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1. Introduction

Aside from its intrinsic interest, the optical model of the scat-

tering of neutrons from nuclei has a number of practical uses. It allows

one to correlate large amounts of data on elastic scattering, absorption,

and total cross sections and hence to predict by extrapolation the cross

sections for targets or energies as yet unmeasured. Through the intro-

duction of the Eauser-Feshbach and/or direct interaction formalisms, this

predictive power may be extended to inelastic scattering and some other

reactions.

There are several theoretical ways of viewing the optical potential

U. A simple physical picture is given by the expression

U(r) = I I p(r.) v(r,r.) dr. + exchange terms

2
+ terms of order v and higher,

(1)

where v(r,r.) is an effective interaction between the projectile nucleon

at "r and a target nucleon at r., while p(r ) is the density distribution

of the target nucleons. This v is essentially the Brueckner-Bethe
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G-matrix used in the many-body theory of nuclear structure, although it

is not very different (for qualitative purposes) from the simple potentials

which fit low energy nucleon-nucleon scattering. The first term alone

(which is closely related to a Hartree-Fock potential) gives a good ac-

count of the real part of the optical potential, as is illustrated in

Pig. 1 for the scattering of 30 MeV protons [13. This term, with the

exchange neglected and v treated somewhat phenomenologically, is the

"basis of the so-called reformulated optical model of Greenlees, et al. [2].

Tnis has "been used to extract information about the density distribution

p(r.) from analyses of elastic scattering data; however, the neglect of

exchange and the higher order terms, as well as our lack of very accu-

rate knowledge of the effective v, place limi-cs on the accuracy of this

procedure. One should not draw too strong conclusions about small effects

such as differences between the proton and neutron distributions in the

target.

The second and higher order terms give rise to the imaginary part

of the potential (as well as contributing to the real part); so far only

tentative calculations of these have been made.

Because v is spin and isospin dependent, so is the potential U.

Further, because of the exchange and higher order terms, and any non-

locality and energy dependence in v itself, U is both energy dependent

and non-local. That is,

U E +(r) = J UE(?,?') <Kr')d?'. (2)

When we use a simple local potential as a model for U_, this non-locality

translates into additional energy dependence. Indeed, there is no reason
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why the local model potential which is equivalent to U_, should be exactly

the same for all partial waves; it may "be L-dependent also. The energy

dependence implied by the exchange terms in (l) agrees with that found

phenomenologically for the real part of the potential from the scattering

of protons of, say, 20 to 60 MeV [3].

Knowing the "true" U_, to be non-local, simple model potentials which

are non-local have been introduced £43, especially of the form

U(r,r') SV(1?*'|) H ( | M ' | ) , (3)

in which all the observed energy dependence is thrown into the non-

locality. Although very successful, this form is, of course, an over-

simplification. Also it was soon realized that the scattering from such

a potential could always be reproduced by an energy dependent local po-

tential which is much easier to calculate with, and there is no advan-

tage in using the non-local model for analysis of data. (Of course, the

non-local models led to some interesting results, such as the relation-

ship between the wavefunctions from local and non-local potentials [53J

When the target density p is deformed or undergoes shape oscillations,

the potential U can be expected to follow, and this generalization of

the optical model to include non-spherical potentials allows one to

calculate the direct component of inelastic scattering as well as under-

stand the splitting of the s-wave strength function peak for deformed

nuclei [6}. In light nuclei and at low energies (say up to a few MeV),

the coupling between the various collective states in this generalized

optical model can result in resonance-like behavior [63.

In the rest of this paper we shall review recent applications of
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the optical model (the local version.except in one case) to various

measurements involving neutrons.

In the context of optical model analyses, although it is clear that

the optical model works very well in a qualitative sense, we might re-

mark that many fits to the data are rather poor. Much of this we sus-

pect is due to the low quality of the data. In particular most of the

neutron scattering data are inadequate to determine precisely the features

of the optical potentials; much better data are needed to "be of such use

in optical model analyses. (A lot of the proton data are, unfortunately,

open to the same criticism. However, the very complete, precise and

extensive set of scattering data for 30 MeV protons obtained at the

Harwell PLA. [7] represent an ideal in this respect.) There is also great

interest in comparing neutron and proton optical model potentials [83.

