors found that the pulse
duration must be long enough to allow a maximum pressure drop to be achieved. In their
system, a fully open valve time of 120 ms was not long enough whereas 240 ms probably
was sufficiently long. Optimum filtration velocity was found to be between 3.3 and 6.5
cm/s and was probably closer to the upper value.

(5) Koch, D., Cheung, W., Seville, J. P. K. and Clift, R., “Effects of Dust Properties on
Gas Cleaning Using Rigid Ceramic Filters”, Filtration and Separation, Vol. 29, No. 4,
1992, 337-341.

The authors emphasize the importance of experimental work to select operating
conditions. For instance, cake porosity is difficult to estimate. Cleaning is described as
patchy for ceramic filters. In addition, the paper mentions that the cleaning stresses
required for fabric filters are usually two orders of magnitude smaller than those needed
for ceramics. However, the stresses can not be accurately predicted.

(6) Laux, S., Schiffer, H.-P. and Renz, U., “Performance of Ceramic Filter Elements for
Combined Cycle Power Plant High Temperature Gas Clean-up”, 11th International
Conference on Fluidized Bed Combustion, Vol. 2, 1991, pp. 959-969.

A-24 s

»




This is also a paper that you have seen before. The residual dust layer in tests
conducted for this paper reduced filter permeability to about 30-40% of the initial
permeability. The authors spend some time discussing on-line pulse cleaning. They point
out that high momentum jets can be created with a large pipe diameter and a low pulse
pressure or with a small pipe diameter and a large pulse pressure. They also present data
that show that an increase in pulse pressure increases long-term permeability. With a
solenoid valve controlling the start of a cleaning pulse, the authors claim that pressure
increases rapidly inside the filter cavity so that “steady-state” conditions are achieved in
10-15 ms. The paper also includes a photograph that shows the break-up of a filter cake
during pulsing. The authors state that the cake breaks off into large flakes that
immediately fall into the hopper; only a small fraction of the cake is detached as dust
particles.

(7) Laux, S., Glernoth, B., Bulak, H. and Renz, U., “Hot Gas Filtration with Ceramic
Filter Elements”, 12th International Conference on Fluidized Bed Combustion, Vol. 2,
1993, pp. 1241-1250.

Again, this is a paper which you have previously reviewed. The authors report
that residual dust causes permeability to decrease to between 20 and 40% of initial values.
They also point out that pulse pressure may need to be increased according to operating
conditions, particularly if the pressure drop during normal operation is increasing. These
authors suggest that accurate predictions of filter permeability can not be made except
with experience at actual operating conditions. The authors also present some profiles of
pressure in a pulse-jet system (from the reservoir to the nozzle) that are based on
modeling work.

(8) Lehtovaara, A. and Mojtahédi, W., “Ceramic-Filter Behavior in Gasification”,
Bioresource Technology, Vol. 46, 1993, pp. 113-118.

These authors, after describing the process at the Tampella plant in detail, devote a
relatively small portion of their paper to ceramic filters. They mention that their pulse
durations were typically between 100 and 300 ms. In one of the filter performance
examples the authors present, the baseline pressure drop was 70 mbar whereas the trigger
pressure drop was 140 mbar. In another example, these pressure drops were somewhat
lower. For various example cases, the face velocities ranged from 1.6 to 1.9 cm/s and the
pulse reservoir pressure ranged from 17 to 37 bar. :

(9) Pitt, R. U. and Leitch, A. J.,, “A Simple Method to Predict the Operation of Flue Gas
Filter Pulse Cleaning Systems”, 11th International Conference on Fluidized Bed
Combustion, Vol. 3, 1991, pp. 1267-1281.

Despite the title, this paper is fairly complicated. The “simple” method described
in the paper mentions a couple of iterative FORTRAN routines. Nonetheless, the
extensive description of the assumptions made in the model may be useful. In addition,
the conclusions reached by the authors may be helpful. They state that critical losses
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occur during pulsing if the candle cavity is not designed to prevent “choking”, if pipe
diameters are too small, if there are too many flow-dividing junctions, and if there are too
many valves in the external piping. -

(10) Pontius, D. H., “Attributes of Particles and Dust Cakes Resulting from Hot Gas
Cleanup in Advanced Processes for Coal Utilization”, Advances in Filtration and
Separation Technology, Vol. 2, 1990, pp. 291-294.

This paper states that, once the dust cake forms, the cake does the filtration work.
The author also says that the tensile strength of the cake is weak compared to the strength
of the filter material; as a result, the filter cake will break away during pulsing very close
to the filter surface. Important factors of the dust that affect filtration include particle size
distribution, particle shape, particle chemical composition, and mass loading.

(11) Schiffer, H.-P., Renz, U. and Tassicker, O. J., “Hot Gas Filtration at the RWTH
Aachen PFBC Facilities”, 10th International Conference on Fluidized Bed Combustion,
Vol. 1, 1989, pp. 487-494. :

The authors describe operating conditions and observations from their tests. Pulse
jet pressure was varied from 3 to 5 bar. Pulse jet duration was nominally 300 ms.
Residual permeability decreased to about 1/3 of the initial permeability during the course
of operation. Not surprisingly, test results indicate that pulses of short duration cause
smaller temperature decreases than longer pulses. The authors measured the residual dust
cake to be between 0.3 and 0.5 mm thick.

(12) Seville, J. P. K., Legros, R., Brereton, C. M. H, Lim, C. J. and Grace, J. R,
“Performance of Rigid Ceramic Filters for CFBC Gas Cleaning”, 11th International

Conference on Fluidized Bed Combustion, Vol. 1, 1991, pp. 279-286.

