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The Kapur-Peierls2 dispersion theory leads to. a very convenient
parameterization of the cross section. This is especially true for
the fissile nuclei, where level interference and channel effects are
of importance, Adler and Adler.3 A drawback of these types of cross
section parameterizations is that ver;r little is known about the
statistical properties of the Kapur-Peierls type parameters. How-
ever, from the existing relationships between these parameters and
the R-matrix parameters, whose statistical properties are known, one
can infer the statistical distribution of the former set by various
techniques, Adler and Adler,* Moldauer,5 Garrison,6 Hwang,7 Harris,8

and de Saussure and Perez.9

Further work in this area is motivated by the need of generating
Kapur-Peierls parameters for p-wave neutrons in order to study the
effects of level interference on Doppler coefficients and self-
shielding factors in the unresolved energy region.

The residues and poles in the R-matrix formalism arise from an
eigenvalue problem associated with real, momentum independent values
of the logarithmic derivatives, B , at the nuclear surface for each

o,c
channel, c. In the case of the collision matrix, U, the residues and
poles result from an eigenvalue problem in which the logarithmic de-
rived; ives, B =-(S + iP ) , are complex and momentum dependent,
where S and P are the usual shift and penetration factors respec-

tively. In the spirit of the invariant imbedding technique,10 one

can think in terms of a family of eigenvalue problems, with logarith-

mic boundary conditions, B.. ( T ) , defined in the form

BC(T) = - (1)

where the parameter, T, varies between zero and unity. In this ease,
it has been shown that the transition, T-matrix, as a function of T
is given by the differential equation

dT Tcc'lT) " ~ 2 h,
P"1 f

ee
(2)

The result, Eq. (2), defines the trajectories in configuration space,
described by the transition* matrix elements as the parameter T varies
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between zero and unity. In order to find' the corresponding equations

for the complex level widths g, and poJes e^ = )j. - iv, , one intro-

duces in Eq. (2) the expression

and one uses Eq. (l) to compute the dB ^^/dT term

After some manipulations one obtains
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The results of Eqs. (k) and (5), together with the initial conditions
g, (0) = r V 2 and e, (0) = E, , form a Cauchy initial value problem, which
AC AC A A

lends itself easily to solution.12

There are several advantages to the method discussed here. It
applies to any value of the angular momentum, and it does not involve
iterative techniques or the inversion of matrices.

To demonstrate the feasibility of the method, Eqs. (k) and (5) have
been coded for s-wave neutrons and its results compared with some POLLA9

calculations.
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