Here we encounter further difficulties since data for the two nucleons

tend to be available only for different regions of energy and target

nuclei. Neutron data tend to be available at energies of 14 MeV and

below 8 MeV, while the most useful sets of proton measurements are

at 30 MeV and above. In addition many neutron measurements, especially

on the heavier nuclei, sometimes do not completely resolve the first ex-

cited state. Proton data tend to be for the lighter nuclei (A < 100)

(plus Fb!). It would really be valuable to have some good neutron scat-

tering measurements at, say, 30 MeV.

2. Total Cross Sections

The work of Foster and Glasgow [93 must be mentioned. Total cross

sections were measured from 2.5 to 15%MeV for 78 natural and 1^ artificial

or enriched elements from H to Pu. Figure 2 shows a sample for Ca through
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Y and Pig. 3 shows Sn through Lu. The curves in these figures are the

predictions from the non-local potential model of Perey and Buck [hi,

which ha 3 the form (3), using their original set of parameters (the same

set for all nuclei). The agreement with the data is remarkable, par-

ticularly for the nuclei normally regarded as spherical. Some deviations

begin to show in the middle of the energy range for nuclei heavier than

Sn developing into large deviations for the deformed rare earths, which

then die away again as one approaches the doubly magic Fb. Similar

deviations show up for Th, U and Pu, and it is natural to associate them

with collective vibrational and rotational effects. The measurements

for the heavier elements (A > 200) also exceed the predictions at the

lowest energies.

The overall agreement with the Perey-Buck potential is evidence for

the general validity of the concept of a universal optical model (as we

remarked earlier, the fact that this happens to be a non-local potential

is irrelevant; a local potential with the same number of parameters would

do as well). The agreement over such a wide range of nuclei is probably

due to the relative insensitivity of total cross sections to parameter

changes provided some overall features are correct. The latter was

guaranteed, apparently, by the original fitting procedure used by Perey

and Buck [43 to determine their parameters. However, we would be sur-

prised if the potential really was the same for all nuclei (except for

scaling radii like A$), and evidence that this is not so is provided by

some ih MeV total cross sections measured at Leningrad £10} (Pig. h)

which can be explained with a local potential by introducing a dependence

of the strengths on the target symmetry parameter (N-Z)/A. (The other

parameters, r = 1.26 fm, a = 0.70 fm, b = 1.0 fm and V = 8.3 MeV, are
o so
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similar to those of the local potential equivalent to the Perey-Buck

potential.) To put these results in perspective, Pig. 5 shows the overall

behavior of Om, with the slopes for the isotopes of Ni, Zn and Sn being

indicated; the slopes for Ni and Zn are markedly different from the

average trend. The symmetry dependence deduced for the real strength V

is less than usually found for protons, but that for the imaginary part

W is stronger [8,11}.

Figure 6 shows measured a™ for neutron energies up to 135 MeV for

Cd and Fb [123 and for Ho [133» The oscillations with energy are

clear evidence of the partial transparency of these nuclei to neutrons

and have been understood in terms of a nuclear Ramsauer effect

The data above 10 MeV foi* Cd and Fb were fitted with a local and spherical

optical potential, corresponding to the dashed curves shown. (The pre-

dictions for this potential below 10 MeV are also shown; the deviation

from experiment for Fb at the lowest energies is similar to that found

with the Perey-Buck non-local potential.) This potential has both volume

and surface absorption terms and depends linearly on the energy. The

parameters are V = (V7.3O - 0.22? En) MeV, W = (0.46 + 0.11 En) MeV, Wp =

(4.3 - O.OUl E ) MeV, and V = 7.0 MeV with r = r' = 1.21 fm, a =
n so o o

0.68 fm and a' = 0.645 fm. The surface absorption term vanishes for

E «s 105 MeV. The behavior with energy is similar to that observed for
n

protons [111.

The dashed curve does not give a good fit to the strongly deformed

Hor However, considerable improvement is obtained [133 when Ho is

treated as a rigid rotor by using the generalized, non-spherical optical

potential in a coupled equations calculation [63; thi,s yields the solid

curve. The optical parameters were taken to be the same as for the
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spherical nuclei Cd and Pb (except for the usual 20$ reduction in ¥ and

W_ to compensate for the explicit coupling to the rotational states which

is now included [6]), together with a quadrupole deformation parameter

p = 0.33• This is not an optimum fit since no parameters were adjusted;

these calculations take too long for any extensive variation of parame-

ters to be studied. However, comparison between the dashed and full

curves makes it clear that the deforraation effect is important and im-

proves agreement with the data.