This is a good paper. The authors found that, due to retained dust, flow resistance
(pressure drop) increased during the course of the test to between 2.3 and 2.9 times the
initial value. They state that a filter cake is broken when tensile stresses caused by pulsing
overcome the adhesive or cohesive forces in the cake. However, the authors state that the
critical tensile stress cannot be predicted easily. Data are presented that indicate that the
removal stresses measured for ceramic filters are an order of magnitude larger than typical
stresses measured for fabric filters. Photographs are shown which demonstrate that pulse
cleaning for ceramic filters is patchy and that the filter cake is brittle.

(13) Stringer, J. and Leitch, A. J., “Ceramic Candle Filter Performance at the
Grimethorpe (UK) Pressurized Fluidized Bed Combustor”, Journal of Engineering for Gas
Turbines and Power, Vol. 114, 1992, pp. 371-379. :

This paper is another that you have already read. The authors suggest that a slow
pressure increase when the pulse valve opens may lead to a decrease in efficiency. They
state, however, that this contention has yet to be proven. Reductions in the use of pulse-
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cleaning gas can be achieved by decreasing cleaning frequency, using faster-acting valves,
using valves that require a lower differential pressure, and by having more filter elements

per manifold. The authors found little evidence of dust penetration into the filter. They
present two mechanisms by which the filter cake may be separated. First, the cake may
separate when the pressure drop increase across the cake exceeds the tensile strength of

the cake. Second, a shock wave caused by the sudden pressure increase may serve to
separate the cake. The authors do not know which mechanism is more dominant. Also,

. the authors show that permeance decreases to about 20% of the initial permeance over the
course of operation.

(14) Tassicker, O.J.,, Burnard, G. K., Leitch, A. J. and Reed, G. P., “Performance of a
Large Filter Module Utilizing Porous Ceramics on a Pressurized Fluidized Bed
Combustor”, 10th International Conference on Fluidized Bed Combustion, Vol. 1, 1989,
pp. 479-486.

These authors show that permeance decreases during operation to about 20% of
the initial value. They present data which indicate that, in their system, the pressure
increase in the candle cavity is not sharp. In addition, the pressure increases inside the
candles may vary from candle to candle depending on the distance along a manifold. The
authors also present data on temperature fluctuations inside candles during pulses. These
temperature changes also differ between candles.

(15) Withers, C. J., West, A. A, Twigg, A. N,, Courtney, R. S, Seville, J. P. K. and
Clift, R., “Improvements in the Performance of Filtration of Hot Gases”, Filtration and
Separation, Vol. 27, No. 1, 1990, pp. 32-37.

The data in this paper indicate that the residual pressure drop increases from 3.0
kPa to 11.2 kPa by the end of the tests. The authors also contend that pulse cleaning is
patchy and that an increase in pulse pressure improves cleaning effectiveness.

(16) Zeh, C. M., Chiang, T.-K. and Strickland, L. D., “Evaluation of Ceramic Candle-
Filter Performance in a Hot Particulate-Laden Stream”, Advances in Filtration and
Separation Technology, Vol. 2, 1990, pp. 295-298. ‘

In the tests discussed in this paper, pressure drop increased rapidly to a relatively
constant value in the first 10 to 24 hours of testing. The authors found that the residual
dust has slightly lower permeability than newly captured dust.

(17) Zievers, J. F., Eggerstedt, P., Zievers, E. C. and Nicolai, D., “What Affects the Cost
of Hot Gas Filter Stations?”, Joumal of Engineering for Gas Turbines and Power, Vol.
115, 1993, pp. 652-657.

This paper is also one which you have looked at. The paper is fairly elementary;
little detail is provided. One piece of data presented is that jet pulse volume is typically
25-30 liters per m? of filter surface.
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Availability of Other Literature

In general, there is not a wealth of information available on ceramic candle filters
in the open literature. Much of the best available literature comes from conference
proceedings rather than journals. The International Conferencés on Fluidized Bed
Combustion were the source for many of the papers provided here. Other conference
proceedings that have been noted as references, but have not been located, include the
International Symposium on Gas Cleaning at High Temperatures (1993), the'4th
International Fluidised Bed Combustion Conference (1988), and the 5th World Filtration
Congress (1990). Also, many of the references listed in various papers are reports that
have been written as parts of projects. Such reports are not be widely available.

I hope that these papers and my comments are useful to you. If you have any
questions, please get in touch with me.

Sincerely,

%Q ;fﬁ/ e

Peter C. Raynor




&

THE UNIVERSITY OF NORTH CAROLINA

AT
. CHAPEL HILL
The School of Public Health The University of North Carolina at Chapel Hill
Department of CB# 7400, Rosenau Hall
Environmental Sciences and Engineering Chapel Hill, N.C. 27599.7400

919 966-3851

21 July, 1994

Mr. Roman Zaharchuk
Advanced Technology Services
Gilbert/Commonwealth, Inc.
P.O Box 1498

Reading, PA 19603-1498

Dear Roman:

When in Germany several weeks ago, I visited the University of Karlsruhe. There I met Mr.
Stephan Berbner, who is a doctoral student working in the laboratory headed by Prof. Friedrich
Loffler until his death late last year. Mr. Berbner is studying filtration at high temperature by
ceramic candle filters as his thesis dissertation.

You might wish to write him or speak to him about his work. He has a nice experimental rig,
where he can load ceramic candle filters with dust, then test their performance. This can all be
done at high temperature. He has some good data about filter performance, including what
happens due to pulse cleaning.

His address is:

Dipl. - Ing. S. Berbner

Institut fir Mechanische Verfahrenstechmk und Mechanik
Universitat Karlsruhe (TH)

Postfach 6980

D-76128 Karlsruhe 1

Germany

His telephone is (0721) 608-2415. He speaks excellent English. If you mention my name and say
I was there for Marc Plinke’s doctoral defense on 18 June, he will make the connection.

Hope your work is going well.

