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Abstract

The calculation of giant-magnetoresistance and in general, of electron trans-
port for multilayers in the case of current perpendicular to the planes (CPP)
requires both the two-point conductivity and the solution to the local field
problem. In this paper we present a solution to the local field problem at an
interface using two approaches. In the first approach we find the semiclassical
solution for the local field when there is a band mismatch between two sides of
an interface, and examine the deviation of the total resistance from the result
of “self-averaging”, in the lowest order of the value of the potential step. In
the second approach, we solve for the quantum correction to the local field
through a numerical iterative scheme. The oscillations due to the quantum
correction are surprisingly large, but their correction to the total resistance
is remarkably small. Our results imply that the “self-averaging” of the resis-

tance, which is usually assumed in analysis of CPP, is only approximate.
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The study of the giant magnetoresistance effect! in magnetic multilayers has often relied
on semiclassical models?3. In the absence of band mismatches between different layers the
semiclassical approach was shown* to be quite accurate when the current direction is parallel
to the layers (current in plane, or CIP). The semiclassical approximation is also believed
to be accurate for the case of current perpendicular to the planes (CPP) when no band
mismatches exist. It is the purpose of this paper to investigate whether any corrections are
needed when there are band mismatches (or equivalently, potential steps) between layers for
the CPP case.

Theoretical study of transport for CPP in a multilayer system requires the solution of
the local field problem in addition to the calculation of the two-point conductivity. Unlike
the case of current in the planes (CIP) where the electric field is uniform and only the
conductivity is need to calculate the current, in the case of CPP the field is inhomogeneous
due to the inhomogeneity of the system. The solution of the local field correction can be

found from the current continuity condition,

J= /_ °; d'o(z, ) E(2), (1)

where F is the local field, o is the two-point conductivity, and J is the current density whose
independence of z puts a constraint on E.

In a semiclassical theory??3, the local field is determined by the local scattering rate.
When there is no band mismatch, and if the scattering rate is uniform within a layer, the

local field can be shown to be a constant in this layer,

E(z) & T(lzj )

where the local mean free path A(z) corresponds to the scattering rate at the layer z. This
solution is also obtained quantum mechanically in the limit of thick layers, i.e. d > A, where
d is the layer thickness. In the thin limit when d < A, it can be shown* from the quantum
solution that the scattering rate is self-averaging. These results led to the general belief that

the resistance is always self-averaging for current perpendicular to the layers.
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The first step in calculating the local field correction is to find the two-point conductivity.
To this end we apply the the Kubo-Greenwood linear response theory®®. We describe the
potential step at the interface with the parameter v as defined in v? = k?; — k2;. The Green

function for a single interface, where the self-energy changes abruptly, can be shown to be,

1 tky|z—2'} —ik1{z+2") !
52 ﬁ[e + fe ], z<0and 2/ <0;
—G( z,2') = { ",
i(ky + k2)

where f = (ky — k3)/(k1 + k2), and k; and k; are the z components of the wavevectors on

o, (3)
itkaz'=k12) z2<0< 2,

two sides of the interface. The full quantum solution for the conductivity is very complex.
We will present a numerical solution in the second half of this paper. For now we apply
the semiclassical approximation (k;pA; > 1 where i labels layer) to the Kubo-Greenwood

formula, and the semiclassical conductivity for CPP is given by

asc(z, z') 2h {L?FE:;(I ) / kudk“lrl2 —2kiflz+2'}] (4)

for z and 2z’ at the same side of the interface, where ¢ = 1,2 denotes the regions on both

sides of the interface, and r is the reflection coefficient,

k1 — ky
g . 5
ky + ko (5)
For z < 0 < 2/, we get
62 o0 _ oo ; ,
9s(2,2') = /0 kydhy(1 = |rf*)e Hears'=hars], (6)
Far away from the interface one gets,
2k‘ -2
onls, ) = GEEBEST Q)

In the above equations the terms containing |r|? can be identified as due to reflection on
the interface. Although it is second order in v it cannot be neglected because the contact
resistance due to the interface is an even function of v and thus is also second order.

The algebra for the local field correction, even in the semiclassical limit, is rather involved.

We present here the result for the correction to the resistance when the potential step is
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small. If we drive a constant current J through the interface, then the change in the voltage

drop due to the interface contact resistance AV is given by,

AV 2u4x’h B?
J € kp+kip

(Al + A2)9 (8)

where we find the approximations to A; and A; by fitting to numerical solutions of the
integrals involved in A; and A,,

d _to-H—(tg-l)/\/kaAa
A] = —"1'[1 —¢€ da

4
a

1+

1 2t
L : : )
ks 14 262/ kud, + 13.483|0]2 /K2 + 2t4(6.4 + 13/ |vlto/ ks + T.5]v[t2/k2)/ k2 A2

and

d
Ay = L—f; . (10)
b

Here we used the following symbols, % = v? 4 (kyp/A — kor/X2)?, to = \/%meﬁ +1,
k2 = (kap + kap)? + 2o, da = V2R, = 1, As = MyJhir/kor, K = (kir + kor)? = 2o,
dy = E\/2kX — 1, and M = Ag\[har/krp. |

In the semiclassical approach of Camblong-Levy??, the small difference in the Fermi
wavevectors on both sides of the interface due to the difference in the scattering rates is
" neglected. If we take a semiclassical limit that is consistent with this approach, we must

take k;rA; to be greater than all other quantities (such as kyr/4/|v]). In this limit one gets,