The Cm for Ho were also measured [133 when the target nuclei

were oriented at low temperatures. When non-spherical nuclei are

oriented with respect to the direction of the incident neutrons, the

average path length to traverse the nucleus is changed from what it is

when the nuclei are randomly oriented. As a consequence the oscillations

in a_ with energy due to the Ramsauer effect are shifted. Figure 7 shows

the change in <y~, versus E . The non-spherical optical potential (solid

curve) reproduces this deformation shift very well. (The dashed curve

comes from an approximate treatment [133 of this effect, using geometric

optics and a square well potential [1^3•)

3. Elastic Scattering

Becchetti and Greenlees [153 reported on a global fit to 30 sets

of neutron data from Fe to Pb for neutron energies below 15 MeV (except

for 3 cases at 24 MeV). The parametrization of the potentials which they

used is based on their proton analysis and included dependence on both

energy and symmetry parameters (N-Z)/A. Few of the parameters were de-

termined from the neutron data, the others being fixed at the values
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obtained from their proton study. This Mas is unfortunate because the

proton analysis was strongly influenced by the extensive data for energies

of 30 and hO MeV, much higher than the neutron energies. The geometrical

parameters they used are significantly different from those normally ob-

tained from analyses of neutron data at these low energies (see below).

Consequently it is not clear to which extent the results they obtained are biased to

compensate for this effect. The fits which they obtained were reason-

able but the compound elastic scattering was adjusted to obtain a best

fit and this further complicates an assessment of their -*esults. One

of the less successful aspects of their analysis is the failure to re-

produce adequately the total and reaction cross sections.

A very extensive study has been made by Holmqvist and Wedling [US]

who have measured elastic differential cross sections for many elements

from Al to Bi at energies from 1.5 to 8 MeV and have subjected the re-

sults to an optical model analysis. Figure 8 shows examples for Co and

Cuj the fits are good. The optical model parameters are seen to be quite

steady with energy (note the displaced zeros on the ordinate scales)

and this provides further evidence for the validity of the model. Figure

9 shows the results for 22 elements at 8 MeV; again the fit is very

satisfactory. We see from Fig. 10 that these optimum parameters (open

circles) do not vary strongly with A; the biggest fluctuations occur in

the absorptive strength W, to which the fits are perhaps least sensitive.

(Note again the displaced zeros on the scales.) The filled circles rep-

resent optimum values of V and W when the other parameters are fixed at

the average values r = 1.22 fm, a = 0.6? fm and r' = 1.25 fm. (V =

8 MeV and a' = 0.U8 fm were fixed in'all the studies.) The fluctuations

in W remain, but those in V are reduced because they are correlated with

the fluctuations in the radius r and surface diffuseness a.
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There is a general trend for V to decrease as A increases and this

may be interpreted as a dependence on the neutron excess, or (N-Z)/A.

The V and W are plotted against this symmetry parameter in Fig. 11. The

trend is fairly clear for V, although there is considerable scatter.

When it is expressed as V = VQ - V-(N-Z)/A, a least-squares fit is quoted

as giving V « 12.5 ± 2.5 MeV. This value of V is only about one-half

that expected from analyses of proton scattering [.8,11,153. It has been

emphasized by Greenlees, et al. that Eq. (l) suggests that a more sig-

nificant measure of the real potential is the volume integral per particle,

j/A, and this is also shown in Fig. 11. (One should not take too simple

a view of j/A because of the effects of exchange and the higher order

terms. Even without these, j/A will no longer be constant if the ef-

fective interaction v has any significant density dependence.) Because

of the diffuse surface and the assumption that the radius is proportional

to A3, j/A decreases more rapidly than V as A (and hence, on average,

(N-Z)/A) increases. The "behavior in Fig. 11 is something like

J/A « 1*80 - VTO (H-Z)/A,

so the symmetry dependence is about twice as strong as expected from the

simple Greenlees model. On the other hand, it is amusing to note that

the j/A for 30 MeV protons shows no variation with (JI-Z)/A because in

this case the variation of V is of opposite sign to that for neutrons

and is just cancelled by the diffuse surface effectI We return to these

features later.

The mean square radii of these neutron potentials are very close to

those found from proton scattering. The other noticeable feature is that

the average potential (which gives fits almost as good as those shown
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in Figs. 8 and 9) has no energy dependence. However, we feel that an

energy dependence of the usual magnitude in V and W (e.g., dV/dE « -0.3,

or a change in V of about 2 MeV or kfy over the range E = 1.5 to 8 MeV)

would probably give just as good fits. One should also remember that

compound elastic corrections are made for the lower energies and this

introduces some uncertainty.