Sincerely yours, .

‘ DC’LU { (‘)\'
David Leith
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APPENDIX B

This appendix contains complete spreadsheet tables for Case 2 through 8, which are presented in
the same format as Case 1 discussed in Section 4.




CASE 2

Plant Configuration: PFBC
Pulse Gas: Cold Pulse
Mode of Cleaning: Off-Line
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Plant Configuration: PFBC
Pulse Gas: Hot Pulse

Mode of Cleaning: On-Line
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Plant Configuration: PFBC
Pulse Gas: Hot Pulse
Mode of Cleaning: Off-Line
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CASE S

Plant Configuration: Carbonizer
Pulse Gas: Cold Pulse
Mode of Cleaning: On-Line
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CASE 6

Plant Configuration: Carbonizer
Pulse Gas: Cold Pulse
Mode of Cleaning: Off-Line
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CASE 7

Plant Configuration: KRW-Based IGCC
Pulse Gas: Cold Pulse
Mode of Cleaning: On-Line
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CASE S8

Plant Configuration: KRW-Based IGCC
Pulse Gas: Cold Pulse
Mode of Cleaning: Off-Line
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APPENDIX C

This appendix contains complete cost details including the Total Plant Cost Summary Sheets and
the Capital Investment and Revenue Requirement Summary Sheets.
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CAPITAL INVESTMENT & REVENUE REQUIREMENT SUMMARY

TITLE/DEFINITION
Case: Case 1 — CPFBC with Conventional Blowback
Piant Size: 453.0 (MW, net) -HeatRate: 7,822 (Btu/kWh) |,
Fuel(type): Pittsburgh #8 Cost: 1.60 ($/MMBtu)
Design/Construction: 1 (years) BookLife: 30 (years)
TPC(Plant Cost) Year: -1994 (Dec.) TP! Year: 1995 (Jan.)
Capacity Factor: 65 (%)

CAPITAL INVESTMENT $x1000 $/kW
Process Capital & Facilities 44 424 98.1
Engineering(incl.C.M.,H.0.& Fee) 2,888 6.4
Process Contingency 4,943 10.9
Project Contingency 7,838 17.3

TOTAL PLANT COST(TPC) $60,093 132.7

TOTAL CASH EXPENDED $60,093

AFDC

TOTAL PLANT INVESTMENT(TP!) $60,093 132.7
Royality Allowance
Preproduction Costs 1,548 3.4
Inventory Capital 187 0.4
Initial Catalyst & Chemicals(w/equip.)
Land Cost

TOTAL CAPITAL REQUIREMENT(TCR) $61,828 136.5

OPERATING & MAINTENANCE COSTS(First Year) $x1000 $/KW=yr
Operating Labor 381 0.8
Maintenance Labor 1,286 28
Maintenance Material . 1,929 43
Administrative & Support Labor 500 1.1

TOTAL OPERATION & MAINTENANCE(1st yr.) $4,097 9.0
FIXED O & M (1st yr.) 5.88 $/kW—yr
VARIABLE O & M (1st yr.) 0.56 mills/kWh

CONSUMABLE OPERATING COSTS(ess Fuel) $x1000 mills/kWh
Water & Chemicals
Auxilliary Power 35 0.01
Other Consumables
Waste Disposal

TOTAL CONSUMABLES(1st yr.,—fuel) $35 0.01

BY-PRODUCT CREDI!TS(First Year)

FUEL COST(First Year)

LEVELIZED OPERATION & MAINTENANCE COSTS
FixedO &M 9.1 $/kW—yr = 1.6 mills/kWh
Variable O & M 0.9 mills/kWhn
Consumables 0.0 mills/kWh
By-product Credit mills/kWh
Fuel mills/kWh

LEVELIZED CARRYING CHARGES(Capital) 23.1 $/kW—yr = 4.1 mills/kWh

LEVELIZED BUSBAR COST OF POWER 6.5 mills/kWh

30 Year at a Capacity Factor of: 65%




ESTIMATE BASIS/FINANCIAL CRITERIA for REVENUE REQUIREMENT CALCULATIONS

GENERAL DATA/CHARACTERISTICS

Case Title:

Unit Size:/Plant Size: .

Location:
Fuel:
Plant Heat Rate—Full Load:/Avg..
Levelized Capacity Factor:
Capital Cost Year Dollars:
Delivered Cost of Coal:
Design/Construction Period:
Plant Startup Date(year):
Land Area/Unit Cost
FINANCIAL CRITERIA
Project Book Life:
Book Salvage Value:
Project Tax Life:
Tax Depreciation Method:
Property Tax Rate:
Insurance Tax Rate:
Federal Income Tax Rate:
State Income Tax Rate:
Investment Tax Credit/% Eligible
Capital Structure
Common Equity
Preferred Stock
Debt
Weighted Cost of Capital:
Escalation Rates(Apparent)

General Escalation:
Fuel Price Escalation:

Case 1 — CPFBC with Conventional Blowback

453.0 MW, net 453.0 MWe
Ohio River Valley
Pittsburgh #8

7,822 Btu/kWh 7,822 Btu/kWh

65 %
1994 (December)
1.60 $/x10~ 6 Btu(at startup)
1 years

1995 (January)

acre $7,500 /acre

30 years
%
20 yéars
Reform
1.0 % per year

1.0 % per year

34.0 %
6.0 %
% %
% of Total Cost(%)
46 13.0
8 8.4
46 9.1

9.2 %

4.1 % per year
% per year
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CAPITAL INVESTMENT & REVENUE REQUIREMENT SUMMARY

TITLE/DEFINITION

Case: Case 2 — CPFBC OFF LINE

Plant Size: 453.0 (MW,net) HeatRate: 7,822 (Btu/kWh)
Fuel(type): Pittsburgh #8 Cost: 1.60 ($/MMB1u)
Design/Construction: 1 (years) BookLife: 30 (years)
TPC(Plant Cost) Year: 1994 (Dec.) TPl Year: 1995 (Jan.)
Capacity Factor: 65 (%)

CAPITAL INVESTMENT $x1000 $/kW

Process Capital & Facilities 53,232 117.5
Engineering(incl.C.M.,H.O.& Fee) 3,370 7.4
Process Contingency 5,932 13.1
Project Contingency 9,173 20.2

TOTAL PLANT COST(TPC) $71,707 158.3
TOTAL CASH EXPENDED $71,707

AFDC

TOTAL PLANT INVESTMENT(TPI) $71,707 158.3

Royalty Allowance

Preproduction Costs 1,837 4.1
Inventory Capital 221 0.5
Initial Catalyst & Chemicals(w/equip.)