AV _ 97737'1 ‘02 \/2"76/\6 (11)
J T 22 K+ k2 Kk

In Table I we compare the results of Eq. (8), Eq. (11) and those from numerical
calculations using the full quantum two-point conductivity. There is some uncertainty in
the accuracy of the numerical results due to the difficulty of converging the calculation for
small potential steps. However, the agreement between Eq. (8) and the numerical results is
good. The “true” semiclassical results from Eq. (11) are significantly below the numerical
solutions for large potential steps. In the last column we also list the results given by the

formula in Ref.?, which in the limit of an interface between two semi-infinite systems is,
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AV - xh (klp - kgp)2

It gives results that are at least two orders of magnitude too small.

Because of the complex form of the quantum conductivity, it is not possible to derive
an analytic solution for the local field correction. We used an iterative numerical approach
that successively refined the local field according to the error in the current calculated from
Eq. (1). The results were surprising. We found very large amplitudes for the local field os-
cillations. The amplitude decays slowly away from the interface, with characteristic lengths
much greater than the mean-free-path. We also found that the period of the oscillation is
strongly correlated with the Fermi wavelength and the mean-free-path. Finally, the correc-
tion to the total voltage drop across the interface is very small. For the cases we solved this
extra voltage drop corresponds to a resistance equivalent to an added layer with fhicknesses
ranging from less than 1A up to about 5A. This correction is negligible in most applications
but can be significant in very thin films. Fig. 1 shows a typical spatial distribution of the
local field E(z) calculated for an interface where there is no band mismatch and the local
effective mean-free-paths are A = 75.6A for z < 0 and A = 94.54 for z > 0.

In Table II we list the wavevectors of the local field oscillation on both sides of the
interface for various interface configurations. | We find that the wavevector depends only on
the local scattering rate and the Fermi wavevector, and does not depend on the parameters
on the other side of the interface. When these data are plotted in terms of a dimensionless
function ¢/kr where ¢ is the wavevector of the oscillation as a function of the dimensionless

variable kg, we find that all the points fall on a universal curve described by,

q 1.64
90141 4 2 13
. R/ (13)

The fit is shown in Fig.2.
"Our results show that the wavelength of the local field oscillation is usually longer than
the Fermi wavelength. When the mean-free-path is long, the local field is approxima,tely

uniform over the distance of a Fermi wavelength.' This provides the justification for the




approximation made in recent first-principles calculations® of GMR that the local field is a
constant within an atomic cell.

This work was supported by the Department of Energy Defense Programs, Assistant Sec-
retary, Technology Maﬁagement Group, Technology Transfer Initiative under under contract

DE-AC05-960R22464 with Lockheed Martin Energy Research Corporation.




TABLES

TABLE 1. Comparison of the predictions of the resistance per unit area at the interface from

Eq. (8), where terms proportional to v (the step in the real part of the potential) and A; (the

scattering rates) are all kept, but the semiclassical two-point conductivity is used, and from Eq.

(11), where v > A, is assumed. Calculated resistance from full quantum two-point conductivity

are also presented. The last column is the prediction by the formula given in Ref.?. In all cases

Fr -V, = 0.26Hartree.

A1 A2 Er-W, Quantum Eq. (8) Eq. (11) | Ref.”
(4) (A) (Hartree) (h/e?) (h/e?*) (h/e?) (h/e?)
75.6 94.5 0.25 6 x 1078 5.5 x 10~3 3.2 x 10~° 1.8 x 1077
75.6 94.5 0.16 8 x 1073 8.3 x 1073 8.4x1073 3.6 x1075
37.8 75.6 0.25 5x 1075 5.1 x 10~% 2.3x107° 1.8 x 1077
37.8 75.6 0.16 7x 1073 5.8 x 10~3 5.9 x 1073 3.6 x 10~
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TABLE II. The wavevectors of the quantum oscillation in the local field. Ep—V are in Hartrees

and all other numbers in atomic units. Each row corresponds to an interface system where the

wavevectors for the two sides are under the columns labeled with the corresponding mean free

paths.

Er —WEF-V2 A=10 A=20 A=40 A=50
0.26/0.26 0.4816 0.3897
0.26]0.26 0.4816 0.3136
0.26]0.26 0.4816 0.2920
0.26]0.26 0.3897 0.3135
0.26{0.26 0.3135 0.2920
0.13|0.13 0.3778 0.3066
0.13]0.13 0.3779 0.2474
0.13/0.13 0.3779 0.2306

- 0.13/0.13 0.3066 0.2474

0.13|0.13 0.2473 0.2306
0.25]0.26 0.3842 0.3135
0.16]0.26 0.3296 0.3135
0.25]0.26 0.3095 0.2920
0.16]0.26 0.2657 0.2920




FIGURES
FIG. 1. A typical local field calculated numerically from the current continuity condition. The

local effective mean-free-paths are A = 75.64 for z < 0 and A = 94.54 for 2 > 0. The semiclassical
theory of Camblong and Levy predicts a constant local field of E = 0.02403 for z < 0 and a

constant field of £ = 0.01922 for z > 0.

FIG. 2. Calculated Awavevectors of the local field oscillation from various interfaces. The solid

curve is Eq.(13).
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