We already saw that the non-spherical potential associated with a

deformed nucleus affected the total cross section (Pig. 6 ) . Figure 12

illustrates the effects on the elastic angular distributions for Ta [17]*

The dashed curves show the best fits obtained with a spherical potential

by varying five parameters at each energy. The solid curves results from

coupled-channel calculations using a non-spherical potential with quadrupole

deformations j3 =* 0.26 and varying only two parameters, V and W, at each

energy. The improvement in fit is dramatic. Rather similar results have

been obtained for neutrons of 1.5 to 3-5 MeV on Er [18],

h. Inelastic Scattering

The generalized non-spherical optical potential allows one to cal-

culate inelastic as well as elastic scattering [6], both to rotational

or vibrational states. We mention the octupole state in Fb as an ex-

ample of the latter, taken from a recent evaluation of neutron data for

Fb [191• Figure 13 summarizes the elastic data used to determine the

optical potential parameters (these are almost the same as the local

equivalent to the Perey-Buck potential [If]). The left side of Fig. ik

shows the direct interaction fits to the excitation of the 2.6 MeV 3~

state (and also the k.l MeV group of states). Only the deformation

parameter f> is an adjustable parameter here, and the cross section is
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proportional to p (in the DWBA). Further, the g value must be com-

patible with values obtained from other measurements such as Coulomb ex-

citation. Compound inelastic is negligible at these energies. However,

at the lower energies shown on the right, the compound inelastic (cal-

culated with the Hauser-Feshbach theory) dominates. Nonetheless, the

direct contribution is not negligible for the 5~ even here; the dashed

curves are from the compound process alone, while the solid curves in-

clude the direct excitation.

A corresponding analysis has been made for scattering from Fe [20^

for energies of h to 8 MeV. Figure 15 shows as a function of energy the

percentage contribution from direct interaction for exciting the 2 state

at 0.8k6 MeV. The quadrupole deformation parameter j3 = 0.26 was taken

from an analysis of 11 MeV proton scattering so there were no adjustable

parameters. Figure 16 compares the corresponding theoretical cross sections

with the data; at 5 and 7.5 MeV, the direct (Dl) and compound (CN) con-

tributions are also shown separately.

The optical model, of course, plays an important role in providing

transmission coefficients for Hauser-Feshbach calculations of compound

inelastic scattering, but it does not seem appropriate to discuss these

in detail here.

5. Isospin Dependence ajid (p,n) Reactions

We have already remarked upon the possibility of a dependence of

the optical potential on the neutron excess or symmetry parameter (N-Z)/A.

This is expected from the isospin dependence of the nucleon-nucleon force [83

and would have the opposite sign for neutrons and protons. If the sym-

metry potential is assumed to have the same shape as the main potential,
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we might then expect well depths "behaving like

V = VQ ± V1 (N-Z)/A, W = ffQ ± V± (N-Z)/A (4a)

with + for protons, - for neutrons. A comparison of neutron and proton

scattering would "be the most direct way of extracting the parameters V.

and W_ but unfortunately few useful data are available for which the

neutron and proton energies are similar. We then have to rely upon the

variation of the potential for a given particle over a range of targets.

Proton scattering data generally show this behavior [8,11,153 with V. «

25 MeV and W « 12 to 16 MeV (for the surface absorption). (Of course,

the precise values of V1 and W. are meaningless unless we also specify

the radius and surface diffuseness. However, we can ignore this for the

qualitative comparisons we make here.) Neutron results are less clear-

cut [83. We have already seen (Fig. h) c_ measurements for a series of

isotopes which were taken to imply V̂ ^ «» 17 MeV and W « 26 MeV. The

Swedish elastic scattering data have been taken to indicate (Fig. 11)

V_ fa 12.5 ± 2.5, with no clear variation in W. Unpublished analyses of

Ik MeV data by one of us (FGP) are consistent with V «, 0. Hence there

seem to be indications that V_ is smaller for neutrons than for protons.

This situation changes if we take the view that the volume integral

per particle is the more significant measure of the real potential. Be-

cause of the effect of the diffuse surface, even if V were constant then

j/A would decrease with increasing A and, because (N-Z)/A also tends to

increase with A, j/A would appear to decrease with increasing neutron

excess. Figure 11 illustrates this behavior for neutrons. For protons,

on the other hand, this effect reduces the apparent symmetry dependence;

at 30 MeV [73, J/A appears to be independent of (N-Z). It has been
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suggested [21] that if the nucleon-nucleon effective interaction v in

Eq. (l) were density dependent (which it certainly is, to some extent),

then this would also lead to a reduction in j/A as A increases, thus ob-

scuring any dependence on neutron excess. Certainly this would help

restore the symmetry "between protons and neutrons. In addition, of coursej

there are other corrections to the first order term in Eq. (l), and these

can "be expected not to be exactly symmetric.