Land Cost

TOTAL CAPITAL REQUIREMENT(TCR) $73,764 162.8
OPERATING & MAINTENANCE COSTS(First Year) $x1000 $/kW—yr
Operating Labor 381 0.8
Maintenance Labor 1,535 3.4
Maintenance Material 2,302 5.1
Administrative & Support Labor 5§75 1.3
TOTAL OPERATION & MAINTENANCE(1st yr.) $4,792 10.6
FIXED O & M (1st yr.) 6.88 $/kW~yr
VARIABLE O & M (1st yr.) 0.65 mills/kWh
CONSUMABLE OPERATING COSTS(ess Fuel) . $x1000 mills/kWh
Water & Chemicals
Auxilliary Power 24 0.01
Other Consumables
Waste Disposal
TOTAL CONSUMABLES(1st yr.,~fuel) $24 0.01

BY-PRODUCT CREDITS(First Year)
FUEL COST(First Year)

LEVELIZED OPERATION & MAINTENANCE COSTS

FixedO &M 10.6 $/kW—yr = 1.9 milis/kWh
Variable O & M i 1.0 mills/kWh
Consumables 0.0 mills/kWh
By—product Credit mills/kWh
Fuel . : mills/kWh

LEVELIZED CARRYING CHARGES(Capital) 27.5 $/kKW—yr = 4.8 mills/kWh

LEVELIZED BUSBAR COST OF POWER 7.7 mills/kWh
30 Year at a Capacity Factor of. 65%




ESTIMATE BASIS/FINANCIAL CRITERIA for REVENUE REQUIREMENT CALCULATIONS

GENERAL DATA/CHARACTERISTICS
Case Title:
Unit Size:/Plant Size:
Location:
Fuel:
Plant Heat Rate—Full Load:/Avg.:
Levelized Capacity Factor:
Capital Cost Year Dollars:
Delivered Cost of Coal:
Design/Construction Period:
Plant Startup Date(year):
Land Area/Unit Cost
FINANCIAL CRITERIA
Project Book Life:
Book Salvage Value:
Project Tax Life:
Tax Depreciation Method:
Property Tax Rate:
insurance Tax Rate:
Federal Income Tax Rate:
State Income Tax Rate:
Investment Tax Credit/% Eligible
Capital Structure
Common Equity
Preferred Stock
Debt
Weighted Gost of Capital:
Escalation Rates(Apparent)

General Escalation:
Fuel Price Escalation:

Case 2 — CPFBC OFF LINE

453.0 MW, net 453.0 MWe
Ohio River Valley
Pittsburgh #8

7,822 Btu/kWh 7,822 Btu/kWh

65 %
1994 (December)
1.60 $/x10~ 6 Btu(at startup)
1 years

1995 (January)

acre $7,500 /acre

30 years
%
20 years
Current Tax Laws ( 1993 TAG)
1.0 % per year

1.0 % per year

34.0 %
6.0 %
% %
% of Total Cost(%)
46 13.0
8 8.4
46 9.1

9.2 %

4.1 % per year ’
% per year
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CAPITAL INVESTMENT & REVENUE REQUIREMENT SUMMARY

TITLE/DEFINITION
Case: Case 3 — CPFBC RP
Plant Size; 453.0 (MW,net) HeatRate: 7,822 (Btu/kWh)
Fuel(type): Pittsburgh #8 Cost: 1.60 ($/MMB1u)
Design/Construction: 1 (years) BookLife: 30 (years)
TPC(Plant Cost) Year: 1994 (Dec.) TPl Year: 1995 (Jan.)
Capacity Factor: 65 (%)

CAPITAL INVESTMENT $x1000 $/kW
Process Capital & Facilities 43,747 96.6
Engineering(incl.C.M.,H.0.& Fee) 2,844 6.3
Process Contingency 4,943 109
Project Contingency 7,730 17.1

TOTAL PLANT COST(TPC) $59,263 130.8
TOTAL CASH EXPENDED $59,263

AFDC

TOTAL PLANT INVESTMENT(TPI) $59,263 130.8

Royalty Allowance

Preproduction Costs : 1,530 3.4
Inventory Capital 185 0.4
Initial Catalyst & Chemicals(w/equip.)
Land Cost
TOTAL CAPITAL REQUIREMENT(TCR) $60,979 134.6
OPERATING & MAINTENANCE COSTS(First Year) $x1000 $/KW—yr
Operating Labor 381 0.8
Maintenance Labor 1,282 2.8
Maintenance Material 1,923 42
Administrative & Support Labor 499 1.1
TOTAL OPERATION & MAINTENANCE((1st yr.) $4,086 9.0
FIXED O & M (1Ist yr.) 5.86 $/kW—yr
VARIABLE O & M (1st yr.) 0.55 mills/kWh
CONSUMABLE OPERATING COSTS(less Fuel) $x1000 mills/kWh
Water & Chemicals -
Auxilliary Power : 1 0.00
Other Consumables 35 0.01

