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In this past decade there has "been an increased activity in the

.development of .new methods to compute resonant cross sections.3"6

The usual approach deals "with the solution of a set of coupled radial

Schrodinger equations (the multichannel equations), involving matrix

elements of the nuclear Hamiltonian in the channel eigenfunction

representation.7 The multichannel equations are solved by expansion

in either R-matrix states or shell-model eigenfunctions.8 10 In the

first instance, the series obtained shows a poor rate of convergence

and several prescriptions have to be introduced to compensate for

truncation effects.8'9 Once the pertinent R-matrix is obtained, one

has to perform a matrix diagonalization to obtain the collision

matrix. The results obtained depend strongly on the values chosen

for the channel radii and the boundary condition numbers.f The second

method of solution suffers from the difficulty that the shell model

eigenfunctions do not satisfy the appropriate boundary conditions.10

To obviate these problems, we have developed a general formalism

for the transition T-ir.atrix based on the use of Bloch's L-operator11

and invariant imbedding techniques.12 The result is a matrix-integro-

differential equation for the T-matrix as a function of T, where T is

any of the parameters entering in the nuclear reaction formalism.
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where 1* is the largest of the two radial coordinates, r and r,,,

and B is the complex, momentum dependent Kapur-Peierls13 boundary

conditions, and
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The sums are carried out over the intermediate channels; P is the
c

penetration factor, a^ is the channel radius, and U „ «-(r,T) is the

channel potentials. By discretization of the radial integrals in

Eq. (l), one obtain? a set of Ricatti equations which, together with

the proper initial conditions, defines an initial value problem for the

transition matrix. Alternatively one can expand the T-matrix in

shell-model eigenfunctions. In this case one makes T = B , and one

marches the solution from T equal to the shell-model logarithmic

derivative at the channel radius to the correct boundary conditions,

B .
c

As one of the many applications of the present formalism, we show

a method to generate the Kapur-Peierls resonance parameters from a set

of R-matrix parameters. The poles and residues of the R-matrix derive

from an eigenvalue problem in which the boundary conditions, b. , are

real numbers. The corresponding magnitudes in the Kapur-Peierls theory

arise from complex momentum dependent boundary conditions. Again we make

T=B , T = b , and expand the T-matrix in terms of its residues, g, ,
o o c Ac



and poles e, =: \u - iV, , Introduction of this expansion into Eq. (.1)

yields:
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Numerical solutions can te obtained easily by the Runge-Kutta technique

for any value of the angular momentum. To obtain useful analytical approxi-

mations, one can expand residues and poles in Taylor series around B = b .

The clerivutivea [d(n)/dBn], are then computed from Eqs. (3) and (k). As
c

a check this procedure has been applied for S-wave neutrons (b = O),

yielding the Adler-Adler11* formulae for the poles and residues of the

collision matrix.



The main advantages of the present nuclear reaction formalism

are:

(a) It deals directly with "observable" quant*J~es such as

the T-rnatrix or its residues and poles. The solution

of Eq. (l) by discretization preserves the unitarity

of the collision matrix,

(b) One has a large degree of flexibility in the choice

of the boundary conditions. Hence, one can use shell-

model function or R-matrix states indistinctively,

(c) It does not involve time-consuming iterative calcula-

tions, and

(d) It is very suitable for the performance of a parameter

search procedure.
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