Hence our knowledge of the symmetry potential from elastic scat-

tering remains uncertain, even though in general the differences V - V

or (J - J )/A are of the order of magnitude expected. Another, more

direct, measure of this potential becomes available if the suggestion

of Lane [8] is adopted. The optical potential is written in the isospin

form

U(r) = UQ(r) + h U^rJt.T/A

and hence immediately includes the (p,n) charge-exchange reaction which

excites the analogue of the target ground state. The cross section for

this then depends upon U_ alone, instead of U_ providing a small cor-

rection to the main interaction as in elastic scattering. There are

now many experiments of this type [8]. We shall merely cite some recent

evidence that U_ (r) is complex, that it is energy-dependent and that it

may contain a spin-orbit term.

Figure 17 shows some typical results at about 19 MeV from the old

cyclotron at Livermore [223. The curves are the predictions obtained

using"the (N-Z)/A terms from the Becchetti-Greenlees £l5l proton optical

potential and assuming these truly represent U.(r); there are no ad-

justable parameters. The agreement is good. Including the imaginary

terms here is important for giving the structure observed in the angular
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distributions, so this represents evidence that U_ is complex. This is

illustrated further in the left side of Fig. 18 for a higher energy [23]

and for a similar potential £11]. In this case the predicted cross section

is too large. (The right side of Fig. 18 indicates the additional ef-

fect of having the real part of U_ peaked at the surface instead of spread

throughout the volume.)

Figure 19 tells a less comforting story. These measurements [2^],

at 23 MeV, are more precise and show that the observed angular distri-

butions have more structure than is predicted by the Becchetti-Greenlees

(curves) or similar potentials, although the overall magnitudes are quite

close. We do not know whether taking the real part of U. to be surface

peaked would improve the agreement, but it seems likely. Carlson, et al. [2t]

chose to vary the imaginary part of U_ in such a way as to emphasize the

contributions from the surface region and found a form which fitted the

(p,n) as well as tlie corresponding (p,p) and (n,n) distributions in a

self-consistent way (Fig. 20). The shapes of the real (dashed curves)

and imaginary (full curves) parts of U.(r) are shown in Fig. 21. The

real part has the same shape as in the Becchetti-Greenlees potential ex-

cept for a reduction in strength of 20 to 30$, but the imaginary part

is very different. Its radius remains almost constant but its width in-

creases as A increases. We find such a potential hard to understand.

In passing, we note that Fig. 19 shows a marked difference between

26Mg with 1 = 0 and 25Mg and 27Al, both with 1=5/2. This may be evi-

dence for a deformed U. whose non-spherical components can contribute-

in lowest order to the latter two targets but not for the former.

We turn next to the energy dependence of U . Elastic scattering

data have been consistent with l>* == constant, independent of energy.
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Recent measurements at UCIA [253 of the total (p,xrp) cross section re-

veal an energy dependence quite different from that predicted for a con-

stant U. (r); Fig. 22 shows two examples. Curves (a) are for U- from the

Becchetti-Greenlees potential, assuming 100$ i>-decay of the analog state.

Apparently there is a discrepancy between the absolute magnitudes of

am(p) and a,p(p̂ n) which is not understood at present, but the energy

dependence is believed to be valid. Supporting evidence comes from the

new Livermore cyclograaff £263, Fig* 23, which also shows an energy de-

pendence much stronger than predicted by the optical model, as well as

a larger cross section at the lower energies. It has been suggested [253

that these effects would be explained by solving exactly the coupled

neutron-proton equations instead of using the IWBA, but we find this hard

to believe. On the other hand, we have no better explanation to offer.