Waste Disposal
TOTAL CONSUMABLES(1st yr.,—fuel) $36 0.01
BY-PRODUCT CREDITS(First Year)
FUEL COST({First Year)

LEVELIZED OPERATION & MAINTENANCE COSTS

FixedO & M 9.0 $/kW-~-yr = 1.6 mills/kWh

Variable O & M 0.9 mills/kWh
Consumables 0.0 mills/kWh

- By-—product Credit mills/kWh
Fuel : ‘ milis/kWh
LEVELIZED CARRYING CHARGES(Capital) 22.7 $/KW—yr = 4.0 mills/kWh
LEVELIZED BUSBAR COST OF POWER 6.5 mills/kWh

30 Year at a Capacity Factor of: : 65%




ESTIMATE BASIS/FINANGIAL CRITERIA for REVENUE REQUIREMENT CALCULATIONS

GENERAL DATA/CHARACTERISTICS

Case Title:

Unit Size:/Plant Size:

Location:

Fuel:

Plant Heat Rate—Full Load:/Avg.:

Levelized Capacity Factor:

Capital Cost Year Dollars:

Delivered Cost of Coal:

Design/Construction Period:

Plant Startup Date(year):

Land Area/Unit Cost
FINANCIAL CRITERIA

Project Book Life:

Book Salvage Value:

Project Tax Life:

Tax Depreciation Method:

Property Tax Rate:

Insurance Tax Rate:

Case 3 — CPFBC RP

453.0 MW, net 453.0 MWe
Ohio River Valley
Pittsburgh #8

7,822 Btu/kWh 7,822 Btu/kWh

65 % |
1994 (December)
1.60 $/x10 "~ 6 Btu(at startup)
1 years

1995 (January)

acre $7,500 /acre

30 years
%
20 years -
Current Tax Laws ( 1993 TAG )
1.0 % per year

1.0 % per year

Federal Income Tax Rate: 34.0 %
State income Tax Rate: 6.0 %
Investment Tax Credit/% Eligible % %
% of Total Cost(%)
Capital Structure
Common Equity 46 13.0
Preferred Stock 8 8.4
Debt 46 9.1
Weighted Cost of Capital: 9.2%
Escalation Rates(Apparent) :
General Escalation: 4.1 % per year
Fuel Price Escalation: % per year

C-11-
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CAPITAL INVESTMENT & REVENUE REQUIREMENT SUMMARY

TITLE/DEFINITION
Case: Case 4 — CPFBC RP—OFF LINE
Plant Size: 453.0 (MW,net) HeatRate:
Fusl(type): Pittsburgh #8 Cost:
Design/Construction: 1 (years) BookLife:
TPC(Plant Cost) Year: -1994 (Dec.) TPl Year:
Capacity Factor: 65 (%)

CAPITAL INVESTMENT $x1000
Process Capital & Facilities 52,927
Engineering(incl.C.M.,H.O & Fes) 3,351
Process Contingency 5,932
Project Contingency 9,124

TOTAL PLANT COST(TPC) $71,333

TOTAL CASH EXPENDED $71,333

AFDC

TOTAL PLANT INVESTMENT(TPI) $71,333
Royalty Allowance
Preproduction Costs 1,829
Inventory Capital 220
Initial Catalyst & Chemicals(w/equip.)
Land Cost

TOTAL CAPITAL REQUIREMENT(TCR) $73,382

OPERATING & MAINTENANCE COSTS(First Year) $x1000
Operating Labor 381
Maintenance Labor 1,534
Maintenance Material 2,300
Administrative & Support Labor 574

TOTAL OPERATION & MAINTENANCE (1st yr.) $4,790
FIXED O & M (1st yr.)

VARIABLE O & M (1st yr))

CONSUMABLE OPERATING COSTS(ess Fuel) $x1000
Water & Chemicals
Auxilliary Power 1
Other Consumables 23

Waste Disposal
TOTAL CONSUMABLES(1st yr.,—fuel) $24
BY-PRODUCT CREDITS(First Year)
FUEL COST(First Year)

LEVELIZED OPERATION & MAINTENANCE COSTS
FixedO & M 10.6 $/kW—yr =
Variable O & M
Consumables
By-product Credit
Fuel

LEVELIZED CARRYING CHARGES (Capital) 27.4 $/kW—yr =

LEVELIZED BUSBAR COST OF POWER
30 Year at a Capacity Factor of: 65%

7,822 (Btu/kWh)
1.60 ($/MMBtu)
30 (years)
1995 (Jan.)

$/kwW
116.8
74
13.1

20.1

157.5

157.5

4.0
0.5

162.0

$/kW—yr

0.8

3.4

5.1

1.3

10.6

6.87 $/kW—yr

0.65 mills/kWh
mills/kWh

0.00

0.01

0.01

1.9 mills/kWh
1.0 mills/lkWh
0.0 mills/kWh
mills/kWh
milis/kWh

4.8 mills/kWh

7.7 milis/kWh

-



ESTIMATE BASIS/FINANCIAL CRITERIA for REVENUE REQUIREMENT CALCULATIONS

GENERAL DATA/CHARACTERISTICS

Case Title: Case 4 — CPFBC RP—OFF LINE .
Unit Size:/Plant Size: i 453.0 MW,net 453.0 MWe
Location: Ohio River Valley
Fuel: Pittsburgh #8
Plant Heat Rate ~Full Load:/Avg.: 7,822 Btu/kWh 7,822 Btu/kWh
Levelized Capacity Factor: 65 %
Capital Cost Year Dollars: 1994 (December)
Delivered Cost of Coal: 1.60 $/x10~ 6 Btu(at startup)
Design/Construction Period: 1 years
Plant Startup Date(year): 1995 (January)
Land Area/Unit Cost acre $7,500 /acre
FINANCIAL CRITERIA
Project Book Life: 30 years
Book Salvage Value: %
{1 Project Tax Life: 20 years
Tax Depreciation Method: Current Tax Laws ( 1993 TAG)
Property Tax Rate: 1.0 % per year
Insurance Tax Rate: 1.0 % per year
Federal Income Tax Rate: 34.0%
State Income Tax Rate: 6.0 %
Investment Tax Credit/% Eligible % %
% of Total Cost(%)
Capital Structure
Common Equity - 46 13.0
Preferred Stock 8 8.4
Debt 46 , 9.1
Weighted Cost of Capital: 9.2%
Escalation Rates(Apparent)
General Escalation: 4.1 % per year
Fuel Price Escalation: % per year

-

C-14 -
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CAPITAL INVESTMENT & REVENUE REQUIREMENT SUMMARY

TITLE/DEFINITION
Case: Case 5 — Garbonizer Conv.

Plant Size: 453.0 (MW,net) HeatRate:
Fuel(type): Pittsburgh #8 Cost:
Design/Construction: 1 (years) BookLife:
TPC(Plant Cost) Year: -1994 (Dec.) TPI Year:
Capacity Factor: 65 (%)

CAPITAL INVESTMENT $x1000
Process Capital & Facilities 8,920
Engineering(incl.C.M.,H.0.& Fee) 580
Process Contingency 952
Project Gontingency 1,568

TOTAL PLANT COST(TPC) $12,020

TOTAL CASH EXPENDED $12,020

AFDC

TOTAL PLANT INVESTMENT(TPI) $12,020
Royalty Allowance
Preproduction Costs 340
Inventory Capital 37
Initial Catalyst & Chemicals(w/equip.)
Land Cost ,

TOTAL CAPITAL REQUIREMENT(TCR) $12,397

OPERATING & MAINTENANCE COSTS(First Year) $x1000
Operating Labor 381
Maintenance Labor 247
Maintenance Material 370
Administrative & Support Labor 188

TOTAL OPERATION & MAINTENANCE((1st yr.) $1,187
FIXED O & M (1st yr.)
VARIABLE O & M (1st yr.)

CONSUMABLE OPERATING COSTS(less Fuel) $x1000
Water & Chemicals
Auxilliary Power 5
Other Consumables
Waste Disposal

TOTAL CONSUMABLES(1st yr.,—fuel) $5

BY-PRODUCT CREDITS(First Year)

FUEL COST(First Year)

LEVELIZED OPERATION & MAINTENANCE COSTS
FixedO & M 2.6 $/kW—yr =
Variable O & M
Consumables
By-product Credit
Fuel

LEVELIZED CARRYING CHARGES(Capital) 4.6 $/kW-yr =

LEVELIZED BUSBAR COST OF POWER
30 Year at a Capacity Factor of:

65%

7,822 (Btu/kwWh) |,
1.60 ($/MMBtu)
30 (years)
1995 (Jan.)

$/KW
19.7
1.3
2.1
3.5

26.5

26.5

0.8
0.1

27.4

$/KkW—yr

0.8

0.5

0.8

0.4

2.6

1.70 $/kW—yr

0.16 mills/kwh
mills/kWh

0.00

0.00

0.5 mills/kWh
0.2 mills/kWh
0.0 mills/kWh
mills/kWh
mills/kWh

0.8 milis/kWh

1.5 mills/kWh




ESTIMATE BASIS/FINANCIAL CRITERIA for REVENUE REQUIREMENT CALCULATIONS

GENERAL DATA/CHARACTERISTICS

Case Title:
Unit Size:/Plant Size:
Location:
Fuel:
Plant Heat Rate—Full Load:/Avg..
Levelized Capacity Factor:
Capital Cost Year Dollars:
Delivered Cost of Coal:
Design/Construction Period:
Plant Startup Date(year):
Land Area/Unit Cost
FINANCIAL CRITERIA
Project Book Life:
Book Salvage Valu;a:
Project Tax Life:
Tax Depreciation Method:
Property Tax Rate:
Insurance Tax Rate:
Federal Income Tax Rate:
State Income Tax Rate:
Investment Tax Credit/% Eligible
Capital Structure
Common Equity
Preferred Stock
Debt
Weighted Cost of Capital:
Escalation Rates(Apparent)

General Escalation:
Fuel Price Escalation:

Case 5 — Carbonizer Conv. s
453.0 MW, net 453.0 MWe
Ohio River Valley
Pittsbﬁrgh #8
7,822 Btu/kWh 7,822 Btu/kWh
65 %
1994 (December)
1.60 $/x10~ 6 Btu(at startup)
1 years
1995 (January)

acre $7,500 Jacre

30 years
%
20 years
Current Tax Laws ( 1993 TAG)
1.0 % per yéar

1.0 % per year

34.0%
6.0%
% %
% of Total Cost(%)
46 13.0
8 8.4
46 9.1

9.2 %

4.1 % per year
% per year
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CAPITAL INVESTMENT & REVENUE REQUIREMENT SUMMARY

TITLE/DEFINITION
Case: Case 6 — Carbonizer Off-Line
Plant Size: 453.0 (MW,net} HeatRate:
Fusl(type): Pittsburgh #8 Cost:
Design/Construction: 1 (years) BookLife:
TPC(Plant Cost) Year: 1994 (Dec.) TP Year:
Capacity Factor: 65 (%)

CAPITAL INVESTMENT $x1000
Process Capital & Facilities 13,167
Engineering(incl.C.M.,H.O & Fee) 833
Process Contingency 1,428
Project Contingency 2,262

TOTAL PLANT COST(TPC) $17,691

TOTAL CASH EXPENDED $17,691

AFDC

TOTAL PLANT INVESTMENT(TPI) $17,691
Royalty Allowance
Preproduction Costs 481
Inventory Capital 54
Initial Catalyst & Chemicals(w/equip.)
Land Cost

TOTAL CAPITAL REQUIREMENT(TCR) $18,226

OPERATING & MAINTENANCE COSTS(First Year) $x1000
Operating Labor 381
Maintenance Labor 367
Maintenance Material 550
Administrative & Support Labor 224

TOTAL OPERATION & MAINTENANCE((1st yr.) $1,523
FIXED O & M (1styr.)
VARIABLE O & M (1st yr.)