Finally we mention recent measurements at Saclay on these (p,n)

reactions using polarized protons of 25 MeV [27}. It appears to be

difficult to fit the asymmetry for forward scattering angles without in-

cluding a spin-orbit term in U.. (This is rather reminiscent of asym-

metry measurements on (p,p')j where the results for small angles require

a spin-orbit component in the deformed optical potential.) Figure 2k

shows an example, where the spin-orbit strength is also written like Eq.

vs = vso ± vsi (l

The sign of Vs- is negative, as expected from the nucleon-nucleon spin-

orbit force. Now V_. = -1 MeV implies a spin-orbit strength for protons
oj.

on Pb which is only about 7$ weaker than for neutrons. This small dif-

ference could hardly be detected in analyses of elastic scattering. More

experiments of this type would be useful.
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6. Spin-Spin Interactions

A number of attempts have been made to detect the^ffects on nucleon

nucleus scattering of a coupling between the spin ̂  a of the niicleon and

- » ' • • - .

the spin I of the target. This coupling is usually discussed in terms

of a potential of the form

U (r) a * I (5)
So

although in general this is only one of several possible forms [28}. We

may have scalar products of other tensors, for example

LJ JjM V . M , ^ (6)
LJ,M

Here L is even, and L = J or J ± 1. The rank J is restricted by the

target spin to be J < 21. The form (5) follows from L = 0, J = 1. The

values L = 2, J = 1 give the next simplest term,

UT(r) i3(a • r)(I • r) - 3 • I], (7)

which is like the usual tensor force.

Comparisons of scattering from even, spin zero targets and odd tar-

gets with non-zero spin have shown no marked differences, indicating

that spin-spin effects are not large. Clearly, however, the optimum way

to search for such interactions is to scatter polarized nucleons from

polarized targets and this has been done a number of times [293. The

most recently published work scatters polarized neutrons of 0.3 to 8 MeV

59
from polarized Co; Fig. 25 shows the difference between the total cross

sections measured when the two spins are aligned parallel and antiparallel,



-17-

The curves are the predictions using a term like (5) when U (r) has a
ss

Woods-Saxon shape with a depth V /i; the theoretical predictions are
SS

rather insensitive to the shape chosen. No single value of V will fit
ss

the data around 1 MeV. However there are appreciable fluctuations and

intermediate structures in am in this energy region (Fig. 26) which may

account for these difficulties. There is also the possibility [30] of

contributions from higher rank tensors such as (7).

The uncertainties summarized in Fig. 25 certainly make it desirable

to have accurate measurements for higher neutron energies. Current de-

velopment of sources of polarized neutrons resulting from polarization

transfer reactions may make such measurements easier. At the same time

it would be valuable to compare measurements in which the polarizations

were parallel and perpendicular to the incident beam. The vector inter-

action (5) gives the same result in both geometries but the effect of

the tensor term (7) changes sign [30].

The other popular target for these measurements is Ho [313i a™

data have been taken at O.k, 1, 8 and 15 MeV. The overall result is that

the measurements are compatible with V = 0 , although values of several

hundred KeV are allowed.

Another attempt to detect the spin-spin interaction is a measure-

ment of the depolarization of l.h MeV polarized neutrons by a number of

odd-A^targets [32]. The depolarizations measured were quite large; un-

fortunately it appears they are largely due to compound elastic scat-

tering rather than the direct intervention of a spin-spin potential.
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Some theoretical estimates of the strength of the spin-spin inter-

actions have been jce.de [28,29]. These assume the model of Eq. (l), with

the spin-spin term coming from the last odd nucleon of the target, and

indicate that U should be quite weak. Figure 27 shows an example for
ss

59
Co [283; t n e neutron potential is similar but of opposite sign. It

was also noted that core polarization effects (the same that make the

magnetic moment depart from the Schmidt value and which tend to inhibit

Ml transitions) tend to quench the spin-spin interaction. The curve C

is the contribution from the direct central force coupling to the valence

nucleon, while CP is from the core polarization. Contributions from two

choices of tensor force are also shown. These calculations suggest U
ss

has a strength of less than 100 KeV. Similar calculations of the tensor

term (7) indicate that this is weak also.

7. Strength Functions

The theoretical background to strength functions and their relation

to the optical mofiel have been reviewed in several places recently t333«

It is our impression that there have not been many striking developments

in this subject in the last few years. Some of the old puzzles remain

with us, only partially understood; e.g., the very low minima in SQ near

A ~ 100 (Fig. 28) and in S near A ~ 50 a«d A ~ 170. The s-wave minimum

was explained by Moldauer £3*0 as due to the imaginary part of the optical

potential being concentrated in a narrow shell at a radius about 0.5 fm

greater than the real potential (curve 5 in Fig. 28). It is interesting

that a similar conclusion is reached from absorption cross section

measurements for low energy (3 to 5 IfeV) protons on the Sn isotopes [353-

However, we find it difficult to understand- such a localized absorption,
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and we tend to believe this is merely a device to reduce the s-wave ab-

sorption for the A ~ 100 region compared to other masses. There is no

reason why the potential should not be somewhat different for s- and p-

vaves, or vary somewhat with A in a non-monotonic way [36^.