CONSUMABLE OPERATING COSTS(ess Fuel) $x1000
Water & Chemicals
Auxilliary Power 3
Other Consumables
Waste Disposal

TOTAL CONSUMABLES(1st yr.,~fuel) $3

BY—-PRODUCT CREDITS(First Year)

FUEL COST(First Year)

LEVELIZED OPERATION & MAINTENANCE COSTS
FixedO & M 3.4 §/kW~yr =
Variable O &M
Consumables
By-~product Credit
Fuel

LEVELIZED CARRYING CHARGES(Capital) 6.8 $/kW-yr =

LEVELIZED BUSBAR COST OF POWER
30 Year at a Capacity Factor of:

65%

7,822 (Btu/kwh)
1.60 ($/MMBtu)
30 (years)
1995 (Jan.)

$/kW
29.1

39.1

QO -
Ll

40.2

/KW —yr

0.8

0.8

1.2

0.5

3.4

2.19 $/kW—yr

0.21 mills/kWh
mills/kWh

0.00

0.00

0.6 mills/kWh
0.3 mills/lkWh
0.0 mills/kWh
mills/kWh
mills/kWh

1.2 mills/kWh
2.1 mills/kWh




ESTIMATE BASIS/FINANCIAL CRITERIA for REVENUE REQUIREMENT CALCULATIONS

GENERAL DATA/CHARACTERISTICS
Case Title:
Unit Size:/Plant Size:
Location:
Fuel:
Plant Heat Rate— Full Load:/Avg.:
Levelized Capacity Factor:
Capital Cost Year Dollars:
Delivered Cost of Coatl:
Design/Construction Period:
Piant Startup Date(year):
‘Land Area/Unit Cost
FINANCIAL CRITERIA
Project Book Life:
Book Salvage Value:
Project Tax Life:
Tax Depreciation Method:
Property Tax Rate:
Insurance Tax Rate:
Federal Income Tax Rate:
State Income Tax Rate:
Investment Tax Credit/% Eligible
Capital Structure
Common Equity
Preferred Stock
Debt
Weighted Cost of Capital:
Escalation Rates(Apparent)

General Escalation:
Fuel Price Escalation:

- Case 6 — Carbonizer Off—Line
453.0 MW,net 453.0 MWe
Ohio River Valley
Pittsburgh #8
7,822 Btu/kWh 7,822 Btu/kWh
65 %
1994 (December)
1.60 $/x10 " 6 Btu(at startup)
1 years

1995 (January)

acre $7,500 /acre

30 years
%
20 years
Current Tax Laws ( 1993 TAG )
1.0 % per year

1.0 % per year

34.0 %
6.0 %
% %
% of Total Cost(%)
46 13.0
8 8.4
46 9.1

9.2 %

4.1 % per year
% per year

C-20 —~
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CAPITAL INVESTMENT & REVENUE REQUIREMENT SUMMARY

TITLE/DEFINITION
Case: Case 7 — IGCC Conv.

Plant Size: 458.0 (MW,net) HeatRate:
Fuel(type): Pittsburgh #8 Cost:
Design/Construction: ' BookLife:
TPC(Plant Cost) Year: TPl Year:
Capacity Factor:

CAPITAL INVESTMENT $x1000
Process Capital & Facilities 21,197
Engineering(incl.C.M.,H.0.& Fee) 1,378
Process Contingency 2,153
Project Contingency 3,709

TOTAL PLANT COST(TPC) $28,437

TOTAL CASH EXPENDED $28,437

AFDC

TOTAL PLANT INVESTMENT(TP) $28,437
Royalty Allowance
Preproduction Costs 750
Inventory Capital 87
Initial Catalyst & Chemicals(w/equip.)
Land Cost

TOTAL CAPITAL REQUIREMENT(TCR) $29,275

OPERATING & MAINTENANCE COSTS(First Year) $x1000
Operating Labor 381
Maintenance Labor 590
Maintenance Material 886
Administrative & Support Labor 291

TOTAL OPERATION & MAINTENANCE(1st yr.) $2,149
FIXED O & M (1st yr.)
VARIABLE O & M (1st yr.)

CONSUMABLE OPERATING COSTS(less Fuel) $x1000
Water & Chemicals
Auxilliary Power 20
Other Consumables
Waste Disposal

TOTAL CONSUMABLES(1st yr.,~fuel) $20

BY-~PRODUCT CREDITS(First Year)

FUEL COST(First Year)

LEVELIZED OPERATION & MAINTENANCE COSTS
FixedO & M 4.7 $/kW—-yr =
Variable O & M
Consumables
By~product Credit
Fuel

LEVELIZED CARRYING CHARGES(Capital) 10.8 $/kW—-yr =

LEVELIZED BUSBAR COST OF POWER

30 Year at a Capacity Factor of: 65%

9,000 (Btu/kWh)
1.60 ($/MMB1u)
30 (years)
1985 (Jan.)