Recent measurements at RPI [37] of the p-wave strength function

show some very low values in the region of A ~ 50, much lower than pre-

dicted by Moldauer*s potential. Further, it is still not clear experi-

mentally whether the p-wave peak for A ~ 100 is split or not. S_ does

attain very high values for some targets in this region. It has been

stressed [38] that this p-wave peak is related to the cusp seen in (d,p)

excitation functions in the A ~ 90 region at the threshold for the analog

(d,n) transition. The outgoing proton from the (d,p) reaction is coupled

through the interaction (kb) to the neutron from the (d,n) reaction which

is exciting the analog state of the residual nucleus. At the threshold

for the latter, when A ~ 90 the zero-energy neutron is dominated by the

3p-wave "giant resonance". Then the observed cusp in the (d,p) excita-

tion function reflects fairly directly the energy profile of the 3p

strength function. (A simple description of this phenomenon has been

given by Lane [39].)

Uo
The s-, p- and d-wave strengths for neutrons on Ca with energies

up to 2 MeV have been studied recently. The I and J of 71 resonances

up to 1.3 MeV were identified and the results tied in with information

for negative energies from the (d,p) reaction C^O]. The p-wave resonances

2 / 2

amount to only Ufa of the single particle value h /ma , which is con-

sistent with almost all the 2p strength being in the bound states, 5 to

7 MeV lower, which are populated by the (d,p) reaction. Furthers the
strength was greater than the Ps/g,* as expected. Also in this energy
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range, 7$ of the Wigner limit vas seen for s-waves, and 6<f> for d-waves,

which again is consistent with the bulk of the 3s and 2d single particle

strength "being somewhat higher in excitation, as expected from a simple

potential model.

Some d-wave strength functions have been extracted recently from

capture cross section measurements for 12 elements from Nb to Au C1*-!}.

Agreement with the predictions of a spherical optical potential was not

very good, but this is not too surprising since several targets were from

the deformed rare earth region and others exhibit quite strong quadrupole

vibrations. This work also contributes some more low p-wave strength

functions for the rare earths and some high ones for the A ~ 100 region.

Another possibility for obtaining information about d-wave neutrons

is to study inelastic excitation of the first 2 + level near threshold.

Then only s-wave outgoing neutrons contribute ?jid therefore angular

momentum conservation selects incoming d-vaves.

Values of S Q for a number of isotopic series were deduced at Saclay [42}

recently from measurements of 7 ,rameters of individual resonances. They

show (Fig. 29) a strong dependence on neutron excess, very different from

the predictions (solid curve) of an optical potential with fixed parame-

ters. Indeed, a very strong dependence of the absorptive potential W

on (N-Z)/A (W S 63 MeV in Eq. (4a)) is required to reproduce this be-

havior. This is very similar to the a™ behavior shown in Fig. 4, al-

though the symmetry dependence neeied there was not as strong. Apparently

W, s= Ifc5 MeV gives agreement with the data for the Sn isotopes. It is

interesting that analyses [433 of the elastic scattering of 16 MeV protons

from these targets also resulted in a symmetry dependence, somewhat weaker
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(W « Uh MeV for Te, W ~ 23 M e V f o r S n a n d C d) tut of the opposite sign,

i.e., as expected for a true isovector potential of the form (4b). However the
two effects, for such different energias, niay be quite unrelated [?6],

This same group [42] has measurements for some odd nass targets

pertaining to a possible spin dependence of SQ (which might be related

to a spin-spin term in the optical potential). Unfortunately the results

are rather inconclusive. For example, on Wd, the ratio SQ(J=4)/SQ(J=3) » \,

while for N̂d it is about 2.7. This ratio is also about 2 for jSm

149 125 125

and Sm, but the two spin states for Te and Te targets have roughly

equal strengths.

Finally, we should remark tha-fc a large amount of information on

proton strength functions is being accumulated for the mass region

40 < A < 64 at Duke, and this has been reviewed recently by Bilpuch [44].

8. Concluding Remarks

In conclusion, we would like to comment on the "richness" of the

optical model concept and its applications. Besides being a device for

correlating data, it acquires immediate physical significance through

interpretations such as that underlying Eq. (l). The potential has been

enriched through the inclusion of spin-orbit and spin-spin terms which

enable polarization measurements to be described. The dependence of the

potential on neutron excess can lead to interesting nuclear structure

information; the generalization of this in the isospin language immediately

includes a class of (p,n) reactions. Allowing the potential to be non-

spherical (or to oscillate in shape about a spherical mean) immediately

includes within the domain of the optical model a large class of inelastic

scattering reactions. Finally, of course, these "optical" phenomena

play an important role in the description of transfer and other reactions.
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Figure Captions

Figure 1. Elastic scattering predicted for real potential based on

first term of Eq. (l) plus phenomenological Imaginary and spin-orbit

terms [1] compared to measurements.

Figure 2. Total cross sections for elements from Ca to Y, from Ref. £93*

Figure 5« Total cross sections for elements from Sn to Lu, from Ref.

[93.

Figure h. Total cross sections for some isotopic sequences for l*f MeV

neutrons [103. Solid curves are experimental, dashed curves are optical

model calculations.

Figure 5. Total and elastic cross sections for lh MeV neutrons. Lines

I, II and III indicate the trends from Bef. [103, Fig. h.

Figure 6. Total cross sections for neutrons up to 135 MeV [12,133* Dashed

curves are for spherical optical potential, fitted to data above 10 MeV

for Cd and Pb. Solid curve is for deformed, rotational optical model.

Figure 7. Deformation effect in total cross sections for neutrons up to

135 MeV on oriented Ho [133« Solid curve is deformed optical model

prediction, dashed curve is for an approximate calculation.

Figure 8. Elastic differential cross sections for neutrons of 1.5 to 8

MeV on Co and Cu, with optical model fits [16"3« Corresponding parameters

for Cu shown on right.

Figure 9. Elastic scattering at 8 MeV from a series of targets, with

optical model fits [163.

Figure 10. Optical potential parameters for Fig. 9. Solid dots are for

two parameter (V and W) fits with other parameters fixed at the average

values.

Figure 11. As Fig. 10, but plotted against neutron excess. JU/A is the



volume integral per nucleon for the real part of the potential.

Figure 12. Elastic scattering from Ta at energies from 2.5 to 8 MeV [173-

Dashed curves are best fits using spherical optical potentials; solid

curves are for the non-spherical rotational model.

Figure 13. Summary of optical model fits to elastic scattering from Pb £191-

Figure lk. Vibrational optical model fits to inelastic scattering from

Fb (left), together with compound inelastic calculations at lower ener-

gies (right) [19]. Difference between dashed and solid curves is the

direct reaction contribution.

Figure 15. Variation with energy of direct (vibrational optical model)

contribution to excitation of lowest 2 + state in Fe [20}.

Figure 16. Differential cross sections corresponding to Fig. 15. Direct

(DI) and compound (CN) parts shown separately at 5 and 7.55 MeV.

Figure 17. Excitation of the analog of the target ground state by (p,n)

reaction at 18.7 (left) and 19.7 (right) MeV [22], Curves are predictions

from symmetry dependent parts of Becchetti-Greenlees potential.

Figure- 18. Effect of complex isovector interaction on (p,n) angular

distribution. Heal part has Saxon ("volume") or derivative of Saxon

("surface") shape.

Figure 19. As Fig. 17, except at 23 MeV [2*0.

Figure 20. Simultaneous fits to (p,n) reaction at 23 MeV together vith

corresponding proton and neutron elastic scattering [24].

Figure 21. Isovector potentials used for calculations shown in Fig. 20;

real parts are dashed, imaginary parts are solid curves.

Figure 22. Energy dependence of total cross section for (p,np) reaction [251-

Curves "a" are predictions using Becchetti-Greenlees potential.

Figure 23. Total cross section for **v(p,n) reaction [26],



Figure 2k. Asymmetry from using polarized protons in Sn(p,n) analog

reaction [27}. Curves are optical model predictions with isovector spin-

orbit term of strength V_. added.

Figure 25. The spin-spin effect on the total cross section for polarized

neutrons on polarized Co [293• ^he curves are optical model predictions

with a term V "i-a/l.ss
Figure 26. As Fig. 25, "but with fine resolution, between 0.3 and 1.8

MeV [29].
59

Figure 27. Calculated spin-spin potential for protons on Co; contri-

butions from central (C), tensor (OPEP and TPEP) and core polarization

(CP) forces [28],

28. Neutron S-wave strength function and optical model calcula-
tions [3*0.

Figure 29. Neutron S-wave strength function for Te isotopes and optical

model calculations
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