$/kwW
46.3
3.0
4.7
8.1

62.1

62.1

63.9

$/kW—yr

0.8

1.3

19

0.6

4.7

3.05 $/kW—yr

0.29 mills/kWh
mills/kWh

0.01

0.01

0.8 mills/kWh
0.4 mills/kWh
0.0 mills/kWh
mills/kWh
mills/kWh

1.9 mills/kWh
3.2 mills/kWh

-~




ESTIMATE BASIS/FINANCIAL CRITERIA for REVENUE REQUIREMENT CALCULATIONS

GENERAL DATA/CHARACTERISTICS

Case Title:
Unit Size:/Plant Size:
Location:

Fuel:

Plant Heat Rate—Full Load:/Avg.:

Levelized Capacity Factor:
Capital Cost Year Dollars:
Delivered Cost of Coal:
Design/Construction Period:
Plant Startup Date(year):
Land Area/Unit Cost
FINANCIAL CRITERIA
Project Book Life:
Book Salvage Value:
Project Tax Life:
Tax Depreciation Method:
Property Tax Rate:
Insurance Tax Rate:
Federal iIncome Tax Rate:
State Income Tax Rate:
Investment Tax Credit/% Eligible
Capital Structure
Common Equity
Preferred Stock
Debt
Weighted Cost of Capital:
Escalation Rates(Apparent)

General Escalation:
Fuel Price Escalation:

Case 7 - IGCC Conv.
© 458.0 MWe

458.0 MW,net
Ohio River Valiey
Pittsburgh #8
9,000 Btu/KWh 9,000 Btu/kWh
65 %

1994 (December)
1.60 $/x10~ 6 Btu(at startup)
1 years
1995 (January)

acre $7,500 /acre

30 years
%
20 years
Current Tax Laws ( 1993 TAG )
1.0 % per year

1.0 % per year

34.0%
6.0 %
% %
% of Total Cost(%)
46 13.0
8 8.4
46 9.1

9.2%

4.1 % per year
% per year
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CAPITAL INVESTMENT & REVENUE REQUIREMENT SUMMARY

TITLE/DEFINITION
Case: Case 8 — IGCC Off-Line
Plant Size: 458.0 (MW,net) HeatRate:
Fuel(type): Pittsburgh #8 Cost:
Design/Construction: 1 (years) BookLife:
TPC(Plant Cost) Year: 1994 (Dec)) TPl Year:
Capacity Factor: 65 (%)

CAPITAL INVESTMENT $x1000
Process Capital & Facilities 25,843
Engineering(incl.C.M.,H.O0 .& Fee) 1,642
Process Contingency 2,692
Project Contingency 4,440

TOTAL PLANT COST(TPC) $34,617

TOTAL CASH EXPENDED $34,617

AFDC

TOTAL PLANT INVESTMENT(TP!) $34,617
Royalty Allowance
Preproduction Costs 906
inventory Capital 104
Initial Catalyst & Chemicals(w/equip.)
Land Cost

TOTAL CAPITAL REQUIREMENT(TCR) $35,627

OPERATING & MAINTENANCE COSTS(First Year) $x1000
Operating Labor 381
Maintenance Labor 730
Maintenance Material 1,094
Administrative & Support Labor 333

TOTAL OPERATION & MAINTENANCE(1st yr.) $2,538
FIXED O & M (1st yr.)
VARIABLE O & M (1st yr.)

CONSUMABLE OPERATING COSTS(ess Fuel) $x1000
Water & Chemicals
Auxilliary Power 13
Other Consumables
Waste Disposal

TOTAL CONSUMABLES(1st yr.,~fusl) $13

BY-PRODUCT CREDITS(First Year)

FUEL COST(First Year)

LEVELIZED OPERATION & MAINTENANCE COSTS
FixedO &M 5.5 $/KW—yr =
Variable O & M
Consumables
By-product Credit
Fuel

LEVELIZED CARRYING CHARGES(Capital) 13.1 $/kW—yr =

LEVELIZED BUSBAR COST OF POWER
30 Year at a Capacity Factor of:

65%

9,000 (Btu/kWh)
1.60 ($/MMBtu)
30 (years)
1995 (Jan.)

$/kW
56.4
3.6
5.9
9.7

75.6

75.6

2.0
0.2

5.5
3.60 $/kW—yr
0.34 mills/kWh
mills/kWh

0.01

0.01

1.0 mills/kWh
0.5 mills/kWh
0.0 mills/kWh
mills/kWh
mills/kWh

2.3 mills/kWh

3.8 mills/kWh
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ESTIMATE BASIS/FINANCIAL CRITERIA for REVENUE REQUIREMENT CALCULATIONS

GENERAL DATA/CHARACTERISTICS

Case Title:
Unit Size:/Plant Size:
Location:

Fuel:

Plant Heat Rate—Full Load:/Avg.:

Levelized Capacity Factor:
Capital Cost Year Dollars:
Delivered Cost of Coal:
Design/Construction Period:
Plant Startup Date(year):
Land Area/Unit Cost
FINANCIAL CRITERIA
Project Book Life:
Book Salvage Value:
Project Tax Life:
Tax Depreciation Method:
Property Tax Rate:
insurance Tax Rate:
Federal Income Tax Rate:b.
State Income Tax Rate:
Investment Tax Credit/% Eligible
Capital Structure
Common Equity
Preferred Stock
Debt
Weighted Cost of Capital:
Escalation Rates(Apparent)

General Escalation:
Fuel Price Escalation:

Case 8 — IGCC Off-Line

458.0 MW, net 458.0 MWe
Ohio River Valley
Pittsburgh #8

9,000 Btu/kWh 9,000 Btu/kWh -

65 %
1994 (December)
1.60 $/x10~ 6 Btu(at startup)
1 years

1995 (January)

acre $7,500 /acre

30 years
%
20 years

Current Tax Laws ( 1993 TAG)

1.0 % per year
1.0 % per year
34.0 %
6.0%
% %
% of Total Cost(%)
46 13.0
K: 8.4
46 9.1
9.2%

4.1 % per year
__% per year
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